1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
/*
Module: sort
Sorting methods
*/
import vec::{len, slice};
export merge_sort;
export quick_sort;
export quick_sort3;
/* Type: lteq */
type lteq<T> = block(T, T) -> bool;
/*
Function: merge_sort
Merge sort. Returns a new vector containing the sorted list.
Has worst case O(n log n) performance, best case O(n), but
is not space efficient. This is a stable sort.
*/
fn merge_sort<T: copy>(le: lteq<T>, v: [const T]) -> [T] {
fn merge<T: copy>(le: lteq<T>, a: [T], b: [T]) -> [T] {
let rs: [T] = [];
let a_len: uint = len::<T>(a);
let a_ix: uint = 0u;
let b_len: uint = len::<T>(b);
let b_ix: uint = 0u;
while a_ix < a_len && b_ix < b_len {
if le(a[a_ix], b[b_ix]) {
rs += [a[a_ix]];
a_ix += 1u;
} else { rs += [b[b_ix]]; b_ix += 1u; }
}
rs += slice::<T>(a, a_ix, a_len);
rs += slice::<T>(b, b_ix, b_len);
ret rs;
}
let v_len: uint = len::<T>(v);
if v_len == 0u { ret []; }
if v_len == 1u { ret [v[0]]; }
let mid: uint = v_len / 2u;
let a: [T] = slice::<T>(v, 0u, mid);
let b: [T] = slice::<T>(v, mid, v_len);
ret merge::<T>(le, merge_sort::<T>(le, a), merge_sort::<T>(le, b));
}
fn part<T: copy>(compare_func: lteq<T>, arr: [mutable T], left: uint,
right: uint, pivot: uint) -> uint {
let pivot_value = arr[pivot];
arr[pivot] <-> arr[right];
let storage_index: uint = left;
let i: uint = left;
while i < right {
if compare_func(copy arr[i], pivot_value) {
arr[i] <-> arr[storage_index];
storage_index += 1u;
}
i += 1u;
}
arr[storage_index] <-> arr[right];
ret storage_index;
}
fn qsort<T: copy>(compare_func: lteq<T>, arr: [mutable T], left: uint,
right: uint) {
if right > left {
let pivot = (left + right) / 2u;
let new_pivot = part::<T>(compare_func, arr, left, right, pivot);
if new_pivot != 0u {
// Need to do this check before recursing due to overflow
qsort::<T>(compare_func, arr, left, new_pivot - 1u);
}
qsort::<T>(compare_func, arr, new_pivot + 1u, right);
}
}
/*
Function: quick_sort
Quicksort. Sorts a mutable vector in place.
Has worst case O(n^2) performance, average case O(n log n).
This is an unstable sort.
*/
fn quick_sort<T: copy>(compare_func: lteq<T>, arr: [mutable T]) {
if len::<T>(arr) == 0u { ret; }
qsort::<T>(compare_func, arr, 0u, len::<T>(arr) - 1u);
}
fn qsort3<T: copy>(compare_func_lt: lteq<T>, compare_func_eq: lteq<T>,
arr: [mutable T], left: int, right: int) {
if right <= left { ret; }
let v: T = arr[right];
let i: int = left - 1;
let j: int = right;
let p: int = i;
let q: int = j;
while true {
i += 1;
while compare_func_lt(copy arr[i], v) { i += 1; }
j -= 1;
while compare_func_lt(v, copy arr[j]) {
if j == left { break; }
j -= 1;
}
if i >= j { break; }
arr[i] <-> arr[j];
if compare_func_eq(copy arr[i], v) {
p += 1;
arr[p] <-> arr[i];
}
if compare_func_eq(v, copy arr[j]) {
q -= 1;
arr[j] <-> arr[q];
}
}
arr[i] <-> arr[right];
j = i - 1;
i += 1;
let k: int = left;
while k < p {
arr[k] <-> arr[j];
k += 1;
j -= 1;
if k == len::<T>(arr) as int { break; }
}
k = right - 1;
while k > q {
arr[i] <-> arr[k];
k -= 1;
i += 1;
if k == 0 { break; }
}
qsort3::<T>(compare_func_lt, compare_func_eq, arr, left, j);
qsort3::<T>(compare_func_lt, compare_func_eq, arr, i, right);
}
// FIXME: This should take lt and eq types
/*
Function: quick_sort3
Fancy quicksort. Sorts a mutable vector in place.
Based on algorithm presented by Sedgewick and Bentley
<http://www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf>.
According to these slides this is the algorithm of choice for
'randomly ordered keys, abstract compare' & 'small number of key values'.
This is an unstable sort.
*/
fn quick_sort3<T: copy>(compare_func_lt: lteq<T>, compare_func_eq: lteq<T>,
arr: [mutable T]) {
if len::<T>(arr) == 0u { ret; }
qsort3::<T>(compare_func_lt, compare_func_eq, arr, 0,
(len::<T>(arr) as int) - 1);
}
#[cfg(test)]
mod test_qsort3 {
fn check_sort(v1: [mutable int], v2: [mutable int]) {
let len = vec::len::<int>(v1);
fn lt(&&a: int, &&b: int) -> bool { ret a < b; }
fn equal(&&a: int, &&b: int) -> bool { ret a == b; }
let f1 = lt;
let f2 = equal;
quick_sort3::<int>(f1, f2, v1);
let i = 0u;
while i < len {
log(debug, v2[i]);
assert (v2[i] == v1[i]);
i += 1u;
}
}
#[test]
fn test() {
{
let v1 = [mutable 3, 7, 4, 5, 2, 9, 5, 8];
let v2 = [mutable 2, 3, 4, 5, 5, 7, 8, 9];
check_sort(v1, v2);
}
{
let v1 = [mutable 1, 1, 1];
let v2 = [mutable 1, 1, 1];
check_sort(v1, v2);
}
{
let v1: [mutable int] = [mutable];
let v2: [mutable int] = [mutable];
check_sort(v1, v2);
}
{ let v1 = [mutable 9]; let v2 = [mutable 9]; check_sort(v1, v2); }
{
let v1 = [mutable 9, 3, 3, 3, 9];
let v2 = [mutable 3, 3, 3, 9, 9];
check_sort(v1, v2);
}
}
}
#[cfg(test)]
mod test_qsort {
fn check_sort(v1: [mutable int], v2: [mutable int]) {
let len = vec::len::<int>(v1);
fn ltequal(&&a: int, &&b: int) -> bool { ret a <= b; }
let f = ltequal;
quick_sort::<int>(f, v1);
let i = 0u;
while i < len {
log(debug, v2[i]);
assert (v2[i] == v1[i]);
i += 1u;
}
}
#[test]
fn test() {
{
let v1 = [mutable 3, 7, 4, 5, 2, 9, 5, 8];
let v2 = [mutable 2, 3, 4, 5, 5, 7, 8, 9];
check_sort(v1, v2);
}
{
let v1 = [mutable 1, 1, 1];
let v2 = [mutable 1, 1, 1];
check_sort(v1, v2);
}
{
let v1: [mutable int] = [mutable];
let v2: [mutable int] = [mutable];
check_sort(v1, v2);
}
{ let v1 = [mutable 9]; let v2 = [mutable 9]; check_sort(v1, v2); }
{
let v1 = [mutable 9, 3, 3, 3, 9];
let v2 = [mutable 3, 3, 3, 9, 9];
check_sort(v1, v2);
}
}
// Regression test for #750
#[test]
fn test_simple() {
let names = [mutable 2, 1, 3];
let expected = [1, 2, 3];
fn lteq(&&a: int, &&b: int) -> bool { int::le(a, b) }
sort::quick_sort(lteq, names);
let immut_names = vec::from_mut(names);
// Silly, but what else can we do?
check (vec::same_length(expected, immut_names));
let pairs = vec::zip(expected, immut_names);
for (a, b) in pairs { #debug("%d %d", a, b); assert (a == b); }
}
}
#[cfg(test)]
mod tests {
fn check_sort(v1: [int], v2: [int]) {
let len = vec::len::<int>(v1);
fn lteq(&&a: int, &&b: int) -> bool { ret a <= b; }
let f = lteq;
let v3 = merge_sort::<int>(f, v1);
let i = 0u;
while i < len {
log(debug, v3[i]);
assert (v3[i] == v2[i]);
i += 1u;
}
}
#[test]
fn test() {
{
let v1 = [3, 7, 4, 5, 2, 9, 5, 8];
let v2 = [2, 3, 4, 5, 5, 7, 8, 9];
check_sort(v1, v2);
}
{ let v1 = [1, 1, 1]; let v2 = [1, 1, 1]; check_sort(v1, v2); }
{ let v1: [int] = []; let v2: [int] = []; check_sort(v1, v2); }
{ let v1 = [9]; let v2 = [9]; check_sort(v1, v2); }
{
let v1 = [9, 3, 3, 3, 9];
let v2 = [3, 3, 3, 9, 9];
check_sort(v1, v2);
}
}
#[test]
fn test_merge_sort_mutable() {
fn lteq(&&a: int, &&b: int) -> bool { ret a <= b; }
let v1 = [mutable 3, 2, 1];
let v2 = merge_sort(lteq, v1);
assert v2 == [1, 2, 3];
}
}
// Local Variables:
// mode: rust;
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End:
|