1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
|
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Operations and constants for `uint`
use iter;
use sys;
pub use self::generated::*;
uint_module!(uint, int, ::int::bits)
///
/// Divide two numbers, return the result, rounded up.
///
/// # Arguments
///
/// * x - an integer
/// * y - an integer distinct from 0u
///
/// # Return value
///
/// The smallest integer `q` such that `x/y <= q`.
///
pub fn div_ceil(x: uint, y: uint) -> uint {
let div = x / y;
if x % y == 0u { div }
else { div + 1u }
}
///
/// Divide two numbers, return the result, rounded to the closest integer.
///
/// # Arguments
///
/// * x - an integer
/// * y - an integer distinct from 0u
///
/// # Return value
///
/// The integer `q` closest to `x/y`.
///
pub fn div_round(x: uint, y: uint) -> uint {
let div = x / y;
if x % y * 2u < y { div }
else { div + 1u }
}
///
/// Divide two numbers, return the result, rounded down.
///
/// Note: This is the same function as `div`.
///
/// # Arguments
///
/// * x - an integer
/// * y - an integer distinct from 0u
///
/// # Return value
///
/// The smallest integer `q` such that `x/y <= q`. This
/// is either `x/y` or `x/y + 1`.
///
pub fn div_floor(x: uint, y: uint) -> uint { return x / y; }
impl iter::Times for uint {
#[inline]
///
/// A convenience form for basic repetition. Given a uint `x`,
/// `do x.times { ... }` executes the given block x times.
///
/// Equivalent to `for uint::range(0, x) |_| { ... }`.
///
/// Not defined on all integer types to permit unambiguous
/// use with integer literals of inferred integer-type as
/// the self-value (eg. `do 100.times { ... }`).
///
fn times(&self, it: &fn()) {
let mut i = *self;
while i > 0 {
it();
i -= 1;
}
}
}
/// Returns the smallest power of 2 greater than or equal to `n`
#[inline]
pub fn next_power_of_two(n: uint) -> uint {
let halfbits: uint = sys::size_of::<uint>() * 4u;
let mut tmp: uint = n - 1u;
let mut shift: uint = 1u;
while shift <= halfbits { tmp |= tmp >> shift; shift <<= 1u; }
return tmp + 1u;
}
#[test]
fn test_next_power_of_two() {
assert!((next_power_of_two(0u) == 0u));
assert!((next_power_of_two(1u) == 1u));
assert!((next_power_of_two(2u) == 2u));
assert!((next_power_of_two(3u) == 4u));
assert!((next_power_of_two(4u) == 4u));
assert!((next_power_of_two(5u) == 8u));
assert!((next_power_of_two(6u) == 8u));
assert!((next_power_of_two(7u) == 8u));
assert!((next_power_of_two(8u) == 8u));
assert!((next_power_of_two(9u) == 16u));
assert!((next_power_of_two(10u) == 16u));
assert!((next_power_of_two(11u) == 16u));
assert!((next_power_of_two(12u) == 16u));
assert!((next_power_of_two(13u) == 16u));
assert!((next_power_of_two(14u) == 16u));
assert!((next_power_of_two(15u) == 16u));
assert!((next_power_of_two(16u) == 16u));
assert!((next_power_of_two(17u) == 32u));
assert!((next_power_of_two(18u) == 32u));
assert!((next_power_of_two(19u) == 32u));
assert!((next_power_of_two(20u) == 32u));
assert!((next_power_of_two(21u) == 32u));
assert!((next_power_of_two(22u) == 32u));
assert!((next_power_of_two(23u) == 32u));
assert!((next_power_of_two(24u) == 32u));
assert!((next_power_of_two(25u) == 32u));
assert!((next_power_of_two(26u) == 32u));
assert!((next_power_of_two(27u) == 32u));
assert!((next_power_of_two(28u) == 32u));
assert!((next_power_of_two(29u) == 32u));
assert!((next_power_of_two(30u) == 32u));
assert!((next_power_of_two(31u) == 32u));
assert!((next_power_of_two(32u) == 32u));
assert!((next_power_of_two(33u) == 64u));
assert!((next_power_of_two(34u) == 64u));
assert!((next_power_of_two(35u) == 64u));
assert!((next_power_of_two(36u) == 64u));
assert!((next_power_of_two(37u) == 64u));
assert!((next_power_of_two(38u) == 64u));
assert!((next_power_of_two(39u) == 64u));
}
#[test]
fn test_overflows() {
use uint;
assert!((uint::max_value > 0u));
assert!((uint::min_value <= 0u));
assert!((uint::min_value + uint::max_value + 1u == 0u));
}
#[test]
fn test_div() {
assert!((div_floor(3u, 4u) == 0u));
assert!((div_ceil(3u, 4u) == 1u));
assert!((div_round(3u, 4u) == 1u));
}
#[test]
pub fn test_times() {
use iter::Times;
let ten = 10 as uint;
let mut accum = 0;
do ten.times { accum += 1; }
assert!((accum == 10));
}
|