1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
|
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[doc(hidden)];
use cast;
use libc;
use comm::{GenericChan, GenericPort};
use prelude::*;
use task;
use task::atomically;
#[path = "unstable/at_exit.rs"]
pub mod at_exit;
#[path = "unstable/global.rs"]
pub mod global;
#[path = "unstable/finally.rs"]
pub mod finally;
#[path = "unstable/weak_task.rs"]
pub mod weak_task;
#[path = "unstable/exchange_alloc.rs"]
pub mod exchange_alloc;
#[path = "unstable/intrinsics.rs"]
pub mod intrinsics;
#[path = "unstable/extfmt.rs"]
pub mod extfmt;
#[path = "unstable/lang.rs"]
#[cfg(notest)]
pub mod lang;
mod rustrt {
use unstable::{raw_thread, rust_little_lock};
pub extern {
pub unsafe fn rust_create_little_lock() -> rust_little_lock;
pub unsafe fn rust_destroy_little_lock(lock: rust_little_lock);
pub unsafe fn rust_lock_little_lock(lock: rust_little_lock);
pub unsafe fn rust_unlock_little_lock(lock: rust_little_lock);
pub unsafe fn rust_raw_thread_start(f: &(&fn())) -> *raw_thread;
pub unsafe fn rust_raw_thread_join_delete(thread: *raw_thread);
}
}
#[allow(non_camel_case_types)] // runtime type
pub type raw_thread = libc::c_void;
/**
Start a new thread outside of the current runtime context and wait
for it to terminate.
The executing thread has no access to a task pointer and will be using
a normal large stack.
*/
pub fn run_in_bare_thread(f: ~fn()) {
let (port, chan) = comm::stream();
// FIXME #4525: Unfortunate that this creates an extra scheduler but it's
// necessary since rust_raw_thread_join_delete is blocking
do task::spawn_sched(task::SingleThreaded) {
unsafe {
let closure: &fn() = || {
f()
};
let thread = rustrt::rust_raw_thread_start(&closure);
rustrt::rust_raw_thread_join_delete(thread);
chan.send(());
}
}
port.recv();
}
#[test]
fn test_run_in_bare_thread() {
let i = 100;
do run_in_bare_thread {
assert!(i == 100);
}
}
#[test]
fn test_run_in_bare_thread_exchange() {
// Does the exchange heap work without the runtime?
let i = ~100;
do run_in_bare_thread {
assert!(i == ~100);
}
}
fn compare_and_swap(address: &mut int, oldval: int, newval: int) -> bool {
unsafe {
let old = intrinsics::atomic_cxchg(address, oldval, newval);
old == oldval
}
}
/****************************************************************************
* Shared state & exclusive ARC
****************************************************************************/
struct ArcData<T> {
mut count: libc::intptr_t,
// FIXME(#3224) should be able to make this non-option to save memory
mut data: Option<T>,
}
struct ArcDestruct<T> {
mut data: *libc::c_void,
}
#[unsafe_destructor]
impl<T> Drop for ArcDestruct<T>{
fn finalize(&self) {
unsafe {
do task::unkillable {
let data: ~ArcData<T> = cast::reinterpret_cast(&self.data);
let new_count =
intrinsics::atomic_xsub(&mut data.count, 1) - 1;
assert!(new_count >= 0);
if new_count == 0 {
// drop glue takes over.
} else {
cast::forget(data);
}
}
}
}
}
fn ArcDestruct<T>(data: *libc::c_void) -> ArcDestruct<T> {
ArcDestruct {
data: data
}
}
/**
* COMPLETELY UNSAFE. Used as a primitive for the safe versions in std::arc.
*
* Data races between tasks can result in crashes and, with sufficient
* cleverness, arbitrary type coercion.
*/
pub type SharedMutableState<T> = ArcDestruct<T>;
pub unsafe fn shared_mutable_state<T:Owned>(data: T) ->
SharedMutableState<T> {
let data = ~ArcData { count: 1, data: Some(data) };
unsafe {
let ptr = cast::transmute(data);
ArcDestruct(ptr)
}
}
#[inline(always)]
pub unsafe fn get_shared_mutable_state<T:Owned>(
rc: *SharedMutableState<T>) -> *mut T
{
unsafe {
let ptr: ~ArcData<T> = cast::reinterpret_cast(&(*rc).data);
assert!(ptr.count > 0);
let r = cast::transmute(ptr.data.get_ref());
cast::forget(ptr);
return r;
}
}
#[inline(always)]
pub unsafe fn get_shared_immutable_state<'a,T:Owned>(
rc: &'a SharedMutableState<T>) -> &'a T {
unsafe {
let ptr: ~ArcData<T> = cast::reinterpret_cast(&(*rc).data);
assert!(ptr.count > 0);
// Cast us back into the correct region
let r = cast::transmute_region(ptr.data.get_ref());
cast::forget(ptr);
return r;
}
}
pub unsafe fn clone_shared_mutable_state<T:Owned>(rc: &SharedMutableState<T>)
-> SharedMutableState<T> {
unsafe {
let ptr: ~ArcData<T> = cast::reinterpret_cast(&(*rc).data);
let new_count = intrinsics::atomic_xadd(&mut ptr.count, 1) + 1;
assert!(new_count >= 2);
cast::forget(ptr);
}
ArcDestruct((*rc).data)
}
impl<T:Owned> Clone for SharedMutableState<T> {
fn clone(&self) -> SharedMutableState<T> {
unsafe {
clone_shared_mutable_state(self)
}
}
}
/****************************************************************************/
#[allow(non_camel_case_types)] // runtime type
pub type rust_little_lock = *libc::c_void;
struct LittleLock {
l: rust_little_lock,
}
impl Drop for LittleLock {
fn finalize(&self) {
unsafe {
rustrt::rust_destroy_little_lock(self.l);
}
}
}
fn LittleLock() -> LittleLock {
unsafe {
LittleLock {
l: rustrt::rust_create_little_lock()
}
}
}
pub impl LittleLock {
#[inline(always)]
unsafe fn lock<T>(&self, f: &fn() -> T) -> T {
struct Unlock {
l: rust_little_lock,
drop {
unsafe {
rustrt::rust_unlock_little_lock(self.l);
}
}
}
fn Unlock(l: rust_little_lock) -> Unlock {
Unlock {
l: l
}
}
do atomically {
rustrt::rust_lock_little_lock(self.l);
let _r = Unlock(self.l);
f()
}
}
}
struct ExData<T> { lock: LittleLock, mut failed: bool, mut data: T, }
/**
* An arc over mutable data that is protected by a lock. For library use only.
*/
pub struct Exclusive<T> { x: SharedMutableState<ExData<T>> }
pub fn exclusive<T:Owned>(user_data: T) -> Exclusive<T> {
let data = ExData {
lock: LittleLock(), mut failed: false, mut data: user_data
};
Exclusive { x: unsafe { shared_mutable_state(data) } }
}
impl<T:Owned> Clone for Exclusive<T> {
// Duplicate an exclusive ARC, as std::arc::clone.
fn clone(&self) -> Exclusive<T> {
Exclusive { x: unsafe { clone_shared_mutable_state(&self.x) } }
}
}
pub impl<T:Owned> Exclusive<T> {
// Exactly like std::arc::mutex_arc,access(), but with the little_lock
// instead of a proper mutex. Same reason for being unsafe.
//
// Currently, scheduling operations (i.e., yielding, receiving on a pipe,
// accessing the provided condition variable) are prohibited while inside
// the exclusive. Supporting that is a work in progress.
#[inline(always)]
unsafe fn with<U>(&self, f: &fn(x: &mut T) -> U) -> U {
unsafe {
let rec = get_shared_mutable_state(&self.x);
do (*rec).lock.lock {
if (*rec).failed {
fail!(
~"Poisoned exclusive - another task failed inside!");
}
(*rec).failed = true;
let result = f(&mut (*rec).data);
(*rec).failed = false;
result
}
}
}
#[inline(always)]
unsafe fn with_imm<U>(&self, f: &fn(x: &T) -> U) -> U {
do self.with |x| {
f(cast::transmute_immut(x))
}
}
}
#[cfg(test)]
pub mod tests {
use comm;
use super::exclusive;
use task;
use uint;
#[test]
pub fn exclusive_arc() {
let mut futures = ~[];
let num_tasks = 10;
let count = 10;
let total = exclusive(~0);
for uint::range(0, num_tasks) |_i| {
let total = total.clone();
let (port, chan) = comm::stream();
futures.push(port);
do task::spawn || {
for uint::range(0, count) |_i| {
do total.with |count| {
**count += 1;
}
}
chan.send(());
}
};
for futures.each |f| { f.recv() }
do total.with |total| {
assert!(**total == num_tasks * count)
};
}
#[test] #[should_fail] #[ignore(cfg(windows))]
pub fn exclusive_poison() {
// Tests that if one task fails inside of an exclusive, subsequent
// accesses will also fail.
let x = exclusive(1);
let x2 = x.clone();
do task::try || {
do x2.with |one| {
assert!(*one == 2);
}
};
do x.with |one| {
assert!(*one == 1);
}
}
}
|