about summary refs log tree commit diff
path: root/src/libstd/math.rs
blob: 0f365c44415db84f3d203eb3ddc481ca78e2509f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
/*

Module: math

Floating point operations and constants for `float`s
*/

export consts;
export min, max;

// Currently this module supports from -lmath:
// C95 + log2 + log1p + trunc + round + rint

export
    acos, asin, atan, atan2, ceil, cos, cosh, exp, abs, floor, fmod, frexp,
    ldexp, ln, ln1p, log10, log2, modf, rint, round, pow, sin, sinh, sqrt,
    tan, tanh, trunc;

export f64, f32;

import f64 = math_f64;
import f32 = math_f32;

// These two must match in width according to architecture

import ctypes::m_float;
import ctypes::c_int;
import ptr;
import m_float = math_f64;

/*
Module: consts
*/
mod consts {
    /*
    Const: pi

    Archimedes' constant
    */
    const pi: float = 3.14159265358979323846264338327950288;

    /*
    Const: frac_pi_2

    pi/2.0
    */
    const frac_pi_2: float = 1.57079632679489661923132169163975144;

    /*
    Const: frac_pi_4

    pi/4.0
    */
    const frac_pi_4: float = 0.785398163397448309615660845819875721;

    /*
    Const: frac_1_pi

    1.0/pi
    */
    const frac_1_pi: float = 0.318309886183790671537767526745028724;

    /*
    Const: frac_2_pi

    2.0/pi
    */
    const frac_2_pi: float = 0.636619772367581343075535053490057448;

    /*
    Const: frac_2_sqrtpi

    2.0/sqrt(pi)
    */
    const frac_2_sqrtpi: float = 1.12837916709551257389615890312154517;

    /*
    Const: sqrt2

    sqrt(2.0)
    */
    const sqrt2: float = 1.41421356237309504880168872420969808;

    /*
    Const: frac_1_sqrt2

    1.0/sqrt(2.0)
    */
    const frac_1_sqrt2: float = 0.707106781186547524400844362104849039;

    /*
    Const: e

    Euler's number
    */
    const e: float = 2.71828182845904523536028747135266250;

    /*
    Const: log2_e

    log2(e)
    */
    const log2_e: float = 1.44269504088896340735992468100189214;

    /*
    Const: log10_e

    log10(e)
    */
    const log10_e: float = 0.434294481903251827651128918916605082;

    /*
    Const: ln_2

    ln(2.0)
    */
    const ln_2: float = 0.693147180559945309417232121458176568;

    /*
    Const: ln_10

    ln(10.0)
    */
    const ln_10: float = 2.30258509299404568401799145468436421;
}


// FIXME min/max type specialize via libm when overloading works
// (in theory fmax/fmin, fmaxf, fminf /should/ be faster)

/*
Function: min

Returns the minimum of two values
*/
pure fn min<copy T>(x: T, y: T) -> T { x < y ? x : y }

/*
Function: max

Returns the maximum of two values
*/
pure fn max<copy T>(x: T, y: T) -> T { x < y ? y : x }

/*
Function: acos

Returns the arccosine of an angle (measured in rad)
*/
pure fn acos(x: float) -> float
    { be m_float::acos(x as m_float) as float }

/*
Function: asin

Returns the arcsine of an angle (measured in rad)
*/
pure fn asin(x: float) -> float
    { be m_float::asin(x as m_float) as float }

/*
Function: atan

Returns the arctangents of an angle (measured in rad)
*/
pure fn atan(x: float) -> float
    { be m_float::atan(x as m_float) as float }


/*
Function: atan2

Returns the arctangent of an angle (measured in rad)
*/
pure fn atan2(y: float, x: float) -> float
    { be m_float::atan2(y as m_float, x as m_float) as float }

/*
Function: ceil

Returns the smallest integral value less than or equal to `n`
*/
pure fn ceil(n: float) -> float
    { be m_float::ceil(n as m_float) as float }

/*
Function: cos

Returns the cosine of an angle `x` (measured in rad)
*/
pure fn cos(x: float) -> float
    { be m_float::cos(x as m_float) as float }

/*
Function: cosh

Returns the hyperbolic cosine of `x`

*/
pure fn cosh(x: float) -> float
    { be m_float::cosh(x as m_float) as float }


/*
Function: exp

Returns `consts::e` to the power of `n*
*/
pure fn exp(n: float) -> float
    { be m_float::exp(n as m_float) as float }

/*
Function: abs

Returns the absolute value of  `n`
*/
pure fn abs(n: float) -> float
    { be m_float::abs(n as m_float) as float }

/*
Function: floor

Returns the largest integral value less than or equal to `n`
*/
pure fn floor(n: float) -> float
    { be m_float::floor(n as m_float) as float }

/*
Function: fmod

Returns the floating-point remainder of `x/y`
*/
pure fn fmod(x: float, y: float) -> float
    { be m_float::fmod(x as m_float, y as m_float) as float }

/*
Function: ln

Returns the natural logaritm of `n`
*/
pure fn ln(n: float) -> float
    { be m_float::ln(n as m_float) as float }

/*
Function: ldexp

Returns `x` multiplied by 2 to the power of `n`
*/
pure fn ldexp(n: float, i: int) -> float
    { be m_float::ldexp(n as m_float, i as c_int) as float }

/*
Function: ln1p

Returns the natural logarithm of `1+n` accurately,
even for very small values of `n`
*/
pure fn ln1p(n: float) -> float
    { be m_float::ln1p(n as m_float) as float }

/*
Function: log10

Returns the logarithm to base 10 of `n`
*/
pure fn log10(n: float) -> float
    { be m_float::log10(n as m_float) as float }

/*
Function: log2

Returns the logarithm to base 2 of `n`
*/
pure fn log2(n: float) -> float
    { be m_float::log2(n as m_float) as float }

/*
Function: modf

Breaks `n` into integral and fractional parts such that both
have the same sign as `n`

The integral part is stored in `iptr`.

Returns:

The fractional part of `n`
*/
#[no(warn_trivial_casts)] // FIXME Implement
pure fn modf(n: float, &iptr: float) -> float { unsafe {
    be m_float::modf(n as m_float, ptr::addr_of(iptr) as *m_float) as float
} }

/*
Function: frexp

Breaks `n` into a normalized fraction and an integral power of 2

The inegral part is stored in iptr.

The functions return a number x such that x has a magnitude in the interval
[1/2, 1) or 0, and `n == x*(2 to the power of exp)`.

Returns:

The fractional part of `n`
*/
pure fn frexp(n: float, &exp: c_int) -> float
    { be m_float::frexp(n as m_float, exp) as float }

/*
Function: pow
*/
pure fn pow(v: float, e: float) -> float
    { be m_float::pow(v as m_float, e as m_float) as float }


/*
Function: rint

Returns the integral value nearest to `x` (according to the
prevailing rounding mode) in floating-point format
*/
pure fn rint(x: float) -> float
    { be m_float::rint(x as m_float) as float }

/*
Function: round


Return the integral value nearest to `x` rounding half-way
cases away from zero, regardless of the current rounding direction.
*/
pure fn round(x: float) -> float
    { be m_float::round(x as m_float) as float }

/*
Function: sin

Returns the sine of an angle `x` (measured in rad)
*/
pure fn sin(x: float) -> float
    { be m_float::sin(x as m_float) as float }

/*
Function: sinh

Returns the hyperbolic sine of an angle `x` (measured in rad)
*/
pure fn sinh(x: float) -> float
    { be m_float::sinh(x as m_float) as float }

/*
Function: sqrt

Returns the square root of `x`
*/
pure fn sqrt(x: float) -> float
    { be m_float::sqrt(x as m_float) as float }

/*
Function: tan

Returns the tangent of an angle `x` (measured in rad)

*/
pure fn tan(x: float) -> float
    { be m_float::tan(x as m_float) as float }

/*
Function: tanh

Returns the hyperbolic tangent of an angle `x` (measured in rad)

*/
pure fn tanh(x: float) -> float
    { be m_float::tanh(x as m_float) as float }

/*
Function: trunc

Returns the integral value nearest to but no larger in magnitude than `x`

*/
pure fn trunc(x: float) -> float
    { be m_float::trunc(x as m_float) as float }