about summary refs log tree commit diff
path: root/src/libstd/priority_queue.rs
blob: 08a58125d7ea5c15970415bfc5d5f70b13be1722 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! A priority queue implemented with a binary heap

use core::iter::BaseIter;
use core::ptr::addr_of;

#[abi = "rust-intrinsic"]
extern "rust-intrinsic" mod rusti {
    fn move_val_init<T>(dst: &mut T, +src: T);
    fn init<T>() -> T;
}

pub struct PriorityQueue<T> {
    priv data: ~[T],
}

impl<T:Ord> BaseIter<T> for PriorityQueue<T> {
    /// Visit all values in the underlying vector.
    ///
    /// The values are **not** visited in order.
    fn each(&self, f: &fn(&T) -> bool) { self.data.each(f) }
    fn size_hint(&self) -> Option<uint> { self.data.size_hint() }
}

impl<T:Ord> Container for PriorityQueue<T> {
    /// Returns the length of the queue
    fn len(&const self) -> uint { vec::uniq_len(&const self.data) }

    /// Returns true if a queue contains no elements
    fn is_empty(&const self) -> bool { self.len() == 0 }
}

impl<T:Ord> Mutable for PriorityQueue<T> {
    /// Drop all items from the queue
    fn clear(&mut self) { self.data.truncate(0) }
}

pub impl <T:Ord> PriorityQueue<T> {
    /// Returns the greatest item in the queue - fails if empty
    #[cfg(stage0)]
    fn top(&self) -> &'self T { &self.data[0] }

    /// Returns the greatest item in the queue - fails if empty
    #[cfg(stage1)]
    #[cfg(stage2)]
    #[cfg(stage3)]
    fn top<'a>(&'a self) -> &'a T { &self.data[0] }

    /// Returns the greatest item in the queue - None if empty
    #[cfg(stage0)]
    fn maybe_top(&self) -> Option<&'self T> {
        if self.is_empty() { None } else { Some(self.top()) }
    }

    /// Returns the greatest item in the queue - None if empty
    #[cfg(stage1)]
    #[cfg(stage2)]
    #[cfg(stage3)]
    fn maybe_top<'a>(&'a self) -> Option<&'a T> {
        if self.is_empty() { None } else { Some(self.top()) }
    }

    /// Returns the number of elements the queue can hold without reallocating
    fn capacity(&self) -> uint { vec::capacity(&self.data) }

    fn reserve(&mut self, n: uint) { vec::reserve(&mut self.data, n) }

    fn reserve_at_least(&mut self, n: uint) {
        vec::reserve_at_least(&mut self.data, n)
    }

    /// Pop the greatest item from the queue - fails if empty
    fn pop(&mut self) -> T {
        let mut item = self.data.pop();
        if !self.is_empty() { item <-> self.data[0]; self.siftdown(0); }
        item
    }

    /// Pop the greatest item from the queue - None if empty
    fn maybe_pop(&mut self) -> Option<T> {
        if self.is_empty() { None } else { Some(self.pop()) }
    }

    /// Push an item onto the queue
    fn push(&mut self, item: T) {
        self.data.push(item);
        let new_len = self.len() - 1;
        self.siftup(0, new_len);
    }

    /// Optimized version of a push followed by a pop
    fn push_pop(&mut self, mut item: T) -> T {
        if !self.is_empty() && self.data[0] > item {
            item <-> self.data[0];
            self.siftdown(0);
        }
        item
    }

    /// Optimized version of a pop followed by a push - fails if empty
    fn replace(&mut self, mut item: T) -> T {
        item <-> self.data[0];
        self.siftdown(0);
        item
    }

    /// Consume the PriorityQueue and return the underlying vector
    fn to_vec(self) -> ~[T] { let PriorityQueue{data: v} = self; v }

    /// Consume the PriorityQueue and return a vector in sorted
    /// (ascending) order
    fn to_sorted_vec(self) -> ~[T] {
        let mut q = self;
        let mut end = q.len();
        while end > 1 {
            end -= 1;
            q.data[end] <-> q.data[0];
            q.siftdown_range(0, end)
        }
        q.to_vec()
    }

    /// Create an empty PriorityQueue
    fn new() -> PriorityQueue<T> { PriorityQueue{data: ~[],} }

    /// Create a PriorityQueue from a vector (heapify)
    fn from_vec(xs: ~[T]) -> PriorityQueue<T> {
        let mut q = PriorityQueue{data: xs,};
        let mut n = q.len() / 2;
        while n > 0 {
            n -= 1;
            q.siftdown(n)
        }
        q
    }

    // The implementations of siftup and siftdown use unsafe blocks in
    // order to move an element out of the vector (leaving behind a
    // junk element), shift along the others and move it back into the
    // vector over the junk element.  This reduces the constant factor
    // compared to using swaps, which involves twice as many moves.

    priv fn siftup(&mut self, start: uint, mut pos: uint) {
        unsafe {
            let new = *addr_of(&self.data[pos]);

            while pos > start {
                let parent = (pos - 1) >> 1;
                if new > self.data[parent] {
                    let mut x = rusti::init();
                    x <-> self.data[parent];
                    rusti::move_val_init(&mut self.data[pos], x);
                    pos = parent;
                    loop
                }
                break
            }
            rusti::move_val_init(&mut self.data[pos], new);
        }
    }

    priv fn siftdown_range(&mut self, mut pos: uint, end: uint) {
        unsafe {
            let start = pos;
            let new = *addr_of(&self.data[pos]);

            let mut child = 2 * pos + 1;
            while child < end {
                let right = child + 1;
                if right < end && !(self.data[child] > self.data[right]) {
                    child = right;
                }
                let mut x = rusti::init();
                x <-> self.data[child];
                rusti::move_val_init(&mut self.data[pos], x);
                pos = child;
                child = 2 * pos + 1;
            }

            rusti::move_val_init(&mut self.data[pos], new);
            self.siftup(start, pos);
        }
    }

    priv fn siftdown(&mut self, pos: uint) {
        let len = self.len();
        self.siftdown_range(pos, len);
    }
}

#[cfg(test)]
mod tests {
    use sort::merge_sort;
    use core::cmp::le;
    use priority_queue::PriorityQueue::{from_vec, new};

    #[test]
    fn test_top_and_pop() {
        let data = ~[2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1];
        let mut sorted = merge_sort(data, le);
        let mut heap = from_vec(data);
        while !heap.is_empty() {
            assert!(heap.top() == sorted.last());
            assert!(heap.pop() == sorted.pop());
        }
    }

    #[test]
    fn test_push() {
        let mut heap = from_vec(~[2, 4, 9]);
        assert!(heap.len() == 3);
        assert!(*heap.top() == 9);
        heap.push(11);
        assert!(heap.len() == 4);
        assert!(*heap.top() == 11);
        heap.push(5);
        assert!(heap.len() == 5);
        assert!(*heap.top() == 11);
        heap.push(27);
        assert!(heap.len() == 6);
        assert!(*heap.top() == 27);
        heap.push(3);
        assert!(heap.len() == 7);
        assert!(*heap.top() == 27);
        heap.push(103);
        assert!(heap.len() == 8);
        assert!(*heap.top() == 103);
    }

    #[test]
    fn test_push_unique() {
        let mut heap = from_vec(~[~2, ~4, ~9]);
        assert!(heap.len() == 3);
        assert!(*heap.top() == ~9);
        heap.push(~11);
        assert!(heap.len() == 4);
        assert!(*heap.top() == ~11);
        heap.push(~5);
        assert!(heap.len() == 5);
        assert!(*heap.top() == ~11);
        heap.push(~27);
        assert!(heap.len() == 6);
        assert!(*heap.top() == ~27);
        heap.push(~3);
        assert!(heap.len() == 7);
        assert!(*heap.top() == ~27);
        heap.push(~103);
        assert!(heap.len() == 8);
        assert!(*heap.top() == ~103);
    }

    #[test]
    fn test_push_pop() {
        let mut heap = from_vec(~[5, 5, 2, 1, 3]);
        assert!(heap.len() == 5);
        assert!(heap.push_pop(6) == 6);
        assert!(heap.len() == 5);
        assert!(heap.push_pop(0) == 5);
        assert!(heap.len() == 5);
        assert!(heap.push_pop(4) == 5);
        assert!(heap.len() == 5);
        assert!(heap.push_pop(1) == 4);
        assert!(heap.len() == 5);
    }

    #[test]
    fn test_replace() {
        let mut heap = from_vec(~[5, 5, 2, 1, 3]);
        assert!(heap.len() == 5);
        assert!(heap.replace(6) == 5);
        assert!(heap.len() == 5);
        assert!(heap.replace(0) == 6);
        assert!(heap.len() == 5);
        assert!(heap.replace(4) == 5);
        assert!(heap.len() == 5);
        assert!(heap.replace(1) == 4);
        assert!(heap.len() == 5);
    }

    fn check_to_vec(data: ~[int]) {
        let heap = from_vec(data);
        assert!(merge_sort(heap.to_vec(), le) == merge_sort(data, le));
        assert!(heap.to_sorted_vec() == merge_sort(data, le));
    }

    #[test]
    fn test_to_vec() {
        check_to_vec(~[]);
        check_to_vec(~[5]);
        check_to_vec(~[3, 2]);
        check_to_vec(~[2, 3]);
        check_to_vec(~[5, 1, 2]);
        check_to_vec(~[1, 100, 2, 3]);
        check_to_vec(~[1, 3, 5, 7, 9, 2, 4, 6, 8, 0]);
        check_to_vec(~[2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1]);
        check_to_vec(~[9, 11, 9, 9, 9, 9, 11, 2, 3, 4, 11, 9, 0, 0, 0, 0]);
        check_to_vec(~[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
        check_to_vec(~[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]);
        check_to_vec(~[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 1, 2]);
        check_to_vec(~[5, 4, 3, 2, 1, 5, 4, 3, 2, 1, 5, 4, 3, 2, 1]);
    }

    #[test]
    #[should_fail]
    #[ignore(cfg(windows))]
    fn test_empty_pop() { let mut heap = new::<int>(); heap.pop(); }

    #[test]
    fn test_empty_maybe_pop() {
        let mut heap = new::<int>();
        assert!(heap.maybe_pop().is_none());
    }

    #[test]
    #[should_fail]
    #[ignore(cfg(windows))]
    fn test_empty_top() { let empty = new::<int>(); empty.top(); }

    #[test]
    fn test_empty_maybe_top() {
        let empty = new::<int>();
        assert!(empty.maybe_top().is_none());
    }

    #[test]
    #[should_fail]
    #[ignore(cfg(windows))]
    fn test_empty_replace() { let mut heap = new(); heap.replace(5); }
}