1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
|
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use either::{Left, Right};
use option::{Option, Some, None};
use cast::{transmute, transmute_mut_region, transmute_mut_unsafe};
use clone::Clone;
use unstable::raw;
use super::sleeper_list::SleeperList;
use super::work_queue::WorkQueue;
use super::stack::{StackPool};
use super::rtio::EventLoop;
use super::context::Context;
use super::task::{Task, AnySched, Sched};
use super::message_queue::MessageQueue;
use rt::kill::BlockedTask;
use rt::local_ptr;
use rt::local::Local;
use rt::rtio::{RemoteCallback, PausibleIdleCallback};
use borrow::{to_uint};
use cell::Cell;
use rand::{XorShiftRng, Rng, Rand};
use iter::range;
use vec::{OwnedVector};
/// A scheduler is responsible for coordinating the execution of Tasks
/// on a single thread. The scheduler runs inside a slightly modified
/// Rust Task. When not running this task is stored in the scheduler
/// struct. The scheduler struct acts like a baton, all scheduling
/// actions are transfers of the baton.
///
/// XXX: This creates too many callbacks to run_sched_once, resulting
/// in too much allocation and too many events.
pub struct Scheduler {
/// There are N work queues, one per scheduler.
priv work_queue: WorkQueue<~Task>,
/// Work queues for the other schedulers. These are created by
/// cloning the core work queues.
work_queues: ~[WorkQueue<~Task>],
/// The queue of incoming messages from other schedulers.
/// These are enqueued by SchedHandles after which a remote callback
/// is triggered to handle the message.
priv message_queue: MessageQueue<SchedMessage>,
/// A shared list of sleeping schedulers. We'll use this to wake
/// up schedulers when pushing work onto the work queue.
sleeper_list: SleeperList,
/// Indicates that we have previously pushed a handle onto the
/// SleeperList but have not yet received the Wake message.
/// Being `true` does not necessarily mean that the scheduler is
/// not active since there are multiple event sources that may
/// wake the scheduler. It just prevents the scheduler from pushing
/// multiple handles onto the sleeper list.
priv sleepy: bool,
/// A flag to indicate we've received the shutdown message and should
/// no longer try to go to sleep, but exit instead.
no_sleep: bool,
stack_pool: StackPool,
/// The scheduler runs on a special task. When it is not running
/// it is stored here instead of the work queue.
priv sched_task: Option<~Task>,
/// An action performed after a context switch on behalf of the
/// code running before the context switch
priv cleanup_job: Option<CleanupJob>,
/// Should this scheduler run any task, or only pinned tasks?
run_anything: bool,
/// If the scheduler shouldn't run some tasks, a friend to send
/// them to.
priv friend_handle: Option<SchedHandle>,
/// A fast XorShift rng for scheduler use
rng: XorShiftRng,
/// A toggleable idle callback
priv idle_callback: Option<~PausibleIdleCallback>,
/// A countdown that starts at a random value and is decremented
/// every time a yield check is performed. When it hits 0 a task
/// will yield.
priv yield_check_count: uint,
/// A flag to tell the scheduler loop it needs to do some stealing
/// in order to introduce randomness as part of a yield
priv steal_for_yield: bool,
// n.b. currently destructors of an object are run in top-to-bottom in order
// of field declaration. Due to its nature, the pausible idle callback
// must have some sort of handle to the event loop, so it needs to get
// destroyed before the event loop itself. For this reason, we destroy
// the event loop last to ensure that any unsafe references to it are
// destroyed before it's actually destroyed.
/// The event loop used to drive the scheduler and perform I/O
event_loop: ~EventLoop,
}
/// An indication of how hard to work on a given operation, the difference
/// mainly being whether memory is synchronized or not
#[deriving(Eq)]
enum EffortLevel {
DontTryTooHard,
GiveItYourBest
}
static MAX_YIELD_CHECKS: uint = 200;
fn reset_yield_check(rng: &mut XorShiftRng) -> uint {
let r: uint = Rand::rand(rng);
r % MAX_YIELD_CHECKS + 1
}
impl Scheduler {
// * Initialization Functions
pub fn new(event_loop: ~EventLoop,
work_queue: WorkQueue<~Task>,
work_queues: ~[WorkQueue<~Task>],
sleeper_list: SleeperList)
-> Scheduler {
Scheduler::new_special(event_loop, work_queue,
work_queues,
sleeper_list, true, None)
}
pub fn new_special(event_loop: ~EventLoop,
work_queue: WorkQueue<~Task>,
work_queues: ~[WorkQueue<~Task>],
sleeper_list: SleeperList,
run_anything: bool,
friend: Option<SchedHandle>)
-> Scheduler {
let mut sched = Scheduler {
sleeper_list: sleeper_list,
message_queue: MessageQueue::new(),
sleepy: false,
no_sleep: false,
event_loop: event_loop,
work_queue: work_queue,
work_queues: work_queues,
stack_pool: StackPool::new(),
sched_task: None,
cleanup_job: None,
run_anything: run_anything,
friend_handle: friend,
rng: new_sched_rng(),
idle_callback: None,
yield_check_count: 0,
steal_for_yield: false
};
sched.yield_check_count = reset_yield_check(&mut sched.rng);
return sched;
}
// XXX: This may eventually need to be refactored so that
// the scheduler itself doesn't have to call event_loop.run.
// That will be important for embedding the runtime into external
// event loops.
// Take a main task to run, and a scheduler to run it in. Create a
// scheduler task and bootstrap into it.
pub fn bootstrap(~self, task: ~Task) {
let mut this = self;
// Build an Idle callback.
this.idle_callback = Some(this.event_loop.pausible_idle_callback());
// Initialize the TLS key.
local_ptr::init_tls_key();
// Create a task for the scheduler with an empty context.
let sched_task = ~Task::new_sched_task();
// Now that we have an empty task struct for the scheduler
// task, put it in TLS.
Local::put(sched_task);
// Before starting our first task, make sure the idle callback
// is active. As we do not start in the sleep state this is
// important.
this.idle_callback.get_mut_ref().start(Scheduler::run_sched_once);
// Now, as far as all the scheduler state is concerned, we are
// inside the "scheduler" context. So we can act like the
// scheduler and resume the provided task.
this.resume_task_immediately(task);
// Now we are back in the scheduler context, having
// successfully run the input task. Start by running the
// scheduler. Grab it out of TLS - performing the scheduler
// action will have given it away.
let sched: ~Scheduler = Local::take();
rtdebug!("starting scheduler {}", sched.sched_id());
sched.run();
// Close the idle callback.
let mut sched: ~Scheduler = Local::take();
sched.idle_callback.get_mut_ref().close();
// Make one go through the loop to run the close callback.
sched.run();
// Now that we are done with the scheduler, clean up the
// scheduler task. Do so by removing it from TLS and manually
// cleaning up the memory it uses. As we didn't actually call
// task.run() on the scheduler task we never get through all
// the cleanup code it runs.
let mut stask: ~Task = Local::take();
rtdebug!("stopping scheduler {}", stask.sched.get_ref().sched_id());
// Should not have any messages
let message = stask.sched.get_mut_ref().message_queue.pop();
rtassert!(message.is_none());
stask.destroyed = true;
}
// This does not return a scheduler, as the scheduler is placed
// inside the task.
pub fn run(~self) {
let mut self_sched = self;
// This is unsafe because we need to place the scheduler, with
// the event_loop inside, inside our task. But we still need a
// mutable reference to the event_loop to give it the "run"
// command.
unsafe {
let event_loop: *mut ~EventLoop = &mut self_sched.event_loop;
// Our scheduler must be in the task before the event loop
// is started.
let self_sched = Cell::new(self_sched);
do Local::borrow |stask: &mut Task| {
stask.sched = Some(self_sched.take());
};
(*event_loop).run();
}
}
// * Execution Functions - Core Loop Logic
// The model for this function is that you continue through it
// until you either use the scheduler while performing a schedule
// action, in which case you give it away and return early, or
// you reach the end and sleep. In the case that a scheduler
// action is performed the loop is evented such that this function
// is called again.
fn run_sched_once() {
// When we reach the scheduler context via the event loop we
// already have a scheduler stored in our local task, so we
// start off by taking it. This is the only path through the
// scheduler where we get the scheduler this way.
let mut sched: ~Scheduler = Local::take();
// Assume that we need to continue idling unless we reach the
// end of this function without performing an action.
sched.idle_callback.get_mut_ref().resume();
// First we check for scheduler messages, these are higher
// priority than regular tasks.
let sched = match sched.interpret_message_queue(DontTryTooHard) {
Some(sched) => sched,
None => return
};
// This helper will use a randomized work-stealing algorithm
// to find work.
let sched = match sched.do_work() {
Some(sched) => sched,
None => return
};
// Now, before sleeping we need to find out if there really
// were any messages. Give it your best!
let mut sched = match sched.interpret_message_queue(GiveItYourBest) {
Some(sched) => sched,
None => return
};
// If we got here then there was no work to do.
// Generate a SchedHandle and push it to the sleeper list so
// somebody can wake us up later.
if !sched.sleepy && !sched.no_sleep {
rtdebug!("scheduler has no work to do, going to sleep");
sched.sleepy = true;
let handle = sched.make_handle();
sched.sleeper_list.push(handle);
// Since we are sleeping, deactivate the idle callback.
sched.idle_callback.get_mut_ref().pause();
} else {
rtdebug!("not sleeping, already doing so or no_sleep set");
// We may not be sleeping, but we still need to deactivate
// the idle callback.
sched.idle_callback.get_mut_ref().pause();
}
// Finished a cycle without using the Scheduler. Place it back
// in TLS.
Local::put(sched);
}
// This function returns None if the scheduler is "used", or it
// returns the still-available scheduler. At this point all
// message-handling will count as a turn of work, and as a result
// return None.
fn interpret_message_queue(~self, effort: EffortLevel) -> Option<~Scheduler> {
let mut this = self;
let msg = if effort == DontTryTooHard {
// Do a cheap check that may miss messages
this.message_queue.casual_pop()
} else {
this.message_queue.pop()
};
match msg {
Some(PinnedTask(task)) => {
let mut task = task;
task.give_home(Sched(this.make_handle()));
this.resume_task_immediately(task);
return None;
}
Some(TaskFromFriend(task)) => {
rtdebug!("got a task from a friend. lovely!");
this.process_task(task, Scheduler::resume_task_immediately_cl);
return None;
}
Some(RunOnce(task)) => {
// bypass the process_task logic to force running this task once
// on this home scheduler. This is often used for I/O (homing).
Scheduler::resume_task_immediately_cl(this, task);
return None;
}
Some(Wake) => {
this.sleepy = false;
Local::put(this);
return None;
}
Some(Shutdown) => {
rtdebug!("shutting down");
if this.sleepy {
// There may be an outstanding handle on the
// sleeper list. Pop them all to make sure that's
// not the case.
loop {
match this.sleeper_list.pop() {
Some(handle) => {
let mut handle = handle;
handle.send(Wake);
}
None => break
}
}
}
// No more sleeping. After there are no outstanding
// event loop references we will shut down.
this.no_sleep = true;
this.sleepy = false;
Local::put(this);
return None;
}
None => {
return Some(this);
}
}
}
fn do_work(~self) -> Option<~Scheduler> {
let mut this = self;
rtdebug!("scheduler calling do work");
match this.find_work() {
Some(task) => {
rtdebug!("found some work! processing the task");
this.process_task(task, Scheduler::resume_task_immediately_cl);
return None;
}
None => {
rtdebug!("no work was found, returning the scheduler struct");
return Some(this);
}
}
}
// Workstealing: In this iteration of the runtime each scheduler
// thread has a distinct work queue. When no work is available
// locally, make a few attempts to steal work from the queues of
// other scheduler threads. If a few steals fail we end up in the
// old "no work" path which is fine.
// First step in the process is to find a task. This function does
// that by first checking the local queue, and if there is no work
// there, trying to steal from the remote work queues.
fn find_work(&mut self) -> Option<~Task> {
rtdebug!("scheduler looking for work");
if !self.steal_for_yield {
match self.work_queue.pop() {
Some(task) => {
rtdebug!("found a task locally");
return Some(task)
}
None => {
rtdebug!("scheduler trying to steal");
return self.try_steals();
}
}
} else {
// During execution of the last task, it performed a 'yield',
// so we're doing some work stealing in order to introduce some
// scheduling randomness. Otherwise we would just end up popping
// that same task again. This is pretty lame and is to work around
// the problem that work stealing is not designed for 'non-strict'
// (non-fork-join) task parallelism.
self.steal_for_yield = false;
match self.try_steals() {
Some(task) => {
rtdebug!("stole a task after yielding");
return Some(task);
}
None => {
rtdebug!("did not steal a task after yielding");
// Back to business
return self.find_work();
}
}
}
}
// Try stealing from all queues the scheduler knows about. This
// naive implementation can steal from our own queue or from other
// special schedulers.
fn try_steals(&mut self) -> Option<~Task> {
let work_queues = &mut self.work_queues;
let len = work_queues.len();
let start_index = self.rng.gen_range(0, len);
for index in range(0, len).map(|i| (i + start_index) % len) {
match work_queues[index].steal() {
Some(task) => {
rtdebug!("found task by stealing");
return Some(task)
}
None => ()
}
};
rtdebug!("giving up on stealing");
return None;
}
// * Task Routing Functions - Make sure tasks send up in the right
// place.
fn process_task(~self, task: ~Task,
schedule_fn: SchedulingFn) {
let mut this = self;
let mut task = task;
rtdebug!("processing a task");
let home = task.take_unwrap_home();
match home {
Sched(home_handle) => {
if home_handle.sched_id != this.sched_id() {
rtdebug!("sending task home");
task.give_home(Sched(home_handle));
Scheduler::send_task_home(task);
Local::put(this);
} else {
rtdebug!("running task here");
task.give_home(Sched(home_handle));
schedule_fn(this, task);
}
}
AnySched if this.run_anything => {
rtdebug!("running anysched task here");
task.give_home(AnySched);
schedule_fn(this, task);
}
AnySched => {
rtdebug!("sending task to friend");
task.give_home(AnySched);
this.send_to_friend(task);
Local::put(this);
}
}
}
fn send_task_home(task: ~Task) {
let mut task = task;
let mut home = task.take_unwrap_home();
match home {
Sched(ref mut home_handle) => {
home_handle.send(PinnedTask(task));
}
AnySched => {
rtabort!("error: cannot send anysched task home");
}
}
}
/// Take a non-homed task we aren't allowed to run here and send
/// it to the designated friend scheduler to execute.
fn send_to_friend(&mut self, task: ~Task) {
rtdebug!("sending a task to friend");
match self.friend_handle {
Some(ref mut handle) => {
handle.send(TaskFromFriend(task));
}
None => {
rtabort!("tried to send task to a friend but scheduler has no friends");
}
}
}
/// Schedule a task to be executed later.
///
/// Pushes the task onto the work stealing queue and tells the
/// event loop to run it later. Always use this instead of pushing
/// to the work queue directly.
pub fn enqueue_task(&mut self, task: ~Task) {
let this = self;
// We push the task onto our local queue clone.
this.work_queue.push(task);
this.idle_callback.get_mut_ref().resume();
// We've made work available. Notify a
// sleeping scheduler.
match this.sleeper_list.casual_pop() {
Some(handle) => {
let mut handle = handle;
handle.send(Wake)
}
None => { (/* pass */) }
};
}
/// As enqueue_task, but with the possibility for the blocked task to
/// already have been killed.
pub fn enqueue_blocked_task(&mut self, blocked_task: BlockedTask) {
do blocked_task.wake().map |task| {
self.enqueue_task(task);
};
}
// * Core Context Switching Functions
// The primary function for changing contexts. In the current
// design the scheduler is just a slightly modified GreenTask, so
// all context swaps are from Task to Task. The only difference
// between the various cases is where the inputs come from, and
// what is done with the resulting task. That is specified by the
// cleanup function f, which takes the scheduler and the
// old task as inputs.
pub fn change_task_context(~self,
next_task: ~Task,
f: &fn(&mut Scheduler, ~Task)) {
let mut this = self;
// The current task is grabbed from TLS, not taken as an input.
// Doing an unsafe_take to avoid writing back a null pointer -
// We're going to call `put` later to do that.
let current_task: ~Task = unsafe { Local::unsafe_take() };
// Check that the task is not in an atomically() section (e.g.,
// holding a pthread mutex, which could deadlock the scheduler).
current_task.death.assert_may_sleep();
// These transmutes do something fishy with a closure.
let f_fake_region = unsafe {
transmute::<&fn(&mut Scheduler, ~Task),
&fn(&mut Scheduler, ~Task)>(f)
};
let f_opaque = ClosureConverter::from_fn(f_fake_region);
// The current task is placed inside an enum with the cleanup
// function. This enum is then placed inside the scheduler.
this.cleanup_job = Some(CleanupJob::new(current_task, f_opaque));
// The scheduler is then placed inside the next task.
let mut next_task = next_task;
next_task.sched = Some(this);
// However we still need an internal mutable pointer to the
// original task. The strategy here was "arrange memory, then
// get pointers", so we crawl back up the chain using
// transmute to eliminate borrowck errors.
unsafe {
let sched: &mut Scheduler =
transmute_mut_region(*next_task.sched.get_mut_ref());
let current_task: &mut Task = match sched.cleanup_job {
Some(CleanupJob { task: ref task, _ }) => {
let task_ptr: *~Task = task;
transmute_mut_region(*transmute_mut_unsafe(task_ptr))
}
None => {
rtabort!("no cleanup job");
}
};
let (current_task_context, next_task_context) =
Scheduler::get_contexts(current_task, next_task);
// Done with everything - put the next task in TLS. This
// works because due to transmute the borrow checker
// believes that we have no internal pointers to
// next_task.
Local::put(next_task);
// The raw context swap operation. The next action taken
// will be running the cleanup job from the context of the
// next task.
Context::swap(current_task_context, next_task_context);
}
// When the context swaps back to this task we immediately
// run the cleanup job, as expected by the previously called
// swap_contexts function.
unsafe {
let task: *mut Task = Local::unsafe_borrow();
(*task).sched.get_mut_ref().run_cleanup_job();
// Must happen after running the cleanup job (of course).
(*task).death.check_killed((*task).unwinder.unwinding);
}
}
// Returns a mutable reference to both contexts involved in this
// swap. This is unsafe - we are getting mutable internal
// references to keep even when we don't own the tasks. It looks
// kinda safe because we are doing transmutes before passing in
// the arguments.
pub fn get_contexts<'a>(current_task: &mut Task, next_task: &mut Task) ->
(&'a mut Context, &'a mut Context) {
let current_task_context =
&mut current_task.coroutine.get_mut_ref().saved_context;
let next_task_context =
&mut next_task.coroutine.get_mut_ref().saved_context;
unsafe {
(transmute_mut_region(current_task_context),
transmute_mut_region(next_task_context))
}
}
// * Context Swapping Helpers - Here be ugliness!
pub fn resume_task_immediately(~self, task: ~Task) {
do self.change_task_context(task) |sched, stask| {
sched.sched_task = Some(stask);
}
}
fn resume_task_immediately_cl(sched: ~Scheduler,
task: ~Task) {
sched.resume_task_immediately(task)
}
pub fn resume_blocked_task_immediately(~self, blocked_task: BlockedTask) {
match blocked_task.wake() {
Some(task) => { self.resume_task_immediately(task); }
None => Local::put(self)
};
}
/// Block a running task, context switch to the scheduler, then pass the
/// blocked task to a closure.
///
/// # Safety note
///
/// The closure here is a *stack* closure that lives in the
/// running task. It gets transmuted to the scheduler's lifetime
/// and called while the task is blocked.
///
/// This passes a Scheduler pointer to the fn after the context switch
/// in order to prevent that fn from performing further scheduling operations.
/// Doing further scheduling could easily result in infinite recursion.
pub fn deschedule_running_task_and_then(~self, f: &fn(&mut Scheduler, BlockedTask)) {
// Trickier - we need to get the scheduler task out of self
// and use it as the destination.
let mut this = self;
let stask = this.sched_task.take_unwrap();
// Otherwise this is the same as below.
this.switch_running_tasks_and_then(stask, f);
}
pub fn switch_running_tasks_and_then(~self, next_task: ~Task,
f: &fn(&mut Scheduler, BlockedTask)) {
// This is where we convert the BlockedTask-taking closure into one
// that takes just a Task, and is aware of the block-or-killed protocol.
do self.change_task_context(next_task) |sched, task| {
// Task might need to receive a kill signal instead of blocking.
// We can call the "and_then" only if it blocks successfully.
match BlockedTask::try_block(task) {
Left(killed_task) => sched.enqueue_task(killed_task),
Right(blocked_task) => f(sched, blocked_task),
}
}
}
fn switch_task(sched: ~Scheduler, task: ~Task) {
do sched.switch_running_tasks_and_then(task) |sched, last_task| {
sched.enqueue_blocked_task(last_task);
};
}
// * Task Context Helpers
/// Called by a running task to end execution, after which it will
/// be recycled by the scheduler for reuse in a new task.
pub fn terminate_current_task(~self) {
// Similar to deschedule running task and then, but cannot go through
// the task-blocking path. The task is already dying.
let mut this = self;
let stask = this.sched_task.take_unwrap();
do this.change_task_context(stask) |sched, mut dead_task| {
let coroutine = dead_task.coroutine.take_unwrap();
coroutine.recycle(&mut sched.stack_pool);
}
}
pub fn run_task(task: ~Task) {
let sched: ~Scheduler = Local::take();
sched.process_task(task, Scheduler::switch_task);
}
pub fn run_task_later(next_task: ~Task) {
let next_task = Cell::new(next_task);
do Local::borrow |sched: &mut Scheduler| {
sched.enqueue_task(next_task.take());
};
}
/// Yield control to the scheduler, executing another task. This is guaranteed
/// to introduce some amount of randomness to the scheduler. Currently the
/// randomness is a result of performing a round of work stealing (which
/// may end up stealing from the current scheduler).
pub fn yield_now(~self) {
let mut this = self;
this.yield_check_count = reset_yield_check(&mut this.rng);
// Tell the scheduler to start stealing on the next iteration
this.steal_for_yield = true;
do this.deschedule_running_task_and_then |sched, task| {
sched.enqueue_blocked_task(task);
}
}
pub fn maybe_yield(~self) {
// The number of times to do the yield check before yielding, chosen arbitrarily.
let mut this = self;
rtassert!(this.yield_check_count > 0);
this.yield_check_count -= 1;
if this.yield_check_count == 0 {
this.yield_now();
} else {
Local::put(this);
}
}
// * Utility Functions
pub fn sched_id(&self) -> uint { to_uint(self) }
pub fn run_cleanup_job(&mut self) {
let cleanup_job = self.cleanup_job.take_unwrap();
cleanup_job.run(self);
}
pub fn make_handle(&mut self) -> SchedHandle {
let remote = self.event_loop.remote_callback(Scheduler::run_sched_once);
return SchedHandle {
remote: remote,
queue: self.message_queue.clone(),
sched_id: self.sched_id()
};
}
}
// Supporting types
type SchedulingFn = ~fn(~Scheduler, ~Task);
pub enum SchedMessage {
Wake,
Shutdown,
PinnedTask(~Task),
TaskFromFriend(~Task),
RunOnce(~Task),
}
pub struct SchedHandle {
priv remote: ~RemoteCallback,
priv queue: MessageQueue<SchedMessage>,
sched_id: uint
}
impl SchedHandle {
pub fn send(&mut self, msg: SchedMessage) {
self.queue.push(msg);
self.remote.fire();
}
}
struct CleanupJob {
task: ~Task,
f: UnsafeTaskReceiver
}
impl CleanupJob {
pub fn new(task: ~Task, f: UnsafeTaskReceiver) -> CleanupJob {
CleanupJob {
task: task,
f: f
}
}
pub fn run(self, sched: &mut Scheduler) {
let CleanupJob { task: task, f: f } = self;
f.to_fn()(sched, task)
}
}
// XXX: Some hacks to put a &fn in Scheduler without borrowck
// complaining
type UnsafeTaskReceiver = raw::Closure;
trait ClosureConverter {
fn from_fn(&fn(&mut Scheduler, ~Task)) -> Self;
fn to_fn(self) -> &fn(&mut Scheduler, ~Task);
}
impl ClosureConverter for UnsafeTaskReceiver {
fn from_fn(f: &fn(&mut Scheduler, ~Task)) -> UnsafeTaskReceiver {
unsafe { transmute(f) }
}
fn to_fn(self) -> &fn(&mut Scheduler, ~Task) { unsafe { transmute(self) } }
}
// On unix, we read randomness straight from /dev/urandom, but the
// default constructor of an XorShiftRng does this via io::file, which
// relies on the scheduler existing, so we have to manually load
// randomness. Windows has its own C API for this, so we don't need to
// worry there.
#[cfg(windows)]
fn new_sched_rng() -> XorShiftRng {
XorShiftRng::new()
}
#[cfg(unix)]
#[fixed_stack_segment] #[inline(never)]
fn new_sched_rng() -> XorShiftRng {
use libc;
use mem;
use c_str::ToCStr;
use vec::MutableVector;
use iter::Iterator;
use rand::SeedableRng;
let fd = do "/dev/urandom".with_c_str |name| {
unsafe { libc::open(name, libc::O_RDONLY, 0) }
};
if fd == -1 {
rtabort!("could not open /dev/urandom for reading.")
}
let mut seeds = [0u32, .. 4];
let size = mem::size_of_val(&seeds);
loop {
let nbytes = do seeds.as_mut_buf |buf, _| {
unsafe {
libc::read(fd,
buf as *mut libc::c_void,
size as libc::size_t)
}
};
rtassert!(nbytes as uint == size);
if !seeds.iter().all(|x| *x == 0) {
break;
}
}
unsafe {libc::close(fd);}
SeedableRng::from_seed(seeds)
}
#[cfg(test)]
mod test {
extern mod extra;
use prelude::*;
use rt::test::*;
use unstable::run_in_bare_thread;
use borrow::to_uint;
use rt::sched::{Scheduler};
use cell::Cell;
use rt::thread::Thread;
use rt::task::{Task, Sched};
use rt::basic;
use rt::util;
use option::{Some};
use rt::task::UnwindResult;
#[test]
fn trivial_run_in_newsched_task_test() {
let mut task_ran = false;
let task_ran_ptr: *mut bool = &mut task_ran;
do run_in_newsched_task || {
unsafe { *task_ran_ptr = true };
rtdebug!("executed from the new scheduler")
}
assert!(task_ran);
}
#[test]
fn multiple_task_test() {
let total = 10;
let mut task_run_count = 0;
let task_run_count_ptr: *mut uint = &mut task_run_count;
do run_in_newsched_task || {
for _ in range(0u, total) {
do spawntask || {
unsafe { *task_run_count_ptr = *task_run_count_ptr + 1};
}
}
}
assert!(task_run_count == total);
}
#[test]
fn multiple_task_nested_test() {
let mut task_run_count = 0;
let task_run_count_ptr: *mut uint = &mut task_run_count;
do run_in_newsched_task || {
do spawntask || {
unsafe { *task_run_count_ptr = *task_run_count_ptr + 1 };
do spawntask || {
unsafe { *task_run_count_ptr = *task_run_count_ptr + 1 };
do spawntask || {
unsafe { *task_run_count_ptr = *task_run_count_ptr + 1 };
}
}
}
}
assert!(task_run_count == 3);
}
// Confirm that a sched_id actually is the uint form of the
// pointer to the scheduler struct.
#[test]
fn simple_sched_id_test() {
do run_in_bare_thread {
let sched = ~new_test_uv_sched();
assert!(to_uint(sched) == sched.sched_id());
}
}
// Compare two scheduler ids that are different, this should never
// fail but may catch a mistake someday.
#[test]
fn compare_sched_id_test() {
do run_in_bare_thread {
let sched_one = ~new_test_uv_sched();
let sched_two = ~new_test_uv_sched();
assert!(sched_one.sched_id() != sched_two.sched_id());
}
}
// A very simple test that confirms that a task executing on the
// home scheduler notices that it is home.
#[test]
fn test_home_sched() {
do run_in_bare_thread {
let mut task_ran = false;
let task_ran_ptr: *mut bool = &mut task_ran;
let mut sched = ~new_test_uv_sched();
let sched_handle = sched.make_handle();
let mut task = ~do Task::new_root_homed(&mut sched.stack_pool, None,
Sched(sched_handle)) {
unsafe { *task_ran_ptr = true };
assert!(Task::on_appropriate_sched());
};
let on_exit: ~fn(UnwindResult) = |exit_status| rtassert!(exit_status.is_success());
task.death.on_exit = Some(on_exit);
sched.bootstrap(task);
}
}
// An advanced test that checks all four possible states that a
// (task,sched) can be in regarding homes.
#[test]
fn test_schedule_home_states() {
use rt::sleeper_list::SleeperList;
use rt::work_queue::WorkQueue;
use rt::sched::Shutdown;
use borrow;
use rt::comm::*;
do run_in_bare_thread {
let sleepers = SleeperList::new();
let normal_queue = WorkQueue::new();
let special_queue = WorkQueue::new();
let queues = ~[normal_queue.clone(), special_queue.clone()];
// Our normal scheduler
let mut normal_sched = ~Scheduler::new(
basic::event_loop(),
normal_queue,
queues.clone(),
sleepers.clone());
let normal_handle = Cell::new(normal_sched.make_handle());
let friend_handle = normal_sched.make_handle();
// Our special scheduler
let mut special_sched = ~Scheduler::new_special(
basic::event_loop(),
special_queue.clone(),
queues.clone(),
sleepers.clone(),
false,
Some(friend_handle));
let special_handle = Cell::new(special_sched.make_handle());
let t1_handle = special_sched.make_handle();
let t4_handle = special_sched.make_handle();
// Four test tasks:
// 1) task is home on special
// 2) task not homed, sched doesn't care
// 3) task not homed, sched requeues
// 4) task not home, send home
let task1 = ~do Task::new_root_homed(&mut special_sched.stack_pool, None,
Sched(t1_handle)) || {
rtassert!(Task::on_appropriate_sched());
};
rtdebug!("task1 id: **{}**", borrow::to_uint(task1));
let task2 = ~do Task::new_root(&mut normal_sched.stack_pool, None) {
rtassert!(Task::on_appropriate_sched());
};
let task3 = ~do Task::new_root(&mut normal_sched.stack_pool, None) {
rtassert!(Task::on_appropriate_sched());
};
let task4 = ~do Task::new_root_homed(&mut special_sched.stack_pool, None,
Sched(t4_handle)) {
rtassert!(Task::on_appropriate_sched());
};
rtdebug!("task4 id: **{}**", borrow::to_uint(task4));
let task1 = Cell::new(task1);
let task2 = Cell::new(task2);
let task3 = Cell::new(task3);
let task4 = Cell::new(task4);
// Signal from the special task that we are done.
let (port, chan) = oneshot::<()>();
let port = Cell::new(port);
let chan = Cell::new(chan);
let normal_task = ~do Task::new_root(&mut normal_sched.stack_pool, None) {
rtdebug!("*about to submit task2*");
Scheduler::run_task(task2.take());
rtdebug!("*about to submit task4*");
Scheduler::run_task(task4.take());
rtdebug!("*normal_task done*");
port.take().recv();
let mut nh = normal_handle.take();
nh.send(Shutdown);
let mut sh = special_handle.take();
sh.send(Shutdown);
};
rtdebug!("normal task: {}", borrow::to_uint(normal_task));
let special_task = ~do Task::new_root(&mut special_sched.stack_pool, None) {
rtdebug!("*about to submit task1*");
Scheduler::run_task(task1.take());
rtdebug!("*about to submit task3*");
Scheduler::run_task(task3.take());
rtdebug!("*done with special_task*");
chan.take().send(());
};
rtdebug!("special task: {}", borrow::to_uint(special_task));
let special_sched = Cell::new(special_sched);
let normal_sched = Cell::new(normal_sched);
let special_task = Cell::new(special_task);
let normal_task = Cell::new(normal_task);
let normal_thread = do Thread::start {
normal_sched.take().bootstrap(normal_task.take());
rtdebug!("finished with normal_thread");
};
let special_thread = do Thread::start {
special_sched.take().bootstrap(special_task.take());
rtdebug!("finished with special_sched");
};
normal_thread.join();
special_thread.join();
}
}
#[test]
fn test_stress_schedule_task_states() {
if util::limit_thread_creation_due_to_osx_and_valgrind() { return; }
let n = stress_factor() * 120;
for _ in range(0, n as int) {
test_schedule_home_states();
}
}
#[test]
fn test_io_callback() {
use rt::io::timer;
// This is a regression test that when there are no schedulable tasks
// in the work queue, but we are performing I/O, that once we do put
// something in the work queue again the scheduler picks it up and doesn't
// exit before emptying the work queue
do run_in_uv_task {
do spawntask {
timer::sleep(10);
}
}
}
#[test]
fn handle() {
use rt::comm::*;
do run_in_bare_thread {
let (port, chan) = oneshot::<()>();
let port = Cell::new(port);
let chan = Cell::new(chan);
let thread_one = do Thread::start {
let chan = Cell::new(chan.take());
do run_in_newsched_task_core {
chan.take().send(());
}
};
let thread_two = do Thread::start {
let port = Cell::new(port.take());
do run_in_newsched_task_core {
port.take().recv();
}
};
thread_two.join();
thread_one.join();
}
}
// A regression test that the final message is always handled.
// Used to deadlock because Shutdown was never recvd.
#[test]
fn no_missed_messages() {
use rt::work_queue::WorkQueue;
use rt::sleeper_list::SleeperList;
use rt::stack::StackPool;
use rt::sched::{Shutdown, TaskFromFriend};
use util;
do run_in_bare_thread {
do stress_factor().times {
let sleepers = SleeperList::new();
let queue = WorkQueue::new();
let queues = ~[queue.clone()];
let mut sched = ~Scheduler::new(
basic::event_loop(),
queue,
queues.clone(),
sleepers.clone());
let mut handle = sched.make_handle();
let sched = Cell::new(sched);
let thread = do Thread::start {
let mut sched = sched.take();
let bootstrap_task = ~Task::new_root(&mut sched.stack_pool, None, ||());
sched.bootstrap(bootstrap_task);
};
let mut stack_pool = StackPool::new();
let task = ~Task::new_root(&mut stack_pool, None, ||());
handle.send(TaskFromFriend(task));
handle.send(Shutdown);
util::ignore(handle);
thread.join();
}
}
}
#[test]
fn multithreading() {
use rt::comm::*;
use num::Times;
use vec::OwnedVector;
use container::Container;
do run_in_mt_newsched_task {
let mut ports = ~[];
do 10.times {
let (port, chan) = oneshot();
let chan_cell = Cell::new(chan);
do spawntask_later {
chan_cell.take().send(());
}
ports.push(port);
}
while !ports.is_empty() {
ports.pop().recv();
}
}
}
#[test]
fn thread_ring() {
use rt::comm::*;
use comm::{GenericPort, GenericChan};
do run_in_mt_newsched_task {
let (end_port, end_chan) = oneshot();
let n_tasks = 10;
let token = 2000;
let (p, ch1) = stream();
let mut p = p;
ch1.send((token, end_chan));
let mut i = 2;
while i <= n_tasks {
let (next_p, ch) = stream();
let imm_i = i;
let imm_p = p;
do spawntask_random {
roundtrip(imm_i, n_tasks, &imm_p, &ch);
};
p = next_p;
i += 1;
}
let imm_p = p;
let imm_ch = ch1;
do spawntask_random {
roundtrip(1, n_tasks, &imm_p, &imm_ch);
}
end_port.recv();
}
fn roundtrip(id: int, n_tasks: int,
p: &Port<(int, ChanOne<()>)>, ch: &Chan<(int, ChanOne<()>)>) {
while (true) {
match p.recv() {
(1, end_chan) => {
debug!("{}\n", id);
end_chan.send(());
return;
}
(token, end_chan) => {
debug!("thread: {} got token: {}", id, token);
ch.send((token - 1, end_chan));
if token <= n_tasks {
return;
}
}
}
}
}
}
#[test]
fn start_closure_dtor() {
use ops::Drop;
// Regression test that the `start` task entrypoint can
// contain dtors that use task resources
do run_in_newsched_task {
struct S { field: () }
impl Drop for S {
fn drop(&mut self) {
let _foo = @0;
}
}
let s = S { field: () };
do spawntask {
let _ss = &s;
}
}
}
// FIXME: #9407: xfail-test
fn dont_starve_1() {
use rt::comm::oneshot;
do stress_factor().times {
do run_in_mt_newsched_task {
let (port, chan) = oneshot();
// This task should not be able to starve the sender;
// The sender should get stolen to another thread.
do spawntask {
while !port.peek() { }
}
chan.send(());
}
}
}
#[test]
fn dont_starve_2() {
use rt::comm::oneshot;
do stress_factor().times {
do run_in_newsched_task {
let (port, chan) = oneshot();
let (_port2, chan2) = stream();
// This task should not be able to starve the other task.
// The sends should eventually yield.
do spawntask {
while !port.peek() {
chan2.send(());
}
}
chan.send(());
}
}
}
// Regression test for a logic bug that would cause single-threaded schedulers
// to sleep forever after yielding and stealing another task.
#[test]
fn single_threaded_yield() {
use task::{spawn, spawn_sched, SingleThreaded, deschedule};
use num::Times;
do spawn_sched(SingleThreaded) {
do 5.times { deschedule(); }
}
do spawn { }
do spawn { }
}
}
|