about summary refs log tree commit diff
path: root/src/libcore/str.rs
blob: 1a7467555a5a3705165faa9abef7292b9866da00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// ignore-lexer-test FIXME #15679

//! String manipulation
//!
//! For more details, see std::str

#![doc(primitive = "str")]

pub use self::Utf16Item::*;
pub use self::Searcher::{Naive, TwoWay, TwoWayLong};

use char::Char;
use char;
use cmp::{Eq, mod};
use default::Default;
use iter::{Map, Iterator, IteratorExt, DoubleEndedIterator};
use iter::{DoubleEndedIteratorExt, ExactSizeIterator};
use iter::range;
use kinds::{Copy, Sized};
use mem;
use num::Int;
use option::Option;
use option::Option::{None, Some};
use ops::FnMut;
use ptr::RawPtr;
use raw::{Repr, Slice};
use slice::{mod, SliceExt};
use uint;

/// A trait to abstract the idea of creating a new instance of a type from a
/// string.
#[experimental = "might need to return Result"]
pub trait FromStr {
    /// Parses a string `s` to return an optional value of this type. If the
    /// string is ill-formatted, the None is returned.
    fn from_str(s: &str) -> Option<Self>;
}

/// A utility function that just calls FromStr::from_str
pub fn from_str<A: FromStr>(s: &str) -> Option<A> {
    FromStr::from_str(s)
}

impl FromStr for bool {
    /// Parse a `bool` from a string.
    ///
    /// Yields an `Option<bool>`, because `s` may or may not actually be parseable.
    ///
    /// # Examples
    ///
    /// ```rust
    /// assert_eq!(from_str::<bool>("true"), Some(true));
    /// assert_eq!(from_str::<bool>("false"), Some(false));
    /// assert_eq!(from_str::<bool>("not even a boolean"), None);
    /// ```
    #[inline]
    fn from_str(s: &str) -> Option<bool> {
        match s {
            "true"  => Some(true),
            "false" => Some(false),
            _       => None,
        }
    }
}

/*
Section: Creating a string
*/

/// Converts a slice of bytes to a string slice without performing any allocations.
///
/// Once the slice has been validated as utf-8, it is transmuted in-place and
/// returned as a '&str' instead of a '&[u8]'
///
/// Returns None if the slice is not utf-8.
pub fn from_utf8<'a>(v: &'a [u8]) -> Option<&'a str> {
    if is_utf8(v) {
        Some(unsafe { from_utf8_unchecked(v) })
    } else {
        None
    }
}

/// Converts a slice of bytes to a string slice without checking
/// that the string contains valid UTF-8.
pub unsafe fn from_utf8_unchecked<'a>(v: &'a [u8]) -> &'a str {
    mem::transmute(v)
}

/// Constructs a static string slice from a given raw pointer.
///
/// This function will read memory starting at `s` until it finds a 0, and then
/// transmute the memory up to that point as a string slice, returning the
/// corresponding `&'static str` value.
///
/// This function is unsafe because the caller must ensure the C string itself
/// has the static lifetime and that the memory `s` is valid up to and including
/// the first null byte.
///
/// # Panics
///
/// This function will panic if the string pointed to by `s` is not valid UTF-8.
pub unsafe fn from_c_str(s: *const i8) -> &'static str {
    let s = s as *const u8;
    let mut len = 0u;
    while *s.offset(len as int) != 0 {
        len += 1u;
    }
    let v: &'static [u8] = ::mem::transmute(Slice { data: s, len: len });
    from_utf8(v).expect("from_c_str passed invalid utf-8 data")
}

/// Something that can be used to compare against a character
pub trait CharEq {
    /// Determine if the splitter should split at the given character
    fn matches(&mut self, char) -> bool;
    /// Indicate if this is only concerned about ASCII characters,
    /// which can allow for a faster implementation.
    fn only_ascii(&self) -> bool;
}

impl CharEq for char {
    #[inline]
    fn matches(&mut self, c: char) -> bool { *self == c }

    #[inline]
    fn only_ascii(&self) -> bool { (*self as uint) < 128 }
}

impl<F> CharEq for F where F: FnMut(char) -> bool {
    #[inline]
    fn matches(&mut self, c: char) -> bool { (*self)(c) }

    #[inline]
    fn only_ascii(&self) -> bool { false }
}

impl<'a> CharEq for &'a [char] {
    #[inline]
    fn matches(&mut self, c: char) -> bool {
        self.iter().any(|&mut m| m.matches(c))
    }

    #[inline]
    fn only_ascii(&self) -> bool {
        self.iter().all(|m| m.only_ascii())
    }
}

/*
Section: Iterators
*/

/// Iterator for the char (representing *Unicode Scalar Values*) of a string
///
/// Created with the method `.chars()`.
#[deriving(Clone)]
pub struct Chars<'a> {
    iter: slice::Items<'a, u8>
}

impl<'a> Copy for Chars<'a> {}

// Return the initial codepoint accumulator for the first byte.
// The first byte is special, only want bottom 5 bits for width 2, 4 bits
// for width 3, and 3 bits for width 4
macro_rules! utf8_first_byte(
    ($byte:expr, $width:expr) => (($byte & (0x7F >> $width)) as u32)
)

// return the value of $ch updated with continuation byte $byte
macro_rules! utf8_acc_cont_byte(
    ($ch:expr, $byte:expr) => (($ch << 6) | ($byte & CONT_MASK) as u32)
)

macro_rules! utf8_is_cont_byte(
    ($byte:expr) => (($byte & !CONT_MASK) == TAG_CONT_U8)
)

#[inline]
fn unwrap_or_0(opt: Option<&u8>) -> u8 {
    match opt {
        Some(&byte) => byte,
        None => 0,
    }
}

impl<'a> Iterator<char> for Chars<'a> {
    #[inline]
    fn next(&mut self) -> Option<char> {
        // Decode UTF-8, using the valid UTF-8 invariant
        let x = match self.iter.next() {
            None => return None,
            Some(&next_byte) if next_byte < 128 => return Some(next_byte as char),
            Some(&next_byte) => next_byte,
        };

        // Multibyte case follows
        // Decode from a byte combination out of: [[[x y] z] w]
        // NOTE: Performance is sensitive to the exact formulation here
        let init = utf8_first_byte!(x, 2);
        let y = unwrap_or_0(self.iter.next());
        let mut ch = utf8_acc_cont_byte!(init, y);
        if x >= 0xE0 {
            // [[x y z] w] case
            // 5th bit in 0xE0 .. 0xEF is always clear, so `init` is still valid
            let z = unwrap_or_0(self.iter.next());
            let y_z = utf8_acc_cont_byte!((y & CONT_MASK) as u32, z);
            ch = init << 12 | y_z;
            if x >= 0xF0 {
                // [x y z w] case
                // use only the lower 3 bits of `init`
                let w = unwrap_or_0(self.iter.next());
                ch = (init & 7) << 18 | utf8_acc_cont_byte!(y_z, w);
            }
        }

        // str invariant says `ch` is a valid Unicode Scalar Value
        unsafe {
            Some(mem::transmute(ch))
        }
    }

    #[inline]
    fn size_hint(&self) -> (uint, Option<uint>) {
        let (len, _) = self.iter.size_hint();
        (len.saturating_add(3) / 4, Some(len))
    }
}

impl<'a> DoubleEndedIterator<char> for Chars<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<char> {
        let w = match self.iter.next_back() {
            None => return None,
            Some(&back_byte) if back_byte < 128 => return Some(back_byte as char),
            Some(&back_byte) => back_byte,
        };

        // Multibyte case follows
        // Decode from a byte combination out of: [x [y [z w]]]
        let mut ch;
        let z = unwrap_or_0(self.iter.next_back());
        ch = utf8_first_byte!(z, 2);
        if utf8_is_cont_byte!(z) {
            let y = unwrap_or_0(self.iter.next_back());
            ch = utf8_first_byte!(y, 3);
            if utf8_is_cont_byte!(y) {
                let x = unwrap_or_0(self.iter.next_back());
                ch = utf8_first_byte!(x, 4);
                ch = utf8_acc_cont_byte!(ch, y);
            }
            ch = utf8_acc_cont_byte!(ch, z);
        }
        ch = utf8_acc_cont_byte!(ch, w);

        // str invariant says `ch` is a valid Unicode Scalar Value
        unsafe {
            Some(mem::transmute(ch))
        }
    }
}

/// External iterator for a string's characters and their byte offsets.
/// Use with the `std::iter` module.
#[deriving(Clone)]
pub struct CharOffsets<'a> {
    front_offset: uint,
    iter: Chars<'a>,
}

impl<'a> Iterator<(uint, char)> for CharOffsets<'a> {
    #[inline]
    fn next(&mut self) -> Option<(uint, char)> {
        let (pre_len, _) = self.iter.iter.size_hint();
        match self.iter.next() {
            None => None,
            Some(ch) => {
                let index = self.front_offset;
                let (len, _) = self.iter.iter.size_hint();
                self.front_offset += pre_len - len;
                Some((index, ch))
            }
        }
    }

    #[inline]
    fn size_hint(&self) -> (uint, Option<uint>) {
        self.iter.size_hint()
    }
}

impl<'a> DoubleEndedIterator<(uint, char)> for CharOffsets<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<(uint, char)> {
        match self.iter.next_back() {
            None => None,
            Some(ch) => {
                let (len, _) = self.iter.iter.size_hint();
                let index = self.front_offset + len;
                Some((index, ch))
            }
        }
    }
}

/// External iterator for a string's bytes.
/// Use with the `std::iter` module.
pub type Bytes<'a> = Map<&'a u8, u8, slice::Items<'a, u8>, fn(&u8) -> u8>;

/// An iterator over the substrings of a string, separated by `sep`.
#[deriving(Clone)]
pub struct CharSplits<'a, Sep> {
    /// The slice remaining to be iterated
    string: &'a str,
    sep: Sep,
    /// Whether an empty string at the end is allowed
    allow_trailing_empty: bool,
    only_ascii: bool,
    finished: bool,
}

/// An iterator over the substrings of a string, separated by `sep`,
/// splitting at most `count` times.
#[deriving(Clone)]
pub struct CharSplitsN<'a, Sep> {
    iter: CharSplits<'a, Sep>,
    /// The number of splits remaining
    count: uint,
    invert: bool,
}

/// An iterator over the lines of a string, separated by either `\n` or (`\r\n`).
pub type AnyLines<'a> = Map<&'a str, &'a str, CharSplits<'a, char>, fn(&str) -> &str>;

impl<'a, Sep> CharSplits<'a, Sep> {
    #[inline]
    fn get_end(&mut self) -> Option<&'a str> {
        if !self.finished && (self.allow_trailing_empty || self.string.len() > 0) {
            self.finished = true;
            Some(self.string)
        } else {
            None
        }
    }
}

impl<'a, Sep: CharEq> Iterator<&'a str> for CharSplits<'a, Sep> {
    #[inline]
    fn next(&mut self) -> Option<&'a str> {
        if self.finished { return None }

        let mut next_split = None;
        if self.only_ascii {
            for (idx, byte) in self.string.bytes().enumerate() {
                if self.sep.matches(byte as char) && byte < 128u8 {
                    next_split = Some((idx, idx + 1));
                    break;
                }
            }
        } else {
            for (idx, ch) in self.string.char_indices() {
                if self.sep.matches(ch) {
                    next_split = Some((idx, self.string.char_range_at(idx).next));
                    break;
                }
            }
        }
        match next_split {
            Some((a, b)) => unsafe {
                let elt = self.string.slice_unchecked(0, a);
                self.string = self.string.slice_unchecked(b, self.string.len());
                Some(elt)
            },
            None => self.get_end(),
        }
    }
}

impl<'a, Sep: CharEq> DoubleEndedIterator<&'a str>
for CharSplits<'a, Sep> {
    #[inline]
    fn next_back(&mut self) -> Option<&'a str> {
        if self.finished { return None }

        if !self.allow_trailing_empty {
            self.allow_trailing_empty = true;
            match self.next_back() {
                Some(elt) if !elt.is_empty() => return Some(elt),
                _ => if self.finished { return None }
            }
        }
        let len = self.string.len();
        let mut next_split = None;

        if self.only_ascii {
            for (idx, byte) in self.string.bytes().enumerate().rev() {
                if self.sep.matches(byte as char) && byte < 128u8 {
                    next_split = Some((idx, idx + 1));
                    break;
                }
            }
        } else {
            for (idx, ch) in self.string.char_indices().rev() {
                if self.sep.matches(ch) {
                    next_split = Some((idx, self.string.char_range_at(idx).next));
                    break;
                }
            }
        }
        match next_split {
            Some((a, b)) => unsafe {
                let elt = self.string.slice_unchecked(b, len);
                self.string = self.string.slice_unchecked(0, a);
                Some(elt)
            },
            None => { self.finished = true; Some(self.string) }
        }
    }
}

impl<'a, Sep: CharEq> Iterator<&'a str> for CharSplitsN<'a, Sep> {
    #[inline]
    fn next(&mut self) -> Option<&'a str> {
        if self.count != 0 {
            self.count -= 1;
            if self.invert { self.iter.next_back() } else { self.iter.next() }
        } else {
            self.iter.get_end()
        }
    }
}

/// The internal state of an iterator that searches for matches of a substring
/// within a larger string using naive search
#[deriving(Clone)]
struct NaiveSearcher {
    position: uint
}

impl NaiveSearcher {
    fn new() -> NaiveSearcher {
        NaiveSearcher { position: 0 }
    }

    fn next(&mut self, haystack: &[u8], needle: &[u8]) -> Option<(uint, uint)> {
        while self.position + needle.len() <= haystack.len() {
            if haystack[self.position .. self.position + needle.len()] == needle {
                let match_pos = self.position;
                self.position += needle.len(); // add 1 for all matches
                return Some((match_pos, match_pos + needle.len()));
            } else {
                self.position += 1;
            }
        }
        None
    }
}

/// The internal state of an iterator that searches for matches of a substring
/// within a larger string using two-way search
#[deriving(Clone)]
struct TwoWaySearcher {
    // constants
    crit_pos: uint,
    period: uint,
    byteset: u64,

    // variables
    position: uint,
    memory: uint
}

/*
    This is the Two-Way search algorithm, which was introduced in the paper:
    Crochemore, M., Perrin, D., 1991, Two-way string-matching, Journal of the ACM 38(3):651-675.

    Here's some background information.

    A *word* is a string of symbols. The *length* of a word should be a familiar
    notion, and here we denote it for any word x by |x|.
    (We also allow for the possibility of the *empty word*, a word of length zero).

    If x is any non-empty word, then an integer p with 0 < p <= |x| is said to be a
    *period* for x iff for all i with 0 <= i <= |x| - p - 1, we have x[i] == x[i+p].
    For example, both 1 and 2 are periods for the string "aa". As another example,
    the only period of the string "abcd" is 4.

    We denote by period(x) the *smallest* period of x (provided that x is non-empty).
    This is always well-defined since every non-empty word x has at least one period,
    |x|. We sometimes call this *the period* of x.

    If u, v and x are words such that x = uv, where uv is the concatenation of u and
    v, then we say that (u, v) is a *factorization* of x.

    Let (u, v) be a factorization for a word x. Then if w is a non-empty word such
    that both of the following hold

      - either w is a suffix of u or u is a suffix of w
      - either w is a prefix of v or v is a prefix of w

    then w is said to be a *repetition* for the factorization (u, v).

    Just to unpack this, there are four possibilities here. Let w = "abc". Then we
    might have:

      - w is a suffix of u and w is a prefix of v. ex: ("lolabc", "abcde")
      - w is a suffix of u and v is a prefix of w. ex: ("lolabc", "ab")
      - u is a suffix of w and w is a prefix of v. ex: ("bc", "abchi")
      - u is a suffix of w and v is a prefix of w. ex: ("bc", "a")

    Note that the word vu is a repetition for any factorization (u,v) of x = uv,
    so every factorization has at least one repetition.

    If x is a string and (u, v) is a factorization for x, then a *local period* for
    (u, v) is an integer r such that there is some word w such that |w| = r and w is
    a repetition for (u, v).

    We denote by local_period(u, v) the smallest local period of (u, v). We sometimes
    call this *the local period* of (u, v). Provided that x = uv is non-empty, this
    is well-defined (because each non-empty word has at least one factorization, as
    noted above).

    It can be proven that the following is an equivalent definition of a local period
    for a factorization (u, v): any positive integer r such that x[i] == x[i+r] for
    all i such that |u| - r <= i <= |u| - 1 and such that both x[i] and x[i+r] are
    defined. (i.e. i > 0 and i + r < |x|).

    Using the above reformulation, it is easy to prove that

        1 <= local_period(u, v) <= period(uv)

    A factorization (u, v) of x such that local_period(u,v) = period(x) is called a
    *critical factorization*.

    The algorithm hinges on the following theorem, which is stated without proof:

    **Critical Factorization Theorem** Any word x has at least one critical
    factorization (u, v) such that |u| < period(x).

    The purpose of maximal_suffix is to find such a critical factorization.

*/
impl TwoWaySearcher {
    fn new(needle: &[u8]) -> TwoWaySearcher {
        let (crit_pos1, period1) = TwoWaySearcher::maximal_suffix(needle, false);
        let (crit_pos2, period2) = TwoWaySearcher::maximal_suffix(needle, true);

        let crit_pos;
        let period;
        if crit_pos1 > crit_pos2 {
            crit_pos = crit_pos1;
            period = period1;
        } else {
            crit_pos = crit_pos2;
            period = period2;
        }

        // This isn't in the original algorithm, as far as I'm aware.
        let byteset = needle.iter()
                            .fold(0, |a, &b| (1 << ((b & 0x3f) as uint)) | a);

        // A particularly readable explanation of what's going on here can be found
        // in Crochemore and Rytter's book "Text Algorithms", ch 13. Specifically
        // see the code for "Algorithm CP" on p. 323.
        //
        // What's going on is we have some critical factorization (u, v) of the
        // needle, and we want to determine whether u is a suffix of
        // v[..period]. If it is, we use "Algorithm CP1". Otherwise we use
        // "Algorithm CP2", which is optimized for when the period of the needle
        // is large.
        if needle[..crit_pos] == needle[period.. period + crit_pos] {
            TwoWaySearcher {
                crit_pos: crit_pos,
                period: period,
                byteset: byteset,

                position: 0,
                memory: 0
            }
        } else {
            TwoWaySearcher {
                crit_pos: crit_pos,
                period: cmp::max(crit_pos, needle.len() - crit_pos) + 1,
                byteset: byteset,

                position: 0,
                memory: uint::MAX // Dummy value to signify that the period is long
            }
        }
    }

    // One of the main ideas of Two-Way is that we factorize the needle into
    // two halves, (u, v), and begin trying to find v in the haystack by scanning
    // left to right. If v matches, we try to match u by scanning right to left.
    // How far we can jump when we encounter a mismatch is all based on the fact
    // that (u, v) is a critical factorization for the needle.
    #[inline]
    fn next(&mut self, haystack: &[u8], needle: &[u8], long_period: bool) -> Option<(uint, uint)> {
        'search: loop {
            // Check that we have room to search in
            if self.position + needle.len() > haystack.len() {
                return None;
            }

            // Quickly skip by large portions unrelated to our substring
            if (self.byteset >>
                    ((haystack[self.position + needle.len() - 1] & 0x3f)
                     as uint)) & 1 == 0 {
                self.position += needle.len();
                if !long_period {
                    self.memory = 0;
                }
                continue 'search;
            }

            // See if the right part of the needle matches
            let start = if long_period { self.crit_pos }
                        else { cmp::max(self.crit_pos, self.memory) };
            for i in range(start, needle.len()) {
                if needle[i] != haystack[self.position + i] {
                    self.position += i - self.crit_pos + 1;
                    if !long_period {
                        self.memory = 0;
                    }
                    continue 'search;
                }
            }

            // See if the left part of the needle matches
            let start = if long_period { 0 } else { self.memory };
            for i in range(start, self.crit_pos).rev() {
                if needle[i] != haystack[self.position + i] {
                    self.position += self.period;
                    if !long_period {
                        self.memory = needle.len() - self.period;
                    }
                    continue 'search;
                }
            }

            // We have found a match!
            let match_pos = self.position;
            self.position += needle.len(); // add self.period for all matches
            if !long_period {
                self.memory = 0; // set to needle.len() - self.period for all matches
            }
            return Some((match_pos, match_pos + needle.len()));
        }
    }

    // Computes a critical factorization (u, v) of `arr`.
    // Specifically, returns (i, p), where i is the starting index of v in some
    // critical factorization (u, v) and p = period(v)
    #[inline]
    fn maximal_suffix(arr: &[u8], reversed: bool) -> (uint, uint) {
        let mut left = -1; // Corresponds to i in the paper
        let mut right = 0; // Corresponds to j in the paper
        let mut offset = 1; // Corresponds to k in the paper
        let mut period = 1; // Corresponds to p in the paper

        while right + offset < arr.len() {
            let a;
            let b;
            if reversed {
                a = arr[left + offset];
                b = arr[right + offset];
            } else {
                a = arr[right + offset];
                b = arr[left + offset];
            }
            if a < b {
                // Suffix is smaller, period is entire prefix so far.
                right += offset;
                offset = 1;
                period = right - left;
            } else if a == b {
                // Advance through repetition of the current period.
                if offset == period {
                    right += offset;
                    offset = 1;
                } else {
                    offset += 1;
                }
            } else {
                // Suffix is larger, start over from current location.
                left = right;
                right += 1;
                offset = 1;
                period = 1;
            }
        }
        (left + 1, period)
    }
}

/// The internal state of an iterator that searches for matches of a substring
/// within a larger string using a dynamically chosen search algorithm
#[deriving(Clone)]
enum Searcher {
    Naive(NaiveSearcher),
    TwoWay(TwoWaySearcher),
    TwoWayLong(TwoWaySearcher)
}

impl Searcher {
    fn new(haystack: &[u8], needle: &[u8]) -> Searcher {
        // FIXME: Tune this.
        // FIXME(#16715): This unsigned integer addition will probably not
        // overflow because that would mean that the memory almost solely
        // consists of the needle. Needs #16715 to be formally fixed.
        if needle.len() + 20 > haystack.len() {
            Naive(NaiveSearcher::new())
        } else {
            let searcher = TwoWaySearcher::new(needle);
            if searcher.memory == uint::MAX { // If the period is long
                TwoWayLong(searcher)
            } else {
                TwoWay(searcher)
            }
        }
    }
}

/// An iterator over the start and end indices of the matches of a
/// substring within a larger string
#[deriving(Clone)]
pub struct MatchIndices<'a> {
    // constants
    haystack: &'a str,
    needle: &'a str,
    searcher: Searcher
}

/// An iterator over the substrings of a string separated by a given
/// search string
#[deriving(Clone)]
pub struct StrSplits<'a> {
    it: MatchIndices<'a>,
    last_end: uint,
    finished: bool
}

impl<'a> Iterator<(uint, uint)> for MatchIndices<'a> {
    #[inline]
    fn next(&mut self) -> Option<(uint, uint)> {
        match self.searcher {
            Naive(ref mut searcher)
                => searcher.next(self.haystack.as_bytes(), self.needle.as_bytes()),
            TwoWay(ref mut searcher)
                => searcher.next(self.haystack.as_bytes(), self.needle.as_bytes(), false),
            TwoWayLong(ref mut searcher)
                => searcher.next(self.haystack.as_bytes(), self.needle.as_bytes(), true)
        }
    }
}

impl<'a> Iterator<&'a str> for StrSplits<'a> {
    #[inline]
    fn next(&mut self) -> Option<&'a str> {
        if self.finished { return None; }

        match self.it.next() {
            Some((from, to)) => {
                let ret = Some(self.it.haystack.slice(self.last_end, from));
                self.last_end = to;
                ret
            }
            None => {
                self.finished = true;
                Some(self.it.haystack.slice(self.last_end, self.it.haystack.len()))
            }
        }
    }
}

/// External iterator for a string's UTF16 codeunits.
/// Use with the `std::iter` module.
#[deriving(Clone)]
pub struct Utf16CodeUnits<'a> {
    encoder: Utf16Encoder<Chars<'a>>
}

impl<'a> Iterator<u16> for Utf16CodeUnits<'a> {
    #[inline]
    fn next(&mut self) -> Option<u16> { self.encoder.next() }

    #[inline]
    fn size_hint(&self) -> (uint, Option<uint>) { self.encoder.size_hint() }
}


/// Iterator adaptor for encoding `char`s to UTF-16.
#[deriving(Clone)]
pub struct Utf16Encoder<I> {
    chars: I,
    extra: u16
}

impl<I> Utf16Encoder<I> {
    /// Create an UTF-16 encoder from any `char` iterator.
    pub fn new(chars: I) -> Utf16Encoder<I> where I: Iterator<char> {
        Utf16Encoder { chars: chars, extra: 0 }
    }
}

impl<I> Iterator<u16> for Utf16Encoder<I> where I: Iterator<char> {
    #[inline]
    fn next(&mut self) -> Option<u16> {
        if self.extra != 0 {
            let tmp = self.extra;
            self.extra = 0;
            return Some(tmp);
        }

        let mut buf = [0u16, ..2];
        self.chars.next().map(|ch| {
            let n = ch.encode_utf16(buf[mut]).unwrap_or(0);
            if n == 2 { self.extra = buf[1]; }
            buf[0]
        })
    }

    #[inline]
    fn size_hint(&self) -> (uint, Option<uint>) {
        let (low, high) = self.chars.size_hint();
        // every char gets either one u16 or two u16,
        // so this iterator is between 1 or 2 times as
        // long as the underlying iterator.
        (low, high.and_then(|n| n.checked_mul(2)))
    }
}

/*
Section: Comparing strings
*/

// share the implementation of the lang-item vs. non-lang-item
// eq_slice.
/// NOTE: This function is (ab)used in rustc::middle::trans::_match
/// to compare &[u8] byte slices that are not necessarily valid UTF-8.
#[inline]
fn eq_slice_(a: &str, b: &str) -> bool {
    #[allow(improper_ctypes)]
    extern { fn memcmp(s1: *const i8, s2: *const i8, n: uint) -> i32; }
    a.len() == b.len() && unsafe {
        memcmp(a.as_ptr() as *const i8,
               b.as_ptr() as *const i8,
               a.len()) == 0
    }
}

/// Bytewise slice equality
/// NOTE: This function is (ab)used in rustc::middle::trans::_match
/// to compare &[u8] byte slices that are not necessarily valid UTF-8.
#[lang="str_eq"]
#[inline]
pub fn eq_slice(a: &str, b: &str) -> bool {
    eq_slice_(a, b)
}

/*
Section: Misc
*/

/// Walk through `iter` checking that it's a valid UTF-8 sequence,
/// returning `true` in that case, or, if it is invalid, `false` with
/// `iter` reset such that it is pointing at the first byte in the
/// invalid sequence.
#[inline(always)]
fn run_utf8_validation_iterator(iter: &mut slice::Items<u8>) -> bool {
    loop {
        // save the current thing we're pointing at.
        let old = *iter;

        // restore the iterator we had at the start of this codepoint.
        macro_rules! err ( () => { {*iter = old; return false} });
        macro_rules! next ( () => {
                match iter.next() {
                    Some(a) => *a,
                    // we needed data, but there was none: error!
                    None => err!()
                }
            });

        let first = match iter.next() {
            Some(&b) => b,
            // we're at the end of the iterator and a codepoint
            // boundary at the same time, so this string is valid.
            None => return true
        };

        // ASCII characters are always valid, so only large
        // bytes need more examination.
        if first >= 128 {
            let w = utf8_char_width(first);
            let second = next!();
            // 2-byte encoding is for codepoints  \u{0080} to  \u{07ff}
            //        first  C2 80        last DF BF
            // 3-byte encoding is for codepoints  \u{0800} to  \u{ffff}
            //        first  E0 A0 80     last EF BF BF
            //   excluding surrogates codepoints  \u{d800} to  \u{dfff}
            //               ED A0 80 to       ED BF BF
            // 4-byte encoding is for codepoints \u{1000}0 to \u{10ff}ff
            //        first  F0 90 80 80  last F4 8F BF BF
            //
            // Use the UTF-8 syntax from the RFC
            //
            // https://tools.ietf.org/html/rfc3629
            // UTF8-1      = %x00-7F
            // UTF8-2      = %xC2-DF UTF8-tail
            // UTF8-3      = %xE0 %xA0-BF UTF8-tail / %xE1-EC 2( UTF8-tail ) /
            //               %xED %x80-9F UTF8-tail / %xEE-EF 2( UTF8-tail )
            // UTF8-4      = %xF0 %x90-BF 2( UTF8-tail ) / %xF1-F3 3( UTF8-tail ) /
            //               %xF4 %x80-8F 2( UTF8-tail )
            match w {
                2 => if second & !CONT_MASK != TAG_CONT_U8 {err!()},
                3 => {
                    match (first, second, next!() & !CONT_MASK) {
                        (0xE0         , 0xA0 ... 0xBF, TAG_CONT_U8) |
                        (0xE1 ... 0xEC, 0x80 ... 0xBF, TAG_CONT_U8) |
                        (0xED         , 0x80 ... 0x9F, TAG_CONT_U8) |
                        (0xEE ... 0xEF, 0x80 ... 0xBF, TAG_CONT_U8) => {}
                        _ => err!()
                    }
                }
                4 => {
                    match (first, second, next!() & !CONT_MASK, next!() & !CONT_MASK) {
                        (0xF0         , 0x90 ... 0xBF, TAG_CONT_U8, TAG_CONT_U8) |
                        (0xF1 ... 0xF3, 0x80 ... 0xBF, TAG_CONT_U8, TAG_CONT_U8) |
                        (0xF4         , 0x80 ... 0x8F, TAG_CONT_U8, TAG_CONT_U8) => {}
                        _ => err!()
                    }
                }
                _ => err!()
            }
        }
    }
}

/// Determines if a vector of bytes contains valid UTF-8.
pub fn is_utf8(v: &[u8]) -> bool {
    run_utf8_validation_iterator(&mut v.iter())
}

/// Determines if a vector of `u16` contains valid UTF-16
pub fn is_utf16(v: &[u16]) -> bool {
    let mut it = v.iter();
    macro_rules! next ( ($ret:expr) => {
            match it.next() { Some(u) => *u, None => return $ret }
        }
    )
    loop {
        let u = next!(true);

        match char::from_u32(u as u32) {
            Some(_) => {}
            None => {
                let u2 = next!(false);
                if u < 0xD7FF || u > 0xDBFF ||
                    u2 < 0xDC00 || u2 > 0xDFFF { return false; }
            }
        }
    }
}

/// An iterator that decodes UTF-16 encoded codepoints from a vector
/// of `u16`s.
#[deriving(Clone)]
pub struct Utf16Items<'a> {
    iter: slice::Items<'a, u16>
}
/// The possibilities for values decoded from a `u16` stream.
#[deriving(PartialEq, Eq, Clone, Show)]
pub enum Utf16Item {
    /// A valid codepoint.
    ScalarValue(char),
    /// An invalid surrogate without its pair.
    LoneSurrogate(u16)
}

impl Copy for Utf16Item {}

impl Utf16Item {
    /// Convert `self` to a `char`, taking `LoneSurrogate`s to the
    /// replacement character (U+FFFD).
    #[inline]
    pub fn to_char_lossy(&self) -> char {
        match *self {
            ScalarValue(c) => c,
            LoneSurrogate(_) => '\u{FFFD}'
        }
    }
}

impl<'a> Iterator<Utf16Item> for Utf16Items<'a> {
    fn next(&mut self) -> Option<Utf16Item> {
        let u = match self.iter.next() {
            Some(u) => *u,
            None => return None
        };

        if u < 0xD800 || 0xDFFF < u {
            // not a surrogate
            Some(ScalarValue(unsafe {mem::transmute(u as u32)}))
        } else if u >= 0xDC00 {
            // a trailing surrogate
            Some(LoneSurrogate(u))
        } else {
            // preserve state for rewinding.
            let old = self.iter;

            let u2 = match self.iter.next() {
                Some(u2) => *u2,
                // eof
                None => return Some(LoneSurrogate(u))
            };
            if u2 < 0xDC00 || u2 > 0xDFFF {
                // not a trailing surrogate so we're not a valid
                // surrogate pair, so rewind to redecode u2 next time.
                self.iter = old;
                return Some(LoneSurrogate(u))
            }

            // all ok, so lets decode it.
            let c = ((u - 0xD800) as u32 << 10 | (u2 - 0xDC00) as u32) + 0x1_0000;
            Some(ScalarValue(unsafe {mem::transmute(c)}))
        }
    }

    #[inline]
    fn size_hint(&self) -> (uint, Option<uint>) {
        let (low, high) = self.iter.size_hint();
        // we could be entirely valid surrogates (2 elements per
        // char), or entirely non-surrogates (1 element per char)
        (low / 2, high)
    }
}

/// Create an iterator over the UTF-16 encoded codepoints in `v`,
/// returning invalid surrogates as `LoneSurrogate`s.
///
/// # Example
///
/// ```rust
/// use std::str;
/// use std::str::{ScalarValue, LoneSurrogate};
///
/// // 𝄞mus<invalid>ic<invalid>
/// let v = [0xD834, 0xDD1E, 0x006d, 0x0075,
///          0x0073, 0xDD1E, 0x0069, 0x0063,
///          0xD834];
///
/// assert_eq!(str::utf16_items(&v).collect::<Vec<_>>(),
///            vec![ScalarValue('𝄞'),
///                 ScalarValue('m'), ScalarValue('u'), ScalarValue('s'),
///                 LoneSurrogate(0xDD1E),
///                 ScalarValue('i'), ScalarValue('c'),
///                 LoneSurrogate(0xD834)]);
/// ```
pub fn utf16_items<'a>(v: &'a [u16]) -> Utf16Items<'a> {
    Utf16Items { iter : v.iter() }
}

/// Return a slice of `v` ending at (and not including) the first NUL
/// (0).
///
/// # Example
///
/// ```rust
/// use std::str;
///
/// // "abcd"
/// let mut v = ['a' as u16, 'b' as u16, 'c' as u16, 'd' as u16];
/// // no NULs so no change
/// assert_eq!(str::truncate_utf16_at_nul(&v), v.as_slice());
///
/// // "ab\0d"
/// v[2] = 0;
/// let b: &[_] = &['a' as u16, 'b' as u16];
/// assert_eq!(str::truncate_utf16_at_nul(&v), b);
/// ```
pub fn truncate_utf16_at_nul<'a>(v: &'a [u16]) -> &'a [u16] {
    match v.iter().position(|c| *c == 0) {
        // don't include the 0
        Some(i) => v[..i],
        None => v
    }
}

// https://tools.ietf.org/html/rfc3629
static UTF8_CHAR_WIDTH: [u8, ..256] = [
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x1F
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x3F
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x5F
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x7F
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, // 0x9F
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, // 0xBF
0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, // 0xDF
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, // 0xEF
4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0, // 0xFF
];

/// Given a first byte, determine how many bytes are in this UTF-8 character
#[inline]
pub fn utf8_char_width(b: u8) -> uint {
    return UTF8_CHAR_WIDTH[b as uint] as uint;
}

/// Struct that contains a `char` and the index of the first byte of
/// the next `char` in a string.  This can be used as a data structure
/// for iterating over the UTF-8 bytes of a string.
pub struct CharRange {
    /// Current `char`
    pub ch: char,
    /// Index of the first byte of the next `char`
    pub next: uint,
}

impl Copy for CharRange {}

/// Mask of the value bits of a continuation byte
const CONT_MASK: u8 = 0b0011_1111u8;
/// Value of the tag bits (tag mask is !CONT_MASK) of a continuation byte
const TAG_CONT_U8: u8 = 0b1000_0000u8;

/// Unsafe operations
#[deprecated]
pub mod raw {
    use ptr::RawPtr;
    use raw::Slice;
    use slice::SliceExt;
    use str::{is_utf8, StrPrelude};

    /// Converts a slice of bytes to a string slice without checking
    /// that the string contains valid UTF-8.
    #[deprecated = "renamed to str::from_utf8_unchecked"]
    pub unsafe fn from_utf8<'a>(v: &'a [u8]) -> &'a str {
        super::from_utf8_unchecked(v)
    }

    /// Form a slice from a C string. Unsafe because the caller must ensure the
    /// C string has the static lifetime, or else the return value may be
    /// invalidated later.
    #[deprecated = "renamed to str::from_c_str"]
    pub unsafe fn c_str_to_static_slice(s: *const i8) -> &'static str {
        let s = s as *const u8;
        let mut curr = s;
        let mut len = 0u;
        while *curr != 0u8 {
            len += 1u;
            curr = s.offset(len as int);
        }
        let v = Slice { data: s, len: len };
        assert!(is_utf8(::mem::transmute(v)));
        ::mem::transmute(v)
    }

    /// Takes a bytewise (not UTF-8) slice from a string.
    ///
    /// Returns the substring from [`begin`..`end`).
    ///
    /// # Panics
    ///
    /// If begin is greater than end.
    /// If end is greater than the length of the string.
    #[inline]
    #[deprecated = "call the slice_unchecked method instead"]
    pub unsafe fn slice_bytes<'a>(s: &'a str, begin: uint, end: uint) -> &'a str {
        assert!(begin <= end);
        assert!(end <= s.len());
        s.slice_unchecked(begin, end)
    }

    /// Takes a bytewise (not UTF-8) slice from a string.
    ///
    /// Returns the substring from [`begin`..`end`).
    ///
    /// Caller must check slice boundaries!
    #[inline]
    #[deprecated = "this has moved to a method on `str` directly"]
    pub unsafe fn slice_unchecked<'a>(s: &'a str, begin: uint, end: uint) -> &'a str {
        s.slice_unchecked(begin, end)
    }
}

/*
Section: Trait implementations
*/

#[allow(missing_docs)]
pub mod traits {
    use cmp::{Ordering, Ord, PartialEq, PartialOrd, Equiv, Eq};
    use cmp::Ordering::{Less, Equal, Greater};
    use iter::IteratorExt;
    use option::Option;
    use option::Option::Some;
    use ops;
    use str::{Str, StrPrelude, eq_slice};

    impl Ord for str {
        #[inline]
        fn cmp(&self, other: &str) -> Ordering {
            for (s_b, o_b) in self.bytes().zip(other.bytes()) {
                match s_b.cmp(&o_b) {
                    Greater => return Greater,
                    Less => return Less,
                    Equal => ()
                }
            }

            self.len().cmp(&other.len())
        }
    }

    impl PartialEq for str {
        #[inline]
        fn eq(&self, other: &str) -> bool {
            eq_slice(self, other)
        }
        #[inline]
        fn ne(&self, other: &str) -> bool { !(*self).eq(other) }
    }

    impl Eq for str {}

    impl PartialOrd for str {
        #[inline]
        fn partial_cmp(&self, other: &str) -> Option<Ordering> {
            Some(self.cmp(other))
        }
    }

    #[allow(deprecated)]
    #[deprecated = "Use overloaded `core::cmp::PartialEq`"]
    impl<S: Str> Equiv<S> for str {
        #[inline]
        fn equiv(&self, other: &S) -> bool { eq_slice(self, other.as_slice()) }
    }

    impl ops::Slice<uint, str> for str {
        #[inline]
        fn as_slice_<'a>(&'a self) -> &'a str {
            self
        }

        #[inline]
        fn slice_from_or_fail<'a>(&'a self, from: &uint) -> &'a str {
            self.slice_from(*from)
        }

        #[inline]
        fn slice_to_or_fail<'a>(&'a self, to: &uint) -> &'a str {
            self.slice_to(*to)
        }

        #[inline]
        fn slice_or_fail<'a>(&'a self, from: &uint, to: &uint) -> &'a str {
            self.slice(*from, *to)
        }
    }
}

/// Any string that can be represented as a slice
pub trait Str for Sized? {
    /// Work with `self` as a slice.
    fn as_slice<'a>(&'a self) -> &'a str;
}

impl Str for str {
    #[inline]
    fn as_slice<'a>(&'a self) -> &'a str { self }
}

impl<'a, Sized? S> Str for &'a S where S: Str {
    #[inline]
    fn as_slice(&self) -> &str { Str::as_slice(*self) }
}

/// Methods for string slices
pub trait StrPrelude for Sized? {
    /// Returns true if one string contains another
    ///
    /// # Arguments
    ///
    /// - needle - The string to look for
    ///
    /// # Example
    ///
    /// ```rust
    /// assert!("bananas".contains("nana"));
    /// ```
    fn contains(&self, needle: &str) -> bool;

    /// Returns true if a string contains a char.
    ///
    /// # Arguments
    ///
    /// - needle - The char to look for
    ///
    /// # Example
    ///
    /// ```rust
    /// assert!("hello".contains_char('e'));
    /// ```
    fn contains_char(&self, needle: char) -> bool;

    /// An iterator over the characters of `self`. Note, this iterates
    /// over Unicode code-points, not Unicode graphemes.
    ///
    /// # Example
    ///
    /// ```rust
    /// let v: Vec<char> = "abc åäö".chars().collect();
    /// assert_eq!(v, vec!['a', 'b', 'c', ' ', 'å', 'ä', 'ö']);
    /// ```
    fn chars<'a>(&'a self) -> Chars<'a>;

    /// An iterator over the bytes of `self`
    ///
    /// # Example
    ///
    /// ```rust
    /// let v: Vec<u8> = "bors".bytes().collect();
    /// assert_eq!(v, b"bors".to_vec());
    /// ```
    fn bytes<'a>(&'a self) -> Bytes<'a>;

    /// An iterator over the characters of `self` and their byte offsets.
    fn char_indices<'a>(&'a self) -> CharOffsets<'a>;

    /// An iterator over substrings of `self`, separated by characters
    /// matched by `sep`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # #![feature(unboxed_closures)]
    ///
    /// # fn main() {
    /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
    /// assert_eq!(v, vec!["Mary", "had", "a", "little", "lamb"]);
    ///
    /// let v: Vec<&str> = "abc1def2ghi".split(|&: c: char| c.is_numeric()).collect();
    /// assert_eq!(v, vec!["abc", "def", "ghi"]);
    ///
    /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
    /// assert_eq!(v, vec!["lion", "", "tiger", "leopard"]);
    ///
    /// let v: Vec<&str> = "".split('X').collect();
    /// assert_eq!(v, vec![""]);
    /// # }
    /// ```
    fn split<'a, Sep: CharEq>(&'a self, sep: Sep) -> CharSplits<'a, Sep>;

    /// An iterator over substrings of `self`, separated by characters
    /// matched by `sep`, restricted to splitting at most `count`
    /// times.
    ///
    /// # Example
    ///
    /// ```rust
    /// # #![feature(unboxed_closures)]
    ///
    /// # fn main() {
    /// let v: Vec<&str> = "Mary had a little lambda".splitn(2, ' ').collect();
    /// assert_eq!(v, vec!["Mary", "had", "a little lambda"]);
    ///
    /// let v: Vec<&str> = "abc1def2ghi".splitn(1, |&: c: char| c.is_numeric()).collect();
    /// assert_eq!(v, vec!["abc", "def2ghi"]);
    ///
    /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(2, 'X').collect();
    /// assert_eq!(v, vec!["lion", "", "tigerXleopard"]);
    ///
    /// let v: Vec<&str> = "abcXdef".splitn(0, 'X').collect();
    /// assert_eq!(v, vec!["abcXdef"]);
    ///
    /// let v: Vec<&str> = "".splitn(1, 'X').collect();
    /// assert_eq!(v, vec![""]);
    /// # }
    /// ```
    fn splitn<'a, Sep: CharEq>(&'a self, count: uint, sep: Sep) -> CharSplitsN<'a, Sep>;

    /// An iterator over substrings of `self`, separated by characters
    /// matched by `sep`.
    ///
    /// Equivalent to `split`, except that the trailing substring
    /// is skipped if empty (terminator semantics).
    ///
    /// # Example
    ///
    /// ```rust
    /// # #![feature(unboxed_closures)]
    ///
    /// # fn main() {
    /// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
    /// assert_eq!(v, vec!["A", "B"]);
    ///
    /// let v: Vec<&str> = "A..B..".split_terminator('.').collect();
    /// assert_eq!(v, vec!["A", "", "B", ""]);
    ///
    /// let v: Vec<&str> = "Mary had a little lamb".split(' ').rev().collect();
    /// assert_eq!(v, vec!["lamb", "little", "a", "had", "Mary"]);
    ///
    /// let v: Vec<&str> = "abc1def2ghi".split(|&: c: char| c.is_numeric()).rev().collect();
    /// assert_eq!(v, vec!["ghi", "def", "abc"]);
    ///
    /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').rev().collect();
    /// assert_eq!(v, vec!["leopard", "tiger", "", "lion"]);
    /// # }
    /// ```
    fn split_terminator<'a, Sep: CharEq>(&'a self, sep: Sep) -> CharSplits<'a, Sep>;

    /// An iterator over substrings of `self`, separated by characters
    /// matched by `sep`, starting from the end of the string.
    /// Restricted to splitting at most `count` times.
    ///
    /// # Example
    ///
    /// ```rust
    /// # #![feature(unboxed_closures)]
    ///
    /// # fn main() {
    /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(2, ' ').collect();
    /// assert_eq!(v, vec!["lamb", "little", "Mary had a"]);
    ///
    /// let v: Vec<&str> = "abc1def2ghi".rsplitn(1, |&: c: char| c.is_numeric()).collect();
    /// assert_eq!(v, vec!["ghi", "abc1def"]);
    ///
    /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(2, 'X').collect();
    /// assert_eq!(v, vec!["leopard", "tiger", "lionX"]);
    /// # }
    /// ```
    fn rsplitn<'a, Sep: CharEq>(&'a self, count: uint, sep: Sep) -> CharSplitsN<'a, Sep>;

    /// An iterator over the start and end indices of the disjoint
    /// matches of `sep` within `self`.
    ///
    /// That is, each returned value `(start, end)` satisfies
    /// `self.slice(start, end) == sep`. For matches of `sep` within
    /// `self` that overlap, only the indices corresponding to the
    /// first match are returned.
    ///
    /// # Example
    ///
    /// ```rust
    /// let v: Vec<(uint, uint)> = "abcXXXabcYYYabc".match_indices("abc").collect();
    /// assert_eq!(v, vec![(0,3), (6,9), (12,15)]);
    ///
    /// let v: Vec<(uint, uint)> = "1abcabc2".match_indices("abc").collect();
    /// assert_eq!(v, vec![(1,4), (4,7)]);
    ///
    /// let v: Vec<(uint, uint)> = "ababa".match_indices("aba").collect();
    /// assert_eq!(v, vec![(0, 3)]); // only the first `aba`
    /// ```
    fn match_indices<'a>(&'a self, sep: &'a str) -> MatchIndices<'a>;

    /// An iterator over the substrings of `self` separated by `sep`.
    ///
    /// # Example
    ///
    /// ```rust
    /// let v: Vec<&str> = "abcXXXabcYYYabc".split_str("abc").collect();
    /// assert_eq!(v, vec!["", "XXX", "YYY", ""]);
    ///
    /// let v: Vec<&str> = "1abcabc2".split_str("abc").collect();
    /// assert_eq!(v, vec!["1", "", "2"]);
    /// ```
    fn split_str<'a>(&'a self, &'a str) -> StrSplits<'a>;

    /// An iterator over the lines of a string (subsequences separated
    /// by `\n`). This does not include the empty string after a
    /// trailing `\n`.
    ///
    /// # Example
    ///
    /// ```rust
    /// let four_lines = "foo\nbar\n\nbaz\n";
    /// let v: Vec<&str> = four_lines.lines().collect();
    /// assert_eq!(v, vec!["foo", "bar", "", "baz"]);
    /// ```
    fn lines<'a>(&'a self) -> CharSplits<'a, char>;

    /// An iterator over the lines of a string, separated by either
    /// `\n` or `\r\n`. As with `.lines()`, this does not include an
    /// empty trailing line.
    ///
    /// # Example
    ///
    /// ```rust
    /// let four_lines = "foo\r\nbar\n\r\nbaz\n";
    /// let v: Vec<&str> = four_lines.lines_any().collect();
    /// assert_eq!(v, vec!["foo", "bar", "", "baz"]);
    /// ```
    fn lines_any<'a>(&'a self) -> AnyLines<'a>;

    /// Returns the number of Unicode code points (`char`) that a
    /// string holds.
    ///
    /// This does not perform any normalization, and is `O(n)`, since
    /// UTF-8 is a variable width encoding of code points.
    ///
    /// *Warning*: The number of code points in a string does not directly
    /// correspond to the number of visible characters or width of the
    /// visible text due to composing characters, and double- and
    /// zero-width ones.
    ///
    /// See also `.len()` for the byte length.
    ///
    /// # Example
    ///
    /// ```rust
    /// // composed forms of `ö` and `é`
    /// let c = "Löwe 老虎 Léopard"; // German, Simplified Chinese, French
    /// // decomposed forms of `ö` and `é`
    /// let d = "Lo\u{0308}we 老虎 Le\u{0301}opard";
    ///
    /// assert_eq!(c.char_len(), 15);
    /// assert_eq!(d.char_len(), 17);
    ///
    /// assert_eq!(c.len(), 21);
    /// assert_eq!(d.len(), 23);
    ///
    /// // the two strings *look* the same
    /// println!("{}", c);
    /// println!("{}", d);
    /// ```
    fn char_len(&self) -> uint;

    /// Returns a slice of the given string from the byte range
    /// [`begin`..`end`).
    ///
    /// This operation is `O(1)`.
    ///
    /// Panics when `begin` and `end` do not point to valid characters
    /// or point beyond the last character of the string.
    ///
    /// See also `slice_to` and `slice_from` for slicing prefixes and
    /// suffixes of strings, and `slice_chars` for slicing based on
    /// code point counts.
    ///
    /// # Example
    ///
    /// ```rust
    /// let s = "Löwe 老虎 Léopard";
    /// assert_eq!(s.slice(0, 1), "L");
    ///
    /// assert_eq!(s.slice(1, 9), "öwe 老");
    ///
    /// // these will panic:
    /// // byte 2 lies within `ö`:
    /// // s.slice(2, 3);
    ///
    /// // byte 8 lies within `老`
    /// // s.slice(1, 8);
    ///
    /// // byte 100 is outside the string
    /// // s.slice(3, 100);
    /// ```
    fn slice<'a>(&'a self, begin: uint, end: uint) -> &'a str;

    /// Returns a slice of the string from `begin` to its end.
    ///
    /// Equivalent to `self.slice(begin, self.len())`.
    ///
    /// Panics when `begin` does not point to a valid character, or is
    /// out of bounds.
    ///
    /// See also `slice`, `slice_to` and `slice_chars`.
    fn slice_from<'a>(&'a self, begin: uint) -> &'a str;

    /// Returns a slice of the string from the beginning to byte
    /// `end`.
    ///
    /// Equivalent to `self.slice(0, end)`.
    ///
    /// Panics when `end` does not point to a valid character, or is
    /// out of bounds.
    ///
    /// See also `slice`, `slice_from` and `slice_chars`.
    fn slice_to<'a>(&'a self, end: uint) -> &'a str;

    /// Returns a slice of the string from the character range
    /// [`begin`..`end`).
    ///
    /// That is, start at the `begin`-th code point of the string and
    /// continue to the `end`-th code point. This does not detect or
    /// handle edge cases such as leaving a combining character as the
    /// first code point of the string.
    ///
    /// Due to the design of UTF-8, this operation is `O(end)`.
    /// See `slice`, `slice_to` and `slice_from` for `O(1)`
    /// variants that use byte indices rather than code point
    /// indices.
    ///
    /// Panics if `begin` > `end` or the either `begin` or `end` are
    /// beyond the last character of the string.
    ///
    /// # Example
    ///
    /// ```rust
    /// let s = "Löwe 老虎 Léopard";
    /// assert_eq!(s.slice_chars(0, 4), "Löwe");
    /// assert_eq!(s.slice_chars(5, 7), "老虎");
    /// ```
    fn slice_chars<'a>(&'a self, begin: uint, end: uint) -> &'a str;

    /// Takes a bytewise (not UTF-8) slice from a string.
    ///
    /// Returns the substring from [`begin`..`end`).
    ///
    /// Caller must check both UTF-8 character boundaries and the boundaries of
    /// the entire slice as well.
    unsafe fn slice_unchecked<'a>(&'a self, begin: uint, end: uint) -> &'a str;

    /// Returns true if `needle` is a prefix of the string.
    ///
    /// # Example
    ///
    /// ```rust
    /// assert!("banana".starts_with("ba"));
    /// ```
    fn starts_with(&self, needle: &str) -> bool;

    /// Returns true if `needle` is a suffix of the string.
    ///
    /// # Example
    ///
    /// ```rust
    /// assert!("banana".ends_with("nana"));
    /// ```
    fn ends_with(&self, needle: &str) -> bool;

    /// Returns a string with characters that match `to_trim` removed from the left and the right.
    ///
    /// # Arguments
    ///
    /// * to_trim - a character matcher
    ///
    /// # Example
    ///
    /// ```rust
    /// # #![feature(unboxed_closures)]
    ///
    /// # fn main() {
    /// assert_eq!("11foo1bar11".trim_chars('1'), "foo1bar")
    /// let x: &[_] = &['1', '2'];
    /// assert_eq!("12foo1bar12".trim_chars(x), "foo1bar")
    /// assert_eq!("123foo1bar123".trim_chars(|&: c: char| c.is_numeric()), "foo1bar")
    /// # }
    /// ```
    fn trim_chars<'a, C: CharEq>(&'a self, to_trim: C) -> &'a str;

    /// Returns a string with leading `chars_to_trim` removed.
    ///
    /// # Arguments
    ///
    /// * to_trim - a character matcher
    ///
    /// # Example
    ///
    /// ```rust
    /// # #![feature(unboxed_closures)]
    ///
    /// # fn main() {
    /// assert_eq!("11foo1bar11".trim_left_chars('1'), "foo1bar11")
    /// let x: &[_] = &['1', '2'];
    /// assert_eq!("12foo1bar12".trim_left_chars(x), "foo1bar12")
    /// assert_eq!("123foo1bar123".trim_left_chars(|&: c: char| c.is_numeric()), "foo1bar123")
    /// # }
    /// ```
    fn trim_left_chars<'a, C: CharEq>(&'a self, to_trim: C) -> &'a str;

    /// Returns a string with trailing `chars_to_trim` removed.
    ///
    /// # Arguments
    ///
    /// * to_trim - a character matcher
    ///
    /// # Example
    ///
    /// ```rust
    /// # #![feature(unboxed_closures)]
    ///
    /// # fn main() {
    /// assert_eq!("11foo1bar11".trim_right_chars('1'), "11foo1bar")
    /// let x: &[_] = &['1', '2'];
    /// assert_eq!("12foo1bar12".trim_right_chars(x), "12foo1bar")
    /// assert_eq!("123foo1bar123".trim_right_chars(|&: c: char| c.is_numeric()), "123foo1bar")
    /// # }
    /// ```
    fn trim_right_chars<'a, C: CharEq>(&'a self, to_trim: C) -> &'a str;

    /// Check that `index`-th byte lies at the start and/or end of a
    /// UTF-8 code point sequence.
    ///
    /// The start and end of the string (when `index == self.len()`)
    /// are considered to be boundaries.
    ///
    /// Panics if `index` is greater than `self.len()`.
    ///
    /// # Example
    ///
    /// ```rust
    /// let s = "Löwe 老虎 Léopard";
    /// assert!(s.is_char_boundary(0));
    /// // start of `老`
    /// assert!(s.is_char_boundary(6));
    /// assert!(s.is_char_boundary(s.len()));
    ///
    /// // second byte of `ö`
    /// assert!(!s.is_char_boundary(2));
    ///
    /// // third byte of `老`
    /// assert!(!s.is_char_boundary(8));
    /// ```
    fn is_char_boundary(&self, index: uint) -> bool;

    /// Pluck a character out of a string and return the index of the next
    /// character.
    ///
    /// This function can be used to iterate over the Unicode characters of a
    /// string.
    ///
    /// # Example
    ///
    /// This example manually iterates through the characters of a
    /// string; this should normally be done by `.chars()` or
    /// `.char_indices`.
    ///
    /// ```rust
    /// use std::str::CharRange;
    ///
    /// let s = "中华Việt Nam";
    /// let mut i = 0u;
    /// while i < s.len() {
    ///     let CharRange {ch, next} = s.char_range_at(i);
    ///     println!("{}: {}", i, ch);
    ///     i = next;
    /// }
    /// ```
    ///
    /// This outputs:
    ///
    /// ```text
    /// 0: 中
    /// 3: 华
    /// 6: V
    /// 7: i
    /// 8: ệ
    /// 11: t
    /// 12:
    /// 13: N
    /// 14: a
    /// 15: m
    /// ```
    ///
    /// # Arguments
    ///
    /// * s - The string
    /// * i - The byte offset of the char to extract
    ///
    /// # Return value
    ///
    /// A record {ch: char, next: uint} containing the char value and the byte
    /// index of the next Unicode character.
    ///
    /// # Panics
    ///
    /// If `i` is greater than or equal to the length of the string.
    /// If `i` is not the index of the beginning of a valid UTF-8 character.
    fn char_range_at(&self, start: uint) -> CharRange;

    /// Given a byte position and a str, return the previous char and its position.
    ///
    /// This function can be used to iterate over a Unicode string in reverse.
    ///
    /// Returns 0 for next index if called on start index 0.
    ///
    /// # Panics
    ///
    /// If `i` is greater than the length of the string.
    /// If `i` is not an index following a valid UTF-8 character.
    fn char_range_at_reverse(&self, start: uint) -> CharRange;

    /// Plucks the character starting at the `i`th byte of a string.
    ///
    /// # Example
    ///
    /// ```rust
    /// let s = "abπc";
    /// assert_eq!(s.char_at(1), 'b');
    /// assert_eq!(s.char_at(2), 'π');
    /// assert_eq!(s.char_at(4), 'c');
    /// ```
    ///
    /// # Panics
    ///
    /// If `i` is greater than or equal to the length of the string.
    /// If `i` is not the index of the beginning of a valid UTF-8 character.
    fn char_at(&self, i: uint) -> char;

    /// Plucks the character ending at the `i`th byte of a string.
    ///
    /// # Panics
    ///
    /// If `i` is greater than the length of the string.
    /// If `i` is not an index following a valid UTF-8 character.
    fn char_at_reverse(&self, i: uint) -> char;

    /// Work with the byte buffer of a string as a byte slice.
    ///
    /// # Example
    ///
    /// ```rust
    /// assert_eq!("bors".as_bytes(), b"bors");
    /// ```
    fn as_bytes<'a>(&'a self) -> &'a [u8];

    /// Returns the byte index of the first character of `self` that
    /// matches `search`.
    ///
    /// # Return value
    ///
    /// `Some` containing the byte index of the last matching character
    /// or `None` if there is no match
    ///
    /// # Example
    ///
    /// ```rust
    /// # #![feature(unboxed_closures)]
    ///
    /// # fn main() {
    /// let s = "Löwe 老虎 Léopard";
    ///
    /// assert_eq!(s.find('L'), Some(0));
    /// assert_eq!(s.find('é'), Some(14));
    ///
    /// // the first space
    /// assert_eq!(s.find(|&: c: char| c.is_whitespace()), Some(5));
    ///
    /// // neither are found
    /// let x: &[_] = &['1', '2'];
    /// assert_eq!(s.find(x), None);
    /// # }
    /// ```
    fn find<C: CharEq>(&self, search: C) -> Option<uint>;

    /// Returns the byte index of the last character of `self` that
    /// matches `search`.
    ///
    /// # Return value
    ///
    /// `Some` containing the byte index of the last matching character
    /// or `None` if there is no match.
    ///
    /// # Example
    ///
    /// ```rust
    /// # #![feature(unboxed_closures)]
    ///
    /// # fn main() {
    /// let s = "Löwe 老虎 Léopard";
    ///
    /// assert_eq!(s.rfind('L'), Some(13));
    /// assert_eq!(s.rfind('é'), Some(14));
    ///
    /// // the second space
    /// assert_eq!(s.rfind(|&: c: char| c.is_whitespace()), Some(12));
    ///
    /// // searches for an occurrence of either `1` or `2`, but neither are found
    /// let x: &[_] = &['1', '2'];
    /// assert_eq!(s.rfind(x), None);
    /// # }
    /// ```
    fn rfind<C: CharEq>(&self, search: C) -> Option<uint>;

    /// Returns the byte index of the first matching substring
    ///
    /// # Arguments
    ///
    /// * `needle` - The string to search for
    ///
    /// # Return value
    ///
    /// `Some` containing the byte index of the first matching substring
    /// or `None` if there is no match.
    ///
    /// # Example
    ///
    /// ```rust
    /// let s = "Löwe 老虎 Léopard";
    ///
    /// assert_eq!(s.find_str("老虎 L"), Some(6));
    /// assert_eq!(s.find_str("muffin man"), None);
    /// ```
    fn find_str(&self, &str) -> Option<uint>;

    /// Retrieves the first character from a string slice and returns
    /// it. This does not allocate a new string; instead, it returns a
    /// slice that point one character beyond the character that was
    /// shifted. If the string does not contain any characters,
    /// None is returned instead.
    ///
    /// # Example
    ///
    /// ```rust
    /// let s = "Löwe 老虎 Léopard";
    /// let (c, s1) = s.slice_shift_char().unwrap();
    /// assert_eq!(c, 'L');
    /// assert_eq!(s1, "öwe 老虎 Léopard");
    ///
    /// let (c, s2) = s1.slice_shift_char().unwrap();
    /// assert_eq!(c, 'ö');
    /// assert_eq!(s2, "we 老虎 Léopard");
    /// ```
    fn slice_shift_char<'a>(&'a self) -> Option<(char, &'a str)>;

    /// Returns the byte offset of an inner slice relative to an enclosing outer slice.
    ///
    /// Panics if `inner` is not a direct slice contained within self.
    ///
    /// # Example
    ///
    /// ```rust
    /// let string = "a\nb\nc";
    /// let lines: Vec<&str> = string.lines().collect();
    ///
    /// assert!(string.subslice_offset(lines[0]) == 0); // &"a"
    /// assert!(string.subslice_offset(lines[1]) == 2); // &"b"
    /// assert!(string.subslice_offset(lines[2]) == 4); // &"c"
    /// ```
    fn subslice_offset(&self, inner: &str) -> uint;

    /// Return an unsafe pointer to the strings buffer.
    ///
    /// The caller must ensure that the string outlives this pointer,
    /// and that it is not reallocated (e.g. by pushing to the
    /// string).
    fn as_ptr(&self) -> *const u8;

    /// Return an iterator of `u16` over the string encoded as UTF-16.
    fn utf16_units<'a>(&'a self) -> Utf16CodeUnits<'a>;

    /// Return the number of bytes in this string
    ///
    /// # Example
    ///
    /// ```
    /// assert_eq!("foo".len(), 3);
    /// assert_eq!("ƒoo".len(), 4);
    /// ```
    #[experimental = "not triaged yet"]
    fn len(&self) -> uint;

    /// Returns true if this slice contains no bytes
    ///
    /// # Example
    ///
    /// ```
    /// assert!("".is_empty());
    /// ```
    #[inline]
    #[experimental = "not triaged yet"]
    fn is_empty(&self) -> bool { self.len() == 0 }
}

#[inline(never)]
fn slice_error_fail(s: &str, begin: uint, end: uint) -> ! {
    assert!(begin <= end);
    panic!("index {} and/or {} in `{}` do not lie on character boundary",
          begin, end, s);
}

impl StrPrelude for str {
    #[inline]
    fn contains(&self, needle: &str) -> bool {
        self.find_str(needle).is_some()
    }

    #[inline]
    fn contains_char(&self, needle: char) -> bool {
        self.find(needle).is_some()
    }

    #[inline]
    fn chars(&self) -> Chars {
        Chars{iter: self.as_bytes().iter()}
    }

    #[inline]
    fn bytes(&self) -> Bytes {
        fn deref(&x: &u8) -> u8 { x }

        self.as_bytes().iter().map(deref)
    }

    #[inline]
    fn char_indices(&self) -> CharOffsets {
        CharOffsets{front_offset: 0, iter: self.chars()}
    }

    #[inline]
    fn split<Sep: CharEq>(&self, sep: Sep) -> CharSplits<Sep> {
        CharSplits {
            string: self,
            only_ascii: sep.only_ascii(),
            sep: sep,
            allow_trailing_empty: true,
            finished: false,
        }
    }

    #[inline]
    fn splitn<Sep: CharEq>(&self, count: uint, sep: Sep)
        -> CharSplitsN<Sep> {
        CharSplitsN {
            iter: self.split(sep),
            count: count,
            invert: false,
        }
    }

    #[inline]
    fn split_terminator<Sep: CharEq>(&self, sep: Sep)
        -> CharSplits<Sep> {
        CharSplits {
            allow_trailing_empty: false,
            ..self.split(sep)
        }
    }

    #[inline]
    fn rsplitn<Sep: CharEq>(&self, count: uint, sep: Sep)
        -> CharSplitsN<Sep> {
        CharSplitsN {
            iter: self.split(sep),
            count: count,
            invert: true,
        }
    }

    #[inline]
    fn match_indices<'a>(&'a self, sep: &'a str) -> MatchIndices<'a> {
        assert!(!sep.is_empty())
        MatchIndices {
            haystack: self,
            needle: sep,
            searcher: Searcher::new(self.as_bytes(), sep.as_bytes())
        }
    }

    #[inline]
    fn split_str<'a>(&'a self, sep: &'a str) -> StrSplits<'a> {
        StrSplits {
            it: self.match_indices(sep),
            last_end: 0,
            finished: false
        }
    }

    #[inline]
    fn lines(&self) -> CharSplits<char> {
        self.split_terminator('\n')
    }

    fn lines_any(&self) -> AnyLines {
        fn f(line: &str) -> &str {
            let l = line.len();
            if l > 0 && line.as_bytes()[l - 1] == b'\r' { line.slice(0, l - 1) }
            else { line }
        }

        self.lines().map(f)
    }

    #[inline]
    fn char_len(&self) -> uint { self.chars().count() }

    #[inline]
    fn slice(&self, begin: uint, end: uint) -> &str {
        // is_char_boundary checks that the index is in [0, .len()]
        if begin <= end &&
           self.is_char_boundary(begin) &&
           self.is_char_boundary(end) {
            unsafe { self.slice_unchecked(begin, end) }
        } else {
            slice_error_fail(self, begin, end)
        }
    }

    #[inline]
    fn slice_from(&self, begin: uint) -> &str {
        // is_char_boundary checks that the index is in [0, .len()]
        if self.is_char_boundary(begin) {
            unsafe { self.slice_unchecked(begin, self.len()) }
        } else {
            slice_error_fail(self, begin, self.len())
        }
    }

    #[inline]
    fn slice_to(&self, end: uint) -> &str {
        // is_char_boundary checks that the index is in [0, .len()]
        if self.is_char_boundary(end) {
            unsafe { self.slice_unchecked(0, end) }
        } else {
            slice_error_fail(self, 0, end)
        }
    }

    fn slice_chars(&self, begin: uint, end: uint) -> &str {
        assert!(begin <= end);
        let mut count = 0;
        let mut begin_byte = None;
        let mut end_byte = None;

        // This could be even more efficient by not decoding,
        // only finding the char boundaries
        for (idx, _) in self.char_indices() {
            if count == begin { begin_byte = Some(idx); }
            if count == end { end_byte = Some(idx); break; }
            count += 1;
        }
        if begin_byte.is_none() && count == begin { begin_byte = Some(self.len()) }
        if end_byte.is_none() && count == end { end_byte = Some(self.len()) }

        match (begin_byte, end_byte) {
            (None, _) => panic!("slice_chars: `begin` is beyond end of string"),
            (_, None) => panic!("slice_chars: `end` is beyond end of string"),
            (Some(a), Some(b)) => unsafe { self.slice_unchecked(a, b) }
        }
    }

    #[inline]
    unsafe fn slice_unchecked(&self, begin: uint, end: uint) -> &str {
        mem::transmute(Slice {
            data: self.as_ptr().offset(begin as int),
            len: end - begin,
        })
    }

    #[inline]
    fn starts_with(&self, needle: &str) -> bool {
        let n = needle.len();
        self.len() >= n && needle.as_bytes() == self.as_bytes()[..n]
    }

    #[inline]
    fn ends_with(&self, needle: &str) -> bool {
        let (m, n) = (self.len(), needle.len());
        m >= n && needle.as_bytes() == self.as_bytes()[m-n..]
    }

    #[inline]
    fn trim_chars<C: CharEq>(&self, mut to_trim: C) -> &str {
        let cur = match self.find(|&mut: c: char| !to_trim.matches(c)) {
            None => "",
            Some(i) => unsafe { self.slice_unchecked(i, self.len()) }
        };
        match cur.rfind(|&mut: c: char| !to_trim.matches(c)) {
            None => "",
            Some(i) => {
                let right = cur.char_range_at(i).next;
                unsafe { cur.slice_unchecked(0, right) }
            }
        }
    }

    #[inline]
    fn trim_left_chars<C: CharEq>(&self, mut to_trim: C) -> &str {
        match self.find(|&mut: c: char| !to_trim.matches(c)) {
            None => "",
            Some(first) => unsafe { self.slice_unchecked(first, self.len()) }
        }
    }

    #[inline]
    fn trim_right_chars<C: CharEq>(&self, mut to_trim: C) -> &str {
        match self.rfind(|&mut: c: char| !to_trim.matches(c)) {
            None => "",
            Some(last) => {
                let next = self.char_range_at(last).next;
                unsafe { self.slice_unchecked(0u, next) }
            }
        }
    }

    #[inline]
    fn is_char_boundary(&self, index: uint) -> bool {
        if index == self.len() { return true; }
        match self.as_bytes().get(index) {
            None => false,
            Some(&b) => b < 128u8 || b >= 192u8,
        }
    }

    #[inline]
    fn char_range_at(&self, i: uint) -> CharRange {
        if self.as_bytes()[i] < 128u8 {
            return CharRange {ch: self.as_bytes()[i] as char, next: i + 1 };
        }

        // Multibyte case is a fn to allow char_range_at to inline cleanly
        fn multibyte_char_range_at(s: &str, i: uint) -> CharRange {
            let mut val = s.as_bytes()[i] as u32;
            let w = UTF8_CHAR_WIDTH[val as uint] as uint;
            assert!((w != 0));

            val = utf8_first_byte!(val, w);
            val = utf8_acc_cont_byte!(val, s.as_bytes()[i + 1]);
            if w > 2 { val = utf8_acc_cont_byte!(val, s.as_bytes()[i + 2]); }
            if w > 3 { val = utf8_acc_cont_byte!(val, s.as_bytes()[i + 3]); }

            return CharRange {ch: unsafe { mem::transmute(val) }, next: i + w};
        }

        return multibyte_char_range_at(self, i);
    }

    #[inline]
    fn char_range_at_reverse(&self, start: uint) -> CharRange {
        let mut prev = start;

        prev = prev.saturating_sub(1);
        if self.as_bytes()[prev] < 128 {
            return CharRange{ch: self.as_bytes()[prev] as char, next: prev}
        }

        // Multibyte case is a fn to allow char_range_at_reverse to inline cleanly
        fn multibyte_char_range_at_reverse(s: &str, mut i: uint) -> CharRange {
            // while there is a previous byte == 10......
            while i > 0 && s.as_bytes()[i] & !CONT_MASK == TAG_CONT_U8 {
                i -= 1u;
            }

            let mut val = s.as_bytes()[i] as u32;
            let w = UTF8_CHAR_WIDTH[val as uint] as uint;
            assert!((w != 0));

            val = utf8_first_byte!(val, w);
            val = utf8_acc_cont_byte!(val, s.as_bytes()[i + 1]);
            if w > 2 { val = utf8_acc_cont_byte!(val, s.as_bytes()[i + 2]); }
            if w > 3 { val = utf8_acc_cont_byte!(val, s.as_bytes()[i + 3]); }

            return CharRange {ch: unsafe { mem::transmute(val) }, next: i};
        }

        return multibyte_char_range_at_reverse(self, prev);
    }

    #[inline]
    fn char_at(&self, i: uint) -> char {
        self.char_range_at(i).ch
    }

    #[inline]
    fn char_at_reverse(&self, i: uint) -> char {
        self.char_range_at_reverse(i).ch
    }

    #[inline]
    fn as_bytes(&self) -> &[u8] {
        unsafe { mem::transmute(self) }
    }

    fn find<C: CharEq>(&self, mut search: C) -> Option<uint> {
        if search.only_ascii() {
            self.bytes().position(|b| search.matches(b as char))
        } else {
            for (index, c) in self.char_indices() {
                if search.matches(c) { return Some(index); }
            }
            None
        }
    }

    fn rfind<C: CharEq>(&self, mut search: C) -> Option<uint> {
        if search.only_ascii() {
            self.bytes().rposition(|b| search.matches(b as char))
        } else {
            for (index, c) in self.char_indices().rev() {
                if search.matches(c) { return Some(index); }
            }
            None
        }
    }

    fn find_str(&self, needle: &str) -> Option<uint> {
        if needle.is_empty() {
            Some(0)
        } else {
            self.match_indices(needle)
                .next()
                .map(|(start, _end)| start)
        }
    }

    #[inline]
    fn slice_shift_char(&self) -> Option<(char, &str)> {
        if self.is_empty() {
            None
        } else {
            let CharRange {ch, next} = self.char_range_at(0u);
            let next_s = unsafe { self.slice_unchecked(next, self.len()) };
            Some((ch, next_s))
        }
    }

    fn subslice_offset(&self, inner: &str) -> uint {
        let a_start = self.as_ptr() as uint;
        let a_end = a_start + self.len();
        let b_start = inner.as_ptr() as uint;
        let b_end = b_start + inner.len();

        assert!(a_start <= b_start);
        assert!(b_end <= a_end);
        b_start - a_start
    }

    #[inline]
    fn as_ptr(&self) -> *const u8 {
        self.repr().data
    }

    #[inline]
    fn utf16_units(&self) -> Utf16CodeUnits {
        Utf16CodeUnits { encoder: Utf16Encoder::new(self.chars()) }
    }

    #[inline]
    fn len(&self) -> uint { self.repr().len }
}

#[stable]
impl<'a> Default for &'a str {
    #[stable]
    fn default() -> &'a str { "" }
}