about summary refs log tree commit diff
path: root/src/libcore/str/mod.rs
blob: 1f8e73e9ddcc542170ad98c227f6739a28c1e8f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// ignore-lexer-test FIXME #15679

//! String manipulation
//!
//! For more details, see std::str

#![doc(primitive = "str")]

use self::OldSearcher::{TwoWay, TwoWayLong};

use char::CharExt;
use clone::Clone;
use cmp::{self, Eq};
use default::Default;
use error::Error;
use fmt;
use iter::ExactSizeIterator;
use iter::{Map, Iterator, IteratorExt, DoubleEndedIterator};
use marker::Sized;
use mem;
#[allow(deprecated)]
use num::Int;
use ops::{Fn, FnMut, FnOnce};
use option::Option::{self, None, Some};
use raw::{Repr, Slice};
use result::Result::{self, Ok, Err};
use slice::{self, SliceExt};
use usize;

pub use self::pattern::Pattern;
pub use self::pattern::{Searcher, ReverseSearcher, DoubleEndedSearcher, SearchStep};

mod pattern;

macro_rules! delegate_iter {
    (exact $te:ty : $ti:ty) => {
        delegate_iter!{$te : $ti}
        impl<'a> ExactSizeIterator for $ti {
            #[inline]
            fn len(&self) -> usize {
                self.0.len()
            }
        }
    };
    ($te:ty : $ti:ty) => {
        #[stable(feature = "rust1", since = "1.0.0")]
        impl<'a> Iterator for $ti {
            type Item = $te;

            #[inline]
            fn next(&mut self) -> Option<$te> {
                self.0.next()
            }
            #[inline]
            fn size_hint(&self) -> (usize, Option<usize>) {
                self.0.size_hint()
            }
        }
        #[stable(feature = "rust1", since = "1.0.0")]
        impl<'a> DoubleEndedIterator for $ti {
            #[inline]
            fn next_back(&mut self) -> Option<$te> {
                self.0.next_back()
            }
        }
    };
    (pattern $te:ty : $ti:ty) => {
        #[stable(feature = "rust1", since = "1.0.0")]
        impl<'a, P: Pattern<'a>> Iterator for $ti {
            type Item = $te;

            #[inline]
            fn next(&mut self) -> Option<$te> {
                self.0.next()
            }
            #[inline]
            fn size_hint(&self) -> (usize, Option<usize>) {
                self.0.size_hint()
            }
        }
        #[stable(feature = "rust1", since = "1.0.0")]
        impl<'a, P: Pattern<'a>> DoubleEndedIterator for $ti
        where P::Searcher: DoubleEndedSearcher<'a> {
            #[inline]
            fn next_back(&mut self) -> Option<$te> {
                self.0.next_back()
            }
        }
    };
    (pattern forward $te:ty : $ti:ty) => {
        #[stable(feature = "rust1", since = "1.0.0")]
        impl<'a, P: Pattern<'a>> Iterator for $ti
        where P::Searcher: DoubleEndedSearcher<'a> {
            type Item = $te;

            #[inline]
            fn next(&mut self) -> Option<$te> {
                self.0.next()
            }
            #[inline]
            fn size_hint(&self) -> (usize, Option<usize>) {
                self.0.size_hint()
            }
        }
    };
    (pattern reverse $te:ty : $ti:ty) => {
        #[stable(feature = "rust1", since = "1.0.0")]
        impl<'a, P: Pattern<'a>> Iterator for $ti
            where P::Searcher: ReverseSearcher<'a>
        {
            type Item = $te;

            #[inline]
            fn next(&mut self) -> Option<$te> {
                self.0.next()
            }
            #[inline]
            fn size_hint(&self) -> (usize, Option<usize>) {
                self.0.size_hint()
            }
        }
    };
}

/// A trait to abstract the idea of creating a new instance of a type from a
/// string.
#[stable(feature = "rust1", since = "1.0.0")]
pub trait FromStr {
    /// The associated error which can be returned from parsing.
    #[stable(feature = "rust1", since = "1.0.0")]
    type Err;

    /// Parses a string `s` to return an optional value of this type. If the
    /// string is ill-formatted, the None is returned.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn from_str(s: &str) -> Result<Self, Self::Err>;
}

#[stable(feature = "rust1", since = "1.0.0")]
impl FromStr for bool {
    type Err = ParseBoolError;

    /// Parse a `bool` from a string.
    ///
    /// Yields a `Result<bool, ParseBoolError>`, because `s` may or may not
    /// actually be parseable.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::str::FromStr;
    ///
    /// assert_eq!(FromStr::from_str("true"), Ok(true));
    /// assert_eq!(FromStr::from_str("false"), Ok(false));
    /// assert!(<bool as FromStr>::from_str("not even a boolean").is_err());
    /// ```
    ///
    /// Note, in many cases, the `.parse()` method on `str` is more proper.
    ///
    /// ```
    /// assert_eq!("true".parse(), Ok(true));
    /// assert_eq!("false".parse(), Ok(false));
    /// assert!("not even a boolean".parse::<bool>().is_err());
    /// ```
    #[inline]
    fn from_str(s: &str) -> Result<bool, ParseBoolError> {
        match s {
            "true"  => Ok(true),
            "false" => Ok(false),
            _       => Err(ParseBoolError { _priv: () }),
        }
    }
}

/// An error returned when parsing a `bool` from a string fails.
#[derive(Debug, Clone, PartialEq)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct ParseBoolError { _priv: () }

#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for ParseBoolError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        "provided string was not `true` or `false`".fmt(f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Error for ParseBoolError {
    fn description(&self) -> &str { "failed to parse bool" }
}

/*
Section: Creating a string
*/

/// Errors which can occur when attempting to interpret a byte slice as a `str`.
#[derive(Copy, Eq, PartialEq, Clone, Debug)]
#[unstable(feature = "core",
           reason = "error enumeration recently added and definitions may be refined")]
pub enum Utf8Error {
    /// An invalid byte was detected at the byte offset given.
    ///
    /// The offset is guaranteed to be in bounds of the slice in question, and
    /// the byte at the specified offset was the first invalid byte in the
    /// sequence detected.
    InvalidByte(usize),

    /// The byte slice was invalid because more bytes were needed but no more
    /// bytes were available.
    TooShort,
}

/// Converts a slice of bytes to a string slice without performing any
/// allocations.
///
/// Once the slice has been validated as utf-8, it is transmuted in-place and
/// returned as a '&str' instead of a '&[u8]'
///
/// # Failure
///
/// Returns `Err` if the slice is not utf-8 with a description as to why the
/// provided slice is not utf-8.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
    try!(run_utf8_validation_iterator(&mut v.iter()));
    Ok(unsafe { from_utf8_unchecked(v) })
}

/// Converts a slice of bytes to a string slice without checking
/// that the string contains valid UTF-8.
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn from_utf8_unchecked<'a>(v: &'a [u8]) -> &'a str {
    mem::transmute(v)
}

/// Constructs a static string slice from a given raw pointer.
///
/// This function will read memory starting at `s` until it finds a 0, and then
/// transmute the memory up to that point as a string slice, returning the
/// corresponding `&'static str` value.
///
/// This function is unsafe because the caller must ensure the C string itself
/// has the static lifetime and that the memory `s` is valid up to and including
/// the first null byte.
///
/// # Panics
///
/// This function will panic if the string pointed to by `s` is not valid UTF-8.
#[unstable(feature = "core")]
#[deprecated(since = "1.0.0",
             reason = "use std::ffi::c_str_to_bytes + str::from_utf8")]
pub unsafe fn from_c_str(s: *const i8) -> &'static str {
    let s = s as *const u8;
    let mut len: usize = 0;
    while *s.offset(len as isize) != 0 {
        len += 1;
    }
    let v: &'static [u8] = ::mem::transmute(Slice { data: s, len: len });
    from_utf8(v).ok().expect("from_c_str passed invalid utf-8 data")
}

/// Something that can be used to compare against a character
#[unstable(feature = "core")]
#[deprecated(since = "1.0.0",
             reason = "use `Pattern` instead")]
// NB: Rather than removing it, make it private and move it into self::pattern
pub trait CharEq {
    /// Determine if the splitter should split at the given character
    fn matches(&mut self, char) -> bool;
    /// Indicate if this is only concerned about ASCII characters,
    /// which can allow for a faster implementation.
    fn only_ascii(&self) -> bool;
}

#[allow(deprecated) /* for CharEq */ ]
impl CharEq for char {
    #[inline]
    fn matches(&mut self, c: char) -> bool { *self == c }

    #[inline]
    fn only_ascii(&self) -> bool { (*self as u32) < 128 }
}

#[allow(deprecated) /* for CharEq */ ]
impl<F> CharEq for F where F: FnMut(char) -> bool {
    #[inline]
    fn matches(&mut self, c: char) -> bool { (*self)(c) }

    #[inline]
    fn only_ascii(&self) -> bool { false }
}

#[allow(deprecated) /* for CharEq */ ]
impl<'a> CharEq for &'a [char] {
    #[inline]
    #[allow(deprecated) /* for CharEq */ ]
    fn matches(&mut self, c: char) -> bool {
        self.iter().any(|&m| { let mut m = m; m.matches(c) })
    }

    #[inline]
    #[allow(deprecated) /* for CharEq */ ]
    fn only_ascii(&self) -> bool {
        self.iter().all(|m| m.only_ascii())
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Error for Utf8Error {
    fn description(&self) -> &str {
        match *self {
            Utf8Error::TooShort => "invalid utf-8: not enough bytes",
            Utf8Error::InvalidByte(..) => "invalid utf-8: corrupt contents",
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for Utf8Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Utf8Error::InvalidByte(n) => {
                write!(f, "invalid utf-8: invalid byte at index {}", n)
            }
            Utf8Error::TooShort => {
                write!(f, "invalid utf-8: byte slice too short")
            }
        }
    }
}

/*
Section: Iterators
*/

/// Iterator for the char (representing *Unicode Scalar Values*) of a string
///
/// Created with the method `.chars()`.
#[derive(Clone)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Chars<'a> {
    iter: slice::Iter<'a, u8>
}

/// Return the initial codepoint accumulator for the first byte.
/// The first byte is special, only want bottom 5 bits for width 2, 4 bits
/// for width 3, and 3 bits for width 4.
#[inline]
fn utf8_first_byte(byte: u8, width: u32) -> u32 { (byte & (0x7F >> width)) as u32 }

/// Return the value of `ch` updated with continuation byte `byte`.
#[inline]
fn utf8_acc_cont_byte(ch: u32, byte: u8) -> u32 { (ch << 6) | (byte & CONT_MASK) as u32 }

/// Checks whether the byte is a UTF-8 continuation byte (i.e. starts with the
/// bits `10`).
#[inline]
fn utf8_is_cont_byte(byte: u8) -> bool { (byte & !CONT_MASK) == TAG_CONT_U8 }

#[inline]
fn unwrap_or_0(opt: Option<&u8>) -> u8 {
    match opt {
        Some(&byte) => byte,
        None => 0,
    }
}

/// Reads the next code point out of a byte iterator (assuming a
/// UTF-8-like encoding).
#[unstable(feature = "core")]
#[inline]
pub fn next_code_point(bytes: &mut slice::Iter<u8>) -> Option<u32> {
    // Decode UTF-8
    let x = match bytes.next() {
        None => return None,
        Some(&next_byte) if next_byte < 128 => return Some(next_byte as u32),
        Some(&next_byte) => next_byte,
    };

    // Multibyte case follows
    // Decode from a byte combination out of: [[[x y] z] w]
    // NOTE: Performance is sensitive to the exact formulation here
    let init = utf8_first_byte(x, 2);
    let y = unwrap_or_0(bytes.next());
    let mut ch = utf8_acc_cont_byte(init, y);
    if x >= 0xE0 {
        // [[x y z] w] case
        // 5th bit in 0xE0 .. 0xEF is always clear, so `init` is still valid
        let z = unwrap_or_0(bytes.next());
        let y_z = utf8_acc_cont_byte((y & CONT_MASK) as u32, z);
        ch = init << 12 | y_z;
        if x >= 0xF0 {
            // [x y z w] case
            // use only the lower 3 bits of `init`
            let w = unwrap_or_0(bytes.next());
            ch = (init & 7) << 18 | utf8_acc_cont_byte(y_z, w);
        }
    }

    Some(ch)
}

/// Reads the last code point out of a byte iterator (assuming a
/// UTF-8-like encoding).
#[unstable(feature = "core")]
#[inline]
pub fn next_code_point_reverse(bytes: &mut slice::Iter<u8>) -> Option<u32> {
    // Decode UTF-8
    let w = match bytes.next_back() {
        None => return None,
        Some(&next_byte) if next_byte < 128 => return Some(next_byte as u32),
        Some(&back_byte) => back_byte,
    };

    // Multibyte case follows
    // Decode from a byte combination out of: [x [y [z w]]]
    let mut ch;
    let z = unwrap_or_0(bytes.next_back());
    ch = utf8_first_byte(z, 2);
    if utf8_is_cont_byte(z) {
        let y = unwrap_or_0(bytes.next_back());
        ch = utf8_first_byte(y, 3);
        if utf8_is_cont_byte(y) {
            let x = unwrap_or_0(bytes.next_back());
            ch = utf8_first_byte(x, 4);
            ch = utf8_acc_cont_byte(ch, y);
        }
        ch = utf8_acc_cont_byte(ch, z);
    }
    ch = utf8_acc_cont_byte(ch, w);

    Some(ch)
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Iterator for Chars<'a> {
    type Item = char;

    #[inline]
    fn next(&mut self) -> Option<char> {
        next_code_point(&mut self.iter).map(|ch| {
            // str invariant says `ch` is a valid Unicode Scalar Value
            unsafe {
                mem::transmute(ch)
            }
        })
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let (len, _) = self.iter.size_hint();
        // `(len + 3)` can't overflow, because we know that the `slice::Iter`
        // belongs to a slice in memory which has a maximum length of
        // `isize::MAX` (that's well below `usize::MAX`).
        ((len + 3) / 4, Some(len))
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> DoubleEndedIterator for Chars<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<char> {
        next_code_point_reverse(&mut self.iter).map(|ch| {
            // str invariant says `ch` is a valid Unicode Scalar Value
            unsafe {
                mem::transmute(ch)
            }
        })
    }
}

/// External iterator for a string's characters and their byte offsets.
/// Use with the `std::iter` module.
#[derive(Clone)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct CharIndices<'a> {
    front_offset: usize,
    iter: Chars<'a>,
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Iterator for CharIndices<'a> {
    type Item = (usize, char);

    #[inline]
    fn next(&mut self) -> Option<(usize, char)> {
        let (pre_len, _) = self.iter.iter.size_hint();
        match self.iter.next() {
            None => None,
            Some(ch) => {
                let index = self.front_offset;
                let (len, _) = self.iter.iter.size_hint();
                self.front_offset += pre_len - len;
                Some((index, ch))
            }
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> DoubleEndedIterator for CharIndices<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<(usize, char)> {
        match self.iter.next_back() {
            None => None,
            Some(ch) => {
                let (len, _) = self.iter.iter.size_hint();
                let index = self.front_offset + len;
                Some((index, ch))
            }
        }
    }
}

/// External iterator for a string's bytes.
/// Use with the `std::iter` module.
///
/// Created with `str::bytes`
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Clone)]
pub struct Bytes<'a>(Map<slice::Iter<'a, u8>, BytesDeref>);
delegate_iter!{exact u8 : Bytes<'a>}

/// A temporary fn new type that ensures that the `Bytes` iterator
/// is cloneable.
#[derive(Copy, Clone)]
struct BytesDeref;

#[cfg(stage0)]
impl<'a> Fn<(&'a u8,)> for BytesDeref {
    type Output = u8;

    #[inline]
    extern "rust-call" fn call(&self, (ptr,): (&'a u8,)) -> u8 {
        *ptr
    }
}

#[cfg(not(stage0))]
impl<'a> Fn<(&'a u8,)> for BytesDeref {
    #[inline]
    extern "rust-call" fn call(&self, (ptr,): (&'a u8,)) -> u8 {
        *ptr
    }
}

#[cfg(not(stage0))]
impl<'a> FnMut<(&'a u8,)> for BytesDeref {
    #[inline]
    extern "rust-call" fn call_mut(&mut self, (ptr,): (&'a u8,)) -> u8 {
        Fn::call(&*self, (ptr,))
    }
}

#[cfg(not(stage0))]
impl<'a> FnOnce<(&'a u8,)> for BytesDeref {
    type Output = u8;

    #[inline]
    extern "rust-call" fn call_once(self, (ptr,): (&'a u8,)) -> u8 {
        Fn::call(&self, (ptr,))
    }
}

/// An iterator over the substrings of a string, separated by `sep`.
struct CharSplits<'a, P: Pattern<'a>> {
    /// The slice remaining to be iterated
    start: usize,
    end: usize,
    matcher: P::Searcher,
    /// Whether an empty string at the end is allowed
    allow_trailing_empty: bool,
    finished: bool,
}

/// An iterator over the substrings of a string, separated by `sep`,
/// splitting at most `count` times.
struct CharSplitsN<'a, P: Pattern<'a>> {
    iter: CharSplits<'a, P>,
    /// The number of splits remaining
    count: usize,
}

/// An iterator over the substrings of a string, separated by a
/// pattern, in reverse order.
struct RCharSplits<'a, P: Pattern<'a>> {
    /// The slice remaining to be iterated
    start: usize,
    end: usize,
    matcher: P::Searcher,
    /// Whether an empty string at the end of iteration is allowed
    allow_final_empty: bool,
    finished: bool,
}

/// An iterator over the substrings of a string, separated by a
/// pattern, splitting at most `count` times, in reverse order.
struct RCharSplitsN<'a, P: Pattern<'a>> {
    iter: RCharSplits<'a, P>,
    /// The number of splits remaining
    count: usize,
}

/// An iterator over the lines of a string, separated by `\n`.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Lines<'a> {
    inner: CharSplits<'a, char>,
}

/// An iterator over the lines of a string, separated by either `\n` or (`\r\n`).
#[stable(feature = "rust1", since = "1.0.0")]
pub struct LinesAny<'a> {
    inner: Map<Lines<'a>, fn(&str) -> &str>,
}

impl<'a, P: Pattern<'a>> CharSplits<'a, P> {
    #[inline]
    fn get_end(&mut self) -> Option<&'a str> {
        if !self.finished && (self.allow_trailing_empty || self.end - self.start > 0) {
            self.finished = true;
            unsafe {
                let string = self.matcher.haystack().slice_unchecked(self.start, self.end);
                Some(string)
            }
        } else {
            None
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, P: Pattern<'a>> Iterator for CharSplits<'a, P> {
    type Item = &'a str;

    #[inline]
    fn next(&mut self) -> Option<&'a str> {
        if self.finished { return None }

        let haystack = self.matcher.haystack();
        match self.matcher.next_match() {
            Some((a, b)) => unsafe {
                let elt = haystack.slice_unchecked(self.start, a);
                self.start = b;
                Some(elt)
            },
            None => self.get_end(),
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, P: Pattern<'a>> DoubleEndedIterator for CharSplits<'a, P>
where P::Searcher: DoubleEndedSearcher<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<&'a str> {
        if self.finished { return None }

        if !self.allow_trailing_empty {
            self.allow_trailing_empty = true;
            match self.next_back() {
                Some(elt) if !elt.is_empty() => return Some(elt),
                _ => if self.finished { return None }
            }
        }

        let haystack = self.matcher.haystack();
        match self.matcher.next_match_back() {
            Some((a, b)) => unsafe {
                let elt = haystack.slice_unchecked(b, self.end);
                self.end = a;
                Some(elt)
            },
            None => unsafe {
                self.finished = true;
                Some(haystack.slice_unchecked(self.start, self.end))
            },
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, P: Pattern<'a>> Iterator for CharSplitsN<'a, P> {
    type Item = &'a str;

    #[inline]
    fn next(&mut self) -> Option<&'a str> {
        if self.count != 0 {
            self.count -= 1;
            self.iter.next()
        } else {
            self.iter.get_end()
        }
    }
}

impl<'a, P: Pattern<'a>> RCharSplits<'a, P> {
    #[inline]
    fn get_remainder(&mut self) -> Option<&'a str> {
        if !self.finished && (self.allow_final_empty || self.end - self.start > 0) {
            self.finished = true;
            unsafe {
                let string = self.matcher.haystack().slice_unchecked(self.start, self.end);
                Some(string)
            }
        } else {
            None
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, P: Pattern<'a>> Iterator for RCharSplits<'a, P>
    where P::Searcher: ReverseSearcher<'a>
{
    type Item = &'a str;

    #[inline]
    fn next(&mut self) -> Option<&'a str> {
        if self.finished { return None }

        let haystack = self.matcher.haystack();
        match self.matcher.next_match_back() {
            Some((a, b)) => unsafe {
                let elt = haystack.slice_unchecked(b, self.end);
                self.end = a;
                Some(elt)
            },
            None => self.get_remainder(),
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, P: Pattern<'a>> Iterator for RCharSplitsN<'a, P>
    where P::Searcher: ReverseSearcher<'a>
{
    type Item = &'a str;

    #[inline]
    fn next(&mut self) -> Option<&'a str> {
        if self.count != 0 {
            self.count -= 1;
            self.iter.next()
        } else {
            self.iter.get_remainder()
        }
    }
}

/// The internal state of an iterator that searches for matches of a substring
/// within a larger string using two-way search
#[derive(Clone)]
struct TwoWaySearcher {
    // constants
    crit_pos: usize,
    period: usize,
    byteset: u64,

    // variables
    position: usize,
    memory: usize
}

/*
    This is the Two-Way search algorithm, which was introduced in the paper:
    Crochemore, M., Perrin, D., 1991, Two-way string-matching, Journal of the ACM 38(3):651-675.

    Here's some background information.

    A *word* is a string of symbols. The *length* of a word should be a familiar
    notion, and here we denote it for any word x by |x|.
    (We also allow for the possibility of the *empty word*, a word of length zero).

    If x is any non-empty word, then an integer p with 0 < p <= |x| is said to be a
    *period* for x iff for all i with 0 <= i <= |x| - p - 1, we have x[i] == x[i+p].
    For example, both 1 and 2 are periods for the string "aa". As another example,
    the only period of the string "abcd" is 4.

    We denote by period(x) the *smallest* period of x (provided that x is non-empty).
    This is always well-defined since every non-empty word x has at least one period,
    |x|. We sometimes call this *the period* of x.

    If u, v and x are words such that x = uv, where uv is the concatenation of u and
    v, then we say that (u, v) is a *factorization* of x.

    Let (u, v) be a factorization for a word x. Then if w is a non-empty word such
    that both of the following hold

      - either w is a suffix of u or u is a suffix of w
      - either w is a prefix of v or v is a prefix of w

    then w is said to be a *repetition* for the factorization (u, v).

    Just to unpack this, there are four possibilities here. Let w = "abc". Then we
    might have:

      - w is a suffix of u and w is a prefix of v. ex: ("lolabc", "abcde")
      - w is a suffix of u and v is a prefix of w. ex: ("lolabc", "ab")
      - u is a suffix of w and w is a prefix of v. ex: ("bc", "abchi")
      - u is a suffix of w and v is a prefix of w. ex: ("bc", "a")

    Note that the word vu is a repetition for any factorization (u,v) of x = uv,
    so every factorization has at least one repetition.

    If x is a string and (u, v) is a factorization for x, then a *local period* for
    (u, v) is an integer r such that there is some word w such that |w| = r and w is
    a repetition for (u, v).

    We denote by local_period(u, v) the smallest local period of (u, v). We sometimes
    call this *the local period* of (u, v). Provided that x = uv is non-empty, this
    is well-defined (because each non-empty word has at least one factorization, as
    noted above).

    It can be proven that the following is an equivalent definition of a local period
    for a factorization (u, v): any positive integer r such that x[i] == x[i+r] for
    all i such that |u| - r <= i <= |u| - 1 and such that both x[i] and x[i+r] are
    defined. (i.e. i > 0 and i + r < |x|).

    Using the above reformulation, it is easy to prove that

        1 <= local_period(u, v) <= period(uv)

    A factorization (u, v) of x such that local_period(u,v) = period(x) is called a
    *critical factorization*.

    The algorithm hinges on the following theorem, which is stated without proof:

    **Critical Factorization Theorem** Any word x has at least one critical
    factorization (u, v) such that |u| < period(x).

    The purpose of maximal_suffix is to find such a critical factorization.

*/
impl TwoWaySearcher {
    #[allow(dead_code)]
    fn new(needle: &[u8]) -> TwoWaySearcher {
        let (crit_pos_false, period_false) = TwoWaySearcher::maximal_suffix(needle, false);
        let (crit_pos_true, period_true) = TwoWaySearcher::maximal_suffix(needle, true);

        let (crit_pos, period) =
            if crit_pos_false > crit_pos_true {
                (crit_pos_false, period_false)
            } else {
                (crit_pos_true, period_true)
            };

        // This isn't in the original algorithm, as far as I'm aware.
        let byteset = needle.iter()
                            .fold(0, |a, &b| (1 << ((b & 0x3f) as usize)) | a);

        // A particularly readable explanation of what's going on here can be found
        // in Crochemore and Rytter's book "Text Algorithms", ch 13. Specifically
        // see the code for "Algorithm CP" on p. 323.
        //
        // What's going on is we have some critical factorization (u, v) of the
        // needle, and we want to determine whether u is a suffix of
        // &v[..period]. If it is, we use "Algorithm CP1". Otherwise we use
        // "Algorithm CP2", which is optimized for when the period of the needle
        // is large.
        if &needle[..crit_pos] == &needle[period.. period + crit_pos] {
            TwoWaySearcher {
                crit_pos: crit_pos,
                period: period,
                byteset: byteset,

                position: 0,
                memory: 0
            }
        } else {
            TwoWaySearcher {
                crit_pos: crit_pos,
                period: cmp::max(crit_pos, needle.len() - crit_pos) + 1,
                byteset: byteset,

                position: 0,
                memory: usize::MAX // Dummy value to signify that the period is long
            }
        }
    }

    // One of the main ideas of Two-Way is that we factorize the needle into
    // two halves, (u, v), and begin trying to find v in the haystack by scanning
    // left to right. If v matches, we try to match u by scanning right to left.
    // How far we can jump when we encounter a mismatch is all based on the fact
    // that (u, v) is a critical factorization for the needle.
    #[inline]
    fn next(&mut self, haystack: &[u8], needle: &[u8], long_period: bool)
            -> Option<(usize, usize)> {
        'search: loop {
            // Check that we have room to search in
            if self.position + needle.len() > haystack.len() {
                return None;
            }

            // Quickly skip by large portions unrelated to our substring
            if (self.byteset >>
                    ((haystack[self.position + needle.len() - 1] & 0x3f)
                     as usize)) & 1 == 0 {
                self.position += needle.len();
                if !long_period {
                    self.memory = 0;
                }
                continue 'search;
            }

            // See if the right part of the needle matches
            let start = if long_period { self.crit_pos }
                        else { cmp::max(self.crit_pos, self.memory) };
            for i in start..needle.len() {
                if needle[i] != haystack[self.position + i] {
                    self.position += i - self.crit_pos + 1;
                    if !long_period {
                        self.memory = 0;
                    }
                    continue 'search;
                }
            }

            // See if the left part of the needle matches
            let start = if long_period { 0 } else { self.memory };
            for i in (start..self.crit_pos).rev() {
                if needle[i] != haystack[self.position + i] {
                    self.position += self.period;
                    if !long_period {
                        self.memory = needle.len() - self.period;
                    }
                    continue 'search;
                }
            }

            // We have found a match!
            let match_pos = self.position;
            self.position += needle.len(); // add self.period for all matches
            if !long_period {
                self.memory = 0; // set to needle.len() - self.period for all matches
            }
            return Some((match_pos, match_pos + needle.len()));
        }
    }

    // Computes a critical factorization (u, v) of `arr`.
    // Specifically, returns (i, p), where i is the starting index of v in some
    // critical factorization (u, v) and p = period(v)
    #[inline]
    #[allow(dead_code)]
    fn maximal_suffix(arr: &[u8], reversed: bool) -> (usize, usize) {
        use num::wrapping::WrappingOps;
        let mut left = -1; // Corresponds to i in the paper
        let mut right = 0; // Corresponds to j in the paper
        let mut offset = 1; // Corresponds to k in the paper
        let mut period = 1; // Corresponds to p in the paper

        while right + offset < arr.len() {
            let a;
            let b;
            if reversed {
                a = arr[left.wrapping_add(offset)];
                b = arr[right + offset];
            } else {
                a = arr[right + offset];
                b = arr[left.wrapping_add(offset)];
            }
            if a < b {
                // Suffix is smaller, period is entire prefix so far.
                right += offset;
                offset = 1;
                period = right.wrapping_sub(left);
            } else if a == b {
                // Advance through repetition of the current period.
                if offset == period {
                    right += offset;
                    offset = 1;
                } else {
                    offset += 1;
                }
            } else {
                // Suffix is larger, start over from current location.
                left = right;
                right += 1;
                offset = 1;
                period = 1;
            }
        }
        (left.wrapping_add(1), period)
    }
}

/// The internal state of an iterator that searches for matches of a substring
/// within a larger string using a dynamically chosen search algorithm
#[derive(Clone)]
// NB: This is kept around for convenience because
// it is planned to be used again in the future
enum OldSearcher {
    TwoWay(TwoWaySearcher),
    TwoWayLong(TwoWaySearcher),
}

impl OldSearcher {
    #[allow(dead_code)]
    fn new(haystack: &[u8], needle: &[u8]) -> OldSearcher {
        if needle.len() == 0 {
            // Handle specially
            unimplemented!()
        // FIXME: Tune this.
        // FIXME(#16715): This unsigned integer addition will probably not
        // overflow because that would mean that the memory almost solely
        // consists of the needle. Needs #16715 to be formally fixed.
        } else if needle.len() + 20 > haystack.len() {
            // Use naive searcher
            unimplemented!()
        } else {
            let searcher = TwoWaySearcher::new(needle);
            if searcher.memory == usize::MAX { // If the period is long
                TwoWayLong(searcher)
            } else {
                TwoWay(searcher)
            }
        }
    }
}

#[derive(Clone)]
// NB: This is kept around for convenience because
// it is planned to be used again in the future
struct OldMatchIndices<'a, 'b> {
    // constants
    haystack: &'a str,
    needle: &'b str,
    searcher: OldSearcher
}

// FIXME: #21637 Prevents a Clone impl
/// An iterator over the start and end indices of the matches of a
/// substring within a larger string
#[unstable(feature = "core", reason = "type may be removed")]
pub struct MatchIndices<'a, P: Pattern<'a>>(P::Searcher);

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, P: Pattern<'a>> Iterator for MatchIndices<'a, P> {
    type Item = (usize, usize);

    #[inline]
    fn next(&mut self) -> Option<(usize, usize)> {
        self.0.next_match()
    }
}

/// An iterator over the substrings of a string separated by a given
/// search string
#[unstable(feature = "core")]
#[deprecated(since = "1.0.0", reason = "use `Split` with a `&str`")]
pub struct SplitStr<'a, P: Pattern<'a>>(Split<'a, P>);
#[allow(deprecated)]
impl<'a, P: Pattern<'a>> Iterator for SplitStr<'a, P> {
    type Item = &'a str;

    #[inline]
    #[allow(deprecated)]
    fn next(&mut self) -> Option<&'a str> {
        Iterator::next(&mut self.0)
    }
}

impl<'a, 'b>  OldMatchIndices<'a, 'b> {
    #[inline]
    #[allow(dead_code)]
    fn next(&mut self) -> Option<(usize, usize)> {
        match self.searcher {
            TwoWay(ref mut searcher)
                => searcher.next(self.haystack.as_bytes(), self.needle.as_bytes(), false),
            TwoWayLong(ref mut searcher)
                => searcher.next(self.haystack.as_bytes(), self.needle.as_bytes(), true),
        }
    }
}

/*
Section: Comparing strings
*/

// share the implementation of the lang-item vs. non-lang-item
// eq_slice.
/// NOTE: This function is (ab)used in rustc::middle::trans::_match
/// to compare &[u8] byte slices that are not necessarily valid UTF-8.
#[inline]
fn eq_slice_(a: &str, b: &str) -> bool {
    // NOTE: In theory n should be libc::size_t and not usize, but libc is not available here
    #[allow(improper_ctypes)]
    extern { fn memcmp(s1: *const i8, s2: *const i8, n: usize) -> i32; }
    a.len() == b.len() && unsafe {
        memcmp(a.as_ptr() as *const i8,
               b.as_ptr() as *const i8,
               a.len()) == 0
    }
}

/// Bytewise slice equality
/// NOTE: This function is (ab)used in rustc::middle::trans::_match
/// to compare &[u8] byte slices that are not necessarily valid UTF-8.
#[lang="str_eq"]
#[inline]
fn eq_slice(a: &str, b: &str) -> bool {
    eq_slice_(a, b)
}

/*
Section: Misc
*/

/// Walk through `iter` checking that it's a valid UTF-8 sequence,
/// returning `true` in that case, or, if it is invalid, `false` with
/// `iter` reset such that it is pointing at the first byte in the
/// invalid sequence.
#[inline(always)]
fn run_utf8_validation_iterator(iter: &mut slice::Iter<u8>)
                                -> Result<(), Utf8Error> {
    let whole = iter.as_slice();
    loop {
        // save the current thing we're pointing at.
        let old = iter.clone();

        // restore the iterator we had at the start of this codepoint.
        macro_rules! err { () => {{
            *iter = old.clone();
            return Err(Utf8Error::InvalidByte(whole.len() - iter.as_slice().len()))
        }}}

        macro_rules! next { () => {
            match iter.next() {
                Some(a) => *a,
                // we needed data, but there was none: error!
                None => return Err(Utf8Error::TooShort),
            }
        }}

        let first = match iter.next() {
            Some(&b) => b,
            // we're at the end of the iterator and a codepoint
            // boundary at the same time, so this string is valid.
            None => return Ok(())
        };

        // ASCII characters are always valid, so only large
        // bytes need more examination.
        if first >= 128 {
            let w = UTF8_CHAR_WIDTH[first as usize];
            let second = next!();
            // 2-byte encoding is for codepoints  \u{0080} to  \u{07ff}
            //        first  C2 80        last DF BF
            // 3-byte encoding is for codepoints  \u{0800} to  \u{ffff}
            //        first  E0 A0 80     last EF BF BF
            //   excluding surrogates codepoints  \u{d800} to  \u{dfff}
            //               ED A0 80 to       ED BF BF
            // 4-byte encoding is for codepoints \u{1000}0 to \u{10ff}ff
            //        first  F0 90 80 80  last F4 8F BF BF
            //
            // Use the UTF-8 syntax from the RFC
            //
            // https://tools.ietf.org/html/rfc3629
            // UTF8-1      = %x00-7F
            // UTF8-2      = %xC2-DF UTF8-tail
            // UTF8-3      = %xE0 %xA0-BF UTF8-tail / %xE1-EC 2( UTF8-tail ) /
            //               %xED %x80-9F UTF8-tail / %xEE-EF 2( UTF8-tail )
            // UTF8-4      = %xF0 %x90-BF 2( UTF8-tail ) / %xF1-F3 3( UTF8-tail ) /
            //               %xF4 %x80-8F 2( UTF8-tail )
            match w {
                2 => if second & !CONT_MASK != TAG_CONT_U8 {err!()},
                3 => {
                    match (first, second, next!() & !CONT_MASK) {
                        (0xE0         , 0xA0 ... 0xBF, TAG_CONT_U8) |
                        (0xE1 ... 0xEC, 0x80 ... 0xBF, TAG_CONT_U8) |
                        (0xED         , 0x80 ... 0x9F, TAG_CONT_U8) |
                        (0xEE ... 0xEF, 0x80 ... 0xBF, TAG_CONT_U8) => {}
                        _ => err!()
                    }
                }
                4 => {
                    match (first, second, next!() & !CONT_MASK, next!() & !CONT_MASK) {
                        (0xF0         , 0x90 ... 0xBF, TAG_CONT_U8, TAG_CONT_U8) |
                        (0xF1 ... 0xF3, 0x80 ... 0xBF, TAG_CONT_U8, TAG_CONT_U8) |
                        (0xF4         , 0x80 ... 0x8F, TAG_CONT_U8, TAG_CONT_U8) => {}
                        _ => err!()
                    }
                }
                _ => err!()
            }
        }
    }
}

// https://tools.ietf.org/html/rfc3629
static UTF8_CHAR_WIDTH: [u8; 256] = [
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x1F
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x3F
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x5F
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x7F
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, // 0x9F
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, // 0xBF
0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, // 0xDF
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, // 0xEF
4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0, // 0xFF
];

/// Struct that contains a `char` and the index of the first byte of
/// the next `char` in a string.  This can be used as a data structure
/// for iterating over the UTF-8 bytes of a string.
#[derive(Copy)]
#[unstable(feature = "str_char",
           reason = "existence of this struct is uncertain as it is frequently \
                     able to be replaced with char.len_utf8() and/or \
                     char/char_indices iterators")]
pub struct CharRange {
    /// Current `char`
    pub ch: char,
    /// Index of the first byte of the next `char`
    pub next: usize,
}

/// Mask of the value bits of a continuation byte
const CONT_MASK: u8 = 0b0011_1111;
/// Value of the tag bits (tag mask is !CONT_MASK) of a continuation byte
const TAG_CONT_U8: u8 = 0b1000_0000;

/*
Section: Trait implementations
*/

mod traits {
    use cmp::{Ordering, Ord, PartialEq, PartialOrd, Eq};
    use cmp::Ordering::{Less, Equal, Greater};
    use iter::IteratorExt;
    use option::Option;
    use option::Option::Some;
    use ops;
    use str::{StrExt, eq_slice};

    #[stable(feature = "rust1", since = "1.0.0")]
    impl Ord for str {
        #[inline]
        fn cmp(&self, other: &str) -> Ordering {
            for (s_b, o_b) in self.bytes().zip(other.bytes()) {
                match s_b.cmp(&o_b) {
                    Greater => return Greater,
                    Less => return Less,
                    Equal => ()
                }
            }

            self.len().cmp(&other.len())
        }
    }

    #[stable(feature = "rust1", since = "1.0.0")]
    impl PartialEq for str {
        #[inline]
        fn eq(&self, other: &str) -> bool {
            eq_slice(self, other)
        }
        #[inline]
        fn ne(&self, other: &str) -> bool { !(*self).eq(other) }
    }

    #[stable(feature = "rust1", since = "1.0.0")]
    impl Eq for str {}

    #[stable(feature = "rust1", since = "1.0.0")]
    impl PartialOrd for str {
        #[inline]
        fn partial_cmp(&self, other: &str) -> Option<Ordering> {
            Some(self.cmp(other))
        }
    }

    /// Returns a slice of the given string from the byte range
    /// [`begin`..`end`).
    ///
    /// This operation is `O(1)`.
    ///
    /// Panics when `begin` and `end` do not point to valid characters
    /// or point beyond the last character of the string.
    ///
    /// # Examples
    ///
    /// ```
    /// let s = "Löwe 老虎 Léopard";
    /// assert_eq!(&s[0 .. 1], "L");
    ///
    /// assert_eq!(&s[1 .. 9], "öwe 老");
    ///
    /// // these will panic:
    /// // byte 2 lies within `ö`:
    /// // &s[2 ..3];
    ///
    /// // byte 8 lies within `老`
    /// // &s[1 .. 8];
    ///
    /// // byte 100 is outside the string
    /// // &s[3 .. 100];
    /// ```
    #[cfg(stage0)]
    #[stable(feature = "rust1", since = "1.0.0")]
    impl ops::Index<ops::Range<usize>> for str {
        type Output = str;
        #[inline]
        fn index(&self, index: &ops::Range<usize>) -> &str {
            // is_char_boundary checks that the index is in [0, .len()]
            if index.start <= index.end &&
               self.is_char_boundary(index.start) &&
               self.is_char_boundary(index.end) {
                unsafe { self.slice_unchecked(index.start, index.end) }
            } else {
                super::slice_error_fail(self, index.start, index.end)
            }
        }
    }

    /// Returns a slice of the given string from the byte range
    /// [`begin`..`end`).
    ///
    /// This operation is `O(1)`.
    ///
    /// Panics when `begin` and `end` do not point to valid characters
    /// or point beyond the last character of the string.
    ///
    /// # Examples
    ///
    /// ```
    /// let s = "Löwe 老虎 Léopard";
    /// assert_eq!(&s[0 .. 1], "L");
    ///
    /// assert_eq!(&s[1 .. 9], "öwe 老");
    ///
    /// // these will panic:
    /// // byte 2 lies within `ö`:
    /// // &s[2 ..3];
    ///
    /// // byte 8 lies within `老`
    /// // &s[1 .. 8];
    ///
    /// // byte 100 is outside the string
    /// // &s[3 .. 100];
    /// ```
    #[cfg(not(stage0))]
    #[stable(feature = "rust1", since = "1.0.0")]
    impl ops::Index<ops::Range<usize>> for str {
        type Output = str;
        #[inline]
        fn index(&self, index: ops::Range<usize>) -> &str {
            // is_char_boundary checks that the index is in [0, .len()]
            if index.start <= index.end &&
               self.is_char_boundary(index.start) &&
               self.is_char_boundary(index.end) {
                unsafe { self.slice_unchecked(index.start, index.end) }
            } else {
                super::slice_error_fail(self, index.start, index.end)
            }
        }
    }

    /// Returns a slice of the string from the beginning to byte
    /// `end`.
    ///
    /// Equivalent to `self[0 .. end]`.
    ///
    /// Panics when `end` does not point to a valid character, or is
    /// out of bounds.
    #[stable(feature = "rust1", since = "1.0.0")]
    impl ops::Index<ops::RangeTo<usize>> for str {
        type Output = str;

        #[cfg(stage0)]
        #[inline]
        fn index(&self, index: &ops::RangeTo<usize>) -> &str {
            // is_char_boundary checks that the index is in [0, .len()]
            if self.is_char_boundary(index.end) {
                unsafe { self.slice_unchecked(0, index.end) }
            } else {
                super::slice_error_fail(self, 0, index.end)
            }
        }

        #[cfg(not(stage0))]
        #[inline]
        fn index(&self, index: ops::RangeTo<usize>) -> &str {
            // is_char_boundary checks that the index is in [0, .len()]
            if self.is_char_boundary(index.end) {
                unsafe { self.slice_unchecked(0, index.end) }
            } else {
                super::slice_error_fail(self, 0, index.end)
            }
        }
    }

    /// Returns a slice of the string from `begin` to its end.
    ///
    /// Equivalent to `self[begin .. self.len()]`.
    ///
    /// Panics when `begin` does not point to a valid character, or is
    /// out of bounds.
    #[stable(feature = "rust1", since = "1.0.0")]
    impl ops::Index<ops::RangeFrom<usize>> for str {
        type Output = str;

        #[cfg(stage0)]
        #[inline]
        fn index(&self, index: &ops::RangeFrom<usize>) -> &str {
            // is_char_boundary checks that the index is in [0, .len()]
            if self.is_char_boundary(index.start) {
                unsafe { self.slice_unchecked(index.start, self.len()) }
            } else {
                super::slice_error_fail(self, index.start, self.len())
            }
        }

        #[cfg(not(stage0))]
        #[inline]
        fn index(&self, index: ops::RangeFrom<usize>) -> &str {
            // is_char_boundary checks that the index is in [0, .len()]
            if self.is_char_boundary(index.start) {
                unsafe { self.slice_unchecked(index.start, self.len()) }
            } else {
                super::slice_error_fail(self, index.start, self.len())
            }
        }
    }

    #[stable(feature = "rust1", since = "1.0.0")]
    impl ops::Index<ops::RangeFull> for str {
        type Output = str;

        #[cfg(stage0)]
        #[inline]
        fn index(&self, _index: &ops::RangeFull) -> &str {
            self
        }

        #[cfg(not(stage0))]
        #[inline]
        fn index(&self, _index: ops::RangeFull) -> &str {
            self
        }
    }
}

/// Any string that can be represented as a slice
#[unstable(feature = "core",
           reason = "Instead of taking this bound generically, this trait will be \
                     replaced with one of slicing syntax (&foo[..]), deref coercions, or \
                     a more generic conversion trait")]
#[deprecated(since = "1.0.0",
             reason = "use std::convert::AsRef<str> instead")]
pub trait Str {
    /// Work with `self` as a slice.
    fn as_slice<'a>(&'a self) -> &'a str;
}

#[allow(deprecated)]
impl Str for str {
    #[inline]
    fn as_slice<'a>(&'a self) -> &'a str { self }
}

#[allow(deprecated)]
impl<'a, S: ?Sized> Str for &'a S where S: Str {
    #[inline]
    fn as_slice(&self) -> &str { Str::as_slice(*self) }
}

/// Return type of `str::split`
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Split<'a, P: Pattern<'a>>(CharSplits<'a, P>);
delegate_iter!{pattern &'a str : Split<'a, P>}

/// Return type of `str::split_terminator`
#[stable(feature = "rust1", since = "1.0.0")]
pub struct SplitTerminator<'a, P: Pattern<'a>>(CharSplits<'a, P>);
delegate_iter!{pattern &'a str : SplitTerminator<'a, P>}

/// Return type of `str::splitn`
#[stable(feature = "rust1", since = "1.0.0")]
pub struct SplitN<'a, P: Pattern<'a>>(CharSplitsN<'a, P>);
delegate_iter!{pattern forward &'a str : SplitN<'a, P>}

/// Return type of `str::rsplit`
#[stable(feature = "rust1", since = "1.0.0")]
pub struct RSplit<'a, P: Pattern<'a>>(RCharSplits<'a, P>);
delegate_iter!{pattern reverse &'a str : RSplit<'a, P>}

/// Return type of `str::rsplitn`
#[stable(feature = "rust1", since = "1.0.0")]
pub struct RSplitN<'a, P: Pattern<'a>>(RCharSplitsN<'a, P>);
delegate_iter!{pattern reverse &'a str : RSplitN<'a, P>}

/// Methods for string slices
#[allow(missing_docs)]
pub trait StrExt {
    // NB there are no docs here are they're all located on the StrExt trait in
    // libcollections, not here.

    fn contains<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool;
    fn contains_char<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool;
    fn chars<'a>(&'a self) -> Chars<'a>;
    fn bytes<'a>(&'a self) -> Bytes<'a>;
    fn char_indices<'a>(&'a self) -> CharIndices<'a>;
    fn split<'a, P: Pattern<'a>>(&'a self, pat: P) -> Split<'a, P>;
    fn splitn<'a, P: Pattern<'a>>(&'a self, count: usize, pat: P) -> SplitN<'a, P>;
    fn split_terminator<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitTerminator<'a, P>;
    fn rsplit<'a, P: Pattern<'a>>(&'a self, pat: P) -> RSplit<'a, P>
        where P::Searcher: ReverseSearcher<'a>;
    fn rsplitn<'a, P: Pattern<'a>>(&'a self, count: usize, pat: P) -> RSplitN<'a, P>
        where P::Searcher: ReverseSearcher<'a>;
    fn match_indices<'a, P: Pattern<'a>>(&'a self, pat: P) -> MatchIndices<'a, P>;
    #[allow(deprecated) /* for SplitStr */]
    fn split_str<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitStr<'a, P>;
    fn lines<'a>(&'a self) -> Lines<'a>;
    fn lines_any<'a>(&'a self) -> LinesAny<'a>;
    fn char_len(&self) -> usize;
    fn slice_chars<'a>(&'a self, begin: usize, end: usize) -> &'a str;
    unsafe fn slice_unchecked<'a>(&'a self, begin: usize, end: usize) -> &'a str;
    fn starts_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool;
    fn ends_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool
        where P::Searcher: ReverseSearcher<'a>;
    fn trim_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str
        where P::Searcher: DoubleEndedSearcher<'a>;
    fn trim_left_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str;
    fn trim_right_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str
        where P::Searcher: ReverseSearcher<'a>;
    fn is_char_boundary(&self, index: usize) -> bool;
    fn char_range_at(&self, start: usize) -> CharRange;
    fn char_range_at_reverse(&self, start: usize) -> CharRange;
    fn char_at(&self, i: usize) -> char;
    fn char_at_reverse(&self, i: usize) -> char;
    fn as_bytes<'a>(&'a self) -> &'a [u8];
    fn find<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option<usize>;
    fn rfind<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option<usize>
        where P::Searcher: ReverseSearcher<'a>;
    fn find_str<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option<usize>;
    fn slice_shift_char<'a>(&'a self) -> Option<(char, &'a str)>;
    fn subslice_offset(&self, inner: &str) -> usize;
    fn as_ptr(&self) -> *const u8;
    fn len(&self) -> usize;
    fn is_empty(&self) -> bool;
    fn parse<T: FromStr>(&self) -> Result<T, T::Err>;
}

#[inline(never)]
fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
    assert!(begin <= end);
    panic!("index {} and/or {} in `{}` do not lie on character boundary",
          begin, end, s);
}

impl StrExt for str {
    #[inline]
    fn contains<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool {
        pat.is_contained_in(self)
    }

    #[inline]
    fn contains_char<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool {
        pat.is_contained_in(self)
    }

    #[inline]
    fn chars(&self) -> Chars {
        Chars{iter: self.as_bytes().iter()}
    }

    #[inline]
    fn bytes(&self) -> Bytes {
        Bytes(self.as_bytes().iter().map(BytesDeref))
    }

    #[inline]
    fn char_indices(&self) -> CharIndices {
        CharIndices { front_offset: 0, iter: self.chars() }
    }

    #[inline]
    fn split<'a, P: Pattern<'a>>(&'a self, pat: P) -> Split<'a, P> {
        Split(CharSplits {
            start: 0,
            end: self.len(),
            matcher: pat.into_searcher(self),
            allow_trailing_empty: true,
            finished: false,
        })
    }

    #[inline]
    fn splitn<'a, P: Pattern<'a>>(&'a self, count: usize, pat: P) -> SplitN<'a, P> {
        SplitN(CharSplitsN {
            iter: self.split(pat).0,
            count: count,
        })
    }

    #[inline]
    fn split_terminator<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitTerminator<'a, P> {
        SplitTerminator(CharSplits {
            allow_trailing_empty: false,
            ..self.split(pat).0
        })
    }

    #[inline]
    fn rsplit<'a, P: Pattern<'a>>(&'a self, pat: P) -> RSplit<'a, P>
        where P::Searcher: ReverseSearcher<'a>
    {
        RSplit(RCharSplits {
            start: 0,
            end: self.len(),
            matcher: pat.into_searcher(self),
            allow_final_empty: true,
            finished: false,
        })
    }

    #[inline]
    fn rsplitn<'a, P: Pattern<'a>>(&'a self, count: usize, pat: P) -> RSplitN<'a, P>
        where P::Searcher: ReverseSearcher<'a>
    {
        RSplitN(RCharSplitsN {
            iter: self.rsplit(pat).0,
            count: count,
        })
    }

    #[inline]
    fn match_indices<'a, P: Pattern<'a>>(&'a self, pat: P) -> MatchIndices<'a, P> {
        MatchIndices(pat.into_searcher(self))
    }

    #[inline]
    #[allow(deprecated) /* for SplitStr */ ]
    fn split_str<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitStr<'a, P> {
        SplitStr(self.split(pat))
    }

    #[inline]
    fn lines(&self) -> Lines {
        Lines { inner: self.split_terminator('\n').0 }
    }

    fn lines_any(&self) -> LinesAny {
        fn f(line: &str) -> &str {
            let l = line.len();
            if l > 0 && line.as_bytes()[l - 1] == b'\r' { &line[0 .. l - 1] }
            else { line }
        }

        let f: fn(&str) -> &str = f; // coerce to fn pointer
        LinesAny { inner: self.lines().map(f) }
    }

    #[inline]
    fn char_len(&self) -> usize { self.chars().count() }

    fn slice_chars(&self, begin: usize, end: usize) -> &str {
        assert!(begin <= end);
        let mut count = 0;
        let mut begin_byte = None;
        let mut end_byte = None;

        // This could be even more efficient by not decoding,
        // only finding the char boundaries
        for (idx, _) in self.char_indices() {
            if count == begin { begin_byte = Some(idx); }
            if count == end { end_byte = Some(idx); break; }
            count += 1;
        }
        if begin_byte.is_none() && count == begin { begin_byte = Some(self.len()) }
        if end_byte.is_none() && count == end { end_byte = Some(self.len()) }

        match (begin_byte, end_byte) {
            (None, _) => panic!("slice_chars: `begin` is beyond end of string"),
            (_, None) => panic!("slice_chars: `end` is beyond end of string"),
            (Some(a), Some(b)) => unsafe { self.slice_unchecked(a, b) }
        }
    }

    #[inline]
    unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
        mem::transmute(Slice {
            data: self.as_ptr().offset(begin as isize),
            len: end - begin,
        })
    }

    #[inline]
    fn starts_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool {
        pat.is_prefix_of(self)
    }

    #[inline]
    fn ends_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool
        where P::Searcher: ReverseSearcher<'a>
    {
        pat.is_suffix_of(self)
    }

    #[inline]
    fn trim_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str
        where P::Searcher: DoubleEndedSearcher<'a>
    {
        let mut i = 0;
        let mut j = 0;
        let mut matcher = pat.into_searcher(self);
        if let Some((a, b)) = matcher.next_reject() {
            i = a;
            j = b; // Rember earliest known match, correct it below if
                   // last match is different
        }
        if let Some((_, b)) = matcher.next_reject_back() {
            j = b;
        }
        unsafe {
            // Searcher is known to return valid indices
            self.slice_unchecked(i, j)
        }
    }

    #[inline]
    fn trim_left_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str {
        let mut i = self.len();
        let mut matcher = pat.into_searcher(self);
        if let Some((a, _)) = matcher.next_reject() {
            i = a;
        }
        unsafe {
            // Searcher is known to return valid indices
            self.slice_unchecked(i, self.len())
        }
    }

    #[inline]
    fn trim_right_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str
        where P::Searcher: ReverseSearcher<'a>
    {
        let mut j = 0;
        let mut matcher = pat.into_searcher(self);
        if let Some((_, b)) = matcher.next_reject_back() {
            j = b;
        }
        unsafe {
            // Searcher is known to return valid indices
            self.slice_unchecked(0, j)
        }
    }

    #[inline]
    fn is_char_boundary(&self, index: usize) -> bool {
        if index == self.len() { return true; }
        match self.as_bytes().get(index) {
            None => false,
            Some(&b) => b < 128 || b >= 192,
        }
    }

    #[inline]
    fn char_range_at(&self, i: usize) -> CharRange {
        let (c, n) = char_range_at_raw(self.as_bytes(), i);
        CharRange { ch: unsafe { mem::transmute(c) }, next: n }
    }

    #[inline]
    fn char_range_at_reverse(&self, start: usize) -> CharRange {
        let mut prev = start;

        prev = prev.saturating_sub(1);
        if self.as_bytes()[prev] < 128 {
            return CharRange{ch: self.as_bytes()[prev] as char, next: prev}
        }

        // Multibyte case is a fn to allow char_range_at_reverse to inline cleanly
        fn multibyte_char_range_at_reverse(s: &str, mut i: usize) -> CharRange {
            // while there is a previous byte == 10......
            while i > 0 && s.as_bytes()[i] & !CONT_MASK == TAG_CONT_U8 {
                i -= 1;
            }

            let first= s.as_bytes()[i];
            let w = UTF8_CHAR_WIDTH[first as usize];
            assert!(w != 0);

            let mut val = utf8_first_byte(first, w as u32);
            val = utf8_acc_cont_byte(val, s.as_bytes()[i + 1]);
            if w > 2 { val = utf8_acc_cont_byte(val, s.as_bytes()[i + 2]); }
            if w > 3 { val = utf8_acc_cont_byte(val, s.as_bytes()[i + 3]); }

            return CharRange {ch: unsafe { mem::transmute(val) }, next: i};
        }

        return multibyte_char_range_at_reverse(self, prev);
    }

    #[inline]
    fn char_at(&self, i: usize) -> char {
        self.char_range_at(i).ch
    }

    #[inline]
    fn char_at_reverse(&self, i: usize) -> char {
        self.char_range_at_reverse(i).ch
    }

    #[inline]
    fn as_bytes(&self) -> &[u8] {
        unsafe { mem::transmute(self) }
    }

    fn find<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option<usize> {
        pat.into_searcher(self).next_match().map(|(i, _)| i)
    }

    fn rfind<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option<usize>
        where P::Searcher: ReverseSearcher<'a>
    {
        pat.into_searcher(self).next_match_back().map(|(i, _)| i)
    }

    fn find_str<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option<usize> {
        self.find(pat)
    }

    #[inline]
    fn slice_shift_char(&self) -> Option<(char, &str)> {
        if self.is_empty() {
            None
        } else {
            let ch = self.char_at(0);
            let next_s = unsafe { self.slice_unchecked(ch.len_utf8(), self.len()) };
            Some((ch, next_s))
        }
    }

    fn subslice_offset(&self, inner: &str) -> usize {
        let a_start = self.as_ptr() as usize;
        let a_end = a_start + self.len();
        let b_start = inner.as_ptr() as usize;
        let b_end = b_start + inner.len();

        assert!(a_start <= b_start);
        assert!(b_end <= a_end);
        b_start - a_start
    }

    #[inline]
    fn as_ptr(&self) -> *const u8 {
        self.repr().data
    }

    #[inline]
    fn len(&self) -> usize { self.repr().len }

    #[inline]
    fn is_empty(&self) -> bool { self.len() == 0 }

    #[inline]
    fn parse<T: FromStr>(&self) -> Result<T, T::Err> { FromStr::from_str(self) }
}

/// Pluck a code point out of a UTF-8-like byte slice and return the
/// index of the next code point.
#[inline]
#[unstable(feature = "core")]
pub fn char_range_at_raw(bytes: &[u8], i: usize) -> (u32, usize) {
    if bytes[i] < 128 {
        return (bytes[i] as u32, i + 1);
    }

    // Multibyte case is a fn to allow char_range_at to inline cleanly
    fn multibyte_char_range_at(bytes: &[u8], i: usize) -> (u32, usize) {
        let first = bytes[i];
        let w = UTF8_CHAR_WIDTH[first as usize];
        assert!(w != 0);

        let mut val = utf8_first_byte(first, w as u32);
        val = utf8_acc_cont_byte(val, bytes[i + 1]);
        if w > 2 { val = utf8_acc_cont_byte(val, bytes[i + 2]); }
        if w > 3 { val = utf8_acc_cont_byte(val, bytes[i + 3]); }

        return (val, i + w as usize);
    }

    multibyte_char_range_at(bytes, i)
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Default for &'a str {
    #[stable(feature = "rust1", since = "1.0.0")]
    fn default() -> &'a str { "" }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Iterator for Lines<'a> {
    type Item = &'a str;

    #[inline]
    fn next(&mut self) -> Option<&'a str> { self.inner.next() }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> DoubleEndedIterator for Lines<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<&'a str> { self.inner.next_back() }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Iterator for LinesAny<'a> {
    type Item = &'a str;

    #[inline]
    fn next(&mut self) -> Option<&'a str> { self.inner.next() }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> DoubleEndedIterator for LinesAny<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<&'a str> { self.inner.next_back() }
}