about summary refs log tree commit diff
path: root/src/libstd/priority_queue.rs
blob: 31d6e04ae62677b66515bda7411cebf1a91a4646 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/// A priority queue implemented with a binary heap
use core::cmp::Ord;

pub struct PriorityQueue <T: Copy Ord>{
    priv data: ~[T],
}

impl <T: Copy Ord> PriorityQueue<T> {
    /// Returns the greatest item in the queue - fails if empty
    pure fn top(&self) -> T { self.data[0] }

    /// Returns the greatest item in the queue - None if empty
    pure fn maybe_top(&self) -> Option<T> {
        if self.is_empty() { None } else { Some(self.top()) }
    }

    /// Returns the length of the queue
    pure fn len(&self) -> uint { self.data.len() }

    /// Returns true if a queue contains no elements
    pure fn is_empty(&self) -> bool { self.data.is_empty() }

    /// Returns true if a queue contains some elements
    pure fn is_not_empty(&self) -> bool { self.data.is_not_empty() }

    /// Returns the number of elements the queue can hold without reallocating
    pure fn capacity(&self) -> uint { vec::capacity(&self.data) }

    fn reserve(&mut self, n: uint) { vec::reserve(&mut self.data, n) }

    fn reserve_at_least(&mut self, n: uint) {
        vec::reserve_at_least(&mut self.data, n)
    }

    /// Drop all items from the queue
    fn clear(&mut self) { self.data.truncate(0) }

    /// Pop the greatest item from the queue - fails if empty
    fn pop(&mut self) -> T {
        let last = self.data.pop();
        if self.is_not_empty() {
            let ret = self.data[0];
            self.data[0] = last;
            self.siftup(0);
            ret
        } else { last }
    }

    /// Pop the greatest item from the queue - None if empty
    fn maybe_pop(&mut self) -> Option<T> {
        if self.is_empty() { None } else { Some(self.pop()) }
    }

    /// Push an item onto the queue
    fn push(&mut self, item: T) {
        self.data.push(item);
        self.siftdown(0, self.len() - 1);
    }

    /// Optimized version of a push followed by a pop
    fn push_pop(&mut self, item: T) -> T {
        let mut item = item;
        if self.is_not_empty() && self.data[0] > item {
            item <-> self.data[0];
            self.siftup(0);
        }
        item
    }

    /// Optimized version of a pop followed by a push - fails if empty
    fn replace(&mut self, item: T) -> T {
        let ret = self.data[0];
        self.data[0] = item;
        self.siftup(0);
        ret
    }

    /// Consume the PriorityQueue and return the underlying vector
    pure fn to_vec(self) -> ~[T] { let PriorityQueue{data: v} = self; v }

    /// Consume the PriorityQueue and return a vector in sorted (ascending) order
    pure fn to_sorted_vec(self) -> ~[T] {
        let mut q = self;
        let mut end = q.len() - 1;
        while end > 0 {
            q.data[end] <-> q.data[0];
            end -= 1;
            unsafe { q.siftup_range(0, end) } // purity-checking workaround
        }
        q.to_vec()
    }

    priv fn siftdown(&mut self, startpos: uint, pos: uint) {
        let mut pos = pos;
        let newitem = self.data[pos];

        while pos > startpos {
            let parentpos = (pos - 1) >> 1;
            let parent = self.data[parentpos];
            if newitem > parent {
                self.data[pos] = parent;
                pos = parentpos;
                loop
            }
            break
        }
        self.data[pos] = newitem;
    }

    priv fn siftup_range(&mut self, pos: uint, endpos: uint) {
        let mut pos = pos;
        let startpos = pos;
        let newitem = self.data[pos];

        let mut childpos = 2 * pos + 1;
        while childpos < endpos {
            let rightpos = childpos + 1;
            if rightpos < endpos &&
                   !(self.data[childpos] > self.data[rightpos]) {
                childpos = rightpos;
            }
            self.data[pos] = self.data[childpos];
            pos = childpos;
            childpos = 2 * pos + 1;
        }
        self.data[pos] = newitem;
        self.siftdown(startpos, pos);
    }

    priv fn siftup(&mut self, pos: uint) {
        self.siftup_range(pos, self.len());
    }
}

pub pure fn from_vec<T: Copy Ord>(xs: ~[T]) -> PriorityQueue<T> {
    let mut q = PriorityQueue{data: xs,};
    let mut n = q.len() / 2;
    while n > 0 {
        n -= 1;
        unsafe { q.siftup(n) }; // purity-checking workaround
    }
    q
}

#[cfg(test)]
mod tests {
    use sort::merge_sort;
    use core::cmp::le;

    #[test]
    fn test_top_and_pop() {
        let data = ~[2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1];
        let mut sorted = merge_sort(data, le);
        let mut heap = from_vec(data);
        while heap.is_not_empty() {
            assert heap.top() == sorted.last();
            assert heap.pop() == sorted.pop();
        }
    }

    #[test]
    fn test_push() {
        let mut heap = from_vec(~[2, 4, 9]);
        assert heap.len() == 3;
        assert heap.top() == 9;
        heap.push(11);
        assert heap.len() == 4;
        assert heap.top() == 11;
        heap.push(5);
        assert heap.len() == 5;
        assert heap.top() == 11;
        heap.push(27);
        assert heap.len() == 6;
        assert heap.top() == 27;
        heap.push(3);
        assert heap.len() == 7;
        assert heap.top() == 27;
        heap.push(103);
        assert heap.len() == 8;
        assert heap.top() == 103;
    }

    #[test]
    fn test_push_pop() {
        let mut heap = from_vec(~[5, 5, 2, 1, 3]);
        assert heap.len() == 5;
        assert heap.push_pop(6) == 6;
        assert heap.len() == 5;
        assert heap.push_pop(0) == 5;
        assert heap.len() == 5;
        assert heap.push_pop(4) == 5;
        assert heap.len() == 5;
        assert heap.push_pop(1) == 4;
        assert heap.len() == 5;
    }

    #[test]
    fn test_replace() {
        let mut heap = from_vec(~[5, 5, 2, 1, 3]);
        assert heap.len() == 5;
        assert heap.replace(6) == 5;
        assert heap.len() == 5;
        assert heap.replace(0) == 6;
        assert heap.len() == 5;
        assert heap.replace(4) == 5;
        assert heap.len() == 5;
        assert heap.replace(1) == 4;
        assert heap.len() == 5;
    }

    #[test]
    fn test_to_sorted_vec() {
        let data = ~[2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1];
        assert from_vec(data).to_sorted_vec() == merge_sort(data, le);
    }

    #[test]
    #[should_fail]
    fn test_empty_pop() { let mut heap = from_vec::<int>(~[]); heap.pop(); }

    #[test]
    fn test_empty_maybe_pop() {
        let mut heap = from_vec::<int>(~[]);
        assert heap.maybe_pop().is_none();
    }

    #[test]
    #[should_fail]
    fn test_empty_top() { from_vec::<int>(~[]).top(); }

    #[test]
    fn test_empty_maybe_top() {
        assert from_vec::<int>(~[]).maybe_top().is_none();
    }

    #[test]
    #[should_fail]
    fn test_empty_replace() {
        let mut heap = from_vec::<int>(~[]);
        heap.replace(5);
    }

    #[test]
    fn test_to_vec() {
        let data = ~[1, 3, 5, 7, 9, 2, 4, 6, 8, 0];
        let heap = from_vec(copy data);
        assert merge_sort(heap.to_vec(), le) == merge_sort(data, le);
    }
}