1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
|
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!**************************************************************************
* Spawning & linked failure
*
* Several data structures are involved in task management to allow properly
* propagating failure across linked/supervised tasks.
*
* (1) The "taskgroup_arc" is an unsafe::exclusive which contains a hashset of
* all tasks that are part of the group. Some tasks are 'members', which
* means if they fail, they will kill everybody else in the taskgroup.
* Other tasks are 'descendants', which means they will not kill tasks
* from this group, but can be killed by failing members.
*
* A new one of these is created each spawn_linked or spawn_supervised.
*
* (2) The "tcb" is a per-task control structure that tracks a task's spawn
* configuration. It contains a reference to its taskgroup_arc, a
* reference to its node in the ancestor list (below), a flag for
* whether it's part of the 'main'/'root' taskgroup, and an optionally
* configured notification port. These are stored in TLS.
*
* (3) The "ancestor_list" is a cons-style list of unsafe::exclusives which
* tracks 'generations' of taskgroups -- a group's ancestors are groups
* which (directly or transitively) spawn_supervised-ed them. Each task
* is recorded in the 'descendants' of each of its ancestor groups.
*
* Spawning a supervised task is O(n) in the number of generations still
* alive, and exiting (by success or failure) that task is also O(n).
*
* This diagram depicts the references between these data structures:
*
* linked_________________________________
* ___/ _________ \___
* / \ | group X | / \
* ( A ) - - - - - - - > | {A,B} {}|< - - -( B )
* \___/ |_________| \___/
* unlinked
* | __ (nil)
* | //| The following code causes this:
* |__ // /\ _________
* / \ // || | group Y | fn taskA() {
* ( C )- - - ||- - - > |{C} {D,E}| spawn(taskB);
* \___/ / \=====> |_________| spawn_unlinked(taskC);
* supervise /gen \ ...
* | __ \ 00 / }
* | //| \__/ fn taskB() { ... }
* |__ // /\ _________ fn taskC() {
* / \/ || | group Z | spawn_supervised(taskD);
* ( D )- - - ||- - - > | {D} {E} | ...
* \___/ / \=====> |_________| }
* supervise /gen \ fn taskD() {
* | __ \ 01 / spawn_supervised(taskE);
* | //| \__/ ...
* |__ // _________ }
* / \/ | group W | fn taskE() { ... }
* ( E )- - - - - - - > | {E} {} |
* \___/ |_________|
*
* "tcb" "taskgroup_arc"
* "ancestor_list"
*
****************************************************************************/
#[doc(hidden)];
use prelude::*;
use cast::transmute;
use cast;
use cell::Cell;
use container::MutableMap;
use comm::{Chan, GenericChan};
use hashmap::{HashSet, HashSetConsumeIterator};
use local_data;
use task::local_data_priv::{local_get, local_set, OldHandle};
use task::rt::rust_task;
use task::rt;
use task::{Failure};
use task::{Success, TaskOpts, TaskResult};
use task::unkillable;
use to_bytes::IterBytes;
use uint;
use util;
use unstable::sync::Exclusive;
use rt::{OldTaskContext, TaskContext, SchedulerContext, GlobalContext, context};
use rt::local::Local;
use rt::task::Task;
use rt::kill::KillHandle;
use rt::sched::Scheduler;
#[cfg(test)] use task::default_task_opts;
#[cfg(test)] use comm;
#[cfg(test)] use task;
// Transitionary.
#[deriving(Eq)]
enum TaskHandle {
OldTask(*rust_task),
NewTask(KillHandle),
}
impl Clone for TaskHandle {
fn clone(&self) -> TaskHandle {
match *self {
OldTask(x) => OldTask(x),
NewTask(ref x) => NewTask(x.clone()),
}
}
}
impl IterBytes for TaskHandle {
fn iter_bytes(&self, lsb0: bool, f: &fn(buf: &[u8]) -> bool) -> bool {
match *self {
OldTask(ref x) => x.iter_bytes(lsb0, f),
NewTask(ref x) => x.iter_bytes(lsb0, f),
}
}
}
struct TaskSet(HashSet<TaskHandle>);
impl TaskSet {
#[inline]
fn new() -> TaskSet {
TaskSet(HashSet::new())
}
#[inline]
fn insert(&mut self, task: TaskHandle) {
let didnt_overwrite = (**self).insert(task);
assert!(didnt_overwrite);
}
#[inline]
fn remove(&mut self, task: &TaskHandle) {
let was_present = (**self).remove(task);
assert!(was_present);
}
#[inline]
fn consume(self) -> HashSetConsumeIterator<TaskHandle> {
(*self).consume()
}
}
// One of these per group of linked-failure tasks.
struct TaskGroupData {
// All tasks which might kill this group. When this is empty, the group
// can be "GC"ed (i.e., its link in the ancestor list can be removed).
members: TaskSet,
// All tasks unidirectionally supervised by (directly or transitively)
// tasks in this group.
descendants: TaskSet,
}
type TaskGroupArc = Exclusive<Option<TaskGroupData>>;
type TaskGroupInner<'self> = &'self mut Option<TaskGroupData>;
// A taskgroup is 'dead' when nothing can cause it to fail; only members can.
fn taskgroup_is_dead(tg: &TaskGroupData) -> bool {
tg.members.is_empty()
}
// A list-like structure by which taskgroups keep track of all ancestor groups
// which may kill them. Needed for tasks to be able to remove themselves from
// ancestor groups upon exit. The list has a node for each "generation", and
// ends either at the root taskgroup (which has no ancestors) or at a
// taskgroup which was spawned-unlinked. Tasks from intermediate generations
// have references to the middle of the list; when intermediate generations
// die, their node in the list will be collected at a descendant's spawn-time.
struct AncestorNode {
// Since the ancestor list is recursive, we end up with references to
// exclusives within other exclusives. This is dangerous business (if
// circular references arise, deadlock and memory leaks are imminent).
// Hence we assert that this counter monotonically decreases as we
// approach the tail of the list.
generation: uint,
// Handle to the tasks in the group of the current generation.
parent_group: TaskGroupArc,
// Recursive rest of the list.
ancestors: AncestorList,
}
struct AncestorList(Option<Exclusive<AncestorNode>>);
// Accessors for taskgroup arcs and ancestor arcs that wrap the unsafety.
#[inline]
fn access_group<U>(x: &TaskGroupArc, blk: &fn(TaskGroupInner) -> U) -> U {
unsafe {
x.with(blk)
}
}
#[inline]
fn access_ancestors<U>(x: &Exclusive<AncestorNode>,
blk: &fn(x: &mut AncestorNode) -> U) -> U {
unsafe {
x.with(blk)
}
}
#[inline] #[cfg(test)]
fn check_generation(younger: uint, older: uint) { assert!(younger > older); }
#[inline] #[cfg(not(test))]
fn check_generation(_younger: uint, _older: uint) { }
#[inline] #[cfg(test)]
fn incr_generation(ancestors: &AncestorList) -> uint {
ancestors.map_default(0, |arc| access_ancestors(arc, |a| a.generation+1))
}
#[inline] #[cfg(not(test))]
fn incr_generation(_ancestors: &AncestorList) -> uint { 0 }
// Iterates over an ancestor list.
// (1) Runs forward_blk on each ancestral taskgroup in the list
// (2) If forward_blk "break"s, runs optional bail_blk on all ancestral
// taskgroups that forward_blk already ran on successfully (Note: bail_blk
// is NOT called on the block that forward_blk broke on!).
// (3) As a bonus, coalesces away all 'dead' taskgroup nodes in the list.
fn each_ancestor(list: &mut AncestorList,
bail_blk: &fn(TaskGroupInner),
forward_blk: &fn(TaskGroupInner) -> bool)
-> bool {
// "Kickoff" call - there was no last generation.
return !coalesce(list, bail_blk, forward_blk, uint::max_value);
// Recursively iterates, and coalesces afterwards if needed. Returns
// whether or not unwinding is needed (i.e., !successful iteration).
fn coalesce(list: &mut AncestorList,
bail_blk: &fn(TaskGroupInner),
forward_blk: &fn(TaskGroupInner) -> bool,
last_generation: uint) -> bool {
let (coalesce_this, early_break) =
iterate(list, bail_blk, forward_blk, last_generation);
// What should our next ancestor end up being?
if coalesce_this.is_some() {
// Needed coalesce. Our next ancestor becomes our old
// ancestor's next ancestor. ("next = old_next->next;")
*list = coalesce_this.unwrap();
}
return early_break;
}
// Returns an optional list-to-coalesce and whether unwinding is needed.
// Option<ancestor_list>:
// Whether or not the ancestor taskgroup being iterated over is
// dead or not; i.e., it has no more tasks left in it, whether or not
// it has descendants. If dead, the caller shall coalesce it away.
// bool:
// True if the supplied block did 'break', here or in any recursive
// calls. If so, must call the unwinder on all previous nodes.
fn iterate(ancestors: &mut AncestorList,
bail_blk: &fn(TaskGroupInner),
forward_blk: &fn(TaskGroupInner) -> bool,
last_generation: uint)
-> (Option<AncestorList>, bool) {
// At each step of iteration, three booleans are at play which govern
// how the iteration should behave.
// 'nobe_is_dead' - Should the list should be coalesced at this point?
// Largely unrelated to the other two.
// 'need_unwind' - Should we run the bail_blk at this point? (i.e.,
// do_continue was false not here, but down the line)
// 'do_continue' - Did the forward_blk succeed at this point? (i.e.,
// should we recurse? or should our callers unwind?)
let forward_blk = Cell::new(forward_blk);
// The map defaults to None, because if ancestors is None, we're at
// the end of the list, which doesn't make sense to coalesce.
do ancestors.map_default((None,false)) |ancestor_arc| {
// NB: Takes a lock! (this ancestor node)
do access_ancestors(ancestor_arc) |nobe| {
// Argh, but we couldn't give it to coalesce() otherwise.
let forward_blk = forward_blk.take();
// Check monotonicity
check_generation(last_generation, nobe.generation);
/*##########################################################*
* Step 1: Look at this ancestor group (call iterator block).
*##########################################################*/
let mut nobe_is_dead = false;
let do_continue =
// NB: Takes a lock! (this ancestor node's parent group)
do access_group(&nobe.parent_group) |tg_opt| {
// Decide whether this group is dead. Note that the
// group being *dead* is disjoint from it *failing*.
nobe_is_dead = match *tg_opt {
Some(ref tg) => taskgroup_is_dead(tg),
None => nobe_is_dead
};
// Call iterator block. (If the group is dead, it's
// safe to skip it. This will leave our TaskHandle
// hanging around in the group even after it's freed,
// but that's ok because, by virtue of the group being
// dead, nobody will ever kill-all (foreach) over it.)
if nobe_is_dead { true } else { forward_blk(tg_opt) }
};
/*##########################################################*
* Step 2: Recurse on the rest of the list; maybe coalescing.
*##########################################################*/
// 'need_unwind' is only set if blk returned true above, *and*
// the recursive call early-broke.
let mut need_unwind = false;
if do_continue {
// NB: Takes many locks! (ancestor nodes & parent groups)
need_unwind = coalesce(&mut nobe.ancestors, |tg| bail_blk(tg),
forward_blk, nobe.generation);
}
/*##########################################################*
* Step 3: Maybe unwind; compute return info for our caller.
*##########################################################*/
if need_unwind && !nobe_is_dead {
do access_group(&nobe.parent_group) |tg_opt| {
bail_blk(tg_opt)
}
}
// Decide whether our caller should unwind.
need_unwind = need_unwind || !do_continue;
// Tell caller whether or not to coalesce and/or unwind
if nobe_is_dead {
// Swap the list out here; the caller replaces us with it.
let rest = util::replace(&mut nobe.ancestors,
AncestorList(None));
(Some(rest), need_unwind)
} else {
(None, need_unwind)
}
}
}
}
}
// One of these per task.
pub struct Taskgroup {
// List of tasks with whose fates this one's is intertwined.
tasks: TaskGroupArc, // 'none' means the group has failed.
// Lists of tasks who will kill us if they fail, but whom we won't kill.
ancestors: AncestorList,
is_main: bool,
notifier: Option<AutoNotify>,
}
impl Drop for Taskgroup {
// Runs on task exit.
fn drop(&self) {
unsafe {
// FIXME(#4330) Need self by value to get mutability.
let this: &mut Taskgroup = transmute(self);
// If we are failing, the whole taskgroup needs to die.
do RuntimeGlue::with_task_handle_and_failing |me, failing| {
if failing {
foreach x in this.notifier.mut_iter() {
x.failed = true;
}
// Take everybody down with us.
do access_group(&self.tasks) |tg| {
kill_taskgroup(tg, &me, self.is_main);
}
} else {
// Remove ourselves from the group(s).
do access_group(&self.tasks) |tg| {
leave_taskgroup(tg, &me, true);
}
}
// It doesn't matter whether this happens before or after dealing
// with our own taskgroup, so long as both happen before we die.
// We remove ourself from every ancestor we can, so no cleanup; no
// break.
for each_ancestor(&mut this.ancestors, |_| {}) |ancestor_group| {
leave_taskgroup(ancestor_group, &me, false);
};
}
}
}
}
pub fn Taskgroup(tasks: TaskGroupArc,
ancestors: AncestorList,
is_main: bool,
mut notifier: Option<AutoNotify>) -> Taskgroup {
foreach x in notifier.mut_iter() {
x.failed = false;
}
Taskgroup {
tasks: tasks,
ancestors: ancestors,
is_main: is_main,
notifier: notifier
}
}
struct AutoNotify {
notify_chan: Chan<TaskResult>,
failed: bool,
}
impl Drop for AutoNotify {
fn drop(&self) {
let result = if self.failed { Failure } else { Success };
self.notify_chan.send(result);
}
}
fn AutoNotify(chan: Chan<TaskResult>) -> AutoNotify {
AutoNotify {
notify_chan: chan,
failed: true // Un-set above when taskgroup successfully made.
}
}
fn enlist_in_taskgroup(state: TaskGroupInner, me: TaskHandle,
is_member: bool) -> bool {
let me = Cell::new(me); // :(
// If 'None', the group was failing. Can't enlist.
do state.map_mut_default(false) |group| {
(if is_member {
&mut group.members
} else {
&mut group.descendants
}).insert(me.take());
true
}
}
// NB: Runs in destructor/post-exit context. Can't 'fail'.
fn leave_taskgroup(state: TaskGroupInner, me: &TaskHandle,
is_member: bool) {
let me = Cell::new(me); // :(
// If 'None', already failing and we've already gotten a kill signal.
do state.map_mut |group| {
(if is_member {
&mut group.members
} else {
&mut group.descendants
}).remove(me.take());
};
}
// NB: Runs in destructor/post-exit context. Can't 'fail'.
fn kill_taskgroup(state: TaskGroupInner, me: &TaskHandle, is_main: bool) {
unsafe {
// NB: We could do the killing iteration outside of the group arc, by
// having "let mut newstate" here, swapping inside, and iterating
// after. But that would let other exiting tasks fall-through and exit
// while we were trying to kill them, causing potential
// use-after-free. A task's presence in the arc guarantees it's alive
// only while we hold the lock, so if we're failing, all concurrently
// exiting tasks must wait for us. To do it differently, we'd have to
// use the runtime's task refcounting, but that could leave task
// structs around long after their task exited.
let newstate = util::replace(state, None);
// Might already be None, if Somebody is failing simultaneously.
// That's ok; only one task needs to do the dirty work. (Might also
// see 'None' if Somebody already failed and we got a kill signal.)
if newstate.is_some() {
let TaskGroupData { members: members, descendants: descendants } =
newstate.unwrap();
foreach sibling in members.consume() {
// Skip self - killing ourself won't do much good.
if &sibling != me {
RuntimeGlue::kill_task(sibling);
}
}
foreach child in descendants.consume() {
assert!(&child != me);
RuntimeGlue::kill_task(child);
}
// Only one task should ever do this.
if is_main {
RuntimeGlue::kill_all_tasks(me);
}
// Do NOT restore state to Some(..)! It stays None to indicate
// that the whole taskgroup is failing, to forbid new spawns.
}
// (note: multiple tasks may reach this point)
}
}
// FIXME (#2912): Work around core-vs-coretest function duplication. Can't use
// a proper closure because the #[test]s won't understand. Have to fake it.
fn taskgroup_key() -> local_data::Key<@@mut Taskgroup> {
unsafe { cast::transmute(-2) }
}
// Transitionary.
struct RuntimeGlue;
impl RuntimeGlue {
unsafe fn kill_task(task: TaskHandle) {
match task {
OldTask(ptr) => rt::rust_task_kill_other(ptr),
NewTask(handle) => {
let mut handle = handle;
do handle.kill().map_consume |killed_task| {
let killed_task = Cell::new(killed_task);
do Local::borrow::<Scheduler, ()> |sched| {
sched.enqueue_task(killed_task.take());
}
};
}
}
}
unsafe fn kill_all_tasks(task: &TaskHandle) {
match *task {
OldTask(ptr) => rt::rust_task_kill_all(ptr),
// FIXME(#7544): Remove the kill_all feature entirely once the
// oldsched goes away.
NewTask(ref _handle) => rtabort!("can't kill_all in newsched"),
}
}
fn with_task_handle_and_failing(blk: &fn(TaskHandle, bool)) {
match context() {
OldTaskContext => unsafe {
let me = rt::rust_get_task();
blk(OldTask(me), rt::rust_task_is_unwinding(me))
},
TaskContext => unsafe {
// Can't use safe borrow, because the taskgroup destructor needs to
// access the scheduler again to send kill signals to other tasks.
let me = Local::unsafe_borrow::<Task>();
// FIXME(#7544): Get rid of this clone by passing by-ref.
// Will probably have to wait until the old rt is gone.
blk(NewTask((*me).death.kill_handle.get_ref().clone()),
(*me).unwinder.unwinding)
},
SchedulerContext | GlobalContext => rtabort!("task dying in bad context"),
}
}
fn with_my_taskgroup<U>(blk: &fn(&Taskgroup) -> U) -> U {
match context() {
OldTaskContext => unsafe {
let me = rt::rust_get_task();
do local_get(OldHandle(me), taskgroup_key()) |g| {
match g {
None => {
// Main task, doing first spawn ever. Lazily initialise here.
let mut members = TaskSet::new();
members.insert(OldTask(me));
let tasks = Exclusive::new(Some(TaskGroupData {
members: members,
descendants: TaskSet::new(),
}));
// Main task/group has no ancestors, no notifier, etc.
let group = @@mut Taskgroup(tasks, AncestorList(None),
true, None);
local_set(OldHandle(me), taskgroup_key(), group);
blk(&**group)
}
Some(&group) => blk(&**group)
}
}
},
TaskContext => unsafe {
// Can't use safe borrow, because creating new hashmaps for the
// tasksets requires an rng, which needs to borrow the sched.
let me = Local::unsafe_borrow::<Task>();
blk(match (*me).taskgroup {
None => {
// Main task, doing first spawn ever. Lazily initialize.
let mut members = TaskSet::new();
let my_handle = (*me).death.kill_handle.get_ref().clone();
members.insert(NewTask(my_handle));
let tasks = Exclusive::new(Some(TaskGroupData {
members: members,
descendants: TaskSet::new(),
}));
// FIXME(#7544): Remove the is_main flag entirely once
// the newsched goes away. The main taskgroup has no special
// behaviour.
let group = Taskgroup(tasks, AncestorList(None), false, None);
(*me).taskgroup = Some(group);
(*me).taskgroup.get_ref()
}
Some(ref group) => group,
})
},
SchedulerContext | GlobalContext => rtabort!("spawning in bad context"),
}
}
}
fn gen_child_taskgroup(linked: bool, supervised: bool)
-> (TaskGroupArc, AncestorList, bool) {
do RuntimeGlue::with_my_taskgroup |spawner_group| {
let ancestors = AncestorList(spawner_group.ancestors.map(|x| x.clone()));
if linked {
// Child is in the same group as spawner.
// Child's ancestors are spawner's ancestors.
// Propagate main-ness.
(spawner_group.tasks.clone(), ancestors, spawner_group.is_main)
} else {
// Child is in a separate group from spawner.
let g = Exclusive::new(Some(TaskGroupData {
members: TaskSet::new(),
descendants: TaskSet::new(),
}));
let a = if supervised {
let new_generation = incr_generation(&ancestors);
assert!(new_generation < uint::max_value);
// Child's ancestors start with the spawner.
// Build a new node in the ancestor list.
AncestorList(Some(Exclusive::new(AncestorNode {
generation: new_generation,
parent_group: spawner_group.tasks.clone(),
ancestors: ancestors,
})))
} else {
// Child has no ancestors.
AncestorList(None)
};
(g, a, false)
}
}
}
// Set up membership in taskgroup and descendantship in all ancestor
// groups. If any enlistment fails, Some task was already failing, so
// don't let the child task run, and undo every successful enlistment.
fn enlist_many(child: TaskHandle, child_arc: &TaskGroupArc,
ancestors: &mut AncestorList) -> bool {
// Join this taskgroup.
let mut result = do access_group(child_arc) |child_tg| {
enlist_in_taskgroup(child_tg, child.clone(), true) // member
};
if result {
// Unwinding function in case any ancestral enlisting fails
let bail: &fn(TaskGroupInner) = |tg| { leave_taskgroup(tg, &child, false) };
// Attempt to join every ancestor group.
result = do each_ancestor(ancestors, bail) |ancestor_tg| {
// Enlist as a descendant, not as an actual member.
// Descendants don't kill ancestor groups on failure.
enlist_in_taskgroup(ancestor_tg, child.clone(), false)
};
// If any ancestor group fails, need to exit this group too.
if !result {
do access_group(child_arc) |child_tg| {
leave_taskgroup(child_tg, &child, true); // member
}
}
}
result
}
pub fn spawn_raw(opts: TaskOpts, f: ~fn()) {
match context() {
OldTaskContext => {
spawn_raw_oldsched(opts, f)
}
TaskContext => {
spawn_raw_newsched(opts, f)
}
SchedulerContext => {
fail!("can't spawn from scheduler context")
}
GlobalContext => {
fail!("can't spawn from global context")
}
}
}
fn spawn_raw_newsched(mut opts: TaskOpts, f: ~fn()) {
let child_data = Cell::new(gen_child_taskgroup(opts.linked, opts.supervised));
let indestructible = opts.indestructible;
let child_wrapper: ~fn() = || {
// Child task runs this code.
let child_data = Cell::new(child_data.take()); // :(
let enlist_success = do Local::borrow::<Task, bool> |me| {
let (child_tg, ancestors, is_main) = child_data.take();
let mut ancestors = ancestors;
// FIXME(#7544): Optimize out the xadd in this clone, somehow.
let handle = me.death.kill_handle.get_ref().clone();
// Atomically try to get into all of our taskgroups.
if enlist_many(NewTask(handle), &child_tg, &mut ancestors) {
// Got in. We can run the provided child body, and can also run
// the taskgroup's exit-time-destructor afterward.
me.taskgroup = Some(Taskgroup(child_tg, ancestors, is_main, None));
true
} else {
false
}
};
// Should be run after the local-borrowed task is returned.
if enlist_success {
if indestructible {
do unkillable { f() }
} else {
f()
}
}
};
let mut task = unsafe {
let sched = Local::unsafe_borrow::<Scheduler>();
rtdebug!("unsafe borrowed sched");
if opts.watched {
let child_wrapper = Cell::new(child_wrapper);
do Local::borrow::<Task, ~Task>() |running_task| {
~running_task.new_child(&mut (*sched).stack_pool, child_wrapper.take())
}
} else {
// An unwatched task is a new root in the exit-code propagation tree
~Task::new_root(&mut (*sched).stack_pool, child_wrapper)
}
};
if opts.notify_chan.is_some() {
let notify_chan = opts.notify_chan.take_unwrap();
let notify_chan = Cell::new(notify_chan);
let on_exit: ~fn(bool) = |success| {
notify_chan.take().send(
if success { Success } else { Failure }
)
};
task.death.on_exit = Some(on_exit);
}
rtdebug!("spawn about to take scheduler");
let sched = Local::take::<Scheduler>();
rtdebug!("took sched in spawn");
sched.schedule_task(task);
}
fn spawn_raw_oldsched(mut opts: TaskOpts, f: ~fn()) {
let (child_tg, ancestors, is_main) =
gen_child_taskgroup(opts.linked, opts.supervised);
unsafe {
let child_data = Cell::new((child_tg, ancestors, f));
// Being killed with the unsafe task/closure pointers would leak them.
do unkillable {
let (child_tg, ancestors, f) = child_data.take(); // :(
// Create child task.
let new_task = match opts.sched.mode {
DefaultScheduler => rt::new_task(),
_ => new_task_in_sched()
};
assert!(!new_task.is_null());
// Getting killed after here would leak the task.
let child_wrapper = make_child_wrapper(new_task, child_tg,
ancestors, is_main, opts.notify_chan.take(), f);
let closure = cast::transmute(&child_wrapper);
// Getting killed between these two calls would free the child's
// closure. (Reordering them wouldn't help - then getting killed
// between them would leak.)
rt::start_task(new_task, closure);
cast::forget(child_wrapper);
}
}
// This function returns a closure-wrapper that we pass to the child task.
// (1) It sets up the notification channel.
// (2) It attempts to enlist in the child's group and all ancestor groups.
// (3a) If any of those fails, it leaves all groups, and does nothing.
// (3b) Otherwise it builds a task control structure and puts it in TLS,
// (4) ...and runs the provided body function.
fn make_child_wrapper(child: *rust_task, child_arc: TaskGroupArc,
ancestors: AncestorList, is_main: bool,
notify_chan: Option<Chan<TaskResult>>,
f: ~fn())
-> ~fn() {
let child_data = Cell::new((notify_chan, child_arc, ancestors));
let result: ~fn() = || {
let (notify_chan, child_arc, ancestors) = child_data.take(); // :(
let mut ancestors = ancestors;
// Child task runs this code.
// Even if the below code fails to kick the child off, we must
// send Something on the notify channel.
let notifier = notify_chan.map_consume(|c| AutoNotify(c));
if enlist_many(OldTask(child), &child_arc, &mut ancestors) {
let group = @@mut Taskgroup(child_arc, ancestors, is_main, notifier);
unsafe {
local_set(OldHandle(child), taskgroup_key(), group);
}
// Run the child's body.
f();
// TLS cleanup code will exit the taskgroup.
}
// Run the box annihilator.
// FIXME #4428: Crashy.
// unsafe { cleanup::annihilate(); }
};
return result;
}
fn new_task_in_sched() -> *rust_task {
unsafe {
let sched_id = rt::rust_new_sched(1);
rt::rust_new_task_in_sched(sched_id)
}
}
}
#[test]
fn test_spawn_raw_simple() {
let (po, ch) = stream();
do spawn_raw(default_task_opts()) {
ch.send(());
}
po.recv();
}
#[test]
#[ignore(cfg(windows))]
fn test_spawn_raw_unsupervise() {
let opts = task::TaskOpts {
linked: false,
watched: false,
notify_chan: None,
.. default_task_opts()
};
do spawn_raw(opts) {
fail!();
}
}
#[test]
#[ignore(cfg(windows))]
fn test_spawn_raw_notify_success() {
let (notify_po, notify_ch) = comm::stream();
let opts = task::TaskOpts {
notify_chan: Some(notify_ch),
.. default_task_opts()
};
do spawn_raw(opts) {
}
assert_eq!(notify_po.recv(), Success);
}
#[test]
#[ignore(cfg(windows))]
fn test_spawn_raw_notify_failure() {
// New bindings for these
let (notify_po, notify_ch) = comm::stream();
let opts = task::TaskOpts {
linked: false,
watched: false,
notify_chan: Some(notify_ch),
.. default_task_opts()
};
do spawn_raw(opts) {
fail!();
}
assert_eq!(notify_po.recv(), Failure);
}
|