about summary refs log tree commit diff
path: root/src/librustc_trans/back/write.rs
blob: c39bdcf25cd51b528d22749ba9d92ed2bb4a8794 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
// Copyright 2013-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use back::lto;
use back::link::{self, get_linker, remove};
use back::linker::LinkerInfo;
use back::symbol_export::ExportedSymbols;
use rustc_incremental::{save_trans_partition, in_incr_comp_dir};
use rustc::dep_graph::DepGraph;
use rustc::middle::cstore::{LinkMeta, EncodedMetadata};
use rustc::session::config::{self, OutputFilenames, OutputType, OutputTypes, Passes, SomePasses,
                             AllPasses, Sanitizer};
use rustc::session::Session;
use rustc::util::nodemap::FxHashMap;
use time_graph::{self, TimeGraph};
use llvm;
use llvm::{ModuleRef, TargetMachineRef, PassManagerRef, DiagnosticInfoRef};
use llvm::{SMDiagnosticRef, ContextRef};
use {CrateTranslation, ModuleSource, ModuleTranslation, CompiledModule, ModuleKind};
use CrateInfo;
use rustc::hir::def_id::{CrateNum, LOCAL_CRATE};
use rustc::ty::TyCtxt;
use rustc::util::common::{time, time_depth, set_time_depth, path2cstr, print_time_passes_entry};
use rustc::util::fs::{link_or_copy, rename_or_copy_remove};
use errors::{self, Handler, Level, DiagnosticBuilder, FatalError};
use errors::emitter::{Emitter};
use syntax::attr;
use syntax::ext::hygiene::Mark;
use syntax_pos::MultiSpan;
use syntax_pos::symbol::Symbol;
use context::{is_pie_binary, get_reloc_model};
use jobserver::{Client, Acquired};
use rustc_demangle;

use std::any::Any;
use std::ffi::CString;
use std::fs;
use std::io;
use std::io::Write;
use std::mem;
use std::path::{Path, PathBuf};
use std::str;
use std::sync::Arc;
use std::sync::mpsc::{channel, Sender, Receiver};
use std::slice;
use std::time::Instant;
use std::thread;
use libc::{c_uint, c_void, c_char, size_t};

pub const RELOC_MODEL_ARGS : [(&'static str, llvm::RelocMode); 7] = [
    ("pic", llvm::RelocMode::PIC),
    ("static", llvm::RelocMode::Static),
    ("default", llvm::RelocMode::Default),
    ("dynamic-no-pic", llvm::RelocMode::DynamicNoPic),
    ("ropi", llvm::RelocMode::ROPI),
    ("rwpi", llvm::RelocMode::RWPI),
    ("ropi-rwpi", llvm::RelocMode::ROPI_RWPI),
];

pub const CODE_GEN_MODEL_ARGS : [(&'static str, llvm::CodeModel); 5] = [
    ("default", llvm::CodeModel::Default),
    ("small", llvm::CodeModel::Small),
    ("kernel", llvm::CodeModel::Kernel),
    ("medium", llvm::CodeModel::Medium),
    ("large", llvm::CodeModel::Large),
];

pub fn llvm_err(handler: &errors::Handler, msg: String) -> FatalError {
    match llvm::last_error() {
        Some(err) => handler.fatal(&format!("{}: {}", msg, err)),
        None => handler.fatal(&msg),
    }
}

pub fn write_output_file(
        handler: &errors::Handler,
        target: llvm::TargetMachineRef,
        pm: llvm::PassManagerRef,
        m: ModuleRef,
        output: &Path,
        file_type: llvm::FileType) -> Result<(), FatalError> {
    unsafe {
        let output_c = path2cstr(output);
        let result = llvm::LLVMRustWriteOutputFile(
                target, pm, m, output_c.as_ptr(), file_type);
        if result.into_result().is_err() {
            let msg = format!("could not write output to {}", output.display());
            Err(llvm_err(handler, msg))
        } else {
            Ok(())
        }
    }
}

// On android, we by default compile for armv7 processors. This enables
// things like double word CAS instructions (rather than emulating them)
// which are *far* more efficient. This is obviously undesirable in some
// cases, so if any sort of target feature is specified we don't append v7
// to the feature list.
//
// On iOS only armv7 and newer are supported. So it is useful to
// get all hardware potential via VFP3 (hardware floating point)
// and NEON (SIMD) instructions supported by LLVM.
// Note that without those flags various linking errors might
// arise as some of intrinsics are converted into function calls
// and nobody provides implementations those functions
fn target_feature(sess: &Session) -> String {
    let rustc_features = [
        "crt-static",
    ];
    let requested_features = sess.opts.cg.target_feature.split(',');
    let llvm_features = requested_features.filter(|f| {
        !rustc_features.iter().any(|s| f.contains(s))
    });
    format!("{},{}",
            sess.target.target.options.features,
            llvm_features.collect::<Vec<_>>().join(","))
}

fn get_llvm_opt_level(optimize: config::OptLevel) -> llvm::CodeGenOptLevel {
    match optimize {
      config::OptLevel::No => llvm::CodeGenOptLevel::None,
      config::OptLevel::Less => llvm::CodeGenOptLevel::Less,
      config::OptLevel::Default => llvm::CodeGenOptLevel::Default,
      config::OptLevel::Aggressive => llvm::CodeGenOptLevel::Aggressive,
      _ => llvm::CodeGenOptLevel::Default,
    }
}

fn get_llvm_opt_size(optimize: config::OptLevel) -> llvm::CodeGenOptSize {
    match optimize {
      config::OptLevel::Size => llvm::CodeGenOptSizeDefault,
      config::OptLevel::SizeMin => llvm::CodeGenOptSizeAggressive,
      _ => llvm::CodeGenOptSizeNone,
    }
}

pub fn create_target_machine(sess: &Session) -> TargetMachineRef {
    target_machine_factory(sess)().unwrap_or_else(|err| {
        panic!(llvm_err(sess.diagnostic(), err))
    })
}

pub fn target_machine_factory(sess: &Session)
    -> Arc<Fn() -> Result<TargetMachineRef, String> + Send + Sync>
{
    let reloc_model = get_reloc_model(sess);

    let opt_level = get_llvm_opt_level(sess.opts.optimize);
    let use_softfp = sess.opts.cg.soft_float;

    let ffunction_sections = sess.target.target.options.function_sections;
    let fdata_sections = ffunction_sections;

    let code_model_arg = match sess.opts.cg.code_model {
        Some(ref s) => &s,
        None => &sess.target.target.options.code_model,
    };

    let code_model = match CODE_GEN_MODEL_ARGS.iter().find(
        |&&arg| arg.0 == code_model_arg) {
        Some(x) => x.1,
        _ => {
            sess.err(&format!("{:?} is not a valid code model",
                             sess.opts
                                 .cg
                                 .code_model));
            sess.abort_if_errors();
            bug!();
        }
    };

    let triple = &sess.target.target.llvm_target;

    let triple = CString::new(triple.as_bytes()).unwrap();
    let cpu = match sess.opts.cg.target_cpu {
        Some(ref s) => &**s,
        None => &*sess.target.target.options.cpu
    };
    let cpu = CString::new(cpu.as_bytes()).unwrap();
    let features = CString::new(target_feature(sess).as_bytes()).unwrap();
    let is_pie_binary = is_pie_binary(sess);

    Arc::new(move || {
        let tm = unsafe {
            llvm::LLVMRustCreateTargetMachine(
                triple.as_ptr(), cpu.as_ptr(), features.as_ptr(),
                code_model,
                reloc_model,
                opt_level,
                use_softfp,
                is_pie_binary,
                ffunction_sections,
                fdata_sections,
            )
        };

        if tm.is_null() {
            Err(format!("Could not create LLVM TargetMachine for triple: {}",
                        triple.to_str().unwrap()))
        } else {
            Ok(tm)
        }
    })
}

/// Module-specific configuration for `optimize_and_codegen`.
pub struct ModuleConfig {
    /// Names of additional optimization passes to run.
    passes: Vec<String>,
    /// Some(level) to optimize at a certain level, or None to run
    /// absolutely no optimizations (used for the metadata module).
    opt_level: Option<llvm::CodeGenOptLevel>,

    /// Some(level) to optimize binary size, or None to not affect program size.
    opt_size: Option<llvm::CodeGenOptSize>,

    // Flags indicating which outputs to produce.
    emit_no_opt_bc: bool,
    emit_bc: bool,
    emit_lto_bc: bool,
    emit_ir: bool,
    emit_asm: bool,
    emit_obj: bool,
    // Miscellaneous flags.  These are mostly copied from command-line
    // options.
    no_verify: bool,
    no_prepopulate_passes: bool,
    no_builtins: bool,
    time_passes: bool,
    vectorize_loop: bool,
    vectorize_slp: bool,
    merge_functions: bool,
    inline_threshold: Option<usize>,
    // Instead of creating an object file by doing LLVM codegen, just
    // make the object file bitcode. Provides easy compatibility with
    // emscripten's ecc compiler, when used as the linker.
    obj_is_bitcode: bool,
}

impl ModuleConfig {
    fn new(passes: Vec<String>) -> ModuleConfig {
        ModuleConfig {
            passes,
            opt_level: None,
            opt_size: None,

            emit_no_opt_bc: false,
            emit_bc: false,
            emit_lto_bc: false,
            emit_ir: false,
            emit_asm: false,
            emit_obj: false,
            obj_is_bitcode: false,

            no_verify: false,
            no_prepopulate_passes: false,
            no_builtins: false,
            time_passes: false,
            vectorize_loop: false,
            vectorize_slp: false,
            merge_functions: false,
            inline_threshold: None
        }
    }

    fn set_flags(&mut self, sess: &Session, no_builtins: bool) {
        self.no_verify = sess.no_verify();
        self.no_prepopulate_passes = sess.opts.cg.no_prepopulate_passes;
        self.no_builtins = no_builtins;
        self.time_passes = sess.time_passes();
        self.inline_threshold = sess.opts.cg.inline_threshold;
        self.obj_is_bitcode = sess.target.target.options.obj_is_bitcode;

        // Copy what clang does by turning on loop vectorization at O2 and
        // slp vectorization at O3. Otherwise configure other optimization aspects
        // of this pass manager builder.
        // Turn off vectorization for emscripten, as it's not very well supported.
        self.vectorize_loop = !sess.opts.cg.no_vectorize_loops &&
                             (sess.opts.optimize == config::OptLevel::Default ||
                              sess.opts.optimize == config::OptLevel::Aggressive) &&
                             !sess.target.target.options.is_like_emscripten;

        self.vectorize_slp = !sess.opts.cg.no_vectorize_slp &&
                            sess.opts.optimize == config::OptLevel::Aggressive &&
                            !sess.target.target.options.is_like_emscripten;

        self.merge_functions = sess.opts.optimize == config::OptLevel::Default ||
                               sess.opts.optimize == config::OptLevel::Aggressive;
    }
}

/// Additional resources used by optimize_and_codegen (not module specific)
#[derive(Clone)]
pub struct CodegenContext {
    // Resouces needed when running LTO
    pub time_passes: bool,
    pub lto: bool,
    pub no_landing_pads: bool,
    pub save_temps: bool,
    pub exported_symbols: Arc<ExportedSymbols>,
    pub opts: Arc<config::Options>,
    pub crate_types: Vec<config::CrateType>,
    pub each_linked_rlib_for_lto: Vec<(CrateNum, PathBuf)>,
    output_filenames: Arc<OutputFilenames>,
    regular_module_config: Arc<ModuleConfig>,
    metadata_module_config: Arc<ModuleConfig>,
    allocator_module_config: Arc<ModuleConfig>,
    pub tm_factory: Arc<Fn() -> Result<TargetMachineRef, String> + Send + Sync>,

    // Handler to use for diagnostics produced during codegen.
    pub diag_emitter: SharedEmitter,
    // LLVM passes added by plugins.
    pub plugin_passes: Vec<String>,
    // LLVM optimizations for which we want to print remarks.
    pub remark: Passes,
    // Worker thread number
    pub worker: usize,
    // The incremental compilation session directory, or None if we are not
    // compiling incrementally
    pub incr_comp_session_dir: Option<PathBuf>,
    // Channel back to the main control thread to send messages to
    coordinator_send: Sender<Box<Any + Send>>,
    // A reference to the TimeGraph so we can register timings. None means that
    // measuring is disabled.
    time_graph: Option<TimeGraph>,
}

impl CodegenContext {
    pub fn create_diag_handler(&self) -> Handler {
        Handler::with_emitter(true, false, Box::new(self.diag_emitter.clone()))
    }

    pub fn config(&self, kind: ModuleKind) -> &ModuleConfig {
        match kind {
            ModuleKind::Regular => &self.regular_module_config,
            ModuleKind::Metadata => &self.metadata_module_config,
            ModuleKind::Allocator => &self.allocator_module_config,
        }
    }

    pub fn save_temp_bitcode(&self, trans: &ModuleTranslation, name: &str) {
        if !self.save_temps {
            return
        }
        unsafe {
            let ext = format!("{}.bc", name);
            let cgu = Some(&trans.name[..]);
            let path = self.output_filenames.temp_path_ext(&ext, cgu);
            let cstr = path2cstr(&path);
            let llmod = trans.llvm().unwrap().llmod;
            llvm::LLVMWriteBitcodeToFile(llmod, cstr.as_ptr());
        }
    }
}

struct DiagnosticHandlers<'a> {
    inner: Box<(&'a CodegenContext, &'a Handler)>,
    llcx: ContextRef,
}

impl<'a> DiagnosticHandlers<'a> {
    fn new(cgcx: &'a CodegenContext,
           handler: &'a Handler,
           llcx: ContextRef) -> DiagnosticHandlers<'a> {
        let data = Box::new((cgcx, handler));
        unsafe {
            let arg = &*data as &(_, _) as *const _ as *mut _;
            llvm::LLVMRustSetInlineAsmDiagnosticHandler(llcx, inline_asm_handler, arg);
            llvm::LLVMContextSetDiagnosticHandler(llcx, diagnostic_handler, arg);
        }
        DiagnosticHandlers {
            inner: data,
            llcx: llcx,
        }
    }
}

impl<'a> Drop for DiagnosticHandlers<'a> {
    fn drop(&mut self) {
        unsafe {
            llvm::LLVMRustSetInlineAsmDiagnosticHandler(self.llcx, inline_asm_handler, 0 as *mut _);
            llvm::LLVMContextSetDiagnosticHandler(self.llcx, diagnostic_handler, 0 as *mut _);
        }
    }
}

unsafe extern "C" fn report_inline_asm<'a, 'b>(cgcx: &'a CodegenContext,
                                               msg: &'b str,
                                               cookie: c_uint) {
    cgcx.diag_emitter.inline_asm_error(cookie as u32, msg.to_string());
}

unsafe extern "C" fn inline_asm_handler(diag: SMDiagnosticRef,
                                        user: *const c_void,
                                        cookie: c_uint) {
    if user.is_null() {
        return
    }
    let (cgcx, _) = *(user as *const (&CodegenContext, &Handler));

    let msg = llvm::build_string(|s| llvm::LLVMRustWriteSMDiagnosticToString(diag, s))
        .expect("non-UTF8 SMDiagnostic");

    report_inline_asm(cgcx, &msg, cookie);
}

unsafe extern "C" fn diagnostic_handler(info: DiagnosticInfoRef, user: *mut c_void) {
    if user.is_null() {
        return
    }
    let (cgcx, diag_handler) = *(user as *const (&CodegenContext, &Handler));

    match llvm::diagnostic::Diagnostic::unpack(info) {
        llvm::diagnostic::InlineAsm(inline) => {
            report_inline_asm(cgcx,
                              &llvm::twine_to_string(inline.message),
                              inline.cookie);
        }

        llvm::diagnostic::Optimization(opt) => {
            let enabled = match cgcx.remark {
                AllPasses => true,
                SomePasses(ref v) => v.iter().any(|s| *s == opt.pass_name),
            };

            if enabled {
                diag_handler.note_without_error(&format!("optimization {} for {} at {}:{}:{}: {}",
                                                opt.kind.describe(),
                                                opt.pass_name,
                                                opt.filename,
                                                opt.line,
                                                opt.column,
                                                opt.message));
            }
        }

        _ => (),
    }
}

// Unsafe due to LLVM calls.
unsafe fn optimize(cgcx: &CodegenContext,
                   diag_handler: &Handler,
                   mtrans: &ModuleTranslation,
                   config: &ModuleConfig)
    -> Result<(), FatalError>
{
    let (llmod, llcx, tm) = match mtrans.source {
        ModuleSource::Translated(ref llvm) => (llvm.llmod, llvm.llcx, llvm.tm),
        ModuleSource::Preexisting(_) => {
            bug!("optimize_and_codegen: called with ModuleSource::Preexisting")
        }
    };

    let _handlers = DiagnosticHandlers::new(cgcx, diag_handler, llcx);

    let module_name = mtrans.name.clone();
    let module_name = Some(&module_name[..]);

    if config.emit_no_opt_bc {
        let out = cgcx.output_filenames.temp_path_ext("no-opt.bc", module_name);
        let out = path2cstr(&out);
        llvm::LLVMWriteBitcodeToFile(llmod, out.as_ptr());
    }

    if config.opt_level.is_some() {
        // Create the two optimizing pass managers. These mirror what clang
        // does, and are by populated by LLVM's default PassManagerBuilder.
        // Each manager has a different set of passes, but they also share
        // some common passes.
        let fpm = llvm::LLVMCreateFunctionPassManagerForModule(llmod);
        let mpm = llvm::LLVMCreatePassManager();

        // If we're verifying or linting, add them to the function pass
        // manager.
        let addpass = |pass_name: &str| {
            let pass_name = CString::new(pass_name).unwrap();
            let pass = llvm::LLVMRustFindAndCreatePass(pass_name.as_ptr());
            if pass.is_null() {
                return false;
            }
            let pass_manager = match llvm::LLVMRustPassKind(pass) {
                llvm::PassKind::Function => fpm,
                llvm::PassKind::Module => mpm,
                llvm::PassKind::Other => {
                    diag_handler.err("Encountered LLVM pass kind we can't handle");
                    return true
                },
            };
            llvm::LLVMRustAddPass(pass_manager, pass);
            true
        };

        if !config.no_verify { assert!(addpass("verify")); }
        if !config.no_prepopulate_passes {
            llvm::LLVMRustAddAnalysisPasses(tm, fpm, llmod);
            llvm::LLVMRustAddAnalysisPasses(tm, mpm, llmod);
            with_llvm_pmb(llmod, &config, &mut |b| {
                llvm::LLVMPassManagerBuilderPopulateFunctionPassManager(b, fpm);
                llvm::LLVMPassManagerBuilderPopulateModulePassManager(b, mpm);
            })
        }

        for pass in &config.passes {
            if !addpass(pass) {
                diag_handler.warn(&format!("unknown pass `{}`, ignoring",
                                           pass));
            }
        }

        for pass in &cgcx.plugin_passes {
            if !addpass(pass) {
                diag_handler.err(&format!("a plugin asked for LLVM pass \
                                           `{}` but LLVM does not \
                                           recognize it", pass));
            }
        }

        diag_handler.abort_if_errors();

        // Finally, run the actual optimization passes
        time(config.time_passes, &format!("llvm function passes [{}]", module_name.unwrap()), ||
             llvm::LLVMRustRunFunctionPassManager(fpm, llmod));
        time(config.time_passes, &format!("llvm module passes [{}]", module_name.unwrap()), ||
             llvm::LLVMRunPassManager(mpm, llmod));

        // Deallocate managers that we're now done with
        llvm::LLVMDisposePassManager(fpm);
        llvm::LLVMDisposePassManager(mpm);
    }
    Ok(())
}

fn generate_lto_work(cgcx: &CodegenContext,
                     modules: Vec<ModuleTranslation>)
    -> Vec<(WorkItem, u64)>
{
    let lto_modules = lto::run(cgcx, modules).unwrap_or_else(|e| panic!(e));

    lto_modules.into_iter().map(|module| {
        let cost = module.cost();
        (WorkItem::LTO(module), cost)
    }).collect()
}

unsafe fn codegen(cgcx: &CodegenContext,
                  diag_handler: &Handler,
                  mtrans: ModuleTranslation,
                  config: &ModuleConfig)
    -> Result<CompiledModule, FatalError>
{
    let (llmod, llcx, tm) = match mtrans.source {
        ModuleSource::Translated(ref llvm) => (llvm.llmod, llvm.llcx, llvm.tm),
        ModuleSource::Preexisting(_) => {
            bug!("codegen: called with ModuleSource::Preexisting")
        }
    };
    let module_name = mtrans.name.clone();
    let module_name = Some(&module_name[..]);
    let handlers = DiagnosticHandlers::new(cgcx, diag_handler, llcx);

    // A codegen-specific pass manager is used to generate object
    // files for an LLVM module.
    //
    // Apparently each of these pass managers is a one-shot kind of
    // thing, so we create a new one for each type of output. The
    // pass manager passed to the closure should be ensured to not
    // escape the closure itself, and the manager should only be
    // used once.
    unsafe fn with_codegen<F, R>(tm: TargetMachineRef,
                                 llmod: ModuleRef,
                                 no_builtins: bool,
                                 f: F) -> R
        where F: FnOnce(PassManagerRef) -> R,
    {
        let cpm = llvm::LLVMCreatePassManager();
        llvm::LLVMRustAddAnalysisPasses(tm, cpm, llmod);
        llvm::LLVMRustAddLibraryInfo(cpm, llmod, no_builtins);
        f(cpm)
    }

    // Change what we write and cleanup based on whether obj files are
    // just llvm bitcode. In that case write bitcode, and possibly
    // delete the bitcode if it wasn't requested. Don't generate the
    // machine code, instead copy the .o file from the .bc
    let write_bc = config.emit_bc || config.obj_is_bitcode;
    let rm_bc = !config.emit_bc && config.obj_is_bitcode;
    let write_obj = config.emit_obj && !config.obj_is_bitcode;
    let copy_bc_to_obj = config.emit_obj && config.obj_is_bitcode;

    let bc_out = cgcx.output_filenames.temp_path(OutputType::Bitcode, module_name);
    let obj_out = cgcx.output_filenames.temp_path(OutputType::Object, module_name);

    if write_bc {
        let bc_out_c = path2cstr(&bc_out);
        llvm::LLVMWriteBitcodeToFile(llmod, bc_out_c.as_ptr());
    }

    time(config.time_passes, &format!("codegen passes [{}]", module_name.unwrap()),
         || -> Result<(), FatalError> {
        if config.emit_ir {
            let out = cgcx.output_filenames.temp_path(OutputType::LlvmAssembly, module_name);
            let out = path2cstr(&out);

            extern "C" fn demangle_callback(input_ptr: *const c_char,
                                            input_len: size_t,
                                            output_ptr: *mut c_char,
                                            output_len: size_t) -> size_t {
                let input = unsafe {
                    slice::from_raw_parts(input_ptr as *const u8, input_len as usize)
                };

                let input = match str::from_utf8(input) {
                    Ok(s) => s,
                    Err(_) => return 0,
                };

                let output = unsafe {
                    slice::from_raw_parts_mut(output_ptr as *mut u8, output_len as usize)
                };
                let mut cursor = io::Cursor::new(output);

                let demangled = match rustc_demangle::try_demangle(input) {
                    Ok(d) => d,
                    Err(_) => return 0,
                };

                if let Err(_) = write!(cursor, "{:#}", demangled) {
                    // Possible only if provided buffer is not big enough
                    return 0;
                }

                cursor.position() as size_t
            }

            with_codegen(tm, llmod, config.no_builtins, |cpm| {
                llvm::LLVMRustPrintModule(cpm, llmod, out.as_ptr(), demangle_callback);
                llvm::LLVMDisposePassManager(cpm);
            })
        }

        if config.emit_asm {
            let path = cgcx.output_filenames.temp_path(OutputType::Assembly, module_name);

            // We can't use the same module for asm and binary output, because that triggers
            // various errors like invalid IR or broken binaries, so we might have to clone the
            // module to produce the asm output
            let llmod = if config.emit_obj {
                llvm::LLVMCloneModule(llmod)
            } else {
                llmod
            };
            with_codegen(tm, llmod, config.no_builtins, |cpm| {
                write_output_file(diag_handler, tm, cpm, llmod, &path,
                                  llvm::FileType::AssemblyFile)
            })?;
            if config.emit_obj {
                llvm::LLVMDisposeModule(llmod);
            }
        }

        if write_obj {
            with_codegen(tm, llmod, config.no_builtins, |cpm| {
                write_output_file(diag_handler, tm, cpm, llmod, &obj_out,
                                  llvm::FileType::ObjectFile)
            })?;
        }

        Ok(())
    })?;

    if copy_bc_to_obj {
        debug!("copying bitcode {:?} to obj {:?}", bc_out, obj_out);
        if let Err(e) = link_or_copy(&bc_out, &obj_out) {
            diag_handler.err(&format!("failed to copy bitcode to object file: {}", e));
        }
    }

    if rm_bc {
        debug!("removing_bitcode {:?}", bc_out);
        if let Err(e) = fs::remove_file(&bc_out) {
            diag_handler.err(&format!("failed to remove bitcode: {}", e));
        }
    }

    drop(handlers);
    Ok(mtrans.into_compiled_module(config.emit_obj,
                                   config.emit_bc,
                                   &cgcx.output_filenames))
}

pub struct CompiledModules {
    pub modules: Vec<CompiledModule>,
    pub metadata_module: CompiledModule,
    pub allocator_module: Option<CompiledModule>,
}

fn need_crate_bitcode_for_rlib(sess: &Session) -> bool {
    sess.crate_types.borrow().contains(&config::CrateTypeRlib) &&
    sess.opts.output_types.contains_key(&OutputType::Exe)
}

pub fn start_async_translation(tcx: TyCtxt,
                               time_graph: Option<TimeGraph>,
                               link: LinkMeta,
                               metadata: EncodedMetadata,
                               coordinator_receive: Receiver<Box<Any + Send>>)
                               -> OngoingCrateTranslation {
    let sess = tcx.sess;
    let crate_output = tcx.output_filenames(LOCAL_CRATE);
    let crate_name = tcx.crate_name(LOCAL_CRATE);
    let no_builtins = attr::contains_name(&tcx.hir.krate().attrs, "no_builtins");
    let subsystem = attr::first_attr_value_str_by_name(&tcx.hir.krate().attrs,
                                                       "windows_subsystem");
    let windows_subsystem = subsystem.map(|subsystem| {
        if subsystem != "windows" && subsystem != "console" {
            tcx.sess.fatal(&format!("invalid windows subsystem `{}`, only \
                                     `windows` and `console` are allowed",
                                    subsystem));
        }
        subsystem.to_string()
    });

    let no_integrated_as = tcx.sess.opts.cg.no_integrated_as ||
        (tcx.sess.target.target.options.no_integrated_as &&
         (crate_output.outputs.contains_key(&OutputType::Object) ||
          crate_output.outputs.contains_key(&OutputType::Exe)));
    let linker_info = LinkerInfo::new(tcx);
    let crate_info = CrateInfo::new(tcx);

    let output_types_override = if no_integrated_as {
        OutputTypes::new(&[(OutputType::Assembly, None)])
    } else {
        sess.opts.output_types.clone()
    };

    // Figure out what we actually need to build.
    let mut modules_config = ModuleConfig::new(sess.opts.cg.passes.clone());
    let mut metadata_config = ModuleConfig::new(vec![]);
    let mut allocator_config = ModuleConfig::new(vec![]);

    if let Some(ref sanitizer) = sess.opts.debugging_opts.sanitizer {
        match *sanitizer {
            Sanitizer::Address => {
                modules_config.passes.push("asan".to_owned());
                modules_config.passes.push("asan-module".to_owned());
            }
            Sanitizer::Memory => {
                modules_config.passes.push("msan".to_owned())
            }
            Sanitizer::Thread => {
                modules_config.passes.push("tsan".to_owned())
            }
            _ => {}
        }
    }

    if sess.opts.debugging_opts.profile {
        modules_config.passes.push("insert-gcov-profiling".to_owned())
    }

    modules_config.opt_level = Some(get_llvm_opt_level(sess.opts.optimize));
    modules_config.opt_size = Some(get_llvm_opt_size(sess.opts.optimize));

    // Save all versions of the bytecode if we're saving our temporaries.
    if sess.opts.cg.save_temps {
        modules_config.emit_no_opt_bc = true;
        modules_config.emit_bc = true;
        modules_config.emit_lto_bc = true;
        metadata_config.emit_bc = true;
        allocator_config.emit_bc = true;
    }

    // Emit bitcode files for the crate if we're emitting an rlib.
    // Whenever an rlib is created, the bitcode is inserted into the
    // archive in order to allow LTO against it.
    if need_crate_bitcode_for_rlib(sess) {
        modules_config.emit_bc = true;
    }

    for output_type in output_types_override.keys() {
        match *output_type {
            OutputType::Bitcode => { modules_config.emit_bc = true; }
            OutputType::LlvmAssembly => { modules_config.emit_ir = true; }
            OutputType::Assembly => {
                modules_config.emit_asm = true;
                // If we're not using the LLVM assembler, this function
                // could be invoked specially with output_type_assembly, so
                // in this case we still want the metadata object file.
                if !sess.opts.output_types.contains_key(&OutputType::Assembly) {
                    metadata_config.emit_obj = true;
                    allocator_config.emit_obj = true;
                }
            }
            OutputType::Object => { modules_config.emit_obj = true; }
            OutputType::Metadata => { metadata_config.emit_obj = true; }
            OutputType::Exe => {
                modules_config.emit_obj = true;
                metadata_config.emit_obj = true;
                allocator_config.emit_obj = true;
            },
            OutputType::Mir => {}
            OutputType::DepInfo => {}
        }
    }

    modules_config.set_flags(sess, no_builtins);
    metadata_config.set_flags(sess, no_builtins);
    allocator_config.set_flags(sess, no_builtins);

    // Exclude metadata and allocator modules from time_passes output, since
    // they throw off the "LLVM passes" measurement.
    metadata_config.time_passes = false;
    allocator_config.time_passes = false;

    let client = sess.jobserver_from_env.clone().unwrap_or_else(|| {
        // Pick a "reasonable maximum" if we don't otherwise have a jobserver in
        // our environment, capping out at 32 so we don't take everything down
        // by hogging the process run queue.
        Client::new(32).expect("failed to create jobserver")
    });

    let (shared_emitter, shared_emitter_main) = SharedEmitter::new();
    let (trans_worker_send, trans_worker_receive) = channel();

    let coordinator_thread = start_executing_work(tcx,
                                                  &crate_info,
                                                  shared_emitter,
                                                  trans_worker_send,
                                                  coordinator_receive,
                                                  client,
                                                  time_graph.clone(),
                                                  Arc::new(modules_config),
                                                  Arc::new(metadata_config),
                                                  Arc::new(allocator_config));

    OngoingCrateTranslation {
        crate_name,
        link,
        metadata,
        windows_subsystem,
        linker_info,
        no_integrated_as,
        crate_info,

        time_graph,
        coordinator_send: tcx.tx_to_llvm_workers.clone(),
        trans_worker_receive,
        shared_emitter_main,
        future: coordinator_thread,
        output_filenames: tcx.output_filenames(LOCAL_CRATE),
    }
}

fn copy_module_artifacts_into_incr_comp_cache(sess: &Session,
                                              dep_graph: &DepGraph,
                                              compiled_modules: &CompiledModules,
                                              crate_output: &OutputFilenames) {
    if sess.opts.incremental.is_none() {
        return;
    }

    for module in compiled_modules.modules.iter() {
        let mut files = vec![];

        if module.emit_obj {
            let path = crate_output.temp_path(OutputType::Object, Some(&module.name));
            files.push((OutputType::Object, path));
        }

        if module.emit_bc {
            let path = crate_output.temp_path(OutputType::Bitcode, Some(&module.name));
            files.push((OutputType::Bitcode, path));
        }

        save_trans_partition(sess,
                             dep_graph,
                             &module.name,
                             module.symbol_name_hash,
                             &files);
    }
}

fn produce_final_output_artifacts(sess: &Session,
                                  compiled_modules: &CompiledModules,
                                  crate_output: &OutputFilenames) {
    let mut user_wants_bitcode = false;
    let mut user_wants_objects = false;

    // Produce final compile outputs.
    let copy_gracefully = |from: &Path, to: &Path| {
        if let Err(e) = fs::copy(from, to) {
            sess.err(&format!("could not copy {:?} to {:?}: {}", from, to, e));
        }
    };

    let copy_if_one_unit = |output_type: OutputType,
                            keep_numbered: bool| {
        if compiled_modules.modules.len() == 1 {
            // 1) Only one codegen unit.  In this case it's no difficulty
            //    to copy `foo.0.x` to `foo.x`.
            let module_name = Some(&compiled_modules.modules[0].name[..]);
            let path = crate_output.temp_path(output_type, module_name);
            copy_gracefully(&path,
                            &crate_output.path(output_type));
            if !sess.opts.cg.save_temps && !keep_numbered {
                // The user just wants `foo.x`, not `foo.#module-name#.x`.
                remove(sess, &path);
            }
        } else {
            let ext = crate_output.temp_path(output_type, None)
                                  .extension()
                                  .unwrap()
                                  .to_str()
                                  .unwrap()
                                  .to_owned();

            if crate_output.outputs.contains_key(&output_type) {
                // 2) Multiple codegen units, with `--emit foo=some_name`.  We have
                //    no good solution for this case, so warn the user.
                sess.warn(&format!("ignoring emit path because multiple .{} files \
                                    were produced", ext));
            } else if crate_output.single_output_file.is_some() {
                // 3) Multiple codegen units, with `-o some_name`.  We have
                //    no good solution for this case, so warn the user.
                sess.warn(&format!("ignoring -o because multiple .{} files \
                                    were produced", ext));
            } else {
                // 4) Multiple codegen units, but no explicit name.  We
                //    just leave the `foo.0.x` files in place.
                // (We don't have to do any work in this case.)
            }
        }
    };

    // Flag to indicate whether the user explicitly requested bitcode.
    // Otherwise, we produced it only as a temporary output, and will need
    // to get rid of it.
    for output_type in crate_output.outputs.keys() {
        match *output_type {
            OutputType::Bitcode => {
                user_wants_bitcode = true;
                // Copy to .bc, but always keep the .0.bc.  There is a later
                // check to figure out if we should delete .0.bc files, or keep
                // them for making an rlib.
                copy_if_one_unit(OutputType::Bitcode, true);
            }
            OutputType::LlvmAssembly => {
                copy_if_one_unit(OutputType::LlvmAssembly, false);
            }
            OutputType::Assembly => {
                copy_if_one_unit(OutputType::Assembly, false);
            }
            OutputType::Object => {
                user_wants_objects = true;
                copy_if_one_unit(OutputType::Object, true);
            }
            OutputType::Mir |
            OutputType::Metadata |
            OutputType::Exe |
            OutputType::DepInfo => {}
        }
    }

    // Clean up unwanted temporary files.

    // We create the following files by default:
    //  - #crate#.#module-name#.bc
    //  - #crate#.#module-name#.o
    //  - #crate#.crate.metadata.bc
    //  - #crate#.crate.metadata.o
    //  - #crate#.o (linked from crate.##.o)
    //  - #crate#.bc (copied from crate.##.bc)
    // We may create additional files if requested by the user (through
    // `-C save-temps` or `--emit=` flags).

    if !sess.opts.cg.save_temps {
        // Remove the temporary .#module-name#.o objects.  If the user didn't
        // explicitly request bitcode (with --emit=bc), and the bitcode is not
        // needed for building an rlib, then we must remove .#module-name#.bc as
        // well.

        // Specific rules for keeping .#module-name#.bc:
        //  - If we're building an rlib (`needs_crate_bitcode`), then keep
        //    it.
        //  - If the user requested bitcode (`user_wants_bitcode`), and
        //    codegen_units > 1, then keep it.
        //  - If the user requested bitcode but codegen_units == 1, then we
        //    can toss .#module-name#.bc because we copied it to .bc earlier.
        //  - If we're not building an rlib and the user didn't request
        //    bitcode, then delete .#module-name#.bc.
        // If you change how this works, also update back::link::link_rlib,
        // where .#module-name#.bc files are (maybe) deleted after making an
        // rlib.
        let needs_crate_bitcode = need_crate_bitcode_for_rlib(sess);
        let needs_crate_object = crate_output.outputs.contains_key(&OutputType::Exe);

        let keep_numbered_bitcode = needs_crate_bitcode ||
                (user_wants_bitcode && sess.opts.codegen_units > 1);

        let keep_numbered_objects = needs_crate_object ||
                (user_wants_objects && sess.opts.codegen_units > 1);

        for module in compiled_modules.modules.iter() {
            let module_name = Some(&module.name[..]);

            if module.emit_obj && !keep_numbered_objects {
                let path = crate_output.temp_path(OutputType::Object, module_name);
                remove(sess, &path);
            }

            if module.emit_bc && !keep_numbered_bitcode {
                let path = crate_output.temp_path(OutputType::Bitcode, module_name);
                remove(sess, &path);
            }
        }

        if compiled_modules.metadata_module.emit_bc && !user_wants_bitcode {
            let path = crate_output.temp_path(OutputType::Bitcode,
                                              Some(&compiled_modules.metadata_module.name));
            remove(sess, &path);
        }

        if let Some(ref allocator_module) = compiled_modules.allocator_module {
            if allocator_module.emit_bc && !user_wants_bitcode {
                let path = crate_output.temp_path(OutputType::Bitcode,
                                                  Some(&allocator_module.name));
                remove(sess, &path);
            }
        }
    }

    // We leave the following files around by default:
    //  - #crate#.o
    //  - #crate#.crate.metadata.o
    //  - #crate#.bc
    // These are used in linking steps and will be cleaned up afterward.
}

pub fn dump_incremental_data(trans: &CrateTranslation) {
    let mut reuse = 0;
    for mtrans in trans.modules.iter() {
        if mtrans.pre_existing {
            reuse += 1;
        }
    }
    eprintln!("incremental: re-using {} out of {} modules", reuse, trans.modules.len());
}

enum WorkItem {
    Optimize(ModuleTranslation),
    LTO(lto::LtoModuleTranslation),
}

impl WorkItem {
    fn kind(&self) -> ModuleKind {
        match *self {
            WorkItem::Optimize(ref m) => m.kind,
            WorkItem::LTO(_) => ModuleKind::Regular,
        }
    }

    fn name(&self) -> String {
        match *self {
            WorkItem::Optimize(ref m) => format!("optimize: {}", m.name),
            WorkItem::LTO(ref m) => format!("lto: {}", m.name()),
        }
    }
}

enum WorkItemResult {
    Compiled(CompiledModule),
    NeedsLTO(ModuleTranslation),
}

fn execute_work_item(cgcx: &CodegenContext, work_item: WorkItem)
    -> Result<WorkItemResult, FatalError>
{
    let diag_handler = cgcx.create_diag_handler();
    let config = cgcx.config(work_item.kind());
    let mtrans = match work_item {
        WorkItem::Optimize(mtrans) => mtrans,
        WorkItem::LTO(mut lto) => {
            unsafe {
                let module = lto.optimize(cgcx)?;
                let module = codegen(cgcx, &diag_handler, module, config)?;
                return Ok(WorkItemResult::Compiled(module))
            }
        }
    };
    let module_name = mtrans.name.clone();

    let pre_existing = match mtrans.source {
        ModuleSource::Translated(_) => None,
        ModuleSource::Preexisting(ref wp) => Some(wp.clone()),
    };

    if let Some(wp) = pre_existing {
        let incr_comp_session_dir = cgcx.incr_comp_session_dir
                                        .as_ref()
                                        .unwrap();
        let name = &mtrans.name;
        for (kind, saved_file) in wp.saved_files {
            let obj_out = cgcx.output_filenames.temp_path(kind, Some(name));
            let source_file = in_incr_comp_dir(&incr_comp_session_dir,
                                               &saved_file);
            debug!("copying pre-existing module `{}` from {:?} to {}",
                   mtrans.name,
                   source_file,
                   obj_out.display());
            match link_or_copy(&source_file, &obj_out) {
                Ok(_) => { }
                Err(err) => {
                    diag_handler.err(&format!("unable to copy {} to {}: {}",
                                              source_file.display(),
                                              obj_out.display(),
                                              err));
                }
            }
        }
        let object = cgcx.output_filenames.temp_path(OutputType::Object, Some(name));

        Ok(WorkItemResult::Compiled(CompiledModule {
            object,
            llmod_id: mtrans.llmod_id.clone(),
            name: module_name,
            kind: ModuleKind::Regular,
            pre_existing: true,
            symbol_name_hash: mtrans.symbol_name_hash,
            emit_bc: config.emit_bc,
            emit_obj: config.emit_obj,
        }))
    } else {
        debug!("llvm-optimizing {:?}", module_name);

        unsafe {
            optimize(cgcx, &diag_handler, &mtrans, config)?;
            if !cgcx.lto || mtrans.kind == ModuleKind::Metadata {
                let module = codegen(cgcx, &diag_handler, mtrans, config)?;
                Ok(WorkItemResult::Compiled(module))
            } else {
                Ok(WorkItemResult::NeedsLTO(mtrans))
            }
        }
    }
}

enum Message {
    Token(io::Result<Acquired>),
    NeedsLTO {
        result: ModuleTranslation,
        worker_id: usize,
    },
    Done {
        result: Result<CompiledModule, ()>,
        worker_id: usize,
    },
    TranslationDone {
        llvm_work_item: WorkItem,
        cost: u64,
    },
    TranslationComplete,
    TranslateItem,
}

struct Diagnostic {
    msg: String,
    code: Option<String>,
    lvl: Level,
}

#[derive(PartialEq, Clone, Copy, Debug)]
enum MainThreadWorkerState {
    Idle,
    Translating,
    LLVMing,
}

fn start_executing_work(tcx: TyCtxt,
                        crate_info: &CrateInfo,
                        shared_emitter: SharedEmitter,
                        trans_worker_send: Sender<Message>,
                        coordinator_receive: Receiver<Box<Any + Send>>,
                        jobserver: Client,
                        time_graph: Option<TimeGraph>,
                        modules_config: Arc<ModuleConfig>,
                        metadata_config: Arc<ModuleConfig>,
                        allocator_config: Arc<ModuleConfig>)
                        -> thread::JoinHandle<CompiledModules> {
    let coordinator_send = tcx.tx_to_llvm_workers.clone();
    let mut exported_symbols = FxHashMap();
    exported_symbols.insert(LOCAL_CRATE, tcx.exported_symbols(LOCAL_CRATE));
    for &cnum in tcx.crates().iter() {
        exported_symbols.insert(cnum, tcx.exported_symbols(cnum));
    }
    let exported_symbols = Arc::new(exported_symbols);
    let sess = tcx.sess;

    // First up, convert our jobserver into a helper thread so we can use normal
    // mpsc channels to manage our messages and such. Once we've got the helper
    // thread then request `n-1` tokens because all of our work items are ready
    // to go.
    //
    // Note that the `n-1` is here because we ourselves have a token (our
    // process) and we'll use that token to execute at least one unit of work.
    //
    // After we've requested all these tokens then we'll, when we can, get
    // tokens on `rx` above which will get managed in the main loop below.
    let coordinator_send2 = coordinator_send.clone();
    let helper = jobserver.into_helper_thread(move |token| {
        drop(coordinator_send2.send(Box::new(Message::Token(token))));
    }).expect("failed to spawn helper thread");

    let mut each_linked_rlib_for_lto = Vec::new();
    drop(link::each_linked_rlib(sess, crate_info, &mut |cnum, path| {
        if link::ignored_for_lto(crate_info, cnum) {
            return
        }
        each_linked_rlib_for_lto.push((cnum, path.to_path_buf()));
    }));

    let cgcx = CodegenContext {
        crate_types: sess.crate_types.borrow().clone(),
        each_linked_rlib_for_lto,
        lto: sess.lto(),
        no_landing_pads: sess.no_landing_pads(),
        save_temps: sess.opts.cg.save_temps,
        opts: Arc::new(sess.opts.clone()),
        time_passes: sess.time_passes(),
        exported_symbols,
        plugin_passes: sess.plugin_llvm_passes.borrow().clone(),
        remark: sess.opts.cg.remark.clone(),
        worker: 0,
        incr_comp_session_dir: sess.incr_comp_session_dir_opt().map(|r| r.clone()),
        coordinator_send,
        diag_emitter: shared_emitter.clone(),
        time_graph,
        output_filenames: tcx.output_filenames(LOCAL_CRATE),
        regular_module_config: modules_config,
        metadata_module_config: metadata_config,
        allocator_module_config: allocator_config,
        tm_factory: target_machine_factory(tcx.sess),
    };

    // This is the "main loop" of parallel work happening for parallel codegen.
    // It's here that we manage parallelism, schedule work, and work with
    // messages coming from clients.
    //
    // There are a few environmental pre-conditions that shape how the system
    // is set up:
    //
    // - Error reporting only can happen on the main thread because that's the
    //   only place where we have access to the compiler `Session`.
    // - LLVM work can be done on any thread.
    // - Translation can only happen on the main thread.
    // - Each thread doing substantial work most be in possession of a `Token`
    //   from the `Jobserver`.
    // - The compiler process always holds one `Token`. Any additional `Tokens`
    //   have to be requested from the `Jobserver`.
    //
    // Error Reporting
    // ===============
    // The error reporting restriction is handled separately from the rest: We
    // set up a `SharedEmitter` the holds an open channel to the main thread.
    // When an error occurs on any thread, the shared emitter will send the
    // error message to the receiver main thread (`SharedEmitterMain`). The
    // main thread will periodically query this error message queue and emit
    // any error messages it has received. It might even abort compilation if
    // has received a fatal error. In this case we rely on all other threads
    // being torn down automatically with the main thread.
    // Since the main thread will often be busy doing translation work, error
    // reporting will be somewhat delayed, since the message queue can only be
    // checked in between to work packages.
    //
    // Work Processing Infrastructure
    // ==============================
    // The work processing infrastructure knows three major actors:
    //
    // - the coordinator thread,
    // - the main thread, and
    // - LLVM worker threads
    //
    // The coordinator thread is running a message loop. It instructs the main
    // thread about what work to do when, and it will spawn off LLVM worker
    // threads as open LLVM WorkItems become available.
    //
    // The job of the main thread is to translate CGUs into LLVM work package
    // (since the main thread is the only thread that can do this). The main
    // thread will block until it receives a message from the coordinator, upon
    // which it will translate one CGU, send it to the coordinator and block
    // again. This way the coordinator can control what the main thread is
    // doing.
    //
    // The coordinator keeps a queue of LLVM WorkItems, and when a `Token` is
    // available, it will spawn off a new LLVM worker thread and let it process
    // that a WorkItem. When a LLVM worker thread is done with its WorkItem,
    // it will just shut down, which also frees all resources associated with
    // the given LLVM module, and sends a message to the coordinator that the
    // has been completed.
    //
    // Work Scheduling
    // ===============
    // The scheduler's goal is to minimize the time it takes to complete all
    // work there is, however, we also want to keep memory consumption low
    // if possible. These two goals are at odds with each other: If memory
    // consumption were not an issue, we could just let the main thread produce
    // LLVM WorkItems at full speed, assuring maximal utilization of
    // Tokens/LLVM worker threads. However, since translation usual is faster
    // than LLVM processing, the queue of LLVM WorkItems would fill up and each
    // WorkItem potentially holds on to a substantial amount of memory.
    //
    // So the actual goal is to always produce just enough LLVM WorkItems as
    // not to starve our LLVM worker threads. That means, once we have enough
    // WorkItems in our queue, we can block the main thread, so it does not
    // produce more until we need them.
    //
    // Doing LLVM Work on the Main Thread
    // ----------------------------------
    // Since the main thread owns the compiler processes implicit `Token`, it is
    // wasteful to keep it blocked without doing any work. Therefore, what we do
    // in this case is: We spawn off an additional LLVM worker thread that helps
    // reduce the queue. The work it is doing corresponds to the implicit
    // `Token`. The coordinator will mark the main thread as being busy with
    // LLVM work. (The actual work happens on another OS thread but we just care
    // about `Tokens`, not actual threads).
    //
    // When any LLVM worker thread finishes while the main thread is marked as
    // "busy with LLVM work", we can do a little switcheroo: We give the Token
    // of the just finished thread to the LLVM worker thread that is working on
    // behalf of the main thread's implicit Token, thus freeing up the main
    // thread again. The coordinator can then again decide what the main thread
    // should do. This allows the coordinator to make decisions at more points
    // in time.
    //
    // Striking a Balance between Throughput and Memory Consumption
    // ------------------------------------------------------------
    // Since our two goals, (1) use as many Tokens as possible and (2) keep
    // memory consumption as low as possible, are in conflict with each other,
    // we have to find a trade off between them. Right now, the goal is to keep
    // all workers busy, which means that no worker should find the queue empty
    // when it is ready to start.
    // How do we do achieve this? Good question :) We actually never know how
    // many `Tokens` are potentially available so it's hard to say how much to
    // fill up the queue before switching the main thread to LLVM work. Also we
    // currently don't have a means to estimate how long a running LLVM worker
    // will still be busy with it's current WorkItem. However, we know the
    // maximal count of available Tokens that makes sense (=the number of CPU
    // cores), so we can take a conservative guess. The heuristic we use here
    // is implemented in the `queue_full_enough()` function.
    //
    // Some Background on Jobservers
    // -----------------------------
    // It's worth also touching on the management of parallelism here. We don't
    // want to just spawn a thread per work item because while that's optimal
    // parallelism it may overload a system with too many threads or violate our
    // configuration for the maximum amount of cpu to use for this process. To
    // manage this we use the `jobserver` crate.
    //
    // Job servers are an artifact of GNU make and are used to manage
    // parallelism between processes. A jobserver is a glorified IPC semaphore
    // basically. Whenever we want to run some work we acquire the semaphore,
    // and whenever we're done with that work we release the semaphore. In this
    // manner we can ensure that the maximum number of parallel workers is
    // capped at any one point in time.
    //
    // LTO and the coordinator thread
    // ------------------------------
    //
    // The final job the coordinator thread is responsible for is managing LTO
    // and how that works. When LTO is requested what we'll to is collect all
    // optimized LLVM modules into a local vector on the coordinator. Once all
    // modules have been translated and optimized we hand this to the `lto`
    // module for further optimization. The `lto` module will return back a list
    // of more modules to work on, which the coordinator will continue to spawn
    // work for.
    //
    // Each LLVM module is automatically sent back to the coordinator for LTO if
    // necessary. There's already optimizations in place to avoid sending work
    // back to the coordinator if LTO isn't requested.
    return thread::spawn(move || {
        // We pretend to be within the top-level LLVM time-passes task here:
        set_time_depth(1);

        let max_workers = ::num_cpus::get();
        let mut worker_id_counter = 0;
        let mut free_worker_ids = Vec::new();
        let mut get_worker_id = |free_worker_ids: &mut Vec<usize>| {
            if let Some(id) = free_worker_ids.pop() {
                id
            } else {
                let id = worker_id_counter;
                worker_id_counter += 1;
                id
            }
        };

        // This is where we collect codegen units that have gone all the way
        // through translation and LLVM.
        let mut compiled_modules = vec![];
        let mut compiled_metadata_module = None;
        let mut compiled_allocator_module = None;
        let mut needs_lto = Vec::new();
        let mut started_lto = false;

        // This flag tracks whether all items have gone through translations
        let mut translation_done = false;

        // This is the queue of LLVM work items that still need processing.
        let mut work_items = Vec::<(WorkItem, u64)>::new();

        // This are the Jobserver Tokens we currently hold. Does not include
        // the implicit Token the compiler process owns no matter what.
        let mut tokens = Vec::new();

        let mut main_thread_worker_state = MainThreadWorkerState::Idle;
        let mut running = 0;

        let mut llvm_start_time = None;

        // Run the message loop while there's still anything that needs message
        // processing:
        while !translation_done ||
              work_items.len() > 0 ||
              running > 0 ||
              needs_lto.len() > 0 ||
              main_thread_worker_state != MainThreadWorkerState::Idle {

            // While there are still CGUs to be translated, the coordinator has
            // to decide how to utilize the compiler processes implicit Token:
            // For translating more CGU or for running them through LLVM.
            if !translation_done {
                if main_thread_worker_state == MainThreadWorkerState::Idle {
                    if !queue_full_enough(work_items.len(), running, max_workers) {
                        // The queue is not full enough, translate more items:
                        if let Err(_) = trans_worker_send.send(Message::TranslateItem) {
                            panic!("Could not send Message::TranslateItem to main thread")
                        }
                        main_thread_worker_state = MainThreadWorkerState::Translating;
                    } else {
                        // The queue is full enough to not let the worker
                        // threads starve. Use the implicit Token to do some
                        // LLVM work too.
                        let (item, _) = work_items.pop()
                            .expect("queue empty - queue_full_enough() broken?");
                        let cgcx = CodegenContext {
                            worker: get_worker_id(&mut free_worker_ids),
                            .. cgcx.clone()
                        };
                        maybe_start_llvm_timer(cgcx.config(item.kind()),
                                               &mut llvm_start_time);
                        main_thread_worker_state = MainThreadWorkerState::LLVMing;
                        spawn_work(cgcx, item);
                    }
                }
            } else {
                // If we've finished everything related to normal translation
                // then it must be the case that we've got some LTO work to do.
                // Perform the serial work here of figuring out what we're
                // going to LTO and then push a bunch of work items onto our
                // queue to do LTO
                if work_items.len() == 0 &&
                   running == 0 &&
                   main_thread_worker_state == MainThreadWorkerState::Idle {
                    assert!(!started_lto);
                    assert!(needs_lto.len() > 0);
                    started_lto = true;
                    let modules = mem::replace(&mut needs_lto, Vec::new());
                    for (work, cost) in generate_lto_work(&cgcx, modules) {
                        let insertion_index = work_items
                            .binary_search_by_key(&cost, |&(_, cost)| cost)
                            .unwrap_or_else(|e| e);
                        work_items.insert(insertion_index, (work, cost));
                        helper.request_token();
                    }
                }

                // In this branch, we know that everything has been translated,
                // so it's just a matter of determining whether the implicit
                // Token is free to use for LLVM work.
                match main_thread_worker_state {
                    MainThreadWorkerState::Idle => {
                        if let Some((item, _)) = work_items.pop() {
                            let cgcx = CodegenContext {
                                worker: get_worker_id(&mut free_worker_ids),
                                .. cgcx.clone()
                            };
                            maybe_start_llvm_timer(cgcx.config(item.kind()),
                                                   &mut llvm_start_time);
                            main_thread_worker_state = MainThreadWorkerState::LLVMing;
                            spawn_work(cgcx, item);
                        } else {
                            // There is no unstarted work, so let the main thread
                            // take over for a running worker. Otherwise the
                            // implicit token would just go to waste.
                            // We reduce the `running` counter by one. The
                            // `tokens.truncate()` below will take care of
                            // giving the Token back.
                            debug_assert!(running > 0);
                            running -= 1;
                            main_thread_worker_state = MainThreadWorkerState::LLVMing;
                        }
                    }
                    MainThreadWorkerState::Translating => {
                        bug!("trans worker should not be translating after \
                              translation was already completed")
                    }
                    MainThreadWorkerState::LLVMing => {
                        // Already making good use of that token
                    }
                }
            }

            // Spin up what work we can, only doing this while we've got available
            // parallelism slots and work left to spawn.
            while work_items.len() > 0 && running < tokens.len() {
                let (item, _) = work_items.pop().unwrap();

                maybe_start_llvm_timer(cgcx.config(item.kind()),
                                       &mut llvm_start_time);

                let cgcx = CodegenContext {
                    worker: get_worker_id(&mut free_worker_ids),
                    .. cgcx.clone()
                };

                spawn_work(cgcx, item);
                running += 1;
            }

            // Relinquish accidentally acquired extra tokens
            tokens.truncate(running);

            let msg = coordinator_receive.recv().unwrap();
            match *msg.downcast::<Message>().ok().unwrap() {
                // Save the token locally and the next turn of the loop will use
                // this to spawn a new unit of work, or it may get dropped
                // immediately if we have no more work to spawn.
                Message::Token(token) => {
                    match token {
                        Ok(token) => {
                            tokens.push(token);

                            if main_thread_worker_state == MainThreadWorkerState::LLVMing {
                                // If the main thread token is used for LLVM work
                                // at the moment, we turn that thread into a regular
                                // LLVM worker thread, so the main thread is free
                                // to react to translation demand.
                                main_thread_worker_state = MainThreadWorkerState::Idle;
                                running += 1;
                            }
                        }
                        Err(e) => {
                            let msg = &format!("failed to acquire jobserver token: {}", e);
                            shared_emitter.fatal(msg);
                            // Exit the coordinator thread
                            panic!("{}", msg)
                        }
                    }
                }

                Message::TranslationDone { llvm_work_item, cost } => {
                    // We keep the queue sorted by estimated processing cost,
                    // so that more expensive items are processed earlier. This
                    // is good for throughput as it gives the main thread more
                    // time to fill up the queue and it avoids scheduling
                    // expensive items to the end.
                    // Note, however, that this is not ideal for memory
                    // consumption, as LLVM module sizes are not evenly
                    // distributed.
                    let insertion_index =
                        work_items.binary_search_by_key(&cost, |&(_, cost)| cost);
                    let insertion_index = match insertion_index {
                        Ok(idx) | Err(idx) => idx
                    };
                    work_items.insert(insertion_index, (llvm_work_item, cost));

                    helper.request_token();
                    assert_eq!(main_thread_worker_state,
                               MainThreadWorkerState::Translating);
                    main_thread_worker_state = MainThreadWorkerState::Idle;
                }

                Message::TranslationComplete => {
                    translation_done = true;
                    assert_eq!(main_thread_worker_state,
                               MainThreadWorkerState::Translating);
                    main_thread_worker_state = MainThreadWorkerState::Idle;
                }

                // If a thread exits successfully then we drop a token associated
                // with that worker and update our `running` count. We may later
                // re-acquire a token to continue running more work. We may also not
                // actually drop a token here if the worker was running with an
                // "ephemeral token"
                //
                // Note that if the thread failed that means it panicked, so we
                // abort immediately.
                Message::Done { result: Ok(compiled_module), worker_id } => {
                    if main_thread_worker_state == MainThreadWorkerState::LLVMing {
                        main_thread_worker_state = MainThreadWorkerState::Idle;
                    } else {
                        running -= 1;
                    }

                    free_worker_ids.push(worker_id);

                    match compiled_module.kind {
                        ModuleKind::Regular => {
                            compiled_modules.push(compiled_module);
                        }
                        ModuleKind::Metadata => {
                            assert!(compiled_metadata_module.is_none());
                            compiled_metadata_module = Some(compiled_module);
                        }
                        ModuleKind::Allocator => {
                            assert!(compiled_allocator_module.is_none());
                            compiled_allocator_module = Some(compiled_module);
                        }
                    }
                }
                Message::NeedsLTO { result, worker_id } => {
                    assert!(!started_lto);
                    if main_thread_worker_state == MainThreadWorkerState::LLVMing {
                        main_thread_worker_state = MainThreadWorkerState::Idle;
                    } else {
                        running -= 1;
                    }

                    free_worker_ids.push(worker_id);
                    needs_lto.push(result);
                }
                Message::Done { result: Err(()), worker_id: _ } => {
                    shared_emitter.fatal("aborting due to worker thread panic");
                    // Exit the coordinator thread
                    panic!("aborting due to worker thread panic")
                }
                Message::TranslateItem => {
                    bug!("the coordinator should not receive translation requests")
                }
            }
        }

        if let Some(llvm_start_time) = llvm_start_time {
            let total_llvm_time = Instant::now().duration_since(llvm_start_time);
            // This is the top-level timing for all of LLVM, set the time-depth
            // to zero.
            set_time_depth(0);
            print_time_passes_entry(cgcx.time_passes,
                                    "LLVM passes",
                                    total_llvm_time);
        }

        // Regardless of what order these modules completed in, report them to
        // the backend in the same order every time to ensure that we're handing
        // out deterministic results.
        compiled_modules.sort_by(|a, b| a.name.cmp(&b.name));

        let compiled_metadata_module = compiled_metadata_module
            .expect("Metadata module not compiled?");

        CompiledModules {
            modules: compiled_modules,
            metadata_module: compiled_metadata_module,
            allocator_module: compiled_allocator_module,
        }
    });

    // A heuristic that determines if we have enough LLVM WorkItems in the
    // queue so that the main thread can do LLVM work instead of translation
    fn queue_full_enough(items_in_queue: usize,
                         workers_running: usize,
                         max_workers: usize) -> bool {
        // Tune me, plz.
        items_in_queue > 0 &&
        items_in_queue >= max_workers.saturating_sub(workers_running / 2)
    }

    fn maybe_start_llvm_timer(config: &ModuleConfig,
                              llvm_start_time: &mut Option<Instant>) {
        // We keep track of the -Ztime-passes output manually,
        // since the closure-based interface does not fit well here.
        if config.time_passes {
            if llvm_start_time.is_none() {
                *llvm_start_time = Some(Instant::now());
            }
        }
    }
}

pub const TRANS_WORKER_ID: usize = ::std::usize::MAX;
pub const TRANS_WORKER_TIMELINE: time_graph::TimelineId =
    time_graph::TimelineId(TRANS_WORKER_ID);
pub const TRANS_WORK_PACKAGE_KIND: time_graph::WorkPackageKind =
    time_graph::WorkPackageKind(&["#DE9597", "#FED1D3", "#FDC5C7", "#B46668", "#88494B"]);
const LLVM_WORK_PACKAGE_KIND: time_graph::WorkPackageKind =
    time_graph::WorkPackageKind(&["#7DB67A", "#C6EEC4", "#ACDAAA", "#579354", "#3E6F3C"]);

fn spawn_work(cgcx: CodegenContext, work: WorkItem) {
    let depth = time_depth();

    thread::spawn(move || {
        set_time_depth(depth);

        // Set up a destructor which will fire off a message that we're done as
        // we exit.
        struct Bomb {
            coordinator_send: Sender<Box<Any + Send>>,
            result: Option<WorkItemResult>,
            worker_id: usize,
        }
        impl Drop for Bomb {
            fn drop(&mut self) {
                let worker_id = self.worker_id;
                let msg = match self.result.take() {
                    Some(WorkItemResult::Compiled(m)) => {
                        Message::Done { result: Ok(m), worker_id }
                    }
                    Some(WorkItemResult::NeedsLTO(m)) => {
                        Message::NeedsLTO { result: m, worker_id }
                    }
                    None => Message::Done { result: Err(()), worker_id }
                };
                drop(self.coordinator_send.send(Box::new(msg)));
            }
        }

        let mut bomb = Bomb {
            coordinator_send: cgcx.coordinator_send.clone(),
            result: None,
            worker_id: cgcx.worker,
        };

        // Execute the work itself, and if it finishes successfully then flag
        // ourselves as a success as well.
        //
        // Note that we ignore the result coming out of `execute_work_item`
        // which will tell us if the worker failed with a `FatalError`. If that
        // has happened, however, then a diagnostic was sent off to the main
        // thread, along with an `AbortIfErrors` message. In that case the main
        // thread is already exiting anyway most likely.
        //
        // In any case, there's no need for us to take further action here, so
        // we just ignore the result and then send off our message saying that
        // we're done, which if `execute_work_item` failed is unlikely to be
        // seen by the main thread, but hey we might as well try anyway.
        bomb.result = {
            let _timing_guard = cgcx.time_graph.as_ref().map(|tg| {
                tg.start(time_graph::TimelineId(cgcx.worker),
                         LLVM_WORK_PACKAGE_KIND,
                         &work.name())
            });
            Some(execute_work_item(&cgcx, work).unwrap())
        };
    });
}

pub fn run_assembler(sess: &Session, outputs: &OutputFilenames) {
    let (pname, mut cmd, _) = get_linker(sess);

    for arg in &sess.target.target.options.asm_args {
        cmd.arg(arg);
    }

    cmd.arg("-c").arg("-o").arg(&outputs.path(OutputType::Object))
                           .arg(&outputs.temp_path(OutputType::Assembly, None));
    debug!("{:?}", cmd);

    match cmd.output() {
        Ok(prog) => {
            if !prog.status.success() {
                let mut note = prog.stderr.clone();
                note.extend_from_slice(&prog.stdout);

                sess.struct_err(&format!("linking with `{}` failed: {}",
                                         pname,
                                         prog.status))
                    .note(&format!("{:?}", &cmd))
                    .note(str::from_utf8(&note[..]).unwrap())
                    .emit();
                sess.abort_if_errors();
            }
        },
        Err(e) => {
            sess.err(&format!("could not exec the linker `{}`: {}", pname, e));
            sess.abort_if_errors();
        }
    }
}

pub unsafe fn with_llvm_pmb(llmod: ModuleRef,
                            config: &ModuleConfig,
                            f: &mut FnMut(llvm::PassManagerBuilderRef)) {
    // Create the PassManagerBuilder for LLVM. We configure it with
    // reasonable defaults and prepare it to actually populate the pass
    // manager.
    let builder = llvm::LLVMPassManagerBuilderCreate();
    let opt_level = config.opt_level.unwrap_or(llvm::CodeGenOptLevel::None);
    let opt_size = config.opt_size.unwrap_or(llvm::CodeGenOptSizeNone);
    let inline_threshold = config.inline_threshold;

    llvm::LLVMRustConfigurePassManagerBuilder(builder, opt_level,
                                              config.merge_functions,
                                              config.vectorize_slp,
                                              config.vectorize_loop);
    llvm::LLVMPassManagerBuilderSetSizeLevel(builder, opt_size as u32);

    if opt_size != llvm::CodeGenOptSizeNone {
        llvm::LLVMPassManagerBuilderSetDisableUnrollLoops(builder, 1);
    }

    llvm::LLVMRustAddBuilderLibraryInfo(builder, llmod, config.no_builtins);

    // Here we match what clang does (kinda). For O0 we only inline
    // always-inline functions (but don't add lifetime intrinsics), at O1 we
    // inline with lifetime intrinsics, and O2+ we add an inliner with a
    // thresholds copied from clang.
    match (opt_level, opt_size, inline_threshold) {
        (.., Some(t)) => {
            llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, t as u32);
        }
        (llvm::CodeGenOptLevel::Aggressive, ..) => {
            llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 275);
        }
        (_, llvm::CodeGenOptSizeDefault, _) => {
            llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 75);
        }
        (_, llvm::CodeGenOptSizeAggressive, _) => {
            llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 25);
        }
        (llvm::CodeGenOptLevel::None, ..) => {
            llvm::LLVMRustAddAlwaysInlinePass(builder, false);
        }
        (llvm::CodeGenOptLevel::Less, ..) => {
            llvm::LLVMRustAddAlwaysInlinePass(builder, true);
        }
        (llvm::CodeGenOptLevel::Default, ..) => {
            llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 225);
        }
        (llvm::CodeGenOptLevel::Other, ..) => {
            bug!("CodeGenOptLevel::Other selected")
        }
    }

    f(builder);
    llvm::LLVMPassManagerBuilderDispose(builder);
}


enum SharedEmitterMessage {
    Diagnostic(Diagnostic),
    InlineAsmError(u32, String),
    AbortIfErrors,
    Fatal(String),
}

#[derive(Clone)]
pub struct SharedEmitter {
    sender: Sender<SharedEmitterMessage>,
}

pub struct SharedEmitterMain {
    receiver: Receiver<SharedEmitterMessage>,
}

impl SharedEmitter {
    pub fn new() -> (SharedEmitter, SharedEmitterMain) {
        let (sender, receiver) = channel();

        (SharedEmitter { sender }, SharedEmitterMain { receiver })
    }

    fn inline_asm_error(&self, cookie: u32, msg: String) {
        drop(self.sender.send(SharedEmitterMessage::InlineAsmError(cookie, msg)));
    }

    fn fatal(&self, msg: &str) {
        drop(self.sender.send(SharedEmitterMessage::Fatal(msg.to_string())));
    }
}

impl Emitter for SharedEmitter {
    fn emit(&mut self, db: &DiagnosticBuilder) {
        drop(self.sender.send(SharedEmitterMessage::Diagnostic(Diagnostic {
            msg: db.message(),
            code: db.code.clone(),
            lvl: db.level,
        })));
        for child in &db.children {
            drop(self.sender.send(SharedEmitterMessage::Diagnostic(Diagnostic {
                msg: child.message(),
                code: None,
                lvl: child.level,
            })));
        }
        drop(self.sender.send(SharedEmitterMessage::AbortIfErrors));
    }
}

impl SharedEmitterMain {
    pub fn check(&self, sess: &Session, blocking: bool) {
        loop {
            let message = if blocking {
                match self.receiver.recv() {
                    Ok(message) => Ok(message),
                    Err(_) => Err(()),
                }
            } else {
                match self.receiver.try_recv() {
                    Ok(message) => Ok(message),
                    Err(_) => Err(()),
                }
            };

            match message {
                Ok(SharedEmitterMessage::Diagnostic(diag)) => {
                    let handler = sess.diagnostic();
                    match diag.code {
                        Some(ref code) => {
                            handler.emit_with_code(&MultiSpan::new(),
                                                   &diag.msg,
                                                   &code,
                                                   diag.lvl);
                        }
                        None => {
                            handler.emit(&MultiSpan::new(),
                                         &diag.msg,
                                         diag.lvl);
                        }
                    }
                }
                Ok(SharedEmitterMessage::InlineAsmError(cookie, msg)) => {
                    match Mark::from_u32(cookie).expn_info() {
                        Some(ei) => sess.span_err(ei.call_site, &msg),
                        None     => sess.err(&msg),
                    }
                }
                Ok(SharedEmitterMessage::AbortIfErrors) => {
                    sess.abort_if_errors();
                }
                Ok(SharedEmitterMessage::Fatal(msg)) => {
                    sess.fatal(&msg);
                }
                Err(_) => {
                    break;
                }
            }

        }
    }
}

pub struct OngoingCrateTranslation {
    crate_name: Symbol,
    link: LinkMeta,
    metadata: EncodedMetadata,
    windows_subsystem: Option<String>,
    linker_info: LinkerInfo,
    no_integrated_as: bool,
    crate_info: CrateInfo,
    time_graph: Option<TimeGraph>,
    coordinator_send: Sender<Box<Any + Send>>,
    trans_worker_receive: Receiver<Message>,
    shared_emitter_main: SharedEmitterMain,
    future: thread::JoinHandle<CompiledModules>,
    output_filenames: Arc<OutputFilenames>,
}

impl OngoingCrateTranslation {
    pub fn join(self, sess: &Session, dep_graph: &DepGraph) -> CrateTranslation {
        self.shared_emitter_main.check(sess, true);
        let compiled_modules = match self.future.join() {
            Ok(compiled_modules) => compiled_modules,
            Err(_) => {
                sess.fatal("Error during translation/LLVM phase.");
            }
        };

        sess.abort_if_errors();

        if let Some(time_graph) = self.time_graph {
            time_graph.dump(&format!("{}-timings", self.crate_name));
        }

        copy_module_artifacts_into_incr_comp_cache(sess,
                                                   dep_graph,
                                                   &compiled_modules,
                                                   &self.output_filenames);
        produce_final_output_artifacts(sess,
                                       &compiled_modules,
                                       &self.output_filenames);

        // FIXME: time_llvm_passes support - does this use a global context or
        // something?
        if sess.opts.codegen_units == 1 && sess.time_llvm_passes() {
            unsafe { llvm::LLVMRustPrintPassTimings(); }
        }

        let trans = CrateTranslation {
            crate_name: self.crate_name,
            link: self.link,
            metadata: self.metadata,
            windows_subsystem: self.windows_subsystem,
            linker_info: self.linker_info,
            crate_info: self.crate_info,

            modules: compiled_modules.modules,
            allocator_module: compiled_modules.allocator_module,
        };

        if self.no_integrated_as {
            run_assembler(sess,  &self.output_filenames);

            // HACK the linker expects the object file to be named foo.0.o but
            // `run_assembler` produces an object named just foo.o. Rename it if we
            // are going to build an executable
            if sess.opts.output_types.contains_key(&OutputType::Exe) {
                let f =  self.output_filenames.path(OutputType::Object);
                rename_or_copy_remove(&f,
                    f.with_file_name(format!("{}.0.o",
                                             f.file_stem().unwrap().to_string_lossy()))).unwrap();
            }

            // Remove assembly source, unless --save-temps was specified
            if !sess.opts.cg.save_temps {
                fs::remove_file(&self.output_filenames
                                     .temp_path(OutputType::Assembly, None)).unwrap();
            }
        }

        trans
    }

    pub fn submit_pre_translated_module_to_llvm(&self,
                                                tcx: TyCtxt,
                                                mtrans: ModuleTranslation) {
        self.wait_for_signal_to_translate_item();
        self.check_for_errors(tcx.sess);

        // These are generally cheap and won't through off scheduling.
        let cost = 0;
        submit_translated_module_to_llvm(tcx, mtrans, cost);
    }

    pub fn translation_finished(&self, tcx: TyCtxt) {
        self.wait_for_signal_to_translate_item();
        self.check_for_errors(tcx.sess);
        drop(self.coordinator_send.send(Box::new(Message::TranslationComplete)));
    }

    pub fn check_for_errors(&self, sess: &Session) {
        self.shared_emitter_main.check(sess, false);
    }

    pub fn wait_for_signal_to_translate_item(&self) {
        match self.trans_worker_receive.recv() {
            Ok(Message::TranslateItem) => {
                // Nothing to do
            }
            Ok(_) => panic!("unexpected message"),
            Err(_) => {
                // One of the LLVM threads must have panicked, fall through so
                // error handling can be reached.
            }
        }
    }
}

pub fn submit_translated_module_to_llvm(tcx: TyCtxt,
                                        mtrans: ModuleTranslation,
                                        cost: u64) {
    let llvm_work_item = WorkItem::Optimize(mtrans);
    drop(tcx.tx_to_llvm_workers.send(Box::new(Message::TranslationDone {
        llvm_work_item,
        cost,
    })));
}