1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
/*
Module: sha1
An implementation of the SHA-1 cryptographic hash.
First create a <sha1> object using the <mk_sha1> constructor, then
feed it input using the <input> or <input_str> methods, which may be
called any number of times.
After the entire input has been fed to the hash read the result using
the <result> or <result_str> methods.
The <sha1> object may be reused to create multiple hashes by calling
the <reset> method.
*/
/*
* A SHA-1 implementation derived from Paul E. Jones's reference
* implementation, which is written for clarity, not speed. At some
* point this will want to be rewritten.
*/
export sha1;
export mk_sha1;
/* Section: Types */
/*
Obj: sha1
The SHA-1 object
*/
type sha1 = obj {
/*
Method: input
Provide message input as bytes
*/
fn input([u8]);
/*
Method: input_str
Provide message input as string
*/
fn input_str(str);
/*
Method: result
Read the digest as a vector of 20 bytes. After calling this no further
input may be provided until reset is called.
*/
fn result() -> [u8];
/*
Method: result_str
Read the digest as a hex string. After calling this no further
input may be provided until reset is called.
*/
fn result_str() -> str;
/*
Method: reset
Reset the SHA-1 state for reuse
*/
fn reset();
};
/* Section: Operations */
// Some unexported constants
const digest_buf_len: uint = 5u;
const msg_block_len: uint = 64u;
const work_buf_len: uint = 80u;
const k0: u32 = 0x5A827999u32;
const k1: u32 = 0x6ED9EBA1u32;
const k2: u32 = 0x8F1BBCDCu32;
const k3: u32 = 0xCA62C1D6u32;
/*
Function: mk_sha1
Construct a <sha1> object
*/
fn mk_sha1() -> sha1 {
type sha1state =
{h: [mutable u32],
mutable len_low: u32,
mutable len_high: u32,
msg_block: [mutable u8],
mutable msg_block_idx: uint,
mutable computed: bool,
work_buf: [mutable u32]};
fn add_input(st: sha1state, msg: [u8]) {
// FIXME: Should be typestate precondition
assert (!st.computed);
for element: u8 in msg {
st.msg_block[st.msg_block_idx] = element;
st.msg_block_idx += 1u;
st.len_low += 8u32;
if st.len_low == 0u32 {
st.len_high += 1u32;
if st.len_high == 0u32 {
// FIXME: Need better failure mode
fail;
}
}
if st.msg_block_idx == msg_block_len { process_msg_block(st); }
}
}
fn process_msg_block(st: sha1state) {
// FIXME: Make precondition
assert (vec::len(st.h) == digest_buf_len);
assert (vec::len(st.work_buf) == work_buf_len);
let t: int; // Loop counter
let w = st.work_buf;
// Initialize the first 16 words of the vector w
t = 0;
while t < 16 {
let tmp;
tmp = (st.msg_block[t * 4] as u32) << 24u32;
tmp = tmp | (st.msg_block[t * 4 + 1] as u32) << 16u32;
tmp = tmp | (st.msg_block[t * 4 + 2] as u32) << 8u32;
tmp = tmp | (st.msg_block[t * 4 + 3] as u32);
w[t] = tmp;
t += 1;
}
// Initialize the rest of vector w
while t < 80 {
let val = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16];
w[t] = circular_shift(1u32, val);
t += 1;
}
let a = st.h[0];
let b = st.h[1];
let c = st.h[2];
let d = st.h[3];
let e = st.h[4];
let temp: u32;
t = 0;
while t < 20 {
temp = circular_shift(5u32, a) + (b & c | !b & d) + e + w[t] + k0;
e = d;
d = c;
c = circular_shift(30u32, b);
b = a;
a = temp;
t += 1;
}
while t < 40 {
temp = circular_shift(5u32, a) + (b ^ c ^ d) + e + w[t] + k1;
e = d;
d = c;
c = circular_shift(30u32, b);
b = a;
a = temp;
t += 1;
}
while t < 60 {
temp =
circular_shift(5u32, a) + (b & c | b & d | c & d) + e + w[t] +
k2;
e = d;
d = c;
c = circular_shift(30u32, b);
b = a;
a = temp;
t += 1;
}
while t < 80 {
temp = circular_shift(5u32, a) + (b ^ c ^ d) + e + w[t] + k3;
e = d;
d = c;
c = circular_shift(30u32, b);
b = a;
a = temp;
t += 1;
}
st.h[0] = st.h[0] + a;
st.h[1] = st.h[1] + b;
st.h[2] = st.h[2] + c;
st.h[3] = st.h[3] + d;
st.h[4] = st.h[4] + e;
st.msg_block_idx = 0u;
}
fn circular_shift(bits: u32, word: u32) -> u32 {
ret word << bits | word >> 32u32 - bits;
}
fn mk_result(st: sha1state) -> [u8] {
if !st.computed { pad_msg(st); st.computed = true; }
let rs: [u8] = [];
for hpart: u32 in st.h {
let a = hpart >> 24u32 & 0xFFu32 as u8;
let b = hpart >> 16u32 & 0xFFu32 as u8;
let c = hpart >> 8u32 & 0xFFu32 as u8;
let d = hpart & 0xFFu32 as u8;
rs += [a, b, c, d];
}
ret rs;
}
/*
* According to the standard, the message must be padded to an even
* 512 bits. The first padding bit must be a '1'. The last 64 bits
* represent the length of the original message. All bits in between
* should be 0. This function will pad the message according to those
* rules by filling the msg_block vector accordingly. It will also
* call process_msg_block() appropriately. When it returns, it
* can be assumed that the message digest has been computed.
*/
fn pad_msg(st: sha1state) {
// FIXME: Should be a precondition
assert (vec::len(st.msg_block) == msg_block_len);
/*
* Check to see if the current message block is too small to hold
* the initial padding bits and length. If so, we will pad the
* block, process it, and then continue padding into a second block.
*/
if st.msg_block_idx > 55u {
st.msg_block[st.msg_block_idx] = 0x80u8;
st.msg_block_idx += 1u;
while st.msg_block_idx < msg_block_len {
st.msg_block[st.msg_block_idx] = 0u8;
st.msg_block_idx += 1u;
}
process_msg_block(st);
} else {
st.msg_block[st.msg_block_idx] = 0x80u8;
st.msg_block_idx += 1u;
}
while st.msg_block_idx < 56u {
st.msg_block[st.msg_block_idx] = 0u8;
st.msg_block_idx += 1u;
}
// Store the message length as the last 8 octets
st.msg_block[56] = st.len_high >> 24u32 & 0xFFu32 as u8;
st.msg_block[57] = st.len_high >> 16u32 & 0xFFu32 as u8;
st.msg_block[58] = st.len_high >> 8u32 & 0xFFu32 as u8;
st.msg_block[59] = st.len_high & 0xFFu32 as u8;
st.msg_block[60] = st.len_low >> 24u32 & 0xFFu32 as u8;
st.msg_block[61] = st.len_low >> 16u32 & 0xFFu32 as u8;
st.msg_block[62] = st.len_low >> 8u32 & 0xFFu32 as u8;
st.msg_block[63] = st.len_low & 0xFFu32 as u8;
process_msg_block(st);
}
obj sha1(st: sha1state) {
fn reset() {
// FIXME: Should be typestate precondition
assert (vec::len(st.h) == digest_buf_len);
st.len_low = 0u32;
st.len_high = 0u32;
st.msg_block_idx = 0u;
st.h[0] = 0x67452301u32;
st.h[1] = 0xEFCDAB89u32;
st.h[2] = 0x98BADCFEu32;
st.h[3] = 0x10325476u32;
st.h[4] = 0xC3D2E1F0u32;
st.computed = false;
}
fn input(msg: [u8]) { add_input(st, msg); }
fn input_str(msg: str) { add_input(st, str::bytes(msg)); }
fn result() -> [u8] { ret mk_result(st); }
fn result_str() -> str {
let r = mk_result(st);
let s = "";
for b: u8 in r { s += uint::to_str(b as uint, 16u); }
ret s;
}
}
let st =
{h: vec::init_elt_mut::<u32>(0u32, digest_buf_len),
mutable len_low: 0u32,
mutable len_high: 0u32,
msg_block: vec::init_elt_mut::<u8>(0u8, msg_block_len),
mutable msg_block_idx: 0u,
mutable computed: false,
work_buf: vec::init_elt_mut::<u32>(0u32, work_buf_len)};
let sh = sha1(st);
sh.reset();
ret sh;
}
// Local Variables:
// mode: rust;
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End:
|