about summary refs log tree commit diff
path: root/src/libcore/task/mod.rs
blob: 2a640e4bf8cf731de5d4909e6caf99a41ac89044 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

/*!
 * Task management.
 *
 * An executing Rust program consists of a tree of tasks, each with their own
 * stack, and sole ownership of their allocated heap data. Tasks communicate
 * with each other using ports and channels.
 *
 * When a task fails, that failure will propagate to its parent (the task
 * that spawned it) and the parent will fail as well. The reverse is not
 * true: when a parent task fails its children will continue executing. When
 * the root (main) task fails, all tasks fail, and then so does the entire
 * process.
 *
 * Tasks may execute in parallel and are scheduled automatically by the
 * runtime.
 *
 * # Example
 *
 * ~~~
 * do spawn {
 *     log(error, "Hello, World!");
 * }
 * ~~~
 */

use cast;
use cell::Cell;
use cmp;
use cmp::Eq;
use iter;
use libc;
use option;
use result::Result;
use comm::{stream, Chan, GenericChan, GenericPort, Port, SharedChan};
use pipes;
use prelude::*;
use ptr;
use result;
use task::local_data_priv::{local_get, local_set};
use task::rt::{task_id, sched_id, rust_task};
use task;
use util;
use util::replace;

mod local_data_priv;
pub mod local_data;
pub mod rt;
pub mod spawn;

/// A handle to a scheduler
#[deriving_eq]
pub enum Scheduler {
    SchedulerHandle(sched_id)
}

/// A handle to a task
#[deriving_eq]
pub enum Task {
    TaskHandle(task_id)
}

/**
 * Indicates the manner in which a task exited.
 *
 * A task that completes without failing is considered to exit successfully.
 * Supervised ancestors and linked siblings may yet fail after this task
 * succeeds. Also note that in such a case, it may be nondeterministic whether
 * linked failure or successful exit happen first.
 *
 * If you wish for this result's delivery to block until all linked and/or
 * children tasks complete, recommend using a result future.
 */
pub enum TaskResult {
    Success,
    Failure,
}

impl Eq for TaskResult {
    pure fn eq(&self, other: &TaskResult) -> bool {
        match ((*self), (*other)) {
            (Success, Success) | (Failure, Failure) => true,
            (Success, _) | (Failure, _) => false
        }
    }
    pure fn ne(&self, other: &TaskResult) -> bool { !(*self).eq(other) }
}

/// Scheduler modes
#[deriving_eq]
pub enum SchedMode {
    /// Run task on the default scheduler
    DefaultScheduler,
    /// Run task on the current scheduler
    CurrentScheduler,
    /// Run task on a specific scheduler
    ExistingScheduler(Scheduler),
    /**
     * Tasks are scheduled on the main OS thread
     *
     * The main OS thread is the thread used to launch the runtime which,
     * in most cases, is the process's initial thread as created by the OS.
     */
    PlatformThread,
    /// All tasks run in the same OS thread
    SingleThreaded,
    /// Tasks are distributed among available CPUs
    ThreadPerCore,
    /// Each task runs in its own OS thread
    ThreadPerTask,
    /// Tasks are distributed among a fixed number of OS threads
    ManualThreads(uint),
}

/**
 * Scheduler configuration options
 *
 * # Fields
 *
 * * sched_mode - The operating mode of the scheduler
 *
 * * foreign_stack_size - The size of the foreign stack, in bytes
 *
 *     Rust code runs on Rust-specific stacks. When Rust code calls foreign
 *     code (via functions in foreign modules) it switches to a typical, large
 *     stack appropriate for running code written in languages like C. By
 *     default these foreign stacks have unspecified size, but with this
 *     option their size can be precisely specified.
 */
pub struct SchedOpts {
    mode: SchedMode,
    foreign_stack_size: Option<uint>,
}

/**
 * Task configuration options
 *
 * # Fields
 *
 * * linked - Propagate failure bidirectionally between child and parent.
 *            True by default. If both this and 'supervised' are false, then
 *            either task's failure will not affect the other ("unlinked").
 *
 * * supervised - Propagate failure unidirectionally from parent to child,
 *                but not from child to parent. False by default.
 *
 * * notify_chan - Enable lifecycle notifications on the given channel
 *
 * * sched - Specify the configuration of a new scheduler to create the task
 *           in
 *
 *     By default, every task is created in the same scheduler as its
 *     parent, where it is scheduled cooperatively with all other tasks
 *     in that scheduler. Some specialized applications may want more
 *     control over their scheduling, in which case they can be spawned
 *     into a new scheduler with the specific properties required.
 *
 *     This is of particular importance for libraries which want to call
 *     into foreign code that blocks. Without doing so in a different
 *     scheduler other tasks will be impeded or even blocked indefinitely.
 */
pub struct TaskOpts {
    linked: bool,
    supervised: bool,
    mut notify_chan: Option<Chan<TaskResult>>,
    sched: SchedOpts
}

/**
 * The task builder type.
 *
 * Provides detailed control over the properties and behavior of new tasks.
 */
// NB: Builders are designed to be single-use because they do stateful
// things that get weird when reusing - e.g. if you create a result future
// it only applies to a single task, so then you have to maintain Some
// potentially tricky state to ensure that everything behaves correctly
// when you try to reuse the builder to spawn a new task. We'll just
// sidestep that whole issue by making builders uncopyable and making
// the run function move them in.

// FIXME (#3724): Replace the 'consumed' bit with move mode on self
pub struct TaskBuilder {
    opts: TaskOpts,
    gen_body: fn@(v: fn~()) -> fn~(),
    can_not_copy: Option<util::NonCopyable>,
    mut consumed: bool,
}

/**
 * Generate the base configuration for spawning a task, off of which more
 * configuration methods can be chained.
 * For example, task().unlinked().spawn is equivalent to spawn_unlinked.
 */
pub fn task() -> TaskBuilder {
    TaskBuilder {
        opts: default_task_opts(),
        gen_body: |body| body, // Identity function
        can_not_copy: None,
        mut consumed: false,
    }
}

#[doc(hidden)] // FIXME #3538
priv impl TaskBuilder {
    fn consume() -> TaskBuilder {
        if self.consumed {
            fail!(~"Cannot copy a task_builder"); // Fake move mode on self
        }
        self.consumed = true;
        let notify_chan = replace(&mut self.opts.notify_chan, None);
        TaskBuilder {
            opts: TaskOpts {
                linked: self.opts.linked,
                supervised: self.opts.supervised,
                notify_chan: notify_chan,
                sched: self.opts.sched
            },
            gen_body: self.gen_body,
            can_not_copy: None,
            consumed: false
        }
    }
}

impl TaskBuilder {
    /**
     * Decouple the child task's failure from the parent's. If either fails,
     * the other will not be killed.
     */
    fn unlinked() -> TaskBuilder {
        let notify_chan = replace(&mut self.opts.notify_chan, None);
        TaskBuilder {
            opts: TaskOpts {
                linked: false,
                supervised: self.opts.supervised,
                notify_chan: notify_chan,
                sched: self.opts.sched
            },
            can_not_copy: None,
            .. self.consume()
        }
    }
    /**
     * Unidirectionally link the child task's failure with the parent's. The
     * child's failure will not kill the parent, but the parent's will kill
     * the child.
     */
    fn supervised() -> TaskBuilder {
        let notify_chan = replace(&mut self.opts.notify_chan, None);
        TaskBuilder {
            opts: TaskOpts {
                linked: false,
                supervised: true,
                notify_chan: notify_chan,
                sched: self.opts.sched
            },
            can_not_copy: None,
            .. self.consume()
        }
    }
    /**
     * Link the child task's and parent task's failures. If either fails, the
     * other will be killed.
     */
    fn linked() -> TaskBuilder {
        let notify_chan = replace(&mut self.opts.notify_chan, None);
        TaskBuilder {
            opts: TaskOpts {
                linked: true,
                supervised: false,
                notify_chan: notify_chan,
                sched: self.opts.sched
            },
            can_not_copy: None,
            .. self.consume()
        }
    }

    /**
     * Get a future representing the exit status of the task.
     *
     * Taking the value of the future will block until the child task
     * terminates. The future-receiving callback specified will be called
     * *before* the task is spawned; as such, do not invoke .get() within the
     * closure; rather, store it in an outer variable/list for later use.
     *
     * Note that the future returning by this function is only useful for
     * obtaining the value of the next task to be spawning with the
     * builder. If additional tasks are spawned with the same builder
     * then a new result future must be obtained prior to spawning each
     * task.
     *
     * # Failure
     * Fails if a future_result was already set for this task.
     */
    fn future_result(blk: fn(v: Port<TaskResult>)) -> TaskBuilder {
        // FIXME (#3725): Once linked failure and notification are
        // handled in the library, I can imagine implementing this by just
        // registering an arbitrary number of task::on_exit handlers and
        // sending out messages.

        if self.opts.notify_chan.is_some() {
            fail!(~"Can't set multiple future_results for one task!");
        }

        // Construct the future and give it to the caller.
        let (notify_pipe_po, notify_pipe_ch) = stream::<TaskResult>();

        blk(notify_pipe_po);

        // Reconfigure self to use a notify channel.
        TaskBuilder {
            opts: TaskOpts {
                linked: self.opts.linked,
                supervised: self.opts.supervised,
                notify_chan: Some(notify_pipe_ch),
                sched: self.opts.sched
            },
            can_not_copy: None,
            .. self.consume()
        }
    }
    /// Configure a custom scheduler mode for the task.
    fn sched_mode(mode: SchedMode) -> TaskBuilder {
        let notify_chan = replace(&mut self.opts.notify_chan, None);
        TaskBuilder {
            opts: TaskOpts {
                linked: self.opts.linked,
                supervised: self.opts.supervised,
                notify_chan: notify_chan,
                sched: SchedOpts { mode: mode, foreign_stack_size: None}
            },
            can_not_copy: None,
            .. self.consume()
        }
    }

    /**
     * Add a wrapper to the body of the spawned task.
     *
     * Before the task is spawned it is passed through a 'body generator'
     * function that may perform local setup operations as well as wrap
     * the task body in remote setup operations. With this the behavior
     * of tasks can be extended in simple ways.
     *
     * This function augments the current body generator with a new body
     * generator by applying the task body which results from the
     * existing body generator to the new body generator.
     */
    fn add_wrapper(wrapper: fn@(v: fn~()) -> fn~()) -> TaskBuilder {
        let prev_gen_body = self.gen_body;
        let notify_chan = replace(&mut self.opts.notify_chan, None);
        TaskBuilder {
            opts: TaskOpts {
                linked: self.opts.linked,
                supervised: self.opts.supervised,
                notify_chan: notify_chan,
                sched: self.opts.sched
            },
            gen_body: |body| { wrapper(prev_gen_body(body)) },
            can_not_copy: None,
            .. self.consume()
        }
    }

    /**
     * Creates and executes a new child task
     *
     * Sets up a new task with its own call stack and schedules it to run
     * the provided unique closure. The task has the properties and behavior
     * specified by the task_builder.
     *
     * # Failure
     *
     * When spawning into a new scheduler, the number of threads requested
     * must be greater than zero.
     */
    fn spawn(f: fn~()) {
        let notify_chan = replace(&mut self.opts.notify_chan, None);
        let x = self.consume();
        let opts = TaskOpts {
            linked: x.opts.linked,
            supervised: x.opts.supervised,
            notify_chan: notify_chan,
            sched: x.opts.sched
        };
        spawn::spawn_raw(opts, (x.gen_body)(f));
    }
    /// Runs a task, while transfering ownership of one argument to the child.
    fn spawn_with<A:Owned>(arg: A, f: fn~(v: A)) {
        let arg = Cell(arg);
        do self.spawn {
            f(arg.take());
        }
    }

    /**
     * Execute a function in another task and return either the return value
     * of the function or result::err.
     *
     * # Return value
     *
     * If the function executed successfully then try returns result::ok
     * containing the value returned by the function. If the function fails
     * then try returns result::err containing nil.
     *
     * # Failure
     * Fails if a future_result was already set for this task.
     */
    fn try<T:Owned>(f: fn~() -> T) -> Result<T,()> {
        let (po, ch) = stream::<T>();
        let mut result = None;

        let fr_task_builder = self.future_result(|+r| {
            result = Some(r);
        });
        do fr_task_builder.spawn || {
            ch.send(f());
        }
        match option::unwrap(result).recv() {
            Success => result::Ok(po.recv()),
            Failure => result::Err(())
        }
    }
}


/* Task construction */

pub fn default_task_opts() -> TaskOpts {
    /*!
     * The default task options
     *
     * By default all tasks are supervised by their parent, are spawned
     * into the same scheduler, and do not post lifecycle notifications.
     */

    TaskOpts {
        linked: true,
        supervised: false,
        notify_chan: None,
        sched: SchedOpts {
            mode: DefaultScheduler,
            foreign_stack_size: None
        }
    }
}

/* Spawn convenience functions */

pub fn spawn(f: fn~()) {
    /*!
     * Creates and executes a new child task
     *
     * Sets up a new task with its own call stack and schedules it to run
     * the provided unique closure.
     *
     * This function is equivalent to `task().spawn(f)`.
     */

    task().spawn(f)
}

pub fn spawn_unlinked(f: fn~()) {
    /*!
     * Creates a child task unlinked from the current one. If either this
     * task or the child task fails, the other will not be killed.
     */

    task().unlinked().spawn(f)
}

pub fn spawn_supervised(f: fn~()) {
    /*!
     * Creates a child task unlinked from the current one. If either this
     * task or the child task fails, the other will not be killed.
     */

    task().supervised().spawn(f)
}

pub fn spawn_with<A:Owned>(arg: A, f: fn~(v: A)) {
    /*!
     * Runs a task, while transfering ownership of one argument to the
     * child.
     *
     * This is useful for transfering ownership of noncopyables to
     * another task.
     *
     * This function is equivalent to `task().spawn_with(arg, f)`.
     */

    task().spawn_with(arg, f)
}

pub fn spawn_sched(mode: SchedMode, f: fn~()) {
    /*!
     * Creates a new task on a new or existing scheduler

     * When there are no more tasks to execute the
     * scheduler terminates.
     *
     * # Failure
     *
     * In manual threads mode the number of threads requested must be
     * greater than zero.
     */

    task().sched_mode(mode).spawn(f)
}

pub fn try<T:Owned>(f: fn~() -> T) -> Result<T,()> {
    /*!
     * Execute a function in another task and return either the return value
     * of the function or result::err.
     *
     * This is equivalent to task().supervised().try.
     */

    task().supervised().try(f)
}


/* Lifecycle functions */

pub fn yield() {
    //! Yield control to the task scheduler

    unsafe {
        let task_ = rt::rust_get_task();
        let killed = rt::rust_task_yield(task_);
        if killed && !failing() {
            fail!(~"killed");
        }
    }
}

pub fn failing() -> bool {
    //! True if the running task has failed

    unsafe {
        rt::rust_task_is_unwinding(rt::rust_get_task())
    }
}

pub fn get_task() -> Task {
    //! Get a handle to the running task

    unsafe {
        TaskHandle(rt::get_task_id())
    }
}

pub fn get_scheduler() -> Scheduler {
    SchedulerHandle(unsafe { rt::rust_get_sched_id() })
}

/**
 * Temporarily make the task unkillable
 *
 * # Example
 *
 * ~~~
 * do task::unkillable {
 *     // detach / yield / destroy must all be called together
 *     rustrt::rust_port_detach(po);
 *     // This must not result in the current task being killed
 *     task::yield();
 *     rustrt::rust_port_destroy(po);
 * }
 * ~~~
 */
pub unsafe fn unkillable<U>(f: fn() -> U) -> U {
    struct AllowFailure {
        t: *rust_task,
        drop {
            unsafe {
                rt::rust_task_allow_kill(self.t);
            }
        }
    }

    fn AllowFailure(t: *rust_task) -> AllowFailure{
        AllowFailure {
            t: t
        }
    }

    unsafe {
        let t = rt::rust_get_task();
        let _allow_failure = AllowFailure(t);
        rt::rust_task_inhibit_kill(t);
        f()
    }
}

/// The inverse of unkillable. Only ever to be used nested in unkillable().
pub unsafe fn rekillable<U>(f: fn() -> U) -> U {
    struct DisallowFailure {
        t: *rust_task,
        drop {
            unsafe {
                rt::rust_task_inhibit_kill(self.t);
            }
        }
    }

    fn DisallowFailure(t: *rust_task) -> DisallowFailure {
        DisallowFailure {
            t: t
        }
    }

    unsafe {
        let t = rt::rust_get_task();
        let _allow_failure = DisallowFailure(t);
        rt::rust_task_allow_kill(t);
        f()
    }
}

/**
 * A stronger version of unkillable that also inhibits scheduling operations.
 * For use with exclusive ARCs, which use pthread mutexes directly.
 */
pub unsafe fn atomically<U>(f: fn() -> U) -> U {
    struct DeferInterrupts {
        t: *rust_task,
        drop {
            unsafe {
                rt::rust_task_allow_yield(self.t);
                rt::rust_task_allow_kill(self.t);
            }
        }
    }

    fn DeferInterrupts(t: *rust_task) -> DeferInterrupts {
        DeferInterrupts {
            t: t
        }
    }

    unsafe {
        let t = rt::rust_get_task();
        let _interrupts = DeferInterrupts(t);
        rt::rust_task_inhibit_kill(t);
        rt::rust_task_inhibit_yield(t);
        f()
    }
}

#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_cant_dup_task_builder() {
    let b = task().unlinked();
    do b.spawn { }
    // FIXME(#3724): For now, this is a -runtime- failure, because we haven't
    // got move mode on self. When 3724 is fixed, this test should fail to
    // compile instead, and should go in tests/compile-fail.
    do b.spawn { } // b should have been consumed by the previous call
}

// The following 8 tests test the following 2^3 combinations:
// {un,}linked {un,}supervised failure propagation {up,down}wards.

// !!! These tests are dangerous. If Something is buggy, they will hang, !!!
// !!! instead of exiting cleanly. This might wedge the buildbots.       !!!

#[test] #[ignore(cfg(windows))]
fn test_spawn_unlinked_unsup_no_fail_down() { // grandchild sends on a port
    let (po, ch) = stream();
    let ch = SharedChan(ch);
    do spawn_unlinked {
        let ch = ch.clone();
        do spawn_unlinked {
            // Give middle task a chance to fail-but-not-kill-us.
            for iter::repeat(16) { task::yield(); }
            ch.send(()); // If killed first, grandparent hangs.
        }
        fail!(); // Shouldn't kill either (grand)parent or (grand)child.
    }
    po.recv();
}
#[test] #[ignore(cfg(windows))]
fn test_spawn_unlinked_unsup_no_fail_up() { // child unlinked fails
    do spawn_unlinked { fail!(); }
}
#[test] #[ignore(cfg(windows))]
fn test_spawn_unlinked_sup_no_fail_up() { // child unlinked fails
    do spawn_supervised { fail!(); }
    // Give child a chance to fail-but-not-kill-us.
    for iter::repeat(16) { task::yield(); }
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_unlinked_sup_fail_down() {
    do spawn_supervised { loop { task::yield(); } }
    fail!(); // Shouldn't leave a child hanging around.
}

#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_linked_sup_fail_up() { // child fails; parent fails
    let (po, _ch) = stream::<()>();
    // Unidirectional "parenting" shouldn't override bidirectional linked.
    // We have to cheat with opts - the interface doesn't support them because
    // they don't make sense (redundant with task().supervised()).
    let opts = {
        let mut opts = default_task_opts();
        opts.linked = true;
        opts.supervised = true;
        opts
    };

    let b0 = task();
    let b1 = TaskBuilder {
        opts: opts,
        can_not_copy: None,
        .. b0
    };
    do b1.spawn { fail!(); }
    po.recv(); // We should get punted awake
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_linked_sup_fail_down() { // parent fails; child fails
    // We have to cheat with opts - the interface doesn't support them because
    // they don't make sense (redundant with task().supervised()).
    let opts = {
        let mut opts = default_task_opts();
        opts.linked = true;
        opts.supervised = true;
        opts
    };

    let b0 = task();
    let b1 = TaskBuilder {
        opts: opts,
        can_not_copy: None,
        .. b0
    };
    do b1.spawn { loop { task::yield(); } }
    fail!(); // *both* mechanisms would be wrong if this didn't kill the child
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_linked_unsup_fail_up() { // child fails; parent fails
    let (po, _ch) = stream::<()>();
    // Default options are to spawn linked & unsupervised.
    do spawn { fail!(); }
    po.recv(); // We should get punted awake
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_linked_unsup_fail_down() { // parent fails; child fails
    // Default options are to spawn linked & unsupervised.
    do spawn { loop { task::yield(); } }
    fail!();
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_linked_unsup_default_opts() { // parent fails; child fails
    // Make sure the above test is the same as this one.
    do task().linked().spawn { loop { task::yield(); } }
    fail!();
}

// A couple bonus linked failure tests - testing for failure propagation even
// when the middle task exits successfully early before kill signals are sent.

#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_failure_propagate_grandchild() {
    // Middle task exits; does grandparent's failure propagate across the gap?
    do spawn_supervised {
        do spawn_supervised {
            loop { task::yield(); }
        }
    }
    for iter::repeat(16) { task::yield(); }
    fail!();
}

#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_failure_propagate_secondborn() {
    // First-born child exits; does parent's failure propagate to sibling?
    do spawn_supervised {
        do spawn { // linked
            loop { task::yield(); }
        }
    }
    for iter::repeat(16) { task::yield(); }
    fail!();
}

#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_failure_propagate_nephew_or_niece() {
    // Our sibling exits; does our failure propagate to sibling's child?
    do spawn { // linked
        do spawn_supervised {
            loop { task::yield(); }
        }
    }
    for iter::repeat(16) { task::yield(); }
    fail!();
}

#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_spawn_linked_sup_propagate_sibling() {
    // Middle sibling exits - does eldest's failure propagate to youngest?
    do spawn { // linked
        do spawn { // linked
            loop { task::yield(); }
        }
    }
    for iter::repeat(16) { task::yield(); }
    fail!();
}

#[test]
fn test_run_basic() {
    let (po, ch) = stream::<()>();
    do task().spawn {
        ch.send(());
    }
    po.recv();
}

#[test]
struct Wrapper {
    mut f: Option<Chan<()>>
}

#[test]
fn test_add_wrapper() {
    let (po, ch) = stream::<()>();
    let b0 = task();
    let ch = Wrapper { f: Some(ch) };
    let b1 = do b0.add_wrapper |body| {
        let ch = Wrapper { f: Some(ch.f.swap_unwrap()) };
        fn~() {
            let ch = ch.f.swap_unwrap();
            body();
            ch.send(());
        }
    };
    do b1.spawn { }
    po.recv();
}

#[test]
#[ignore(cfg(windows))]
fn test_future_result() {
    let mut result = None;
    do task().future_result(|+r| { result = Some(r); }).spawn { }
    assert option::unwrap(result).recv() == Success;

    result = None;
    do task().future_result(|+r|
        { result = Some(r); }).unlinked().spawn {
        fail!();
    }
    assert option::unwrap(result).recv() == Failure;
}

#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_back_to_the_future_result() {
    let _ = task().future_result(util::ignore).future_result(util::ignore);
}

#[test]
fn test_try_success() {
    match do try {
        ~"Success!"
    } {
        result::Ok(~"Success!") => (),
        _ => fail!()
    }
}

#[test]
#[ignore(cfg(windows))]
fn test_try_fail() {
    match do try {
        fail!()
    } {
        result::Err(()) => (),
        result::Ok(()) => fail!()
    }
}

#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_spawn_sched_no_threads() {
    do spawn_sched(ManualThreads(0u)) { }
}

#[test]
fn test_spawn_sched() {
    let (po, ch) = stream::<()>();
    let ch = SharedChan(ch);

    fn f(i: int, ch: SharedChan<()>) {
        let parent_sched_id = unsafe { rt::rust_get_sched_id() };

        do spawn_sched(SingleThreaded) {
            let child_sched_id = unsafe { rt::rust_get_sched_id() };
            assert parent_sched_id != child_sched_id;

            if (i == 0) {
                ch.send(());
            } else {
                f(i - 1, ch.clone());
            }
        };

    }
    f(10, ch);
    po.recv();
}

#[test]
fn test_spawn_sched_childs_on_default_sched() {
    let (po, ch) = stream();

    // Assuming tests run on the default scheduler
    let default_id = unsafe { rt::rust_get_sched_id() };

    let ch = Wrapper { f: Some(ch) };
    do spawn_sched(SingleThreaded) {
        let parent_sched_id = unsafe { rt::rust_get_sched_id() };
        let ch = Wrapper { f: Some(ch.f.swap_unwrap()) };
        do spawn {
            let ch = ch.f.swap_unwrap();
            let child_sched_id = unsafe { rt::rust_get_sched_id() };
            assert parent_sched_id != child_sched_id;
            assert child_sched_id == default_id;
            ch.send(());
        };
    };

    po.recv();
}

#[nolink]
#[cfg(test)]
extern mod testrt {
    unsafe fn rust_dbg_lock_create() -> *libc::c_void;
    unsafe fn rust_dbg_lock_destroy(lock: *libc::c_void);
    unsafe fn rust_dbg_lock_lock(lock: *libc::c_void);
    unsafe fn rust_dbg_lock_unlock(lock: *libc::c_void);
    unsafe fn rust_dbg_lock_wait(lock: *libc::c_void);
    unsafe fn rust_dbg_lock_signal(lock: *libc::c_void);
}

#[test]
fn test_spawn_sched_blocking() {
    unsafe {

        // Testing that a task in one scheduler can block in foreign code
        // without affecting other schedulers
        for iter::repeat(20u) {

            let (start_po, start_ch) = stream();
            let (fin_po, fin_ch) = stream();

            let lock = testrt::rust_dbg_lock_create();

            do spawn_sched(SingleThreaded) {
                unsafe {
                    testrt::rust_dbg_lock_lock(lock);

                    start_ch.send(());

                    // Block the scheduler thread
                    testrt::rust_dbg_lock_wait(lock);
                    testrt::rust_dbg_lock_unlock(lock);

                    fin_ch.send(());
                }
            };

            // Wait until the other task has its lock
            start_po.recv();

            fn pingpong(po: &Port<int>, ch: &Chan<int>) {
                let mut val = 20;
                while val > 0 {
                    val = po.recv();
                    ch.send(val - 1);
                }
            }

            let (setup_po, setup_ch) = stream();
            let (parent_po, parent_ch) = stream();
            do spawn {
                let (child_po, child_ch) = stream();
                setup_ch.send(child_ch);
                pingpong(&child_po, &parent_ch);
            };

            let child_ch = setup_po.recv();
            child_ch.send(20);
            pingpong(&parent_po, &child_ch);
            testrt::rust_dbg_lock_lock(lock);
            testrt::rust_dbg_lock_signal(lock);
            testrt::rust_dbg_lock_unlock(lock);
            fin_po.recv();
            testrt::rust_dbg_lock_destroy(lock);
        }
    }
}

#[cfg(test)]
fn avoid_copying_the_body(spawnfn: fn(v: fn~())) {
    let (p, ch) = stream::<uint>();

    let x = ~1;
    let x_in_parent = ptr::addr_of(&(*x)) as uint;

    do spawnfn || {
        let x_in_child = ptr::addr_of(&(*x)) as uint;
        ch.send(x_in_child);
    }

    let x_in_child = p.recv();
    assert x_in_parent == x_in_child;
}

#[test]
fn test_avoid_copying_the_body_spawn() {
    avoid_copying_the_body(spawn);
}

#[test]
fn test_avoid_copying_the_body_task_spawn() {
    do avoid_copying_the_body |f| {
        do task().spawn || {
            f();
        }
    }
}

#[test]
fn test_avoid_copying_the_body_try() {
    do avoid_copying_the_body |f| {
        do try || {
            f()
        };
    }
}

#[test]
fn test_avoid_copying_the_body_unlinked() {
    do avoid_copying_the_body |f| {
        do spawn_unlinked || {
            f();
        }
    }
}

#[test]
fn test_platform_thread() {
    let (po, ch) = stream();
    do task().sched_mode(PlatformThread).spawn {
        ch.send(());
    }
    po.recv();
}

#[test]
#[ignore(cfg(windows))]
#[should_fail]
fn test_unkillable() {
    let (po, ch) = stream();

    // We want to do this after failing
    do spawn_unlinked {
        for iter::repeat(10) { yield() }
        ch.send(());
    }

    do spawn {
        yield();
        // We want to fail after the unkillable task
        // blocks on recv
        fail!();
    }

    unsafe {
        do unkillable {
            let p = ~0;
            let pp: *uint = cast::transmute(p);

            // If we are killed here then the box will leak
            po.recv();

            let _p: ~int = cast::transmute(pp);
        }
    }

    // Now we can be killed
    po.recv();
}

#[test]
#[ignore(cfg(windows))]
#[should_fail]
fn test_unkillable_nested() {
    let (po, ch) = comm::stream();

    // We want to do this after failing
    do spawn_unlinked || {
        for iter::repeat(10) { yield() }
        ch.send(());
    }

    do spawn {
        yield();
        // We want to fail after the unkillable task
        // blocks on recv
        fail!();
    }

    unsafe {
        do unkillable {
            do unkillable {} // Here's the difference from the previous test.
            let p = ~0;
            let pp: *uint = cast::transmute(p);

            // If we are killed here then the box will leak
            po.recv();

            let _p: ~int = cast::transmute(pp);
        }
    }

    // Now we can be killed
    po.recv();
}

#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_atomically() {
    unsafe { do atomically { yield(); } }
}

#[test]
fn test_atomically2() {
    unsafe { do atomically { } } yield(); // shouldn't fail
}

#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_atomically_nested() {
    unsafe { do atomically { do atomically { } yield(); } }
}

#[test]
fn test_child_doesnt_ref_parent() {
    // If the child refcounts the parent task, this will stack overflow when
    // climbing the task tree to dereference each ancestor. (See #1789)
    // (well, it would if the constant were 8000+ - I lowered it to be more
    // valgrind-friendly. try this at home, instead..!)
    const generations: uint = 16;
    fn child_no(x: uint) -> fn~() {
        return || {
            if x < generations {
                task::spawn(child_no(x+1));
            }
        }
    }
    task::spawn(child_no(0));
}

#[test]
fn test_sched_thread_per_core() {
    let (port, chan) = comm::stream();

    do spawn_sched(ThreadPerCore) || {
        unsafe {
            let cores = rt::rust_num_threads();
            let reported_threads = rt::rust_sched_threads();
            assert(cores as uint == reported_threads as uint);
            chan.send(());
        }
    }

    port.recv();
}

#[test]
fn test_spawn_thread_on_demand() {
    let (port, chan) = comm::stream();

    do spawn_sched(ManualThreads(2)) || {
        unsafe {
            let max_threads = rt::rust_sched_threads();
            assert(max_threads as int == 2);
            let running_threads = rt::rust_sched_current_nonlazy_threads();
            assert(running_threads as int == 1);

            let (port2, chan2) = comm::stream();

            do spawn_sched(CurrentScheduler) || {
                chan2.send(());
            }

            let running_threads2 = rt::rust_sched_current_nonlazy_threads();
            assert(running_threads2 as int == 2);

            port2.recv();
            chan.send(());
        }
    }

    port.recv();
}