1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
|
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! See `README.md` for high-level documentation
#![allow(dead_code)] // FIXME -- just temporarily
pub use self::MethodMatchResult::*;
pub use self::MethodMatchedData::*;
use self::SelectionCandidate::*;
use self::BuiltinBoundConditions::*;
use self::EvaluationResult::*;
use super::DerivedObligationCause;
use super::project;
use super::project::{normalize_with_depth, Normalized};
use super::{PredicateObligation, TraitObligation, ObligationCause};
use super::{ObligationCauseCode, BuiltinDerivedObligation, ImplDerivedObligation};
use super::{SelectionError, Unimplemented, Overflow, OutputTypeParameterMismatch};
use super::{Selection};
use super::{SelectionResult};
use super::{VtableBuiltin, VtableImpl, VtableParam, VtableClosure,
VtableFnPointer, VtableObject, VtableDefaultImpl};
use super::{VtableImplData, VtableObjectData, VtableBuiltinData, VtableDefaultImplData};
use super::object_safety;
use super::{util};
use middle::fast_reject;
use middle::subst::{Subst, Substs, TypeSpace, VecPerParamSpace};
use middle::ty::{self, RegionEscape, ToPolyTraitRef, Ty};
use middle::infer;
use middle::infer::{InferCtxt, TypeFreshener};
use middle::ty_fold::TypeFoldable;
use std::cell::RefCell;
use std::collections::hash_map::HashMap;
use std::rc::Rc;
use syntax::{abi, ast};
use util::common::ErrorReported;
use util::ppaux::Repr;
pub struct SelectionContext<'cx, 'tcx:'cx> {
infcx: &'cx InferCtxt<'cx, 'tcx>,
closure_typer: &'cx (ty::ClosureTyper<'tcx>+'cx),
/// Freshener used specifically for skolemizing entries on the
/// obligation stack. This ensures that all entries on the stack
/// at one time will have the same set of skolemized entries,
/// which is important for checking for trait bounds that
/// recursively require themselves.
freshener: TypeFreshener<'cx, 'tcx>,
/// If true, indicates that the evaluation should be conservative
/// and consider the possibility of types outside this crate.
/// This comes up primarily when resolving ambiguity. Imagine
/// there is some trait reference `$0 : Bar` where `$0` is an
/// inference variable. If `intercrate` is true, then we can never
/// say for sure that this reference is not implemented, even if
/// there are *no impls at all for `Bar`*, because `$0` could be
/// bound to some type that in a downstream crate that implements
/// `Bar`. This is the suitable mode for coherence. Elsewhere,
/// though, we set this to false, because we are only interested
/// in types that the user could actually have written --- in
/// other words, we consider `$0 : Bar` to be unimplemented if
/// there is no type that the user could *actually name* that
/// would satisfy it. This avoids crippling inference, basically.
intercrate: bool,
}
// A stack that walks back up the stack frame.
struct TraitObligationStack<'prev, 'tcx: 'prev> {
obligation: &'prev TraitObligation<'tcx>,
/// Trait ref from `obligation` but skolemized with the
/// selection-context's freshener. Used to check for recursion.
fresh_trait_ref: ty::PolyTraitRef<'tcx>,
previous: Option<&'prev TraitObligationStack<'prev, 'tcx>>
}
#[derive(Clone)]
pub struct SelectionCache<'tcx> {
hashmap: RefCell<HashMap<Rc<ty::TraitRef<'tcx>>,
SelectionResult<'tcx, SelectionCandidate<'tcx>>>>,
}
pub enum MethodMatchResult {
MethodMatched(MethodMatchedData),
MethodAmbiguous(/* list of impls that could apply */ Vec<ast::DefId>),
MethodDidNotMatch,
}
#[derive(Copy, Debug)]
pub enum MethodMatchedData {
// In the case of a precise match, we don't really need to store
// how the match was found. So don't.
PreciseMethodMatch,
// In the case of a coercion, we need to know the precise impl so
// that we can determine the type to which things were coerced.
CoerciveMethodMatch(/* impl we matched */ ast::DefId)
}
/// The selection process begins by considering all impls, where
/// clauses, and so forth that might resolve an obligation. Sometimes
/// we'll be able to say definitively that (e.g.) an impl does not
/// apply to the obligation: perhaps it is defined for `uint` but the
/// obligation is for `int`. In that case, we drop the impl out of the
/// list. But the other cases are considered *candidates*.
///
/// Candidates can either be definitive or ambiguous. An ambiguous
/// candidate is one that might match or might not, depending on how
/// type variables wind up being resolved. This only occurs during inference.
///
/// For selection to succeed, there must be exactly one non-ambiguous
/// candidate. Usually, it is not possible to have more than one
/// definitive candidate, due to the coherence rules. However, there is
/// one case where it could occur: if there is a blanket impl for a
/// trait (that is, an impl applied to all T), and a type parameter
/// with a where clause. In that case, we can have a candidate from the
/// where clause and a second candidate from the impl. This is not a
/// problem because coherence guarantees us that the impl which would
/// be used to satisfy the where clause is the same one that we see
/// now. To resolve this issue, therefore, we ignore impls if we find a
/// matching where clause. Part of the reason for this is that where
/// clauses can give additional information (like, the types of output
/// parameters) that would have to be inferred from the impl.
#[derive(PartialEq,Eq,Debug,Clone)]
enum SelectionCandidate<'tcx> {
PhantomFnCandidate,
BuiltinCandidate(ty::BuiltinBound),
ParamCandidate(ty::PolyTraitRef<'tcx>),
ImplCandidate(ast::DefId),
DefaultImplCandidate(ast::DefId),
/// This is a trait matching with a projected type as `Self`, and
/// we found an applicable bound in the trait definition.
ProjectionCandidate,
/// Implementation of a `Fn`-family trait by one of the
/// anonymous types generated for a `||` expression.
ClosureCandidate(/* closure */ ast::DefId, Substs<'tcx>),
/// Implementation of a `Fn`-family trait by one of the anonymous
/// types generated for a fn pointer type (e.g., `fn(int)->int`)
FnPointerCandidate,
ObjectCandidate,
BuiltinObjectCandidate,
ErrorCandidate,
}
struct SelectionCandidateSet<'tcx> {
// a list of candidates that definitely apply to the current
// obligation (meaning: types unify).
vec: Vec<SelectionCandidate<'tcx>>,
// if this is true, then there were candidates that might or might
// not have applied, but we couldn't tell. This occurs when some
// of the input types are type variables, in which case there are
// various "builtin" rules that might or might not trigger.
ambiguous: bool,
}
enum BuiltinBoundConditions<'tcx> {
If(Vec<Ty<'tcx>>),
ParameterBuiltin,
AmbiguousBuiltin
}
#[derive(Debug)]
enum EvaluationResult<'tcx> {
EvaluatedToOk,
EvaluatedToAmbig,
EvaluatedToErr(SelectionError<'tcx>),
}
impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
pub fn new(infcx: &'cx InferCtxt<'cx, 'tcx>,
closure_typer: &'cx ty::ClosureTyper<'tcx>)
-> SelectionContext<'cx, 'tcx> {
SelectionContext {
infcx: infcx,
closure_typer: closure_typer,
freshener: infcx.freshener(),
intercrate: false,
}
}
pub fn intercrate(infcx: &'cx InferCtxt<'cx, 'tcx>,
closure_typer: &'cx ty::ClosureTyper<'tcx>)
-> SelectionContext<'cx, 'tcx> {
SelectionContext {
infcx: infcx,
closure_typer: closure_typer,
freshener: infcx.freshener(),
intercrate: true,
}
}
pub fn infcx(&self) -> &'cx InferCtxt<'cx, 'tcx> {
self.infcx
}
pub fn tcx(&self) -> &'cx ty::ctxt<'tcx> {
self.infcx.tcx
}
pub fn param_env(&self) -> &'cx ty::ParameterEnvironment<'cx, 'tcx> {
self.closure_typer.param_env()
}
pub fn closure_typer(&self) -> &'cx (ty::ClosureTyper<'tcx>+'cx) {
self.closure_typer
}
///////////////////////////////////////////////////////////////////////////
// Selection
//
// The selection phase tries to identify *how* an obligation will
// be resolved. For example, it will identify which impl or
// parameter bound is to be used. The process can be inconclusive
// if the self type in the obligation is not fully inferred. Selection
// can result in an error in one of two ways:
//
// 1. If no applicable impl or parameter bound can be found.
// 2. If the output type parameters in the obligation do not match
// those specified by the impl/bound. For example, if the obligation
// is `Vec<Foo>:Iterable<Bar>`, but the impl specifies
// `impl<T> Iterable<T> for Vec<T>`, than an error would result.
/// Attempts to satisfy the obligation. If successful, this will affect the surrounding
/// type environment by performing unification.
pub fn select(&mut self, obligation: &TraitObligation<'tcx>)
-> SelectionResult<'tcx, Selection<'tcx>> {
debug!("select({})", obligation.repr(self.tcx()));
assert!(!obligation.predicate.has_escaping_regions());
let stack = self.push_stack(None, obligation);
match try!(self.candidate_from_obligation(&stack)) {
None => {
self.consider_unification_despite_ambiguity(obligation);
Ok(None)
}
Some(candidate) => Ok(Some(try!(self.confirm_candidate(obligation, candidate)))),
}
}
/// In the particular case of unboxed closure obligations, we can
/// sometimes do some amount of unification for the
/// argument/return types even though we can't yet fully match obligation.
/// The particular case we are interesting in is an obligation of the form:
///
/// C : FnFoo<A>
///
/// where `C` is an unboxed closure type and `FnFoo` is one of the
/// `Fn` traits. Because we know that users cannot write impls for closure types
/// themselves, the only way that `C : FnFoo` can fail to match is under two
/// conditions:
///
/// 1. The closure kind for `C` is not yet known, because inference isn't complete.
/// 2. The closure kind for `C` *is* known, but doesn't match what is needed.
/// For example, `C` may be a `FnOnce` closure, but a `Fn` closure is needed.
///
/// In either case, we always know what argument types are
/// expected by `C`, no matter what kind of `Fn` trait it
/// eventually matches. So we can go ahead and unify the argument
/// types, even though the end result is ambiguous.
///
/// Note that this is safe *even if* the trait would never be
/// matched (case 2 above). After all, in that case, an error will
/// result, so it kind of doesn't matter what we do --- unifying
/// the argument types can only be helpful to the user, because
/// once they patch up the kind of closure that is expected, the
/// argment types won't really change.
fn consider_unification_despite_ambiguity(&mut self, obligation: &TraitObligation<'tcx>) {
// Is this a `C : FnFoo(...)` trait reference for some trait binding `FnFoo`?
match self.tcx().lang_items.fn_trait_kind(obligation.predicate.0.def_id()) {
Some(_) => { }
None => { return; }
}
// Is the self-type a closure type? We ignore bindings here
// because if it is a closure type, it must be a closure type from
// within this current fn, and hence none of the higher-ranked
// lifetimes can appear inside the self-type.
let self_ty = self.infcx.shallow_resolve(obligation.self_ty());
let (closure_def_id, substs) = match self_ty.sty {
ty::ty_closure(id, _, ref substs) => (id, substs.clone()),
_ => { return; }
};
assert!(!substs.has_escaping_regions());
let closure_trait_ref = self.closure_trait_ref(obligation, closure_def_id, substs);
match self.confirm_poly_trait_refs(obligation.cause.clone(),
obligation.predicate.to_poly_trait_ref(),
closure_trait_ref) {
Ok(()) => { }
Err(_) => { /* Silently ignore errors. */ }
}
}
///////////////////////////////////////////////////////////////////////////
// EVALUATION
//
// Tests whether an obligation can be selected or whether an impl
// can be applied to particular types. It skips the "confirmation"
// step and hence completely ignores output type parameters.
//
// The result is "true" if the obligation *may* hold and "false" if
// we can be sure it does not.
/// Evaluates whether the obligation `obligation` can be satisfied (by any means).
pub fn evaluate_obligation(&mut self,
obligation: &PredicateObligation<'tcx>)
-> bool
{
debug!("evaluate_obligation({})",
obligation.repr(self.tcx()));
self.evaluate_predicate_recursively(None, obligation).may_apply()
}
fn evaluate_builtin_bound_recursively<'o>(&mut self,
bound: ty::BuiltinBound,
previous_stack: &TraitObligationStack<'o, 'tcx>,
ty: Ty<'tcx>)
-> EvaluationResult<'tcx>
{
let obligation =
util::predicate_for_builtin_bound(
self.tcx(),
previous_stack.obligation.cause.clone(),
bound,
previous_stack.obligation.recursion_depth + 1,
ty);
match obligation {
Ok(obligation) => {
self.evaluate_predicate_recursively(Some(previous_stack), &obligation)
}
Err(ErrorReported) => {
EvaluatedToOk
}
}
}
fn evaluate_predicates_recursively<'a,'o,I>(&mut self,
stack: Option<&TraitObligationStack<'o, 'tcx>>,
predicates: I)
-> EvaluationResult<'tcx>
where I : Iterator<Item=&'a PredicateObligation<'tcx>>, 'tcx:'a
{
let mut result = EvaluatedToOk;
for obligation in predicates {
match self.evaluate_predicate_recursively(stack, obligation) {
EvaluatedToErr(e) => { return EvaluatedToErr(e); }
EvaluatedToAmbig => { result = EvaluatedToAmbig; }
EvaluatedToOk => { }
}
}
result
}
fn evaluate_predicate_recursively<'o>(&mut self,
previous_stack: Option<&TraitObligationStack<'o, 'tcx>>,
obligation: &PredicateObligation<'tcx>)
-> EvaluationResult<'tcx>
{
debug!("evaluate_predicate_recursively({})",
obligation.repr(self.tcx()));
match obligation.predicate {
ty::Predicate::Trait(ref t) => {
assert!(!t.has_escaping_regions());
let obligation = obligation.with(t.clone());
self.evaluate_obligation_recursively(previous_stack, &obligation)
}
ty::Predicate::Equate(ref p) => {
let result = self.infcx.probe(|_| {
self.infcx.equality_predicate(obligation.cause.span, p)
});
match result {
Ok(()) => EvaluatedToOk,
Err(_) => EvaluatedToErr(Unimplemented),
}
}
ty::Predicate::TypeOutlives(..) | ty::Predicate::RegionOutlives(..) => {
// we do not consider region relationships when
// evaluating trait matches
EvaluatedToOk
}
ty::Predicate::Projection(ref data) => {
self.infcx.probe(|_| {
let project_obligation = obligation.with(data.clone());
match project::poly_project_and_unify_type(self, &project_obligation) {
Ok(Some(subobligations)) => {
self.evaluate_predicates_recursively(previous_stack,
subobligations.iter())
}
Ok(None) => {
EvaluatedToAmbig
}
Err(_) => {
EvaluatedToErr(Unimplemented)
}
}
})
}
}
}
fn evaluate_obligation_recursively<'o>(&mut self,
previous_stack: Option<&TraitObligationStack<'o, 'tcx>>,
obligation: &TraitObligation<'tcx>)
-> EvaluationResult<'tcx>
{
debug!("evaluate_obligation_recursively({})",
obligation.repr(self.tcx()));
let stack = self.push_stack(previous_stack.map(|x| x), obligation);
let result = self.evaluate_stack(&stack);
debug!("result: {:?}", result);
result
}
fn evaluate_stack<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>)
-> EvaluationResult<'tcx>
{
// In intercrate mode, whenever any of the types are unbound,
// there can always be an impl. Even if there are no impls in
// this crate, perhaps the type would be unified with
// something from another crate that does provide an impl.
//
// In intracrate mode, we must still be conservative. The reason is
// that we want to avoid cycles. Imagine an impl like:
//
// impl<T:Eq> Eq for Vec<T>
//
// and a trait reference like `$0 : Eq` where `$0` is an
// unbound variable. When we evaluate this trait-reference, we
// will unify `$0` with `Vec<$1>` (for some fresh variable
// `$1`), on the condition that `$1 : Eq`. We will then wind
// up with many candidates (since that are other `Eq` impls
// that apply) and try to winnow things down. This results in
// a recursive evaluation that `$1 : Eq` -- as you can
// imagine, this is just where we started. To avoid that, we
// check for unbound variables and return an ambiguous (hence possible)
// match if we've seen this trait before.
//
// This suffices to allow chains like `FnMut` implemented in
// terms of `Fn` etc, but we could probably make this more
// precise still.
let input_types = stack.fresh_trait_ref.0.input_types();
let unbound_input_types = input_types.iter().any(|&t| ty::type_is_fresh(t));
if
unbound_input_types &&
(self.intercrate ||
stack.iter().skip(1).any(
|prev| stack.fresh_trait_ref.def_id() == prev.fresh_trait_ref.def_id()))
{
debug!("evaluate_stack({}) --> unbound argument, recursion --> ambiguous",
stack.fresh_trait_ref.repr(self.tcx()));
return EvaluatedToAmbig;
}
// If there is any previous entry on the stack that precisely
// matches this obligation, then we can assume that the
// obligation is satisfied for now (still all other conditions
// must be met of course). One obvious case this comes up is
// marker traits like `Send`. Think of a linked list:
//
// struct List<T> { data: T, next: Option<Box<List<T>>> {
//
// `Box<List<T>>` will be `Send` if `T` is `Send` and
// `Option<Box<List<T>>>` is `Send`, and in turn
// `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
// `Send`.
//
// Note that we do this comparison using the `fresh_trait_ref`
// fields. Because these have all been skolemized using
// `self.freshener`, we can be sure that (a) this will not
// affect the inferencer state and (b) that if we see two
// skolemized types with the same index, they refer to the
// same unbound type variable.
if
stack.iter()
.skip(1) // skip top-most frame
.any(|prev| stack.fresh_trait_ref == prev.fresh_trait_ref)
{
debug!("evaluate_stack({}) --> recursive",
stack.fresh_trait_ref.repr(self.tcx()));
return EvaluatedToOk;
}
match self.candidate_from_obligation(stack) {
Ok(Some(c)) => self.winnow_candidate(stack, &c),
Ok(None) => EvaluatedToAmbig,
Err(e) => EvaluatedToErr(e),
}
}
/// Evaluates whether the impl with id `impl_def_id` could be applied to the self type
/// `obligation_self_ty`. This can be used either for trait or inherent impls.
pub fn evaluate_impl(&mut self,
impl_def_id: ast::DefId,
obligation: &TraitObligation<'tcx>)
-> bool
{
debug!("evaluate_impl(impl_def_id={}, obligation={})",
impl_def_id.repr(self.tcx()),
obligation.repr(self.tcx()));
self.infcx.probe(|snapshot| {
let (skol_obligation_trait_ref, skol_map) =
self.infcx().skolemize_late_bound_regions(&obligation.predicate, snapshot);
match self.match_impl(impl_def_id, obligation, snapshot,
&skol_map, skol_obligation_trait_ref.trait_ref.clone()) {
Ok(substs) => {
let vtable_impl = self.vtable_impl(impl_def_id,
substs,
obligation.cause.clone(),
obligation.recursion_depth + 1,
skol_map,
snapshot);
self.winnow_selection(None, VtableImpl(vtable_impl)).may_apply()
}
Err(()) => {
false
}
}
})
}
///////////////////////////////////////////////////////////////////////////
// CANDIDATE ASSEMBLY
//
// The selection process begins by examining all in-scope impls,
// caller obligations, and so forth and assembling a list of
// candidates. See `README.md` and the `Candidate` type for more
// details.
fn candidate_from_obligation<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>)
-> SelectionResult<'tcx, SelectionCandidate<'tcx>>
{
// Watch out for overflow. This intentionally bypasses (and does
// not update) the cache.
let recursion_limit = self.infcx.tcx.sess.recursion_limit.get();
if stack.obligation.recursion_depth >= recursion_limit {
debug!("{} --> overflow (limit={})",
stack.obligation.repr(self.tcx()),
recursion_limit);
return Err(Overflow)
}
// Check the cache. Note that we skolemize the trait-ref
// separately rather than using `stack.fresh_trait_ref` -- this
// is because we want the unbound variables to be replaced
// with fresh skolemized types starting from index 0.
let cache_fresh_trait_pred =
self.infcx.freshen(stack.obligation.predicate.clone());
debug!("candidate_from_obligation(cache_fresh_trait_pred={}, obligation={})",
cache_fresh_trait_pred.repr(self.tcx()),
stack.repr(self.tcx()));
assert!(!stack.obligation.predicate.has_escaping_regions());
match self.check_candidate_cache(&cache_fresh_trait_pred) {
Some(c) => {
debug!("CACHE HIT: cache_fresh_trait_pred={}, candidate={}",
cache_fresh_trait_pred.repr(self.tcx()),
c.repr(self.tcx()));
return c;
}
None => { }
}
// If no match, compute result and insert into cache.
let candidate = self.candidate_from_obligation_no_cache(stack);
if self.should_update_candidate_cache(&cache_fresh_trait_pred, &candidate) {
debug!("CACHE MISS: cache_fresh_trait_pred={}, candidate={}",
cache_fresh_trait_pred.repr(self.tcx()), candidate.repr(self.tcx()));
self.insert_candidate_cache(cache_fresh_trait_pred, candidate.clone());
}
candidate
}
fn candidate_from_obligation_no_cache<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>)
-> SelectionResult<'tcx, SelectionCandidate<'tcx>>
{
if ty::type_is_error(stack.obligation.predicate.0.self_ty()) {
return Ok(Some(ErrorCandidate));
}
let candidate_set = try!(self.assemble_candidates(stack));
if candidate_set.ambiguous {
debug!("candidate set contains ambig");
return Ok(None);
}
let mut candidates = candidate_set.vec;
debug!("assembled {} candidates for {}: {}",
candidates.len(),
stack.repr(self.tcx()),
candidates.repr(self.tcx()));
// At this point, we know that each of the entries in the
// candidate set is *individually* applicable. Now we have to
// figure out if they contain mutual incompatibilities. This
// frequently arises if we have an unconstrained input type --
// for example, we are looking for $0:Eq where $0 is some
// unconstrained type variable. In that case, we'll get a
// candidate which assumes $0 == int, one that assumes $0 ==
// uint, etc. This spells an ambiguity.
// If there is more than one candidate, first winnow them down
// by considering extra conditions (nested obligations and so
// forth). We don't winnow if there is exactly one
// candidate. This is a relatively minor distinction but it
// can lead to better inference and error-reporting. An
// example would be if there was an impl:
//
// impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
//
// and we were to see some code `foo.push_clone()` where `boo`
// is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
// we were to winnow, we'd wind up with zero candidates.
// Instead, we select the right impl now but report `Bar does
// not implement Clone`.
if candidates.len() > 1 {
candidates.retain(|c| self.winnow_candidate(stack, c).may_apply())
}
// If there are STILL multiple candidate, we can further reduce
// the list by dropping duplicates.
if candidates.len() > 1 {
let mut i = 0;
while i < candidates.len() {
let is_dup =
(0..candidates.len())
.filter(|&j| i != j)
.any(|j| self.candidate_should_be_dropped_in_favor_of(&candidates[i],
&candidates[j]));
if is_dup {
debug!("Dropping candidate #{}/{}: {}",
i, candidates.len(), candidates[i].repr(self.tcx()));
candidates.swap_remove(i);
} else {
debug!("Retaining candidate #{}/{}: {}",
i, candidates.len(), candidates[i].repr(self.tcx()));
i += 1;
}
}
}
// If there are *STILL* multiple candidates, give up and
// report ambiguity.
if candidates.len() > 1 {
debug!("multiple matches, ambig");
return Ok(None);
}
// If there are *NO* candidates, that there are no impls --
// that we know of, anyway. Note that in the case where there
// are unbound type variables within the obligation, it might
// be the case that you could still satisfy the obligation
// from another crate by instantiating the type variables with
// a type from another crate that does have an impl. This case
// is checked for in `evaluate_stack` (and hence users
// who might care about this case, like coherence, should use
// that function).
if candidates.len() == 0 {
return Err(Unimplemented);
}
// Just one candidate left.
let candidate = candidates.pop().unwrap();
match candidate {
ImplCandidate(def_id) => {
match ty::trait_impl_polarity(self.tcx(), def_id) {
Some(ast::ImplPolarity::Negative) => return Err(Unimplemented),
_ => {}
}
}
_ => {}
}
Ok(Some(candidate))
}
fn pick_candidate_cache(&self) -> &SelectionCache<'tcx> {
// If there are any where-clauses in scope, then we always use
// a cache local to this particular scope. Otherwise, we
// switch to a global cache. We used to try and draw
// finer-grained distinctions, but that led to a serious of
// annoying and weird bugs like #22019 and #18290. This simple
// rule seems to be pretty clearly safe and also still retains
// a very high hit rate (~95% when compiling rustc).
if !self.param_env().caller_bounds.is_empty() {
return &self.param_env().selection_cache;
}
// Avoid using the master cache during coherence and just rely
// on the local cache. This effectively disables caching
// during coherence. It is really just a simplification to
// avoid us having to fear that coherence results "pollute"
// the master cache. Since coherence executes pretty quickly,
// it's not worth going to more trouble to increase the
// hit-rate I don't think.
if self.intercrate {
return &self.param_env().selection_cache;
}
// Otherwise, we can use the global cache.
&self.tcx().selection_cache
}
fn check_candidate_cache(&mut self,
cache_fresh_trait_pred: &ty::PolyTraitPredicate<'tcx>)
-> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>>
{
let cache = self.pick_candidate_cache();
let hashmap = cache.hashmap.borrow();
hashmap.get(&cache_fresh_trait_pred.0.trait_ref).cloned()
}
fn insert_candidate_cache(&mut self,
cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>)
{
let cache = self.pick_candidate_cache();
let mut hashmap = cache.hashmap.borrow_mut();
hashmap.insert(cache_fresh_trait_pred.0.trait_ref.clone(), candidate);
}
fn should_update_candidate_cache(&mut self,
cache_fresh_trait_pred: &ty::PolyTraitPredicate<'tcx>,
candidate: &SelectionResult<'tcx, SelectionCandidate<'tcx>>)
-> bool
{
// In general, it's a good idea to cache results, even
// ambiguous ones, to save us some trouble later. But we have
// to be careful not to cache results that could be
// invalidated later by advances in inference. Normally, this
// is not an issue, because any inference variables whose
// types are not yet bound are "freshened" in the cache key,
// which means that if we later get the same request once that
// type variable IS bound, we'll have a different cache key.
// For example, if we have `Vec<_#0t> : Foo`, and `_#0t` is
// not yet known, we may cache the result as `None`. But if
// later `_#0t` is bound to `Bar`, then when we freshen we'll
// have `Vec<Bar> : Foo` as the cache key.
//
// HOWEVER, it CAN happen that we get an ambiguity result in
// one particular case around closures where the cache key
// would not change. That is when the precise types of the
// upvars that a closure references have not yet been figured
// out (i.e., because it is not yet known if they are captured
// by ref, and if by ref, what kind of ref). In these cases,
// when matching a builtin bound, we will yield back an
// ambiguous result. But the *cache key* is just the closure type,
// it doesn't capture the state of the upvar computation.
//
// To avoid this trap, just don't cache ambiguous results if
// the self-type contains no inference byproducts (that really
// shouldn't happen in other circumstances anyway, given
// coherence).
match *candidate {
Ok(Some(_)) | Err(_) => true,
Ok(None) => {
cache_fresh_trait_pred.0.input_types().iter().any(|&t| ty::type_has_ty_infer(t))
}
}
}
fn assemble_candidates<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>)
-> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>>
{
let TraitObligationStack { obligation, .. } = *stack;
let mut candidates = SelectionCandidateSet {
vec: Vec::new(),
ambiguous: false
};
// Check for the `PhantomFn` trait. This is really just a
// special annotation that is *always* considered to match, no
// matter what the type parameters are etc.
if self.tcx().lang_items.phantom_fn() == Some(obligation.predicate.def_id()) {
candidates.vec.push(PhantomFnCandidate);
return Ok(candidates);
}
// Other bounds. Consider both in-scope bounds from fn decl
// and applicable impls. There is a certain set of precedence rules here.
match self.tcx().lang_items.to_builtin_kind(obligation.predicate.def_id()) {
Some(ty::BoundCopy) => {
debug!("obligation self ty is {}",
obligation.predicate.0.self_ty().repr(self.tcx()));
// User-defined copy impls are permitted, but only for
// structs and enums.
try!(self.assemble_candidates_from_impls(obligation, &mut candidates));
// For other types, we'll use the builtin rules.
try!(self.assemble_builtin_bound_candidates(ty::BoundCopy,
stack,
&mut candidates));
}
Some(bound @ ty::BoundSized) => {
// Sized is never implementable by end-users, it is
// always automatically computed.
try!(self.assemble_builtin_bound_candidates(bound, stack, &mut candidates));
}
Some(ty::BoundSend) |
Some(ty::BoundSync) |
None => {
try!(self.assemble_closure_candidates(obligation, &mut candidates));
try!(self.assemble_fn_pointer_candidates(obligation, &mut candidates));
try!(self.assemble_candidates_from_impls(obligation, &mut candidates));
self.assemble_candidates_from_object_ty(obligation, &mut candidates);
}
}
self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
try!(self.assemble_candidates_from_caller_bounds(stack, &mut candidates));
// Default implementations have lower priority, so we only
// consider triggering a default if there is no other impl that can apply.
if candidates.vec.len() == 0 {
try!(self.assemble_candidates_from_default_impls(obligation, &mut candidates));
}
debug!("candidate list size: {}", candidates.vec.len());
Ok(candidates)
}
fn assemble_candidates_from_projected_tys(&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
{
let poly_trait_predicate =
self.infcx().resolve_type_vars_if_possible(&obligation.predicate);
debug!("assemble_candidates_for_projected_tys({},{})",
obligation.repr(self.tcx()),
poly_trait_predicate.repr(self.tcx()));
// FIXME(#20297) -- just examining the self-type is very simplistic
// before we go into the whole skolemization thing, just
// quickly check if the self-type is a projection at all.
let trait_def_id = match poly_trait_predicate.0.trait_ref.self_ty().sty {
ty::ty_projection(ref data) => data.trait_ref.def_id,
ty::ty_infer(ty::TyVar(_)) => {
// If the self-type is an inference variable, then it MAY wind up
// being a projected type, so induce an ambiguity.
//
// FIXME(#20297) -- being strict about this can cause
// inference failures with BorrowFrom, which is
// unfortunate. Can we do better here?
debug!("assemble_candidates_for_projected_tys: ambiguous self-type");
candidates.ambiguous = true;
return;
}
_ => { return; }
};
debug!("assemble_candidates_for_projected_tys: trait_def_id={}",
trait_def_id.repr(self.tcx()));
let result = self.infcx.probe(|snapshot| {
self.match_projection_obligation_against_bounds_from_trait(obligation,
snapshot)
});
if result {
candidates.vec.push(ProjectionCandidate);
}
}
fn match_projection_obligation_against_bounds_from_trait(
&mut self,
obligation: &TraitObligation<'tcx>,
snapshot: &infer::CombinedSnapshot)
-> bool
{
let poly_trait_predicate =
self.infcx().resolve_type_vars_if_possible(&obligation.predicate);
let (skol_trait_predicate, skol_map) =
self.infcx().skolemize_late_bound_regions(&poly_trait_predicate, snapshot);
debug!("match_projection_obligation_against_bounds_from_trait: \
skol_trait_predicate={} skol_map={}",
skol_trait_predicate.repr(self.tcx()),
skol_map.repr(self.tcx()));
let projection_trait_ref = match skol_trait_predicate.trait_ref.self_ty().sty {
ty::ty_projection(ref data) => &data.trait_ref,
_ => {
self.tcx().sess.span_bug(
obligation.cause.span,
&format!("match_projection_obligation_against_bounds_from_trait() called \
but self-ty not a projection: {}",
skol_trait_predicate.trait_ref.self_ty().repr(self.tcx())));
}
};
debug!("match_projection_obligation_against_bounds_from_trait: \
projection_trait_ref={}",
projection_trait_ref.repr(self.tcx()));
let trait_predicates = ty::lookup_predicates(self.tcx(), projection_trait_ref.def_id);
let bounds = trait_predicates.instantiate(self.tcx(), projection_trait_ref.substs);
debug!("match_projection_obligation_against_bounds_from_trait: \
bounds={}",
bounds.repr(self.tcx()));
let matching_bound =
util::elaborate_predicates(self.tcx(), bounds.predicates.into_vec())
.filter_to_traits()
.find(
|bound| self.infcx.probe(
|_| self.match_projection(obligation,
bound.clone(),
skol_trait_predicate.trait_ref.clone(),
&skol_map,
snapshot)));
debug!("match_projection_obligation_against_bounds_from_trait: \
matching_bound={}",
matching_bound.repr(self.tcx()));
match matching_bound {
None => false,
Some(bound) => {
// Repeat the successful match, if any, this time outside of a probe.
let result = self.match_projection(obligation,
bound,
skol_trait_predicate.trait_ref.clone(),
&skol_map,
snapshot);
assert!(result);
true
}
}
}
fn match_projection(&mut self,
obligation: &TraitObligation<'tcx>,
trait_bound: ty::PolyTraitRef<'tcx>,
skol_trait_ref: Rc<ty::TraitRef<'tcx>>,
skol_map: &infer::SkolemizationMap,
snapshot: &infer::CombinedSnapshot)
-> bool
{
assert!(!skol_trait_ref.has_escaping_regions());
let origin = infer::RelateOutputImplTypes(obligation.cause.span);
match self.infcx.sub_poly_trait_refs(false,
origin,
trait_bound.clone(),
ty::Binder(skol_trait_ref.clone())) {
Ok(()) => { }
Err(_) => { return false; }
}
self.infcx.leak_check(skol_map, snapshot).is_ok()
}
/// Given an obligation like `<SomeTrait for T>`, search the obligations that the caller
/// supplied to find out whether it is listed among them.
///
/// Never affects inference environment.
fn assemble_candidates_from_caller_bounds<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
-> Result<(),SelectionError<'tcx>>
{
debug!("assemble_candidates_from_caller_bounds({})",
stack.obligation.repr(self.tcx()));
let caller_trait_refs: Vec<_> =
self.param_env().caller_bounds.iter()
.filter_map(|o| o.to_opt_poly_trait_ref())
.collect();
let all_bounds =
util::transitive_bounds(
self.tcx(), &caller_trait_refs[..]);
let matching_bounds =
all_bounds.filter(
|bound| self.evaluate_where_clause(stack, bound.clone()).may_apply());
let param_candidates =
matching_bounds.map(|bound| ParamCandidate(bound));
candidates.vec.extend(param_candidates);
Ok(())
}
fn evaluate_where_clause<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
where_clause_trait_ref: ty::PolyTraitRef<'tcx>)
-> EvaluationResult<'tcx>
{
self.infcx().probe(move |_| {
match self.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
Ok(obligations) => {
self.evaluate_predicates_recursively(Some(stack), obligations.iter())
}
Err(()) => {
EvaluatedToErr(Unimplemented)
}
}
})
}
/// Check for the artificial impl that the compiler will create for an obligation like `X :
/// FnMut<..>` where `X` is a closure type.
///
/// Note: the type parameters on a closure candidate are modeled as *output* type
/// parameters and hence do not affect whether this trait is a match or not. They will be
/// unified during the confirmation step.
fn assemble_closure_candidates(&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
-> Result<(),SelectionError<'tcx>>
{
let kind = match self.tcx().lang_items.fn_trait_kind(obligation.predicate.0.def_id()) {
Some(k) => k,
None => { return Ok(()); }
};
let self_ty = self.infcx.shallow_resolve(obligation.self_ty());
let (closure_def_id, substs) = match self_ty.sty {
ty::ty_closure(id, _, ref substs) => (id, substs.clone()),
ty::ty_infer(ty::TyVar(_)) => {
debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
candidates.ambiguous = true;
return Ok(());
}
_ => { return Ok(()); }
};
debug!("assemble_unboxed_candidates: self_ty={} kind={:?} obligation={}",
self_ty.repr(self.tcx()),
kind,
obligation.repr(self.tcx()));
match self.closure_typer.closure_kind(closure_def_id) {
Some(closure_kind) => {
debug!("assemble_unboxed_candidates: closure_kind = {:?}", closure_kind);
if closure_kind == kind {
candidates.vec.push(ClosureCandidate(closure_def_id, substs.clone()));
}
}
None => {
debug!("assemble_unboxed_candidates: closure_kind not yet known");
candidates.ambiguous = true;
}
}
Ok(())
}
/// Implement one of the `Fn()` family for a fn pointer.
fn assemble_fn_pointer_candidates(&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
-> Result<(),SelectionError<'tcx>>
{
// We provide a `Fn` impl for fn pointers. There is no need to provide
// the other traits (e.g. `FnMut`) since those are provided by blanket
// impls.
if Some(obligation.predicate.def_id()) != self.tcx().lang_items.fn_trait() {
return Ok(());
}
let self_ty = self.infcx.shallow_resolve(obligation.self_ty());
match self_ty.sty {
ty::ty_infer(ty::TyVar(_)) => {
debug!("assemble_fn_pointer_candidates: ambiguous self-type");
candidates.ambiguous = true; // could wind up being a fn() type
}
// provide an impl, but only for suitable `fn` pointers
ty::ty_bare_fn(_, &ty::BareFnTy {
unsafety: ast::Unsafety::Normal,
abi: abi::Rust,
sig: ty::Binder(ty::FnSig {
inputs: _,
output: ty::FnConverging(_),
variadic: false
})
}) => {
candidates.vec.push(FnPointerCandidate);
}
_ => { }
}
Ok(())
}
/// Search for impls that might apply to `obligation`.
fn assemble_candidates_from_impls(&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
-> Result<(), SelectionError<'tcx>>
{
let self_ty = self.infcx.shallow_resolve(obligation.self_ty());
debug!("assemble_candidates_from_impls(self_ty={})", self_ty.repr(self.tcx()));
let def_id = obligation.predicate.def_id();
let all_impls = self.all_impls(def_id);
for &impl_def_id in &all_impls {
self.infcx.probe(|snapshot| {
let (skol_obligation_trait_pred, skol_map) =
self.infcx().skolemize_late_bound_regions(&obligation.predicate, snapshot);
match self.match_impl(impl_def_id, obligation, snapshot,
&skol_map, skol_obligation_trait_pred.trait_ref.clone()) {
Ok(_) => {
candidates.vec.push(ImplCandidate(impl_def_id));
}
Err(()) => { }
}
});
}
Ok(())
}
fn assemble_candidates_from_default_impls(&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
-> Result<(), SelectionError<'tcx>>
{
let self_ty = self.infcx.shallow_resolve(obligation.self_ty());
debug!("assemble_candidates_from_default_impls(self_ty={})", self_ty.repr(self.tcx()));
let def_id = obligation.predicate.def_id();
if ty::trait_has_default_impl(self.tcx(), def_id) {
match self_ty.sty {
ty::ty_trait(..) |
ty::ty_param(..) |
ty::ty_projection(..) => {
// In these cases, we don't know what the actual
// type is. Therefore, we cannot break it down
// into its constituent types. So we don't
// consider the `..` impl but instead just add no
// candidates: this means that typeck will only
// succeed if there is another reason to believe
// that this obligation holds. That could be a
// where-clause or, in the case of an object type,
// it could be that the object type lists the
// trait (e.g. `Foo+Send : Send`). See
// `compile-fail/typeck-default-trait-impl-send-param.rs`
// for an example of a test case that exercises
// this path.
}
ty::ty_infer(ty::TyVar(_)) => {
// the defaulted impl might apply, we don't know
candidates.ambiguous = true;
}
_ => {
if self.constituent_types_for_ty(self_ty).is_some() {
candidates.vec.push(DefaultImplCandidate(def_id.clone()))
} else {
// We don't yet know what the constituent
// types are. So call it ambiguous for now,
// though this is a bit stronger than
// necessary: that is, we know that the
// defaulted impl applies, but we can't
// process the confirmation step without
// knowing the constituent types. (Anyway, in
// the particular case of defaulted impls, it
// doesn't really matter much either way,
// since we won't be aiding inference by
// processing the confirmation step.)
candidates.ambiguous = true;
}
}
}
}
Ok(())
}
/// Search for impls that might apply to `obligation`.
fn assemble_candidates_from_object_ty(&mut self,
obligation: &TraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
{
let self_ty = self.infcx.shallow_resolve(obligation.self_ty());
debug!("assemble_candidates_from_object_ty(self_ty={})",
self_ty.repr(self.tcx()));
// Object-safety candidates are only applicable to object-safe
// traits. Including this check is useful because it helps
// inference in cases of traits like `BorrowFrom`, which are
// not object-safe, and which rely on being able to infer the
// self-type from one of the other inputs. Without this check,
// these cases wind up being considered ambiguous due to a
// (spurious) ambiguity introduced here.
if !object_safety::is_object_safe(self.tcx(), obligation.predicate.to_poly_trait_ref()) {
return;
}
let poly_trait_ref = match self_ty.sty {
ty::ty_trait(ref data) => {
match self.tcx().lang_items.to_builtin_kind(obligation.predicate.def_id()) {
Some(bound @ ty::BoundSend) | Some(bound @ ty::BoundSync) => {
if data.bounds.builtin_bounds.contains(&bound) {
debug!("assemble_candidates_from_object_ty: matched builtin bound, \
pushing candidate");
candidates.vec.push(BuiltinObjectCandidate);
return;
}
}
_ => {}
}
data.principal_trait_ref_with_self_ty(self.tcx(), self_ty)
}
ty::ty_infer(ty::TyVar(_)) => {
debug!("assemble_candidates_from_object_ty: ambiguous");
candidates.ambiguous = true; // could wind up being an object type
return;
}
_ => {
return;
}
};
debug!("assemble_candidates_from_object_ty: poly_trait_ref={}",
poly_trait_ref.repr(self.tcx()));
// see whether the object trait can be upcast to the trait we are looking for
let obligation_def_id = obligation.predicate.def_id();
let upcast_trait_ref = match util::upcast(self.tcx(), poly_trait_ref, obligation_def_id) {
Some(r) => r,
None => { return; }
};
debug!("assemble_candidates_from_object_ty: upcast_trait_ref={}",
upcast_trait_ref.repr(self.tcx()));
// check whether the upcast version of the trait-ref matches what we are looking for
if let Ok(()) = self.infcx.probe(|_| self.match_poly_trait_ref(obligation,
upcast_trait_ref.clone())) {
debug!("assemble_candidates_from_object_ty: matched, pushing candidate");
candidates.vec.push(ObjectCandidate);
}
}
///////////////////////////////////////////////////////////////////////////
// WINNOW
//
// Winnowing is the process of attempting to resolve ambiguity by
// probing further. During the winnowing process, we unify all
// type variables (ignoring skolemization) and then we also
// attempt to evaluate recursive bounds to see if they are
// satisfied.
/// Further evaluate `candidate` to decide whether all type parameters match and whether nested
/// obligations are met. Returns true if `candidate` remains viable after this further
/// scrutiny.
fn winnow_candidate<'o>(&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
candidate: &SelectionCandidate<'tcx>)
-> EvaluationResult<'tcx>
{
debug!("winnow_candidate: candidate={}", candidate.repr(self.tcx()));
let result = self.infcx.probe(|_| {
let candidate = (*candidate).clone();
match self.confirm_candidate(stack.obligation, candidate) {
Ok(selection) => self.winnow_selection(Some(stack), selection),
Err(error) => EvaluatedToErr(error),
}
});
debug!("winnow_candidate depth={} result={:?}",
stack.obligation.recursion_depth, result);
result
}
fn winnow_selection<'o>(&mut self,
stack: Option<&TraitObligationStack<'o, 'tcx>>,
selection: Selection<'tcx>)
-> EvaluationResult<'tcx>
{
self.evaluate_predicates_recursively(stack, selection.iter_nested())
}
/// Returns true if `candidate_i` should be dropped in favor of
/// `candidate_j`. Generally speaking we will drop duplicate
/// candidates and prefer where-clause candidates.
fn candidate_should_be_dropped_in_favor_of<'o>(&mut self,
candidate_i: &SelectionCandidate<'tcx>,
candidate_j: &SelectionCandidate<'tcx>)
-> bool
{
if candidate_i == candidate_j {
return true;
}
match (candidate_i, candidate_j) {
(&ImplCandidate(..), &ParamCandidate(..)) |
(&ClosureCandidate(..), &ParamCandidate(..)) |
(&FnPointerCandidate(..), &ParamCandidate(..)) |
(&BuiltinObjectCandidate(..), &ParamCandidate(_)) |
(&BuiltinCandidate(..), &ParamCandidate(..)) => {
// We basically prefer always prefer to use a
// where-clause over another option. Where clauses
// impose the burden of finding the exact match onto
// the caller. Using an impl in preference of a where
// clause can also lead us to "overspecialize", as in
// #18453.
true
}
(&DefaultImplCandidate(_), _) => {
// Prefer other candidates over default implementations.
self.tcx().sess.bug(
"default implementations shouldn't be recorded \
when there are other valid candidates");
}
(&ProjectionCandidate, &ParamCandidate(_)) => {
// FIXME(#20297) -- this gives where clauses precedent
// over projections. Really these are just two means
// of deducing information (one based on the where
// clauses on the trait definition; one based on those
// on the enclosing scope), and it'd be better to
// integrate them more intelligently. But for now this
// seems ok. If we DON'T give where clauses
// precedence, we run into trouble in default methods,
// where both the projection bounds for `Self::A` and
// the where clauses are in scope.
true
}
_ => {
false
}
}
}
///////////////////////////////////////////////////////////////////////////
// BUILTIN BOUNDS
//
// These cover the traits that are built-in to the language
// itself. This includes `Copy` and `Sized` for sure. For the
// moment, it also includes `Send` / `Sync` and a few others, but
// those will hopefully change to library-defined traits in the
// future.
fn assemble_builtin_bound_candidates<'o>(&mut self,
bound: ty::BuiltinBound,
stack: &TraitObligationStack<'o, 'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>)
-> Result<(),SelectionError<'tcx>>
{
match self.builtin_bound(bound, stack.obligation) {
Ok(If(..)) => {
debug!("builtin_bound: bound={}",
bound.repr(self.tcx()));
candidates.vec.push(BuiltinCandidate(bound));
Ok(())
}
Ok(ParameterBuiltin) => { Ok(()) }
Ok(AmbiguousBuiltin) => {
debug!("assemble_builtin_bound_candidates: ambiguous builtin");
Ok(candidates.ambiguous = true)
}
Err(e) => { Err(e) }
}
}
fn builtin_bound(&mut self,
bound: ty::BuiltinBound,
obligation: &TraitObligation<'tcx>)
-> Result<BuiltinBoundConditions<'tcx>,SelectionError<'tcx>>
{
// Note: these tests operate on types that may contain bound
// regions. To be proper, we ought to skolemize here, but we
// forego the skolemization and defer it until the
// confirmation step.
let self_ty = self.infcx.shallow_resolve(obligation.predicate.0.self_ty());
return match self_ty.sty {
ty::ty_infer(ty::IntVar(_)) |
ty::ty_infer(ty::FloatVar(_)) |
ty::ty_uint(_) |
ty::ty_int(_) |
ty::ty_bool |
ty::ty_float(_) |
ty::ty_bare_fn(..) |
ty::ty_char => {
// safe for everything
Ok(If(Vec::new()))
}
ty::ty_uniq(_) => { // Box<T>
match bound {
ty::BoundCopy => {
Err(Unimplemented)
}
ty::BoundSized => {
Ok(If(Vec::new()))
}
ty::BoundSync | ty::BoundSend => {
self.tcx().sess.bug("Send/Sync shouldn't occur in builtin_bounds()");
}
}
}
ty::ty_ptr(..) => { // *const T, *mut T
match bound {
ty::BoundCopy | ty::BoundSized => {
Ok(If(Vec::new()))
}
ty::BoundSync | ty::BoundSend => {
self.tcx().sess.bug("Send/Sync shouldn't occur in builtin_bounds()");
}
}
}
ty::ty_trait(ref data) => {
match bound {
ty::BoundSized => {
Err(Unimplemented)
}
ty::BoundCopy => {
if data.bounds.builtin_bounds.contains(&bound) {
Ok(If(Vec::new()))
} else {
// Recursively check all supertraits to find out if any further
// bounds are required and thus we must fulfill.
let principal =
data.principal_trait_ref_with_self_ty(self.tcx(),
self.tcx().types.err);
for tr in util::supertraits(self.tcx(), principal) {
let td = ty::lookup_trait_def(self.tcx(), tr.def_id());
if td.bounds.builtin_bounds.contains(&bound) {
return Ok(If(Vec::new()))
}
}
Err(Unimplemented)
}
}
ty::BoundSync | ty::BoundSend => {
self.tcx().sess.bug("Send/Sync shouldn't occur in builtin_bounds()");
}
}
}
ty::ty_rptr(_, ty::mt { ty: _, mutbl }) => {
// &mut T or &T
match bound {
ty::BoundCopy => {
match mutbl {
// &mut T is affine and hence never `Copy`
ast::MutMutable => {
Err(Unimplemented)
}
// &T is always copyable
ast::MutImmutable => {
Ok(If(Vec::new()))
}
}
}
ty::BoundSized => {
Ok(If(Vec::new()))
}
ty::BoundSync | ty::BoundSend => {
self.tcx().sess.bug("Send/Sync shouldn't occur in builtin_bounds()");
}
}
}
ty::ty_vec(element_ty, ref len) => {
// [T, ..n] and [T]
match bound {
ty::BoundCopy => {
match *len {
Some(_) => {
// [T, ..n] is copy iff T is copy
Ok(If(vec![element_ty]))
}
None => {
// [T] is unsized and hence affine
Err(Unimplemented)
}
}
}
ty::BoundSized => {
if len.is_some() {
Ok(If(Vec::new()))
} else {
Err(Unimplemented)
}
}
ty::BoundSync | ty::BoundSend => {
self.tcx().sess.bug("Send/Sync shouldn't occur in builtin_bounds()");
}
}
}
ty::ty_str => {
// Equivalent to [u8]
match bound {
ty::BoundSync | ty::BoundSend => {
self.tcx().sess.bug("Send/Sync shouldn't occur in builtin_bounds()");
}
ty::BoundCopy | ty::BoundSized => {
Err(Unimplemented)
}
}
}
ty::ty_tup(ref tys) => {
// (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
Ok(If(tys.clone()))
}
ty::ty_closure(def_id, _, substs) => {
// FIXME -- This case is tricky. In the case of by-ref
// closures particularly, we need the results of
// inference to decide how to reflect the type of each
// upvar (the upvar may have type `T`, but the runtime
// type could be `&mut`, `&`, or just `T`). For now,
// though, we'll do this unsoundly and assume that all
// captures are by value. Really what we ought to do
// is reserve judgement and then intertwine this
// analysis with closure inference.
assert_eq!(def_id.krate, ast::LOCAL_CRATE);
// Unboxed closures shouldn't be
// implicitly copyable
if bound == ty::BoundCopy {
return Ok(ParameterBuiltin);
}
// Upvars are always local variables or references to
// local variables, and local variables cannot be
// unsized, so the closure struct as a whole must be
// Sized.
if bound == ty::BoundSized {
return Ok(If(Vec::new()));
}
match self.closure_typer.closure_upvars(def_id, substs) {
Some(upvars) => {
Ok(If(upvars.iter().map(|c| c.ty).collect()))
}
None => {
debug!("assemble_builtin_bound_candidates: no upvar types available yet");
Ok(AmbiguousBuiltin)
}
}
}
ty::ty_struct(def_id, substs) => {
let types: Vec<Ty> =
ty::struct_fields(self.tcx(), def_id, substs).iter()
.map(|f| f.mt.ty)
.collect();
nominal(bound, types)
}
ty::ty_enum(def_id, substs) => {
let types: Vec<Ty> =
ty::substd_enum_variants(self.tcx(), def_id, substs)
.iter()
.flat_map(|variant| variant.args.iter())
.cloned()
.collect();
nominal(bound, types)
}
ty::ty_projection(_) |
ty::ty_param(_) => {
// Note: A type parameter is only considered to meet a
// particular bound if there is a where clause telling
// us that it does, and that case is handled by
// `assemble_candidates_from_caller_bounds()`.
Ok(ParameterBuiltin)
}
ty::ty_infer(ty::TyVar(_)) => {
// Unbound type variable. Might or might not have
// applicable impls and so forth, depending on what
// those type variables wind up being bound to.
debug!("assemble_builtin_bound_candidates: ambiguous builtin");
Ok(AmbiguousBuiltin)
}
ty::ty_open(ty) => {
// these only crop up in trans, and represent an
// "opened" unsized/existential type (one that has
// been dereferenced)
match bound {
ty::BoundCopy => {
Ok(If(vec!(ty)))
}
ty::BoundSized => {
Err(Unimplemented)
}
ty::BoundSync |
ty::BoundSend => {
self.tcx().sess.bug("Send/Sync shouldn't occur in builtin_bounds()");
}
}
}
ty::ty_err => {
Ok(If(Vec::new()))
}
ty::ty_infer(ty::FreshTy(_)) |
ty::ty_infer(ty::FreshIntTy(_)) => {
self.tcx().sess.bug(
&format!(
"asked to assemble builtin bounds of unexpected type: {}",
self_ty.repr(self.tcx())));
}
};
fn nominal<'cx, 'tcx>(bound: ty::BuiltinBound,
types: Vec<Ty<'tcx>>)
-> Result<BuiltinBoundConditions<'tcx>,SelectionError<'tcx>>
{
// First check for markers and other nonsense.
match bound {
// Fallback to whatever user-defined impls exist in this case.
ty::BoundCopy => Ok(ParameterBuiltin),
// Sized if all the component types are sized.
ty::BoundSized => Ok(If(types)),
// Shouldn't be coming through here.
ty::BoundSend | ty::BoundSync => unreachable!(),
}
}
}
/// For default impls, we need to break apart a type into its
/// "constituent types" -- meaning, the types that it contains.
///
/// Here are some (simple) examples:
///
/// ```
/// (i32, u32) -> [i32, u32]
/// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
/// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
/// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
/// ```
fn constituent_types_for_ty(&self, t: Ty<'tcx>) -> Option<Vec<Ty<'tcx>>> {
match t.sty {
ty::ty_uint(_) |
ty::ty_int(_) |
ty::ty_bool |
ty::ty_float(_) |
ty::ty_bare_fn(..) |
ty::ty_str |
ty::ty_err |
ty::ty_infer(ty::IntVar(_)) |
ty::ty_infer(ty::FloatVar(_)) |
ty::ty_char => {
Some(Vec::new())
}
ty::ty_trait(..) |
ty::ty_param(..) |
ty::ty_projection(..) |
ty::ty_infer(ty::TyVar(_)) |
ty::ty_infer(ty::FreshTy(_)) |
ty::ty_infer(ty::FreshIntTy(_)) => {
self.tcx().sess.bug(
&format!(
"asked to assemble constituent types of unexpected type: {}",
t.repr(self.tcx()))[]);
}
ty::ty_uniq(referent_ty) => { // Box<T>
Some(vec![referent_ty])
}
ty::ty_open(element_ty) => {Some(vec![element_ty])},
ty::ty_ptr(ty::mt { ty: element_ty, ..}) |
ty::ty_rptr(_, ty::mt { ty: element_ty, ..}) => {
Some(vec![element_ty])
},
ty::ty_vec(element_ty, _) => {
Some(vec![element_ty])
}
ty::ty_tup(ref tys) => {
// (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
Some(tys.clone())
}
ty::ty_closure(def_id, _, substs) => {
assert_eq!(def_id.krate, ast::LOCAL_CRATE);
match self.closure_typer.closure_upvars(def_id, substs) {
Some(upvars) => {
Some(upvars.iter().map(|c| c.ty).collect())
}
None => {
None
}
}
}
ty::ty_struct(def_id, substs) => {
Some(ty::struct_fields(self.tcx(), def_id, substs).iter()
.map(|f| f.mt.ty)
.collect())
}
ty::ty_enum(def_id, substs) => {
Some(ty::substd_enum_variants(self.tcx(), def_id, substs)
.iter()
.flat_map(|variant| variant.args.iter())
.map(|&ty| ty)
.collect())
}
}
}
///////////////////////////////////////////////////////////////////////////
// CONFIRMATION
//
// Confirmation unifies the output type parameters of the trait
// with the values found in the obligation, possibly yielding a
// type error. See `README.md` for more details.
fn confirm_candidate(&mut self,
obligation: &TraitObligation<'tcx>,
candidate: SelectionCandidate<'tcx>)
-> Result<Selection<'tcx>,SelectionError<'tcx>>
{
debug!("confirm_candidate({}, {})",
obligation.repr(self.tcx()),
candidate.repr(self.tcx()));
match candidate {
BuiltinCandidate(builtin_bound) => {
Ok(VtableBuiltin(
try!(self.confirm_builtin_candidate(obligation, builtin_bound))))
}
PhantomFnCandidate |
ErrorCandidate => {
Ok(VtableBuiltin(VtableBuiltinData { nested: VecPerParamSpace::empty() }))
}
ParamCandidate(param) => {
let obligations = self.confirm_param_candidate(obligation, param);
Ok(VtableParam(obligations))
}
DefaultImplCandidate(trait_def_id) => {
let data = try!(self.confirm_default_impl_candidate(obligation, trait_def_id));
Ok(VtableDefaultImpl(data))
}
ImplCandidate(impl_def_id) => {
let vtable_impl =
try!(self.confirm_impl_candidate(obligation, impl_def_id));
Ok(VtableImpl(vtable_impl))
}
ClosureCandidate(closure_def_id, substs) => {
try!(self.confirm_closure_candidate(obligation, closure_def_id, &substs));
Ok(VtableClosure(closure_def_id, substs))
}
BuiltinObjectCandidate => {
// This indicates something like `(Trait+Send) :
// Send`. In this case, we know that this holds
// because that's what the object type is telling us,
// and there's really no additional obligations to
// prove and no types in particular to unify etc.
Ok(VtableParam(Vec::new()))
}
ObjectCandidate => {
let data = self.confirm_object_candidate(obligation);
Ok(VtableObject(data))
}
FnPointerCandidate => {
let fn_type =
try!(self.confirm_fn_pointer_candidate(obligation));
Ok(VtableFnPointer(fn_type))
}
ProjectionCandidate => {
self.confirm_projection_candidate(obligation);
Ok(VtableParam(Vec::new()))
}
}
}
fn confirm_projection_candidate(&mut self,
obligation: &TraitObligation<'tcx>)
{
let _: Result<(),()> =
self.infcx.try(|snapshot| {
let result =
self.match_projection_obligation_against_bounds_from_trait(obligation,
snapshot);
assert!(result);
Ok(())
});
}
fn confirm_param_candidate(&mut self,
obligation: &TraitObligation<'tcx>,
param: ty::PolyTraitRef<'tcx>)
-> Vec<PredicateObligation<'tcx>>
{
debug!("confirm_param_candidate({},{})",
obligation.repr(self.tcx()),
param.repr(self.tcx()));
// During evaluation, we already checked that this
// where-clause trait-ref could be unified with the obligation
// trait-ref. Repeat that unification now without any
// transactional boundary; it should not fail.
match self.match_where_clause_trait_ref(obligation, param.clone()) {
Ok(obligations) => obligations,
Err(()) => {
self.tcx().sess.bug(
&format!("Where clause `{}` was applicable to `{}` but now is not",
param.repr(self.tcx()),
obligation.repr(self.tcx())));
}
}
}
fn confirm_builtin_candidate(&mut self,
obligation: &TraitObligation<'tcx>,
bound: ty::BuiltinBound)
-> Result<VtableBuiltinData<PredicateObligation<'tcx>>,
SelectionError<'tcx>>
{
debug!("confirm_builtin_candidate({})",
obligation.repr(self.tcx()));
match try!(self.builtin_bound(bound, obligation)) {
If(nested) => Ok(self.vtable_builtin_data(obligation, bound, nested)),
AmbiguousBuiltin | ParameterBuiltin => {
self.tcx().sess.span_bug(
obligation.cause.span,
&format!("builtin bound for {} was ambig",
obligation.repr(self.tcx())));
}
}
}
fn vtable_builtin_data(&mut self,
obligation: &TraitObligation<'tcx>,
bound: ty::BuiltinBound,
nested: Vec<Ty<'tcx>>)
-> VtableBuiltinData<PredicateObligation<'tcx>>
{
let derived_cause = self.derived_cause(obligation, BuiltinDerivedObligation);
let obligations = nested.iter().map(|&bound_ty| {
// the obligation might be higher-ranked, e.g. for<'a> &'a
// int : Copy. In that case, we will wind up with
// late-bound regions in the `nested` vector. So for each
// one we instantiate to a skolemized region, do our work
// to produce something like `&'0 int : Copy`, and then
// re-bind it. This is a bit of busy-work but preserves
// the invariant that we only manipulate free regions, not
// bound ones.
self.infcx.try(|snapshot| {
let (skol_ty, skol_map) =
self.infcx().skolemize_late_bound_regions(&ty::Binder(bound_ty), snapshot);
let skol_predicate =
util::predicate_for_builtin_bound(
self.tcx(),
derived_cause.clone(),
bound,
obligation.recursion_depth + 1,
skol_ty);
match skol_predicate {
Ok(skol_predicate) => Ok(self.infcx().plug_leaks(skol_map, snapshot,
&skol_predicate)),
Err(ErrorReported) => Err(ErrorReported)
}
})
}).collect::<Result<_, _>>();
let obligations = match obligations {
Ok(o) => o,
Err(ErrorReported) => Vec::new()
};
let obligations = VecPerParamSpace::new(obligations, Vec::new(), Vec::new());
debug!("vtable_builtin_data: obligations={}",
obligations.repr(self.tcx()));
VtableBuiltinData { nested: obligations }
}
/// This handles the case where a `impl Foo for ..` impl is being used.
/// The idea is that the impl applies to `X : Foo` if the following conditions are met:
///
/// 1. For each constituent type `Y` in `X`, `Y : Foo` holds
/// 2. For each where-clause `C` declared on `Foo`, `[Self => X] C` holds.
fn confirm_default_impl_candidate(&mut self,
obligation: &TraitObligation<'tcx>,
impl_def_id: ast::DefId)
-> Result<VtableDefaultImplData<PredicateObligation<'tcx>>,
SelectionError<'tcx>>
{
debug!("confirm_default_impl_candidate({}, {})",
obligation.repr(self.tcx()),
impl_def_id.repr(self.tcx()));
let self_ty = self.infcx.shallow_resolve(obligation.predicate.0.self_ty());
match self.constituent_types_for_ty(self_ty) {
Some(types) => {
Ok(self.vtable_default_impl(obligation, impl_def_id, types))
}
None => {
self.tcx().sess.bug(
&format!(
"asked to confirm default implementation for ambiguous type: {}",
self_ty.repr(self.tcx()))[]);
}
}
}
/// See `confirm_default_impl_candidate`
fn vtable_default_impl(&mut self,
obligation: &TraitObligation<'tcx>,
trait_def_id: ast::DefId,
nested: Vec<Ty<'tcx>>)
-> VtableDefaultImplData<PredicateObligation<'tcx>>
{
let derived_cause = self.derived_cause(obligation, ImplDerivedObligation);
let obligations = nested.iter().map(|&nested_ty| {
// the obligation might be higher-ranked, e.g. for<'a> &'a
// int : Copy. In that case, we will wind up with
// late-bound regions in the `nested` vector. So for each
// one we instantiate to a skolemized region, do our work
// to produce something like `&'0 int : Copy`, and then
// re-bind it. This is a bit of busy-work but preserves
// the invariant that we only manipulate free regions, not
// bound ones.
self.infcx.try(|snapshot| {
let (skol_ty, skol_map) =
self.infcx().skolemize_late_bound_regions(&ty::Binder(nested_ty), snapshot);
let skol_predicate =
util::predicate_for_default_trait_impl(
self.tcx(),
derived_cause.clone(),
trait_def_id,
obligation.recursion_depth + 1,
skol_ty);
match skol_predicate {
Ok(skol_predicate) => Ok(self.infcx().plug_leaks(skol_map, snapshot,
&skol_predicate)),
Err(ErrorReported) => Err(ErrorReported)
}
})
}).collect::<Result<_, _>>();
let mut obligations = match obligations {
Ok(o) => o,
Err(ErrorReported) => Vec::new()
};
let _: Result<(),()> = self.infcx.try(|snapshot| {
let (_, skol_map) =
self.infcx().skolemize_late_bound_regions(&obligation.predicate, snapshot);
let substs = obligation.predicate.to_poly_trait_ref().substs();
let trait_obligations = self.impl_or_trait_obligations(obligation.cause.clone(),
obligation.recursion_depth + 1,
trait_def_id,
substs,
skol_map,
snapshot);
obligations.push_all(trait_obligations.as_slice());
Ok(())
});
debug!("vtable_default_impl_data: obligations={}", obligations.repr(self.tcx()));
VtableDefaultImplData {
trait_def_id: trait_def_id,
nested: obligations
}
}
fn confirm_impl_candidate(&mut self,
obligation: &TraitObligation<'tcx>,
impl_def_id: ast::DefId)
-> Result<VtableImplData<'tcx, PredicateObligation<'tcx>>,
SelectionError<'tcx>>
{
debug!("confirm_impl_candidate({},{})",
obligation.repr(self.tcx()),
impl_def_id.repr(self.tcx()));
// First, create the substitutions by matching the impl again,
// this time not in a probe.
self.infcx.try(|snapshot| {
let (skol_obligation_trait_ref, skol_map) =
self.infcx().skolemize_late_bound_regions(&obligation.predicate, snapshot);
let substs =
self.rematch_impl(impl_def_id, obligation,
snapshot, &skol_map, skol_obligation_trait_ref.trait_ref);
debug!("confirm_impl_candidate substs={}", substs.repr(self.tcx()));
Ok(self.vtable_impl(impl_def_id, substs, obligation.cause.clone(),
obligation.recursion_depth + 1, skol_map, snapshot))
})
}
fn vtable_impl(&mut self,
impl_def_id: ast::DefId,
substs: Normalized<'tcx, Substs<'tcx>>,
cause: ObligationCause<'tcx>,
recursion_depth: uint,
skol_map: infer::SkolemizationMap,
snapshot: &infer::CombinedSnapshot)
-> VtableImplData<'tcx, PredicateObligation<'tcx>>
{
debug!("vtable_impl(impl_def_id={}, substs={}, recursion_depth={}, skol_map={})",
impl_def_id.repr(self.tcx()),
substs.repr(self.tcx()),
recursion_depth,
skol_map.repr(self.tcx()));
let mut impl_obligations =
self.impl_or_trait_obligations(cause,
recursion_depth,
impl_def_id,
&substs.value,
skol_map,
snapshot);
debug!("vtable_impl: impl_def_id={} impl_obligations={}",
impl_def_id.repr(self.tcx()),
impl_obligations.repr(self.tcx()));
impl_obligations.extend(TypeSpace, substs.obligations.into_iter());
VtableImplData { impl_def_id: impl_def_id,
substs: substs.value,
nested: impl_obligations }
}
fn confirm_object_candidate(&mut self,
obligation: &TraitObligation<'tcx>)
-> VtableObjectData<'tcx>
{
debug!("confirm_object_candidate({})",
obligation.repr(self.tcx()));
let self_ty = self.infcx.shallow_resolve(obligation.self_ty());
let poly_trait_ref = match self_ty.sty {
ty::ty_trait(ref data) => {
data.principal_trait_ref_with_self_ty(self.tcx(), self_ty)
}
_ => {
self.tcx().sess.span_bug(obligation.cause.span,
"object candidate with non-object");
}
};
let obligation_def_id = obligation.predicate.def_id();
let upcast_trait_ref = match util::upcast(self.tcx(),
poly_trait_ref.clone(),
obligation_def_id) {
Some(r) => r,
None => {
self.tcx().sess.span_bug(obligation.cause.span,
&format!("unable to upcast from {} to {}",
poly_trait_ref.repr(self.tcx()),
obligation_def_id.repr(self.tcx())));
}
};
match self.match_poly_trait_ref(obligation, upcast_trait_ref) {
Ok(()) => { }
Err(()) => {
self.tcx().sess.span_bug(obligation.cause.span,
"failed to match trait refs");
}
}
VtableObjectData { object_ty: self_ty }
}
fn confirm_fn_pointer_candidate(&mut self,
obligation: &TraitObligation<'tcx>)
-> Result<ty::Ty<'tcx>,SelectionError<'tcx>>
{
debug!("confirm_fn_pointer_candidate({})",
obligation.repr(self.tcx()));
let self_ty = self.infcx.shallow_resolve(obligation.self_ty());
let sig = ty::ty_fn_sig(self_ty);
let ty::Binder((trait_ref, _)) =
util::closure_trait_ref_and_return_type(self.tcx(),
obligation.predicate.def_id(),
self_ty,
sig,
util::TupleArgumentsFlag::Yes);
let trait_ref = ty::Binder(trait_ref);
try!(self.confirm_poly_trait_refs(obligation.cause.clone(),
obligation.predicate.to_poly_trait_ref(),
trait_ref));
Ok(self_ty)
}
fn confirm_closure_candidate(&mut self,
obligation: &TraitObligation<'tcx>,
closure_def_id: ast::DefId,
substs: &Substs<'tcx>)
-> Result<(),SelectionError<'tcx>>
{
debug!("confirm_closure_candidate({},{},{})",
obligation.repr(self.tcx()),
closure_def_id.repr(self.tcx()),
substs.repr(self.tcx()));
let trait_ref = self.closure_trait_ref(obligation,
closure_def_id,
substs);
debug!("confirm_closure_candidate(closure_def_id={}, trait_ref={})",
closure_def_id.repr(self.tcx()),
trait_ref.repr(self.tcx()));
self.confirm_poly_trait_refs(obligation.cause.clone(),
obligation.predicate.to_poly_trait_ref(),
trait_ref)
}
/// In the case of closure types and fn pointers,
/// we currently treat the input type parameters on the trait as
/// outputs. This means that when we have a match we have only
/// considered the self type, so we have to go back and make sure
/// to relate the argument types too. This is kind of wrong, but
/// since we control the full set of impls, also not that wrong,
/// and it DOES yield better error messages (since we don't report
/// errors as if there is no applicable impl, but rather report
/// errors are about mismatched argument types.
///
/// Here is an example. Imagine we have an closure expression
/// and we desugared it so that the type of the expression is
/// `Closure`, and `Closure` expects an int as argument. Then it
/// is "as if" the compiler generated this impl:
///
/// impl Fn(int) for Closure { ... }
///
/// Now imagine our obligation is `Fn(uint) for Closure`. So far
/// we have matched the self-type `Closure`. At this point we'll
/// compare the `int` to `uint` and generate an error.
///
/// Note that this checking occurs *after* the impl has selected,
/// because these output type parameters should not affect the
/// selection of the impl. Therefore, if there is a mismatch, we
/// report an error to the user.
fn confirm_poly_trait_refs(&mut self,
obligation_cause: ObligationCause,
obligation_trait_ref: ty::PolyTraitRef<'tcx>,
expected_trait_ref: ty::PolyTraitRef<'tcx>)
-> Result<(), SelectionError<'tcx>>
{
let origin = infer::RelateOutputImplTypes(obligation_cause.span);
let obligation_trait_ref = obligation_trait_ref.clone();
match self.infcx.sub_poly_trait_refs(false,
origin,
expected_trait_ref.clone(),
obligation_trait_ref.clone()) {
Ok(()) => Ok(()),
Err(e) => Err(OutputTypeParameterMismatch(expected_trait_ref, obligation_trait_ref, e))
}
}
///////////////////////////////////////////////////////////////////////////
// Matching
//
// Matching is a common path used for both evaluation and
// confirmation. It basically unifies types that appear in impls
// and traits. This does affect the surrounding environment;
// therefore, when used during evaluation, match routines must be
// run inside of a `probe()` so that their side-effects are
// contained.
fn rematch_impl(&mut self,
impl_def_id: ast::DefId,
obligation: &TraitObligation<'tcx>,
snapshot: &infer::CombinedSnapshot,
skol_map: &infer::SkolemizationMap,
skol_obligation_trait_ref: Rc<ty::TraitRef<'tcx>>)
-> Normalized<'tcx, Substs<'tcx>>
{
match self.match_impl(impl_def_id, obligation, snapshot,
skol_map, skol_obligation_trait_ref) {
Ok(substs) => {
substs
}
Err(()) => {
self.tcx().sess.bug(
&format!("Impl {} was matchable against {} but now is not",
impl_def_id.repr(self.tcx()),
obligation.repr(self.tcx())));
}
}
}
fn match_impl(&mut self,
impl_def_id: ast::DefId,
obligation: &TraitObligation<'tcx>,
snapshot: &infer::CombinedSnapshot,
skol_map: &infer::SkolemizationMap,
skol_obligation_trait_ref: Rc<ty::TraitRef<'tcx>>)
-> Result<Normalized<'tcx, Substs<'tcx>>, ()>
{
let impl_trait_ref = ty::impl_trait_ref(self.tcx(), impl_def_id).unwrap();
// Before we create the substitutions and everything, first
// consider a "quick reject". This avoids creating more types
// and so forth that we need to.
if self.fast_reject_trait_refs(obligation, &*impl_trait_ref) {
return Err(());
}
let impl_substs = util::fresh_substs_for_impl(self.infcx,
obligation.cause.span,
impl_def_id);
let impl_trait_ref = impl_trait_ref.subst(self.tcx(),
&impl_substs);
let impl_trait_ref =
project::normalize_with_depth(self,
obligation.cause.clone(),
obligation.recursion_depth + 1,
&impl_trait_ref);
debug!("match_impl(impl_def_id={}, obligation={}, \
impl_trait_ref={}, skol_obligation_trait_ref={})",
impl_def_id.repr(self.tcx()),
obligation.repr(self.tcx()),
impl_trait_ref.repr(self.tcx()),
skol_obligation_trait_ref.repr(self.tcx()));
let origin = infer::RelateOutputImplTypes(obligation.cause.span);
match self.infcx.sub_trait_refs(false,
origin,
impl_trait_ref.value.clone(),
skol_obligation_trait_ref) {
Ok(()) => { }
Err(e) => {
debug!("match_impl: failed sub_trait_refs due to `{}`",
ty::type_err_to_str(self.tcx(), &e));
return Err(());
}
}
match self.infcx.leak_check(skol_map, snapshot) {
Ok(()) => { }
Err(e) => {
debug!("match_impl: failed leak check due to `{}`",
ty::type_err_to_str(self.tcx(), &e));
return Err(());
}
}
debug!("match_impl: success impl_substs={}", impl_substs.repr(self.tcx()));
Ok(Normalized { value: impl_substs,
obligations: impl_trait_ref.obligations })
}
fn fast_reject_trait_refs(&mut self,
obligation: &TraitObligation,
impl_trait_ref: &ty::TraitRef)
-> bool
{
// We can avoid creating type variables and doing the full
// substitution if we find that any of the input types, when
// simplified, do not match.
obligation.predicate.0.input_types().iter()
.zip(impl_trait_ref.input_types().iter())
.any(|(&obligation_ty, &impl_ty)| {
let simplified_obligation_ty =
fast_reject::simplify_type(self.tcx(), obligation_ty, true);
let simplified_impl_ty =
fast_reject::simplify_type(self.tcx(), impl_ty, false);
simplified_obligation_ty.is_some() &&
simplified_impl_ty.is_some() &&
simplified_obligation_ty != simplified_impl_ty
})
}
/// Normalize `where_clause_trait_ref` and try to match it against
/// `obligation`. If successful, return any predicates that
/// result from the normalization. Normalization is necessary
/// because where-clauses are stored in the parameter environment
/// unnormalized.
fn match_where_clause_trait_ref(&mut self,
obligation: &TraitObligation<'tcx>,
where_clause_trait_ref: ty::PolyTraitRef<'tcx>)
-> Result<Vec<PredicateObligation<'tcx>>,()>
{
let () =
try!(self.match_poly_trait_ref(obligation, where_clause_trait_ref));
Ok(Vec::new())
}
/// Returns `Ok` if `poly_trait_ref` being true implies that the
/// obligation is satisfied.
fn match_poly_trait_ref(&mut self,
obligation: &TraitObligation<'tcx>,
poly_trait_ref: ty::PolyTraitRef<'tcx>)
-> Result<(),()>
{
debug!("match_poly_trait_ref: obligation={} poly_trait_ref={}",
obligation.repr(self.tcx()),
poly_trait_ref.repr(self.tcx()));
let origin = infer::RelateOutputImplTypes(obligation.cause.span);
match self.infcx.sub_poly_trait_refs(false,
origin,
poly_trait_ref,
obligation.predicate.to_poly_trait_ref()) {
Ok(()) => Ok(()),
Err(_) => Err(()),
}
}
/// Determines whether the self type declared against
/// `impl_def_id` matches `obligation_self_ty`. If successful,
/// returns the substitutions used to make them match. See
/// `match_impl()`. For example, if `impl_def_id` is declared
/// as:
///
/// impl<T:Copy> Foo for ~T { ... }
///
/// and `obligation_self_ty` is `int`, we'd back an `Err(_)`
/// result. But if `obligation_self_ty` were `~int`, we'd get
/// back `Ok(T=int)`.
fn match_inherent_impl(&mut self,
impl_def_id: ast::DefId,
obligation_cause: &ObligationCause,
obligation_self_ty: Ty<'tcx>)
-> Result<Substs<'tcx>,()>
{
// Create fresh type variables for each type parameter declared
// on the impl etc.
let impl_substs = util::fresh_substs_for_impl(self.infcx,
obligation_cause.span,
impl_def_id);
// Find the self type for the impl.
let impl_self_ty = ty::lookup_item_type(self.tcx(), impl_def_id).ty;
let impl_self_ty = impl_self_ty.subst(self.tcx(), &impl_substs);
debug!("match_impl_self_types(obligation_self_ty={}, impl_self_ty={})",
obligation_self_ty.repr(self.tcx()),
impl_self_ty.repr(self.tcx()));
match self.match_self_types(obligation_cause,
impl_self_ty,
obligation_self_ty) {
Ok(()) => {
debug!("Matched impl_substs={}", impl_substs.repr(self.tcx()));
Ok(impl_substs)
}
Err(()) => {
debug!("NoMatch");
Err(())
}
}
}
fn match_self_types(&mut self,
cause: &ObligationCause,
// The self type provided by the impl/caller-obligation:
provided_self_ty: Ty<'tcx>,
// The self type the obligation is for:
required_self_ty: Ty<'tcx>)
-> Result<(),()>
{
// FIXME(#5781) -- equating the types is stronger than
// necessary. Should consider variance of trait w/r/t Self.
let origin = infer::RelateSelfType(cause.span);
match self.infcx.eq_types(false,
origin,
provided_self_ty,
required_self_ty) {
Ok(()) => Ok(()),
Err(_) => Err(()),
}
}
///////////////////////////////////////////////////////////////////////////
// Miscellany
fn push_stack<'o,'s:'o>(&mut self,
previous_stack: Option<&'s TraitObligationStack<'s, 'tcx>>,
obligation: &'o TraitObligation<'tcx>)
-> TraitObligationStack<'o, 'tcx>
{
let fresh_trait_ref =
obligation.predicate.to_poly_trait_ref().fold_with(&mut self.freshener);
TraitObligationStack {
obligation: obligation,
fresh_trait_ref: fresh_trait_ref,
previous: previous_stack.map(|p| p), // FIXME variance
}
}
/// Returns set of all impls for a given trait.
fn all_impls(&self, trait_def_id: ast::DefId) -> Vec<ast::DefId> {
ty::populate_implementations_for_trait_if_necessary(self.tcx(), trait_def_id);
match self.tcx().trait_impls.borrow().get(&trait_def_id) {
None => Vec::new(),
Some(impls) => impls.borrow().clone()
}
}
fn closure_trait_ref(&self,
obligation: &TraitObligation<'tcx>,
closure_def_id: ast::DefId,
substs: &Substs<'tcx>)
-> ty::PolyTraitRef<'tcx>
{
let closure_type = self.closure_typer.closure_type(closure_def_id, substs);
let ty::Binder((trait_ref, _)) =
util::closure_trait_ref_and_return_type(self.tcx(),
obligation.predicate.def_id(),
obligation.predicate.0.self_ty(), // (1)
&closure_type.sig,
util::TupleArgumentsFlag::No);
// (1) Feels icky to skip the binder here, but OTOH we know
// that the self-type is an unboxed closure type and hence is
// in fact unparameterized (or at least does not reference any
// regions bound in the obligation). Still probably some
// refactoring could make this nicer.
ty::Binder(trait_ref)
}
/// Returns the obligations that are implied by instantiating an
/// impl or trait. The obligations are substituted and fully
/// normalized. This is used when confirming an impl or default
/// impl.
fn impl_or_trait_obligations(&mut self,
cause: ObligationCause<'tcx>,
recursion_depth: uint,
def_id: ast::DefId, // of impl or trait
substs: &Substs<'tcx>, // for impl or trait
skol_map: infer::SkolemizationMap,
snapshot: &infer::CombinedSnapshot)
-> VecPerParamSpace<PredicateObligation<'tcx>>
{
let predicates = ty::lookup_predicates(self.tcx(), def_id);
let predicates = predicates.instantiate(self.tcx(), substs);
let predicates = normalize_with_depth(self, cause.clone(), recursion_depth, &predicates);
let predicates = self.infcx().plug_leaks(skol_map, snapshot, &predicates);
let mut obligations =
util::predicates_for_generics(self.tcx(),
cause,
recursion_depth,
&predicates.value);
obligations.extend(TypeSpace, predicates.obligations.into_iter());
obligations
}
#[allow(unused_comparisons)]
fn derived_cause(&self,
obligation: &TraitObligation<'tcx>,
variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>)
-> ObligationCause<'tcx>
{
/*!
* Creates a cause for obligations that are derived from
* `obligation` by a recursive search (e.g., for a builtin
* bound, or eventually a `impl Foo for ..`). If `obligation`
* is itself a derived obligation, this is just a clone, but
* otherwise we create a "derived obligation" cause so as to
* keep track of the original root obligation for error
* reporting.
*/
// NOTE(flaper87): As of now, it keeps track of the whole error
// chain. Ideally, we should have a way to configure this either
// by using -Z verbose or just a CLI argument.
if obligation.recursion_depth >= 0 {
let derived_cause = DerivedObligationCause {
parent_trait_ref: obligation.predicate.to_poly_trait_ref(),
parent_code: Rc::new(obligation.cause.code.clone()),
};
ObligationCause::new(obligation.cause.span,
obligation.cause.body_id,
variant(derived_cause))
} else {
obligation.cause.clone()
}
}
}
impl<'tcx> Repr<'tcx> for SelectionCandidate<'tcx> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
match *self {
PhantomFnCandidate => format!("PhantomFnCandidate"),
ErrorCandidate => format!("ErrorCandidate"),
BuiltinCandidate(b) => format!("BuiltinCandidate({:?})", b),
BuiltinObjectCandidate => format!("BuiltinObjectCandidate"),
ParamCandidate(ref a) => format!("ParamCandidate({})", a.repr(tcx)),
ImplCandidate(a) => format!("ImplCandidate({})", a.repr(tcx)),
DefaultImplCandidate(t) => format!("DefaultImplCandidate({:?})", t),
ProjectionCandidate => format!("ProjectionCandidate"),
FnPointerCandidate => format!("FnPointerCandidate"),
ObjectCandidate => {
format!("ObjectCandidate")
}
ClosureCandidate(c, ref s) => {
format!("ClosureCandidate({:?},{})", c, s.repr(tcx))
}
}
}
}
impl<'tcx> SelectionCache<'tcx> {
pub fn new() -> SelectionCache<'tcx> {
SelectionCache {
hashmap: RefCell::new(HashMap::new())
}
}
}
impl<'o, 'tcx> TraitObligationStack<'o, 'tcx> {
fn iter(&self) -> Option<&TraitObligationStack<'o, 'tcx>> {
Some(self)
}
}
impl<'o, 'tcx> Iterator for Option<&'o TraitObligationStack<'o, 'tcx>> {
type Item = &'o TraitObligationStack<'o,'tcx>;
fn next(&mut self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
match *self {
Some(o) => {
*self = o.previous;
Some(o)
}
None => {
None
}
}
}
}
impl<'o, 'tcx> Repr<'tcx> for TraitObligationStack<'o, 'tcx> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
format!("TraitObligationStack({})",
self.obligation.repr(tcx))
}
}
impl<'tcx> EvaluationResult<'tcx> {
fn may_apply(&self) -> bool {
match *self {
EvaluatedToOk |
EvaluatedToAmbig |
EvaluatedToErr(Overflow) |
EvaluatedToErr(OutputTypeParameterMismatch(..)) => {
true
}
EvaluatedToErr(Unimplemented) => {
false
}
}
}
}
impl MethodMatchResult {
pub fn may_apply(&self) -> bool {
match *self {
MethodMatched(_) => true,
MethodAmbiguous(_) => true,
MethodDidNotMatch => false,
}
}
}
|