1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
// NB: transitionary, de-mode-ing.
#[forbid(deprecated_mode)];
#[forbid(deprecated_pattern)];
//! Operations on tuples
use cmp::{Eq, Ord};
trait TupleOps<T,U> {
pure fn first() -> T;
pure fn second() -> U;
pure fn swap() -> (U, T);
}
impl<T: Copy, U: Copy> (T, U): TupleOps<T,U> {
/// Return the first element of self
pure fn first() -> T {
let (t, _) = self;
return t;
}
/// Return the second element of self
pure fn second() -> U {
let (_, u) = self;
return u;
}
/// Return the results of swapping the two elements of self
pure fn swap() -> (U, T) {
let (t, u) = self;
return (u, t);
}
}
trait ExtendedTupleOps<A,B> {
fn zip() -> ~[(A, B)];
fn map<C>(f: fn(A, B) -> C) -> ~[C];
}
impl<A: Copy, B: Copy> (&[A], &[B]): ExtendedTupleOps<A,B> {
fn zip() -> ~[(A, B)] {
let (a, b) = self;
vec::zip_slice(a, b)
}
fn map<C>(f: fn(A, B) -> C) -> ~[C] {
let (a, b) = self;
vec::map2(a, b, f)
}
}
impl<A: Copy, B: Copy> (~[A], ~[B]): ExtendedTupleOps<A,B> {
fn zip() -> ~[(A, B)] {
// FIXME #2543: Bad copy
let (a, b) = copy self;
vec::zip(move a, move b)
}
fn map<C>(f: fn(A, B) -> C) -> ~[C] {
// FIXME #2543: Bad copy
let (a, b) = copy self;
vec::map2(a, b, f)
}
}
#[cfg(stage0)]
impl<A: Eq, B: Eq> (A, B): Eq {
pure fn eq(&&other: (A, B)) -> bool {
// XXX: This would be a lot less wordy with ref bindings, but I don't
// trust that they work yet.
match self {
(self_a, self_b) => {
match other {
(other_a, other_b) => {
self_a.eq(other_a) && self_b.eq(other_b)
}
}
}
}
}
pure fn ne(&&other: (A, B)) -> bool { !self.eq(other) }
}
#[cfg(stage1)]
#[cfg(stage2)]
impl<A: Eq, B: Eq> (A, B) : Eq {
pure fn eq(other: &(A, B)) -> bool {
// XXX: This would be a lot less wordy with ref bindings, but I don't
// trust that they work yet.
match self {
(self_a, self_b) => {
match (*other) {
(ref other_a, ref other_b) => {
self_a.eq(other_a) && self_b.eq(other_b)
}
}
}
}
}
pure fn ne(other: &(A, B)) -> bool { !self.eq(other) }
}
#[cfg(stage0)]
impl<A: Ord, B: Ord> (A, B): Ord {
pure fn lt(&&other: (A, B)) -> bool {
match self {
(self_a, self_b) => {
match other {
(other_a, other_b) => {
if self_a.lt(other_a) { return true; }
if other_a.lt(self_a) { return false; }
if self_b.lt(other_b) { return true; }
return false;
}
}
}
}
}
pure fn le(&&other: (A, B)) -> bool { !other.lt(self) }
pure fn ge(&&other: (A, B)) -> bool { !self.lt(other) }
pure fn gt(&&other: (A, B)) -> bool { other.lt(self) }
}
#[cfg(stage1)]
#[cfg(stage2)]
impl<A: Ord, B: Ord> (A, B) : Ord {
pure fn lt(other: &(A, B)) -> bool {
match self {
(ref self_a, ref self_b) => {
match (*other) {
(ref other_a, ref other_b) => {
if (*self_a).lt(other_a) { return true; }
if (*other_a).lt(self_a) { return false; }
if (*self_b).lt(other_b) { return true; }
return false;
}
}
}
}
}
pure fn le(other: &(A, B)) -> bool { !(*other).lt(&self) }
pure fn ge(other: &(A, B)) -> bool { !self.lt(other) }
pure fn gt(other: &(A, B)) -> bool { (*other).lt(&self) }
}
#[cfg(stage0)]
impl<A: Eq, B: Eq, C: Eq> (A, B, C): Eq {
pure fn eq(&&other: (A, B, C)) -> bool {
// XXX: This would be a lot less wordy with ref bindings, but I don't
// trust that they work yet.
match self {
(self_a, self_b, self_c) => {
match other {
(other_a, other_b, other_c) => {
self_a.eq(other_a) &&
self_b.eq(other_b) &&
self_c.eq(other_c)
}
}
}
}
}
pure fn ne(&&other: (A, B, C)) -> bool { !self.eq(other) }
}
#[cfg(stage1)]
#[cfg(stage2)]
impl<A: Eq, B: Eq, C: Eq> (A, B, C) : Eq {
pure fn eq(other: &(A, B, C)) -> bool {
// XXX: This would be a lot less wordy with ref bindings, but I don't
// trust that they work yet.
match self {
(self_a, self_b, self_c) => {
match (*other) {
(ref other_a, ref other_b, ref other_c) => {
self_a.eq(other_a) &&
self_b.eq(other_b) &&
self_c.eq(other_c)
}
}
}
}
}
pure fn ne(other: &(A, B, C)) -> bool { !self.eq(other) }
}
#[cfg(stage0)]
impl<A: Ord, B: Ord, C: Ord> (A, B, C): Ord {
pure fn lt(&&other: (A, B, C)) -> bool {
match self {
(self_a, self_b, self_c) => {
match other {
(other_a, other_b, other_c) => {
if self_a.lt(other_a) { return true; }
if other_a.lt(self_a) { return false; }
if self_b.lt(other_b) { return true; }
if other_b.lt(self_b) { return false; }
if self_c.lt(other_c) { return true; }
return false;
}
}
}
}
}
pure fn le(&&other: (A, B, C)) -> bool { !other.lt(self) }
pure fn ge(&&other: (A, B, C)) -> bool { !self.lt(other) }
pure fn gt(&&other: (A, B, C)) -> bool { other.lt(self) }
}
#[cfg(stage1)]
#[cfg(stage2)]
impl<A: Ord, B: Ord, C: Ord> (A, B, C) : Ord {
pure fn lt(other: &(A, B, C)) -> bool {
match self {
(ref self_a, ref self_b, ref self_c) => {
match (*other) {
(ref other_a, ref other_b, ref other_c) => {
if (*self_a).lt(other_a) { return true; }
if (*other_a).lt(self_a) { return false; }
if (*self_b).lt(other_b) { return true; }
if (*other_b).lt(self_b) { return false; }
if (*self_c).lt(other_c) { return true; }
return false;
}
}
}
}
}
pure fn le(other: &(A, B, C)) -> bool { !(*other).lt(&self) }
pure fn ge(other: &(A, B, C)) -> bool { !self.lt(other) }
pure fn gt(other: &(A, B, C)) -> bool { (*other).lt(&self) }
}
#[test]
#[allow(non_implicitly_copyable_typarams)]
fn test_tuple() {
assert (948, 4039.48).first() == 948;
assert (34.5, ~"foo").second() == ~"foo";
assert ('a', 2).swap() == (2, 'a');
}
|