1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
|
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
* Task management.
*
* An executing Rust program consists of a tree of tasks, each with their own
* stack, and sole ownership of their allocated heap data. Tasks communicate
* with each other using ports and channels (see std::rt::comm for more info
* about how communication works).
*
* Tasks can be spawned in 3 different modes.
*
* * Bidirectionally linked: This is the default mode and it's what ```spawn``` does.
* Failures will be propagated from parent to child and vice versa.
*
* * Unidirectionally linked (parent->child): This type of task can be created with
* ```spawn_supervised```. In this case, failures are propagated from parent to child
* but not the other way around.
*
* * Unlinked: Tasks can be completely unlinked. These tasks can be created by using
* ```spawn_unlinked```. In this case failures are not propagated at all.
*
* Tasks' failure modes can be further configured. For instance, parent tasks can (un)watch
* children failures. Please, refer to TaskBuilder's documentation bellow for more information.
*
* When a (bi|uni)directionally linked task fails, its failure will be propagated to all tasks
* linked to it, this will cause such tasks to fail by a `linked failure`.
*
* Task Scheduling:
*
* By default, every task is created in the same scheduler as its parent, where it
* is scheduled cooperatively with all other tasks in that scheduler. Some specialized
* applications may want more control over their scheduling, in which case they can be
* spawned into a new scheduler with the specific properties required. See TaskBuilder's
* documentation bellow for more information.
*
* # Example
*
* ```
* do spawn {
* log(error, "Hello, World!");
* }
* ```
*/
#[allow(missing_doc)];
use prelude::*;
use cell::Cell;
use comm::{stream, Chan, GenericChan, GenericPort, Port, Peekable};
use result::{Result, Ok, Err};
use rt::in_green_task_context;
use rt::local::Local;
use rt::task::{UnwindResult, Success, Failure};
use send_str::{SendStr, IntoSendStr};
use util;
#[cfg(test)] use any::Any;
#[cfg(test)] use comm::SharedChan;
#[cfg(test)] use ptr;
#[cfg(test)] use result;
pub mod spawn;
/// Indicates the manner in which a task exited.
///
/// A task that completes without failing is considered to exit successfully.
/// Supervised ancestors and linked siblings may yet fail after this task
/// succeeds. Also note that in such a case, it may be nondeterministic whether
/// linked failure or successful exit happen first.
///
/// If you wish for this result's delivery to block until all linked and/or
/// children tasks complete, recommend using a result future.
pub type TaskResult = Result<(), ~Any>;
pub struct TaskResultPort {
priv port: Port<UnwindResult>
}
fn to_task_result(res: UnwindResult) -> TaskResult {
match res {
Success => Ok(()), Failure(a) => Err(a),
}
}
impl GenericPort<TaskResult> for TaskResultPort {
#[inline]
fn recv(&self) -> TaskResult {
to_task_result(self.port.recv())
}
#[inline]
fn try_recv(&self) -> Option<TaskResult> {
self.port.try_recv().map(to_task_result)
}
}
impl Peekable<TaskResult> for TaskResultPort {
#[inline]
fn peek(&self) -> bool { self.port.peek() }
}
/// Scheduler modes
#[deriving(Eq)]
pub enum SchedMode {
/// Run task on the default scheduler
DefaultScheduler,
/// All tasks run in the same OS thread
SingleThreaded,
}
/**
* Scheduler configuration options
*
* # Fields
*
* * sched_mode - The operating mode of the scheduler
*
*/
pub struct SchedOpts {
priv mode: SchedMode,
}
/**
* Task configuration options
*
* # Fields
*
* * watched - Make parent task collect exit status notifications from child
* before reporting its own exit status. (This delays the parent
* task's death and cleanup until after all transitively watched
* children also exit.) True by default.
*
* * notify_chan - Enable lifecycle notifications on the given channel
*
* * name - A name for the task-to-be, for identification in failure messages.
*
* * sched - Specify the configuration of a new scheduler to create the task
* in. This is of particular importance for libraries which want to call
* into foreign code that blocks. Without doing so in a different
* scheduler other tasks will be impeded or even blocked indefinitely.
*/
pub struct TaskOpts {
priv watched: bool,
priv notify_chan: Option<Chan<UnwindResult>>,
name: Option<SendStr>,
sched: SchedOpts,
stack_size: Option<uint>
}
/**
* The task builder type.
*
* Provides detailed control over the properties and behavior of new tasks.
*/
// NB: Builders are designed to be single-use because they do stateful
// things that get weird when reusing - e.g. if you create a result future
// it only applies to a single task, so then you have to maintain Some
// potentially tricky state to ensure that everything behaves correctly
// when you try to reuse the builder to spawn a new task. We'll just
// sidestep that whole issue by making builders uncopyable and making
// the run function move them in.
pub struct TaskBuilder {
opts: TaskOpts,
priv gen_body: Option<proc(v: proc()) -> proc()>,
priv can_not_copy: Option<util::NonCopyable>,
}
/**
* Generate the base configuration for spawning a task, off of which more
* configuration methods can be chained.
* For example, task().unlinked().spawn is equivalent to spawn_unlinked.
*/
pub fn task() -> TaskBuilder {
TaskBuilder {
opts: default_task_opts(),
gen_body: None,
can_not_copy: None,
}
}
impl TaskBuilder {
fn consume(mut self) -> TaskBuilder {
let gen_body = self.gen_body.take();
let notify_chan = self.opts.notify_chan.take();
let name = self.opts.name.take();
TaskBuilder {
opts: TaskOpts {
watched: self.opts.watched,
notify_chan: notify_chan,
name: name,
sched: self.opts.sched,
stack_size: self.opts.stack_size
},
gen_body: gen_body,
can_not_copy: None,
}
}
/// Cause the parent task to collect the child's exit status (and that of
/// all transitively-watched grandchildren) before reporting its own.
pub fn watched(&mut self) {
self.opts.watched = true;
}
/// Allow the child task to outlive the parent task, at the possible cost
/// of the parent reporting success even if the child task fails later.
pub fn unwatched(&mut self) {
self.opts.watched = false;
}
/// Get a future representing the exit status of the task.
///
/// Taking the value of the future will block until the child task
/// terminates. The future result return value will be created *before* the task is
/// spawned; as such, do not invoke .get() on it directly;
/// rather, store it in an outer variable/list for later use.
///
/// Note that the future returned by this function is only useful for
/// obtaining the value of the next task to be spawning with the
/// builder. If additional tasks are spawned with the same builder
/// then a new result future must be obtained prior to spawning each
/// task.
///
/// # Failure
/// Fails if a future_result was already set for this task.
pub fn future_result(&mut self) -> TaskResultPort {
// FIXME (#3725): Once linked failure and notification are
// handled in the library, I can imagine implementing this by just
// registering an arbitrary number of task::on_exit handlers and
// sending out messages.
if self.opts.notify_chan.is_some() {
fail!("Can't set multiple future_results for one task!");
}
// Construct the future and give it to the caller.
let (notify_pipe_po, notify_pipe_ch) = stream::<UnwindResult>();
// Reconfigure self to use a notify channel.
self.opts.notify_chan = Some(notify_pipe_ch);
TaskResultPort { port: notify_pipe_po }
}
/// Name the task-to-be. Currently the name is used for identification
/// only in failure messages.
pub fn name<S: IntoSendStr>(&mut self, name: S) {
self.opts.name = Some(name.into_send_str());
}
/// Configure a custom scheduler mode for the task.
pub fn sched_mode(&mut self, mode: SchedMode) {
self.opts.sched.mode = mode;
}
/**
* Add a wrapper to the body of the spawned task.
*
* Before the task is spawned it is passed through a 'body generator'
* function that may perform local setup operations as well as wrap
* the task body in remote setup operations. With this the behavior
* of tasks can be extended in simple ways.
*
* This function augments the current body generator with a new body
* generator by applying the task body which results from the
* existing body generator to the new body generator.
*/
pub fn add_wrapper(&mut self, wrapper: proc(v: proc()) -> proc()) {
let prev_gen_body = self.gen_body.take();
let prev_gen_body = match prev_gen_body {
Some(gen) => gen,
None => {
let f: proc(proc()) -> proc() = |body| body;
f
}
};
let prev_gen_body = Cell::new(prev_gen_body);
let next_gen_body = {
let f: proc(proc()) -> proc() = |body| {
let prev_gen_body = prev_gen_body.take();
wrapper(prev_gen_body(body))
};
f
};
self.gen_body = Some(next_gen_body);
}
/**
* Creates and executes a new child task
*
* Sets up a new task with its own call stack and schedules it to run
* the provided unique closure. The task has the properties and behavior
* specified by the task_builder.
*
* # Failure
*
* When spawning into a new scheduler, the number of threads requested
* must be greater than zero.
*/
pub fn spawn(mut self, f: proc()) {
let gen_body = self.gen_body.take();
let notify_chan = self.opts.notify_chan.take();
let name = self.opts.name.take();
let x = self.consume();
let opts = TaskOpts {
watched: x.opts.watched,
notify_chan: notify_chan,
name: name,
sched: x.opts.sched,
stack_size: x.opts.stack_size
};
let f = match gen_body {
Some(gen) => {
gen(f)
}
None => {
f
}
};
spawn::spawn_raw(opts, f);
}
/**
* Execute a function in another task and return either the return value
* of the function or result::err.
*
* # Return value
*
* If the function executed successfully then try returns result::ok
* containing the value returned by the function. If the function fails
* then try returns result::err containing nil.
*
* # Failure
* Fails if a future_result was already set for this task.
*/
pub fn try<T:Send>(mut self, f: proc() -> T) -> Result<T, ~Any> {
let (po, ch) = stream::<T>();
let result = self.future_result();
do self.spawn {
ch.send(f());
}
match result.recv() {
Ok(()) => Ok(po.recv()),
Err(cause) => Err(cause)
}
}
}
/* Task construction */
pub fn default_task_opts() -> TaskOpts {
/*!
* The default task options
*
* By default all tasks are supervised by their parent, are spawned
* into the same scheduler, and do not post lifecycle notifications.
*/
TaskOpts {
watched: true,
notify_chan: None,
name: None,
sched: SchedOpts {
mode: DefaultScheduler,
},
stack_size: None
}
}
/* Spawn convenience functions */
/// Creates and executes a new child task
///
/// Sets up a new task with its own call stack and schedules it to run
/// the provided unique closure.
///
/// This function is equivalent to `task().spawn(f)`.
pub fn spawn(f: proc()) {
let task = task();
task.spawn(f)
}
pub fn spawn_sched(mode: SchedMode, f: proc()) {
/*!
* Creates a new task on a new or existing scheduler.
*
* When there are no more tasks to execute the
* scheduler terminates.
*
* # Failure
*
* In manual threads mode the number of threads requested must be
* greater than zero.
*/
let mut task = task();
task.sched_mode(mode);
task.spawn(f)
}
pub fn try<T:Send>(f: proc() -> T) -> Result<T, ~Any> {
/*!
* Execute a function in another task and return either the return value
* of the function or result::err.
*
* This is equivalent to task().supervised().try.
*/
let task = task();
task.try(f)
}
/* Lifecycle functions */
/// Read the name of the current task.
pub fn with_task_name<U>(blk: |Option<&str>| -> U) -> U {
use rt::task::Task;
if in_green_task_context() {
Local::borrow(|task: &mut Task| {
match task.name {
Some(ref name) => blk(Some(name.as_slice())),
None => blk(None)
}
})
} else {
fail!("no task name exists in non-green task context")
}
}
pub fn deschedule() {
//! Yield control to the task scheduler
use rt::local::Local;
use rt::sched::Scheduler;
// FIXME(#7544): Optimize this, since we know we won't block.
let sched: ~Scheduler = Local::take();
sched.yield_now();
}
pub fn failing() -> bool {
//! True if the running task has failed
use rt::task::Task;
Local::borrow(|local: &mut Task| local.unwinder.unwinding)
}
// The following 8 tests test the following 2^3 combinations:
// {un,}linked {un,}supervised failure propagation {up,down}wards.
// !!! These tests are dangerous. If Something is buggy, they will hang, !!!
// !!! instead of exiting cleanly. This might wedge the buildbots. !!!
#[cfg(test)]
fn block_forever() { let (po, _ch) = stream::<()>(); po.recv(); }
#[test]
fn test_unnamed_task() {
use rt::test::run_in_uv_task;
do run_in_uv_task {
do spawn {
with_task_name(|name| {
assert!(name.is_none());
})
}
}
}
#[test]
fn test_owned_named_task() {
use rt::test::run_in_uv_task;
do run_in_uv_task {
let mut t = task();
t.name(~"ada lovelace");
do t.spawn {
with_task_name(|name| {
assert!(name.unwrap() == "ada lovelace");
})
}
}
}
#[test]
fn test_static_named_task() {
use rt::test::run_in_uv_task;
do run_in_uv_task {
let mut t = task();
t.name("ada lovelace");
do t.spawn {
with_task_name(|name| {
assert!(name.unwrap() == "ada lovelace");
})
}
}
}
#[test]
fn test_send_named_task() {
use rt::test::run_in_uv_task;
do run_in_uv_task {
let mut t = task();
t.name("ada lovelace".into_send_str());
do t.spawn {
with_task_name(|name| {
assert!(name.unwrap() == "ada lovelace");
})
}
}
}
#[test]
fn test_run_basic() {
let (po, ch) = stream::<()>();
let builder = task();
do builder.spawn {
ch.send(());
}
po.recv();
}
#[cfg(test)]
struct Wrapper {
f: Option<Chan<()>>
}
#[test]
fn test_add_wrapper() {
let (po, ch) = stream::<()>();
let mut b0 = task();
let ch = Cell::new(ch);
do b0.add_wrapper |body| {
let ch = Cell::new(ch.take());
let result: proc() = || {
let ch = ch.take();
body();
ch.send(());
};
result
};
do b0.spawn { }
po.recv();
}
#[test]
fn test_future_result() {
let mut builder = task();
let result = builder.future_result();
do builder.spawn {}
assert!(result.recv().is_ok());
let mut builder = task();
let result = builder.future_result();
do builder.spawn {
fail!();
}
assert!(result.recv().is_err());
}
#[test] #[should_fail]
fn test_back_to_the_future_result() {
let mut builder = task();
builder.future_result();
builder.future_result();
}
#[test]
fn test_try_success() {
match do try {
~"Success!"
} {
result::Ok(~"Success!") => (),
_ => fail!()
}
}
#[test]
fn test_try_fail() {
match do try {
fail!()
} {
result::Err(_) => (),
result::Ok(()) => fail!()
}
}
#[cfg(test)]
fn get_sched_id() -> int {
Local::borrow(|sched: &mut ::rt::sched::Scheduler| {
sched.sched_id() as int
})
}
#[test]
fn test_spawn_sched() {
let (po, ch) = stream::<()>();
let ch = SharedChan::new(ch);
fn f(i: int, ch: SharedChan<()>) {
let parent_sched_id = get_sched_id();
do spawn_sched(SingleThreaded) {
let child_sched_id = get_sched_id();
assert!(parent_sched_id != child_sched_id);
if (i == 0) {
ch.send(());
} else {
f(i - 1, ch.clone());
}
};
}
f(10, ch);
po.recv();
}
#[test]
fn test_spawn_sched_childs_on_default_sched() {
let (po, ch) = stream();
// Assuming tests run on the default scheduler
let default_id = get_sched_id();
let ch = Cell::new(ch);
do spawn_sched(SingleThreaded) {
let parent_sched_id = get_sched_id();
let ch = Cell::new(ch.take());
do spawn {
let ch = ch.take();
let child_sched_id = get_sched_id();
assert!(parent_sched_id != child_sched_id);
assert_eq!(child_sched_id, default_id);
ch.send(());
};
};
po.recv();
}
#[test]
fn test_spawn_sched_blocking() {
use unstable::mutex::Mutex;
unsafe {
// Testing that a task in one scheduler can block in foreign code
// without affecting other schedulers
20u.times(|| {
let (start_po, start_ch) = stream();
let (fin_po, fin_ch) = stream();
let mut lock = Mutex::new();
let lock2 = Cell::new(lock.clone());
do spawn_sched(SingleThreaded) {
let mut lock = lock2.take();
lock.lock();
start_ch.send(());
// Block the scheduler thread
lock.wait();
lock.unlock();
fin_ch.send(());
};
// Wait until the other task has its lock
start_po.recv();
fn pingpong(po: &Port<int>, ch: &Chan<int>) {
let mut val = 20;
while val > 0 {
val = po.recv();
ch.send(val - 1);
}
}
let (setup_po, setup_ch) = stream();
let (parent_po, parent_ch) = stream();
do spawn {
let (child_po, child_ch) = stream();
setup_ch.send(child_ch);
pingpong(&child_po, &parent_ch);
};
let child_ch = setup_po.recv();
child_ch.send(20);
pingpong(&parent_po, &child_ch);
lock.lock();
lock.signal();
lock.unlock();
fin_po.recv();
lock.destroy();
})
}
}
#[cfg(test)]
fn avoid_copying_the_body(spawnfn: |v: proc()|) {
let (p, ch) = stream::<uint>();
let x = ~1;
let x_in_parent = ptr::to_unsafe_ptr(&*x) as uint;
do spawnfn || {
let x_in_child = ptr::to_unsafe_ptr(&*x) as uint;
ch.send(x_in_child);
}
let x_in_child = p.recv();
assert_eq!(x_in_parent, x_in_child);
}
#[test]
fn test_avoid_copying_the_body_spawn() {
avoid_copying_the_body(spawn);
}
#[test]
fn test_avoid_copying_the_body_task_spawn() {
avoid_copying_the_body(|f| {
let builder = task();
do builder.spawn || {
f();
}
})
}
#[test]
fn test_avoid_copying_the_body_try() {
avoid_copying_the_body(|f| {
do try || {
f()
};
})
}
#[test]
fn test_child_doesnt_ref_parent() {
// If the child refcounts the parent task, this will stack overflow when
// climbing the task tree to dereference each ancestor. (See #1789)
// (well, it would if the constant were 8000+ - I lowered it to be more
// valgrind-friendly. try this at home, instead..!)
static generations: uint = 16;
fn child_no(x: uint) -> proc() {
return || {
if x < generations {
let mut t = task();
t.unwatched();
t.spawn(child_no(x+1));
}
}
}
let mut t = task();
t.unwatched();
t.spawn(child_no(0));
}
#[test]
fn test_simple_newsched_spawn() {
use rt::test::run_in_uv_task;
do run_in_uv_task {
spawn(||())
}
}
#[test]
fn test_try_fail_message_static_str() {
match do try {
fail!("static string");
} {
Err(e) => {
type T = &'static str;
assert!(e.is::<T>());
assert_eq!(*e.move::<T>().unwrap(), "static string");
}
Ok(()) => fail!()
}
}
#[test]
fn test_try_fail_message_owned_str() {
match do try {
fail!(~"owned string");
} {
Err(e) => {
type T = ~str;
assert!(e.is::<T>());
assert_eq!(*e.move::<T>().unwrap(), ~"owned string");
}
Ok(()) => fail!()
}
}
#[test]
fn test_try_fail_message_any() {
match do try {
fail!(~413u16 as ~Any);
} {
Err(e) => {
type T = ~Any;
assert!(e.is::<T>());
let any = e.move::<T>().unwrap();
assert!(any.is::<u16>());
assert_eq!(*any.move::<u16>().unwrap(), 413u16);
}
Ok(()) => fail!()
}
}
#[test]
fn test_try_fail_message_unit_struct() {
struct Juju;
match do try {
fail!(Juju)
} {
Err(ref e) if e.is::<Juju>() => {}
Err(_) | Ok(()) => fail!()
}
}
|