about summary refs log tree commit diff
path: root/src/libcore/rt/sched.rs
blob: 5c1a3410087c4d024e14a43c4b210e09398c16a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use option::*;
use sys;
use cast::transmute;

use super::work_queue::WorkQueue;
use super::stack::{StackPool, StackSegment};
use super::rtio::{EventLoop, EventLoopObject};
use super::context::Context;
use super::local_services::LocalServices;
use cell::Cell;

// A more convenient name for external callers, e.g. `local_sched::take()`
pub mod local_sched;

/// The Scheduler is responsible for coordinating execution of Coroutines
/// on a single thread. When the scheduler is running it is owned by
/// thread local storage and the running task is owned by the
/// scheduler.
pub struct Scheduler {
    priv work_queue: WorkQueue<~Coroutine>,
    stack_pool: StackPool,
    /// The event loop used to drive the scheduler and perform I/O
    event_loop: ~EventLoopObject,
    /// The scheduler's saved context.
    /// Always valid when a task is executing, otherwise not
    priv saved_context: Context,
    /// The currently executing task
    current_task: Option<~Coroutine>,
    /// An action performed after a context switch on behalf of the
    /// code running before the context switch
    priv cleanup_job: Option<CleanupJob>
}

// XXX: Some hacks to put a &fn in Scheduler without borrowck
// complaining
type UnsafeTaskReceiver = sys::Closure;
trait ClosureConverter {
    fn from_fn(&fn(~Coroutine)) -> Self;
    fn to_fn(self) -> &fn(~Coroutine);
}
impl ClosureConverter for UnsafeTaskReceiver {
    fn from_fn(f: &fn(~Coroutine)) -> UnsafeTaskReceiver { unsafe { transmute(f) } }
    fn to_fn(self) -> &fn(~Coroutine) { unsafe { transmute(self) } }
}

enum CleanupJob {
    DoNothing,
    GiveTask(~Coroutine, UnsafeTaskReceiver)
}

pub impl Scheduler {

    fn in_task_context(&self) -> bool { self.current_task.is_some() }

    fn new(event_loop: ~EventLoopObject) -> Scheduler {

        // Lazily initialize the global state, currently the scheduler TLS key
        unsafe { rust_initialize_global_state(); }
        extern {
            fn rust_initialize_global_state();
        }

        Scheduler {
            event_loop: event_loop,
            work_queue: WorkQueue::new(),
            stack_pool: StackPool::new(),
            saved_context: Context::empty(),
            current_task: None,
            cleanup_job: None
        }
    }

    // XXX: This may eventually need to be refactored so that
    // the scheduler itself doesn't have to call event_loop.run.
    // That will be important for embedding the runtime into external
    // event loops.
    fn run(~self) -> ~Scheduler {
        assert!(!self.in_task_context());

        let mut self_sched = self;

        unsafe {
            let event_loop: *mut ~EventLoopObject = {
                let event_loop: *mut ~EventLoopObject = &mut self_sched.event_loop;
                event_loop
            };

            // Give ownership of the scheduler (self) to the thread
            local_sched::put(self_sched);

            (*event_loop).run();
        }

        let sched = local_sched::take();
        assert!(sched.work_queue.is_empty());
        return sched;
    }

    /// Schedule a task to be executed later.
    ///
    /// Pushes the task onto the work stealing queue and tells the event loop
    /// to run it later. Always use this instead of pushing to the work queue
    /// directly.
    fn enqueue_task(&mut self, task: ~Coroutine) {
        self.work_queue.push_front(task);
        self.event_loop.callback(resume_task_from_queue);

        fn resume_task_from_queue() {
            let scheduler = local_sched::take();
            scheduler.resume_task_from_queue();
        }
    }

    // * Scheduler-context operations

    fn resume_task_from_queue(~self) {
        assert!(!self.in_task_context());

        rtdebug!("looking in work queue for task to schedule");

        let mut this = self;
        match this.work_queue.pop_front() {
            Some(task) => {
                rtdebug!("resuming task from work queue");
                this.resume_task_immediately(task);
            }
            None => {
                rtdebug!("no tasks in queue");
                local_sched::put(this);
            }
        }
    }

    // * Task-context operations

    /// Called by a running task to end execution, after which it will
    /// be recycled by the scheduler for reuse in a new task.
    fn terminate_current_task(~self) {
        assert!(self.in_task_context());

        rtdebug!("ending running task");

        do self.deschedule_running_task_and_then |dead_task| {
            let dead_task = Cell(dead_task);
            do local_sched::borrow |sched| {
                dead_task.take().recycle(&mut sched.stack_pool);
            }
        }

        abort!("control reached end of task");
    }

    fn schedule_new_task(~self, task: ~Coroutine) {
        assert!(self.in_task_context());

        do self.switch_running_tasks_and_then(task) |last_task| {
            let last_task = Cell(last_task);
            do local_sched::borrow |sched| {
                sched.enqueue_task(last_task.take());
            }
        }
    }

    // Core scheduling ops

    fn resume_task_immediately(~self, task: ~Coroutine) {
        let mut this = self;
        assert!(!this.in_task_context());

        rtdebug!("scheduling a task");

        // Store the task in the scheduler so it can be grabbed later
        this.current_task = Some(task);
        this.enqueue_cleanup_job(DoNothing);

        local_sched::put(this);

        // Take pointers to both the task and scheduler's saved registers.
        unsafe {
            let sched = local_sched::unsafe_borrow();
            let (sched_context, _, next_task_context) = (*sched).get_contexts();
            let next_task_context = next_task_context.unwrap();
            // Context switch to the task, restoring it's registers
            // and saving the scheduler's
            Context::swap(sched_context, next_task_context);

            let sched = local_sched::unsafe_borrow();
            // The running task should have passed ownership elsewhere
            assert!((*sched).current_task.is_none());

            // Running tasks may have asked us to do some cleanup
            (*sched).run_cleanup_job();
        }
    }

    /// Block a running task, context switch to the scheduler, then pass the
    /// blocked task to a closure.
    ///
    /// # Safety note
    ///
    /// The closure here is a *stack* closure that lives in the
    /// running task.  It gets transmuted to the scheduler's lifetime
    /// and called while the task is blocked.
    fn deschedule_running_task_and_then(~self, f: &fn(~Coroutine)) {
        let mut this = self;
        assert!(this.in_task_context());

        rtdebug!("blocking task");

        unsafe {
            let blocked_task = this.current_task.swap_unwrap();
            let f_fake_region = transmute::<&fn(~Coroutine), &fn(~Coroutine)>(f);
            let f_opaque = ClosureConverter::from_fn(f_fake_region);
            this.enqueue_cleanup_job(GiveTask(blocked_task, f_opaque));
        }

        local_sched::put(this);

        unsafe {
            let sched = local_sched::unsafe_borrow();
            let (sched_context, last_task_context, _) = (*sched).get_contexts();
            let last_task_context = last_task_context.unwrap();
            Context::swap(last_task_context, sched_context);

            // We could be executing in a different thread now
            let sched = local_sched::unsafe_borrow();
            (*sched).run_cleanup_job();
        }
    }

    /// Switch directly to another task, without going through the scheduler.
    /// You would want to think hard about doing this, e.g. if there are
    /// pending I/O events it would be a bad idea.
    fn switch_running_tasks_and_then(~self, next_task: ~Coroutine, f: &fn(~Coroutine)) {
        let mut this = self;
        assert!(this.in_task_context());

        rtdebug!("switching tasks");

        let old_running_task = this.current_task.swap_unwrap();
        let f_fake_region = unsafe { transmute::<&fn(~Coroutine), &fn(~Coroutine)>(f) };
        let f_opaque = ClosureConverter::from_fn(f_fake_region);
        this.enqueue_cleanup_job(GiveTask(old_running_task, f_opaque));
        this.current_task = Some(next_task);

        local_sched::put(this);

        unsafe {
            let sched = local_sched::unsafe_borrow();
            let (_, last_task_context, next_task_context) = (*sched).get_contexts();
            let last_task_context = last_task_context.unwrap();
            let next_task_context = next_task_context.unwrap();
            Context::swap(last_task_context, next_task_context);

            // We could be executing in a different thread now
            let sched = local_sched::unsafe_borrow();
            (*sched).run_cleanup_job();
        }
    }



    // * Other stuff

    fn enqueue_cleanup_job(&mut self, job: CleanupJob) {
        assert!(self.cleanup_job.is_none());
        self.cleanup_job = Some(job);
    }

    fn run_cleanup_job(&mut self) {
        rtdebug!("running cleanup job");

        assert!(self.cleanup_job.is_some());

        let cleanup_job = self.cleanup_job.swap_unwrap();
        match cleanup_job {
            DoNothing => { }
            GiveTask(task, f) => (f.to_fn())(task)
        }
    }

    /// Get mutable references to all the contexts that may be involved in a
    /// context switch.
    ///
    /// Returns (the scheduler context, the optional context of the
    /// task in the cleanup list, the optional context of the task in
    /// the current task slot).  When context switching to a task,
    /// callers should first arrange for that task to be located in the
    /// Scheduler's current_task slot and set up the
    /// post-context-switch cleanup job.
    fn get_contexts<'a>(&'a mut self) -> (&'a mut Context,
                                          Option<&'a mut Context>,
                                          Option<&'a mut Context>) {
        let last_task = match self.cleanup_job {
            Some(GiveTask(~ref task, _)) => {
                Some(task)
            }
            Some(DoNothing) => {
                None
            }
            None => fail!("all context switches should have a cleanup job")
        };
        // XXX: Pattern matching mutable pointers above doesn't work
        // because borrowck thinks the three patterns are conflicting
        // borrows
        unsafe {
            let last_task = transmute::<Option<&Coroutine>, Option<&mut Coroutine>>(last_task);
            let last_task_context = match last_task {
                Some(t) => Some(&mut t.saved_context), None => None
            };
            let next_task_context = match self.current_task {
                Some(ref mut t) => Some(&mut t.saved_context), None => None
            };
            // XXX: These transmutes can be removed after snapshot
            return (transmute(&mut self.saved_context),
                    last_task_context,
                    transmute(next_task_context));
        }
    }
}

static MIN_STACK_SIZE: uint = 10000000; // XXX: Too much stack

pub struct Coroutine {
    /// The segment of stack on which the task is currently running or,
    /// if the task is blocked, on which the task will resume execution
    priv current_stack_segment: StackSegment,
    /// These are always valid when the task is not running, unless
    /// the task is dead
    priv saved_context: Context,
    /// The heap, GC, unwinding, local storage, logging
    local_services: LocalServices
}

pub impl Coroutine {
    fn new(stack_pool: &mut StackPool, start: ~fn()) -> Coroutine {
        Coroutine::with_local(stack_pool, LocalServices::new(), start)
    }

    fn with_local(stack_pool: &mut StackPool,
                  local_services: LocalServices,
                  start: ~fn()) -> Coroutine {
        let start = Coroutine::build_start_wrapper(start);
        let mut stack = stack_pool.take_segment(MIN_STACK_SIZE);
        // NB: Context holds a pointer to that ~fn
        let initial_context = Context::new(start, &mut stack);
        return Coroutine {
            current_stack_segment: stack,
            saved_context: initial_context,
            local_services: local_services
        };
    }

    priv fn build_start_wrapper(start: ~fn()) -> ~fn() {
        // XXX: The old code didn't have this extra allocation
        let wrapper: ~fn() = || {
            // This is the first code to execute after the initial
            // context switch to the task. The previous context may
            // have asked us to do some cleanup.
            unsafe {
                let sched = local_sched::unsafe_borrow();
                (*sched).run_cleanup_job();

                let sched = local_sched::unsafe_borrow();
                let task = (*sched).current_task.get_mut_ref();
                // FIXME #6141: shouldn't neet to put `start()` in another closure
                task.local_services.run(||start());
            }

            let sched = local_sched::take();
            sched.terminate_current_task();
        };
        return wrapper;
    }

    /// Destroy the task and try to reuse its components
    fn recycle(~self, stack_pool: &mut StackPool) {
        match self {
            ~Coroutine {current_stack_segment, _} => {
                stack_pool.give_segment(current_stack_segment);
            }
        }
    }
}

#[cfg(test)]
mod test {
    use int;
    use cell::Cell;
    use rt::uv::uvio::UvEventLoop;
    use unstable::run_in_bare_thread;
    use task::spawn;
    use rt::test::*;
    use super::*;

    #[test]
    fn test_simple_scheduling() {
        do run_in_bare_thread {
            let mut task_ran = false;
            let task_ran_ptr: *mut bool = &mut task_ran;

            let mut sched = ~UvEventLoop::new_scheduler();
            let task = ~do Coroutine::new(&mut sched.stack_pool) {
                unsafe { *task_ran_ptr = true; }
            };
            sched.enqueue_task(task);
            sched.run();
            assert!(task_ran);
        }
    }

    #[test]
    fn test_several_tasks() {
        do run_in_bare_thread {
            let total = 10;
            let mut task_count = 0;
            let task_count_ptr: *mut int = &mut task_count;

            let mut sched = ~UvEventLoop::new_scheduler();
            for int::range(0, total) |_| {
                let task = ~do Coroutine::new(&mut sched.stack_pool) {
                    unsafe { *task_count_ptr = *task_count_ptr + 1; }
                };
                sched.enqueue_task(task);
            }
            sched.run();
            assert!(task_count == total);
        }
    }

    #[test]
    fn test_swap_tasks_then() {
        do run_in_bare_thread {
            let mut count = 0;
            let count_ptr: *mut int = &mut count;

            let mut sched = ~UvEventLoop::new_scheduler();
            let task1 = ~do Coroutine::new(&mut sched.stack_pool) {
                unsafe { *count_ptr = *count_ptr + 1; }
                let mut sched = local_sched::take();
                let task2 = ~do Coroutine::new(&mut sched.stack_pool) {
                    unsafe { *count_ptr = *count_ptr + 1; }
                };
                // Context switch directly to the new task
                do sched.switch_running_tasks_and_then(task2) |task1| {
                    let task1 = Cell(task1);
                    do local_sched::borrow |sched| {
                        sched.enqueue_task(task1.take());
                    }
                }
                unsafe { *count_ptr = *count_ptr + 1; }
            };
            sched.enqueue_task(task1);
            sched.run();
            assert!(count == 3);
        }
    }

    #[bench] #[test] #[ignore(reason = "long test")]
    fn test_run_a_lot_of_tasks_queued() {
        do run_in_bare_thread {
            static MAX: int = 1000000;
            let mut count = 0;
            let count_ptr: *mut int = &mut count;

            let mut sched = ~UvEventLoop::new_scheduler();

            let start_task = ~do Coroutine::new(&mut sched.stack_pool) {
                run_task(count_ptr);
            };
            sched.enqueue_task(start_task);
            sched.run();

            assert!(count == MAX);

            fn run_task(count_ptr: *mut int) {
                do local_sched::borrow |sched| {
                    let task = ~do Coroutine::new(&mut sched.stack_pool) {
                        unsafe {
                            *count_ptr = *count_ptr + 1;
                            if *count_ptr != MAX {
                                run_task(count_ptr);
                            }
                        }
                    };
                    sched.enqueue_task(task);
                }
            };
        }
    }

    #[test]
    fn test_block_task() {
        do run_in_bare_thread {
            let mut sched = ~UvEventLoop::new_scheduler();
            let task = ~do Coroutine::new(&mut sched.stack_pool) {
                let sched = local_sched::take();
                assert!(sched.in_task_context());
                do sched.deschedule_running_task_and_then() |task| {
                    let task = Cell(task);
                    do local_sched::borrow |sched| {
                        assert!(!sched.in_task_context());
                        sched.enqueue_task(task.take());
                    }
                }
            };
            sched.enqueue_task(task);
            sched.run();
        }
    }

    #[test]
    fn test_io_callback() {
        // This is a regression test that when there are no schedulable tasks
        // in the work queue, but we are performing I/O, that once we do put
        // something in the work queue again the scheduler picks it up and doesn't
        // exit before emptying the work queue
        do run_in_newsched_task {
            do spawn {
                let sched = local_sched::take();
                do sched.deschedule_running_task_and_then |task| {
                    let mut sched = local_sched::take();
                    let task = Cell(task);
                    do sched.event_loop.callback_ms(10) {
                        rtdebug!("in callback");
                        let mut sched = local_sched::take();
                        sched.enqueue_task(task.take());
                        local_sched::put(sched);
                    }
                    local_sched::put(sched);
                }
            }
        }
    }
}