1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
/* Copyright (c) 2010-2011 Dmitry Vyukov. All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY DMITRY VYUKOV "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL DMITRY VYUKOV OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are
* those of the authors and should not be interpreted as representing official
* policies, either expressed or implied, of Dmitry Vyukov.
*/
// http://www.1024cores.net/home/lock-free-algorithms/queues/unbounded-spsc-queue
//! A single-producer single-consumer concurrent queue
//!
//! This module contains the implementation of an SPSC queue which can be used
//! concurrently between two tasks. This data structure is safe to use and
//! enforces the semantics that there is one pusher and one popper.
use cast;
use kinds::Send;
use ops::Drop;
use option::{Some, None, Option};
use ptr::RawPtr;
use sync::atomics::{AtomicPtr, Relaxed, AtomicUint, Acquire, Release};
// Node within the linked list queue of messages to send
struct Node<T> {
// FIXME: this could be an uninitialized T if we're careful enough, and
// that would reduce memory usage (and be a bit faster).
// is it worth it?
value: Option<T>, // nullable for re-use of nodes
next: AtomicPtr<Node<T>>, // next node in the queue
}
/// The single-producer single-consumer queue. This structure is not cloneable,
/// but it can be safely shared in an UnsafeArc if it is guaranteed that there
/// is only one popper and one pusher touching the queue at any one point in
/// time.
pub struct Queue<T> {
// consumer fields
priv tail: *mut Node<T>, // where to pop from
priv tail_prev: AtomicPtr<Node<T>>, // where to pop from
// producer fields
priv head: *mut Node<T>, // where to push to
priv first: *mut Node<T>, // where to get new nodes from
priv tail_copy: *mut Node<T>, // between first/tail
// Cache maintenance fields. Additions and subtractions are stored
// separately in order to allow them to use nonatomic addition/subtraction.
priv cache_bound: uint,
priv cache_additions: AtomicUint,
priv cache_subtractions: AtomicUint,
}
impl<T: Send> Node<T> {
fn new() -> *mut Node<T> {
unsafe {
cast::transmute(~Node {
value: None,
next: AtomicPtr::new(0 as *mut Node<T>),
})
}
}
}
impl<T: Send> Queue<T> {
/// Creates a new queue. The producer returned is connected to the consumer
/// to push all data to the consumer.
///
/// # Arguments
///
/// * `bound` - This queue implementation is implemented with a linked
/// list, and this means that a push is always a malloc. In
/// order to amortize this cost, an internal cache of nodes is
/// maintained to prevent a malloc from always being
/// necessary. This bound is the limit on the size of the
/// cache (if desired). If the value is 0, then the cache has
/// no bound. Otherwise, the cache will never grow larger than
/// `bound` (although the queue itself could be much larger.
pub fn new(bound: uint) -> Queue<T> {
let n1 = Node::new();
let n2 = Node::new();
unsafe { (*n1).next.store(n2, Relaxed) }
Queue {
tail: n2,
tail_prev: AtomicPtr::new(n1),
head: n2,
first: n1,
tail_copy: n1,
cache_bound: bound,
cache_additions: AtomicUint::new(0),
cache_subtractions: AtomicUint::new(0),
}
}
/// Pushes a new value onto this queue. Note that to use this function
/// safely, it must be externally guaranteed that there is only one pusher.
pub fn push(&mut self, t: T) {
unsafe {
// Acquire a node (which either uses a cached one or allocates a new
// one), and then append this to the 'head' node.
let n = self.alloc();
assert!((*n).value.is_none());
(*n).value = Some(t);
(*n).next.store(0 as *mut Node<T>, Relaxed);
(*self.head).next.store(n, Release);
self.head = n;
}
}
unsafe fn alloc(&mut self) -> *mut Node<T> {
// First try to see if we can consume the 'first' node for our uses.
// We try to avoid as many atomic instructions as possible here, so
// the addition to cache_subtractions is not atomic (plus we're the
// only one subtracting from the cache).
if self.first != self.tail_copy {
if self.cache_bound > 0 {
let b = self.cache_subtractions.load(Relaxed);
self.cache_subtractions.store(b + 1, Relaxed);
}
let ret = self.first;
self.first = (*ret).next.load(Relaxed);
return ret;
}
// If the above fails, then update our copy of the tail and try
// again.
self.tail_copy = self.tail_prev.load(Acquire);
if self.first != self.tail_copy {
if self.cache_bound > 0 {
let b = self.cache_subtractions.load(Relaxed);
self.cache_subtractions.store(b + 1, Relaxed);
}
let ret = self.first;
self.first = (*ret).next.load(Relaxed);
return ret;
}
// If all of that fails, then we have to allocate a new node
// (there's nothing in the node cache).
Node::new()
}
/// Attempts to pop a value from this queue. Remember that to use this type
/// safely you must ensure that there is only one popper at a time.
pub fn pop(&mut self) -> Option<T> {
unsafe {
// The `tail` node is not actually a used node, but rather a
// sentinel from where we should start popping from. Hence, look at
// tail's next field and see if we can use it. If we do a pop, then
// the current tail node is a candidate for going into the cache.
let tail = self.tail;
let next = (*tail).next.load(Acquire);
if next.is_null() { return None }
assert!((*next).value.is_some());
let ret = (*next).value.take();
self.tail = next;
if self.cache_bound == 0 {
self.tail_prev.store(tail, Release);
} else {
// FIXME: this is dubious with overflow.
let additions = self.cache_additions.load(Relaxed);
let subtractions = self.cache_subtractions.load(Relaxed);
let size = additions - subtractions;
if size < self.cache_bound {
self.tail_prev.store(tail, Release);
self.cache_additions.store(additions + 1, Relaxed);
} else {
(*self.tail_prev.load(Relaxed)).next.store(next, Relaxed);
// We have successfully erased all references to 'tail', so
// now we can safely drop it.
let _: ~Node<T> = cast::transmute(tail);
}
}
return ret;
}
}
/// Attempts to peek at the head of the queue, returning `None` if the queue
/// has no data currently
pub fn peek<'a>(&'a mut self) -> Option<&'a mut T> {
// This is essentially the same as above with all the popping bits
// stripped out.
unsafe {
let tail = self.tail;
let next = (*tail).next.load(Acquire);
if next.is_null() { return None }
return (*next).value.as_mut();
}
}
}
#[unsafe_destructor]
impl<T: Send> Drop for Queue<T> {
fn drop(&mut self) {
unsafe {
let mut cur = self.first;
while !cur.is_null() {
let next = (*cur).next.load(Relaxed);
let _n: ~Node<T> = cast::transmute(cur);
cur = next;
}
}
}
}
#[cfg(test)]
mod test {
use prelude::*;
use native;
use super::Queue;
use sync::arc::UnsafeArc;
#[test]
fn smoke() {
let mut q = Queue::new(0);
q.push(1);
q.push(2);
assert_eq!(q.pop(), Some(1));
assert_eq!(q.pop(), Some(2));
assert_eq!(q.pop(), None);
q.push(3);
q.push(4);
assert_eq!(q.pop(), Some(3));
assert_eq!(q.pop(), Some(4));
assert_eq!(q.pop(), None);
}
#[test]
fn drop_full() {
let mut q = Queue::new(0);
q.push(~1);
q.push(~2);
}
#[test]
fn smoke_bound() {
let mut q = Queue::new(1);
q.push(1);
q.push(2);
assert_eq!(q.pop(), Some(1));
assert_eq!(q.pop(), Some(2));
assert_eq!(q.pop(), None);
q.push(3);
q.push(4);
assert_eq!(q.pop(), Some(3));
assert_eq!(q.pop(), Some(4));
assert_eq!(q.pop(), None);
}
#[test]
fn stress() {
stress_bound(0);
stress_bound(1);
fn stress_bound(bound: uint) {
let (a, b) = UnsafeArc::new2(Queue::new(bound));
let (port, chan) = Chan::new();
native::task::spawn(proc() {
for _ in range(0, 100000) {
loop {
match unsafe { (*b.get()).pop() } {
Some(1) => break,
Some(_) => fail!(),
None => {}
}
}
}
chan.send(());
});
for _ in range(0, 100000) {
unsafe { (*a.get()).push(1); }
}
port.recv();
}
}
}
|