about summary refs log tree commit diff
path: root/src/libstd/num/uint_macros.rs
blob: a7aebf1f176c231548948698f9b4ab65af78996d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

// FIXME(#4375): this shouldn't have to be a nested module named 'generated'

#[macro_escape];

macro_rules! uint_module (($T:ty, $T_SIGNED:ty, $bits:expr) => (mod generated {

use num::BitCount;
use num::{ToStrRadix, FromStrRadix};
use num::{Zero, One, strconv};
use prelude::*;

pub use cmp::{min, max};

pub static bits : uint = $bits;
pub static bytes : uint = ($bits / 8);

pub static min_value: $T = 0 as $T;
pub static max_value: $T = 0 as $T - 1 as $T;

/// Calculates the sum of two numbers
#[inline(always)]
pub fn add(x: $T, y: $T) -> $T { x + y }
/// Subtracts the second number from the first
#[inline(always)]
pub fn sub(x: $T, y: $T) -> $T { x - y }
/// Multiplies two numbers together
#[inline(always)]
pub fn mul(x: $T, y: $T) -> $T { x * y }
/// Divides the first argument by the second argument (using integer division)
#[inline(always)]
pub fn div(x: $T, y: $T) -> $T { x / y }
/// Calculates the integer remainder when x is divided by y (equivalent to the
/// '%' operator)
#[inline(always)]
pub fn rem(x: $T, y: $T) -> $T { x % y }

/// Returns true iff `x < y`
#[inline(always)]
pub fn lt(x: $T, y: $T) -> bool { x < y }
/// Returns true iff `x <= y`
#[inline(always)]
pub fn le(x: $T, y: $T) -> bool { x <= y }
/// Returns true iff `x == y`
#[inline(always)]
pub fn eq(x: $T, y: $T) -> bool { x == y }
/// Returns true iff `x != y`
#[inline(always)]
pub fn ne(x: $T, y: $T) -> bool { x != y }
/// Returns true iff `x >= y`
#[inline(always)]
pub fn ge(x: $T, y: $T) -> bool { x >= y }
/// Returns true iff `x > y`
#[inline(always)]
pub fn gt(x: $T, y: $T) -> bool { x > y }

#[inline(always)]
/**
 * Iterate through a range with a given step value.
 *
 * # Examples
 * ~~~ {.rust}
 * let nums = [1,2,3,4,5,6,7];
 *
 * for uint::range_step(0, nums.len() - 1, 2) |i| {
 *     println(fmt!("%d & %d", nums[i], nums[i+1]));
 * }
 * ~~~
 */
pub fn range_step(start: $T, stop: $T, step: $T_SIGNED, it: &fn($T) -> bool) -> bool {
    let mut i = start;
    if step == 0 {
        fail!("range_step called with step == 0");
    }
    if step >= 0 {
        while i < stop {
            if !it(i) { return false; }
            // avoiding overflow. break if i + step > max_value
            if i > max_value - (step as $T) { return true; }
            i += step as $T;
        }
    } else {
        while i > stop {
            if !it(i) { return false; }
            // avoiding underflow. break if i + step < min_value
            if i < min_value + ((-step) as $T) { return true; }
            i -= -step as $T;
        }
    }
    return true;
}

#[inline(always)]
/// Iterate over the range [`lo`..`hi`)
pub fn range(lo: $T, hi: $T, it: &fn($T) -> bool) -> bool {
    range_step(lo, hi, 1 as $T_SIGNED, it)
}

#[inline(always)]
/// Iterate over the range [`hi`..`lo`)
pub fn range_rev(hi: $T, lo: $T, it: &fn($T) -> bool) -> bool {
    range_step(hi, lo, -1 as $T_SIGNED, it)
}

/// Computes the bitwise complement
#[inline(always)]
pub fn compl(i: $T) -> $T {
    max_value ^ i
}

impl Num for $T {}

#[cfg(not(test))]
impl Ord for $T {
    #[inline(always)]
    fn lt(&self, other: &$T) -> bool { (*self) < (*other) }
    #[inline(always)]
    fn le(&self, other: &$T) -> bool { (*self) <= (*other) }
    #[inline(always)]
    fn ge(&self, other: &$T) -> bool { (*self) >= (*other) }
    #[inline(always)]
    fn gt(&self, other: &$T) -> bool { (*self) > (*other) }
}

#[cfg(not(test))]
impl Eq for $T {
    #[inline(always)]
    fn eq(&self, other: &$T) -> bool { return (*self) == (*other); }
    #[inline(always)]
    fn ne(&self, other: &$T) -> bool { return (*self) != (*other); }
}

impl Orderable for $T {
    #[inline(always)]
    fn min(&self, other: &$T) -> $T {
        if *self < *other { *self } else { *other }
    }

    #[inline(always)]
    fn max(&self, other: &$T) -> $T {
        if *self > *other { *self } else { *other }
    }

    /// Returns the number constrained within the range `mn <= self <= mx`.
    #[inline(always)]
    fn clamp(&self, mn: &$T, mx: &$T) -> $T {
        cond!(
            (*self > *mx) { *mx   }
            (*self < *mn) { *mn   }
            _             { *self }
        )
    }
}

impl Zero for $T {
    #[inline(always)]
    fn zero() -> $T { 0 }

    #[inline(always)]
    fn is_zero(&self) -> bool { *self == 0 }
}

impl One for $T {
    #[inline(always)]
    fn one() -> $T { 1 }
}

#[cfg(not(test))]
impl Add<$T,$T> for $T {
    #[inline(always)]
    fn add(&self, other: &$T) -> $T { *self + *other }
}

#[cfg(not(test))]
impl Sub<$T,$T> for $T {
    #[inline(always)]
    fn sub(&self, other: &$T) -> $T { *self - *other }
}

#[cfg(not(test))]
impl Mul<$T,$T> for $T {
    #[inline(always)]
    fn mul(&self, other: &$T) -> $T { *self * *other }
}

#[cfg(not(test))]
impl Div<$T,$T> for $T {
    #[inline(always)]
    fn div(&self, other: &$T) -> $T { *self / *other }
}

#[cfg(not(test))]
impl Rem<$T,$T> for $T {
    #[inline(always)]
    fn rem(&self, other: &$T) -> $T { *self % *other }
}

#[cfg(not(test))]
impl Neg<$T> for $T {
    #[inline(always)]
    fn neg(&self) -> $T { -*self }
}

impl Unsigned for $T {}

impl Integer for $T {
    /// Calculates `div` (`\`) and `rem` (`%`) simultaneously
    #[inline(always)]
    fn div_rem(&self, other: &$T) -> ($T,$T) {
        (*self / *other, *self % *other)
    }

    /// Unsigned integer division. Returns the same result as `div` (`/`).
    #[inline(always)]
    fn div_floor(&self, other: &$T) -> $T { *self / *other }

    /// Unsigned integer modulo operation. Returns the same result as `rem` (`%`).
    #[inline(always)]
    fn mod_floor(&self, other: &$T) -> $T { *self / *other }

    /// Calculates `div_floor` and `modulo_floor` simultaneously
    #[inline(always)]
    fn div_mod_floor(&self, other: &$T) -> ($T,$T) {
        (*self / *other, *self % *other)
    }

    /// Calculates the Greatest Common Divisor (GCD) of the number and `other`
    #[inline(always)]
    fn gcd(&self, other: &$T) -> $T {
        // Use Euclid's algorithm
        let mut (m, n) = (*self, *other);
        while m != 0 {
            let temp = m;
            m = n % temp;
            n = temp;
        }
        n
    }

    /// Calculates the Lowest Common Multiple (LCM) of the number and `other`
    #[inline(always)]
    fn lcm(&self, other: &$T) -> $T {
        (*self * *other) / self.gcd(other)
    }

    /// Returns `true` if the number can be divided by `other` without leaving a remainder
    #[inline(always)]
    fn is_multiple_of(&self, other: &$T) -> bool { *self % *other == 0 }

    /// Returns `true` if the number is divisible by `2`
    #[inline(always)]
    fn is_even(&self) -> bool { self.is_multiple_of(&2) }

    /// Returns `true` if the number is not divisible by `2`
    #[inline(always)]
    fn is_odd(&self) -> bool { !self.is_even() }
}

impl Bitwise for $T {}

#[cfg(not(test))]
impl BitOr<$T,$T> for $T {
    #[inline(always)]
    fn bitor(&self, other: &$T) -> $T { *self | *other }
}

#[cfg(not(test))]
impl BitAnd<$T,$T> for $T {
    #[inline(always)]
    fn bitand(&self, other: &$T) -> $T { *self & *other }
}

#[cfg(not(test))]
impl BitXor<$T,$T> for $T {
    #[inline(always)]
    fn bitxor(&self, other: &$T) -> $T { *self ^ *other }
}

#[cfg(not(test))]
impl Shl<$T,$T> for $T {
    #[inline(always)]
    fn shl(&self, other: &$T) -> $T { *self << *other }
}

#[cfg(not(test))]
impl Shr<$T,$T> for $T {
    #[inline(always)]
    fn shr(&self, other: &$T) -> $T { *self >> *other }
}

#[cfg(not(test))]
impl Not<$T> for $T {
    #[inline(always)]
    fn not(&self) -> $T { !*self }
}

impl Bounded for $T {
    #[inline(always)]
    fn min_value() -> $T { min_value }

    #[inline(always)]
    fn max_value() -> $T { max_value }
}

impl Int for $T {}

// String conversion functions and impl str -> num

/// Parse a string as a number in base 10.
#[inline(always)]
pub fn from_str(s: &str) -> Option<$T> {
    strconv::from_str_common(s, 10u, false, false, false,
                             strconv::ExpNone, false, false)
}

/// Parse a string as a number in the given base.
#[inline(always)]
pub fn from_str_radix(s: &str, radix: uint) -> Option<$T> {
    strconv::from_str_common(s, radix, false, false, false,
                             strconv::ExpNone, false, false)
}

/// Parse a byte slice as a number in the given base.
#[inline(always)]
pub fn parse_bytes(buf: &[u8], radix: uint) -> Option<$T> {
    strconv::from_str_bytes_common(buf, radix, false, false, false,
                                   strconv::ExpNone, false, false)
}

impl FromStr for $T {
    #[inline(always)]
    fn from_str(s: &str) -> Option<$T> {
        from_str(s)
    }
}

impl FromStrRadix for $T {
    #[inline(always)]
    fn from_str_radix(s: &str, radix: uint) -> Option<$T> {
        from_str_radix(s, radix)
    }
}

// String conversion functions and impl num -> str

/// Convert to a string as a byte slice in a given base.
#[inline(always)]
pub fn to_str_bytes<U>(n: $T, radix: uint, f: &fn(v: &[u8]) -> U) -> U {
    let (buf, _) = strconv::to_str_bytes_common(&n, radix, false,
                            strconv::SignNeg, strconv::DigAll);
    f(buf)
}

/// Convert to a string in base 10.
#[inline(always)]
pub fn to_str(num: $T) -> ~str {
    let (buf, _) = strconv::to_str_common(&num, 10u, false,
                            strconv::SignNeg, strconv::DigAll);
    buf
}

/// Convert to a string in a given base.
#[inline(always)]
pub fn to_str_radix(num: $T, radix: uint) -> ~str {
    let (buf, _) = strconv::to_str_common(&num, radix, false,
                            strconv::SignNeg, strconv::DigAll);
    buf
}

impl ToStr for $T {
    #[inline(always)]
    fn to_str(&self) -> ~str {
        to_str(*self)
    }
}

impl ToStrRadix for $T {
    #[inline(always)]
    fn to_str_radix(&self, radix: uint) -> ~str {
        to_str_radix(*self, radix)
    }
}

impl Primitive for $T {
    #[inline(always)]
    fn bits() -> uint { bits }

    #[inline(always)]
    fn bytes() -> uint { bits / 8 }
}

impl BitCount for $T {
    /// Counts the number of bits set. Wraps LLVM's `ctpop` intrinsic.
    #[inline(always)]
    fn population_count(&self) -> $T {
        (*self as $T_SIGNED).population_count() as $T
    }

    /// Counts the number of leading zeros. Wraps LLVM's `ctlz` intrinsic.
    #[inline(always)]
    fn leading_zeros(&self) -> $T {
        (*self as $T_SIGNED).leading_zeros() as $T
    }

    /// Counts the number of trailing zeros. Wraps LLVM's `cttz` intrinsic.
    #[inline(always)]
    fn trailing_zeros(&self) -> $T {
        (*self as $T_SIGNED).trailing_zeros() as $T
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use prelude::*;

    use num;
    use sys;
    use u16;
    use u32;
    use u64;
    use u8;
    use uint;

    #[test]
    fn test_num() {
        num::test_num(10 as $T, 2 as $T);
    }

    #[test]
    fn test_orderable() {
        assert_eq!((1 as $T).min(&(2 as $T)), 1 as $T);
        assert_eq!((2 as $T).min(&(1 as $T)), 1 as $T);
        assert_eq!((1 as $T).max(&(2 as $T)), 2 as $T);
        assert_eq!((2 as $T).max(&(1 as $T)), 2 as $T);
        assert_eq!((1 as $T).clamp(&(2 as $T), &(4 as $T)), 2 as $T);
        assert_eq!((8 as $T).clamp(&(2 as $T), &(4 as $T)), 4 as $T);
        assert_eq!((3 as $T).clamp(&(2 as $T), &(4 as $T)), 3 as $T);
    }

    #[test]
    fn test_gcd() {
        assert_eq!((10 as $T).gcd(&2), 2 as $T);
        assert_eq!((10 as $T).gcd(&3), 1 as $T);
        assert_eq!((0 as $T).gcd(&3), 3 as $T);
        assert_eq!((3 as $T).gcd(&3), 3 as $T);
        assert_eq!((56 as $T).gcd(&42), 14 as $T);
    }

    #[test]
    fn test_lcm() {
        assert_eq!((1 as $T).lcm(&0), 0 as $T);
        assert_eq!((0 as $T).lcm(&1), 0 as $T);
        assert_eq!((1 as $T).lcm(&1), 1 as $T);
        assert_eq!((8 as $T).lcm(&9), 72 as $T);
        assert_eq!((11 as $T).lcm(&5), 55 as $T);
        assert_eq!((99 as $T).lcm(&17), 1683 as $T);
    }

    #[test]
    fn test_multiple_of() {
        assert!((6 as $T).is_multiple_of(&(6 as $T)));
        assert!((6 as $T).is_multiple_of(&(3 as $T)));
        assert!((6 as $T).is_multiple_of(&(1 as $T)));
    }

    #[test]
    fn test_even() {
        assert_eq!((0 as $T).is_even(), true);
        assert_eq!((1 as $T).is_even(), false);
        assert_eq!((2 as $T).is_even(), true);
        assert_eq!((3 as $T).is_even(), false);
        assert_eq!((4 as $T).is_even(), true);
    }

    #[test]
    fn test_odd() {
        assert_eq!((0 as $T).is_odd(), false);
        assert_eq!((1 as $T).is_odd(), true);
        assert_eq!((2 as $T).is_odd(), false);
        assert_eq!((3 as $T).is_odd(), true);
        assert_eq!((4 as $T).is_odd(), false);
    }

    #[test]
    fn test_bitwise() {
        assert_eq!(0b1110 as $T, (0b1100 as $T).bitor(&(0b1010 as $T)));
        assert_eq!(0b1000 as $T, (0b1100 as $T).bitand(&(0b1010 as $T)));
        assert_eq!(0b0110 as $T, (0b1100 as $T).bitxor(&(0b1010 as $T)));
        assert_eq!(0b1110 as $T, (0b0111 as $T).shl(&(1 as $T)));
        assert_eq!(0b0111 as $T, (0b1110 as $T).shr(&(1 as $T)));
        assert_eq!(max_value - (0b1011 as $T), (0b1011 as $T).not());
    }

    #[test]
    fn test_bitcount() {
        assert_eq!((0b010101 as $T).population_count(), 3);
    }

    #[test]
    fn test_primitive() {
        assert_eq!(Primitive::bits::<$T>(), sys::size_of::<$T>() * 8);
        assert_eq!(Primitive::bytes::<$T>(), sys::size_of::<$T>());
    }

    #[test]
    pub fn test_to_str() {
        assert_eq!(to_str_radix(0 as $T, 10u), ~"0");
        assert_eq!(to_str_radix(1 as $T, 10u), ~"1");
        assert_eq!(to_str_radix(2 as $T, 10u), ~"2");
        assert_eq!(to_str_radix(11 as $T, 10u), ~"11");
        assert_eq!(to_str_radix(11 as $T, 16u), ~"b");
        assert_eq!(to_str_radix(255 as $T, 16u), ~"ff");
        assert_eq!(to_str_radix(0xff as $T, 10u), ~"255");
    }

    #[test]
    pub fn test_from_str() {
        assert_eq!(from_str("0"), Some(0u as $T));
        assert_eq!(from_str("3"), Some(3u as $T));
        assert_eq!(from_str("10"), Some(10u as $T));
        assert_eq!(u32::from_str("123456789"), Some(123456789 as u32));
        assert_eq!(from_str("00100"), Some(100u as $T));

        assert!(from_str("").is_none());
        assert!(from_str(" ").is_none());
        assert!(from_str("x").is_none());
    }

    #[test]
    pub fn test_parse_bytes() {
        use str::to_bytes;
        assert_eq!(parse_bytes(to_bytes("123"), 10u), Some(123u as $T));
        assert_eq!(parse_bytes(to_bytes("1001"), 2u), Some(9u as $T));
        assert_eq!(parse_bytes(to_bytes("123"), 8u), Some(83u as $T));
        assert_eq!(u16::parse_bytes(to_bytes("123"), 16u), Some(291u as u16));
        assert_eq!(u16::parse_bytes(to_bytes("ffff"), 16u), Some(65535u as u16));
        assert_eq!(parse_bytes(to_bytes("z"), 36u), Some(35u as $T));

        assert!(parse_bytes(to_bytes("Z"), 10u).is_none());
        assert!(parse_bytes(to_bytes("_"), 2u).is_none());
    }

    #[test]
    fn test_uint_to_str_overflow() {
        let mut u8_val: u8 = 255_u8;
        assert_eq!(u8::to_str(u8_val), ~"255");

        u8_val += 1 as u8;
        assert_eq!(u8::to_str(u8_val), ~"0");

        let mut u16_val: u16 = 65_535_u16;
        assert_eq!(u16::to_str(u16_val), ~"65535");

        u16_val += 1 as u16;
        assert_eq!(u16::to_str(u16_val), ~"0");

        let mut u32_val: u32 = 4_294_967_295_u32;
        assert_eq!(u32::to_str(u32_val), ~"4294967295");

        u32_val += 1 as u32;
        assert_eq!(u32::to_str(u32_val), ~"0");

        let mut u64_val: u64 = 18_446_744_073_709_551_615_u64;
        assert_eq!(u64::to_str(u64_val), ~"18446744073709551615");

        u64_val += 1 as u64;
        assert_eq!(u64::to_str(u64_val), ~"0");
    }

    #[test]
    fn test_uint_from_str_overflow() {
        let mut u8_val: u8 = 255_u8;
        assert_eq!(u8::from_str("255"), Some(u8_val));
        assert!(u8::from_str("256").is_none());

        u8_val += 1 as u8;
        assert_eq!(u8::from_str("0"), Some(u8_val));
        assert!(u8::from_str("-1").is_none());

        let mut u16_val: u16 = 65_535_u16;
        assert_eq!(u16::from_str("65535"), Some(u16_val));
        assert!(u16::from_str("65536").is_none());

        u16_val += 1 as u16;
        assert_eq!(u16::from_str("0"), Some(u16_val));
        assert!(u16::from_str("-1").is_none());

        let mut u32_val: u32 = 4_294_967_295_u32;
        assert_eq!(u32::from_str("4294967295"), Some(u32_val));
        assert!(u32::from_str("4294967296").is_none());

        u32_val += 1 as u32;
        assert_eq!(u32::from_str("0"), Some(u32_val));
        assert!(u32::from_str("-1").is_none());

        let mut u64_val: u64 = 18_446_744_073_709_551_615_u64;
        assert_eq!(u64::from_str("18446744073709551615"), Some(u64_val));
        assert!(u64::from_str("18446744073709551616").is_none());

        u64_val += 1 as u64;
        assert_eq!(u64::from_str("0"), Some(u64_val));
        assert!(u64::from_str("-1").is_none());
    }

    #[test]
    #[should_fail]
    #[ignore(cfg(windows))]
    pub fn to_str_radix1() {
        uint::to_str_radix(100u, 1u);
    }

    #[test]
    #[should_fail]
    #[ignore(cfg(windows))]
    pub fn to_str_radix37() {
        uint::to_str_radix(100u, 37u);
    }

    #[test]
    pub fn test_ranges() {
        let mut l = ~[];

        for range(0,3) |i| {
            l.push(i);
        }
        for range_rev(13,10) |i| {
            l.push(i);
        }
        for range_step(20,26,2) |i| {
            l.push(i);
        }
        for range_step(36,30,-2) |i| {
            l.push(i);
        }
        for range_step(max_value - 2, max_value, 2) |i| {
            l.push(i);
        }
        for range_step(max_value - 3, max_value, 2) |i| {
            l.push(i);
        }
        for range_step(min_value + 2, min_value, -2) |i| {
            l.push(i);
        }
        for range_step(min_value + 3, min_value, -2) |i| {
            l.push(i);
        }

        assert_eq!(l, ~[0,1,2,
                        13,12,11,
                        20,22,24,
                        36,34,32,
                        max_value-2,
                        max_value-3,max_value-1,
                        min_value+2,
                        min_value+3,min_value+1]);

        // None of the `fail`s should execute.
        for range(0,0) |_i| {
            fail!("unreachable");
        }
        for range_rev(0,0) |_i| {
            fail!("unreachable");
        }
        for range_step(10,0,1) |_i| {
            fail!("unreachable");
        }
        for range_step(0,1,-10) |_i| {
            fail!("unreachable");
        }
    }

    #[test]
    #[should_fail]
    #[ignore(cfg(windows))]
    fn test_range_step_zero_step_up() {
        for range_step(0,10,0) |_i| {}
    }
    #[test]
    #[should_fail]
    #[ignore(cfg(windows))]
    fn test_range_step_zero_step_down() {
        for range_step(0,-10,0) |_i| {}
    }
}

}))