about summary refs log tree commit diff
path: root/src/libstd/vec.rs
blob: 3cac6fadb9433d7e6175edfe402a74fe63ecadf2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! An owned, growable vector.

use RawVec = raw::Vec;
use clone::Clone;
use cmp::{PartialOrd, PartialEq, Ordering, TotalEq, TotalOrd, max};
use container::{Container, Mutable};
use default::Default;
use fmt;
use iter::{DoubleEndedIterator, FromIterator, Extendable, Iterator, range};
use mem;
use num::{CheckedMul, CheckedAdd};
use num;
use ops::{Add, Drop};
use option::{None, Option, Some, Expect};
use ptr::RawPtr;
use ptr;
use raw::Slice;
use rt::heap::{allocate, reallocate, deallocate};
use slice::{ImmutableEqVector, ImmutableVector, Items, MutItems, MutableVector};
use slice::{MutableTotalOrdVector, OwnedVector, Vector};
use slice::{MutableVectorAllocating};

/// An owned, growable vector.
///
/// # Examples
///
/// ```rust
/// # use std::vec::Vec;
/// let mut vec = Vec::new();
/// vec.push(1);
/// vec.push(2);
///
/// assert_eq!(vec.len(), 2);
/// assert_eq!(vec.get(0), &1);
///
/// assert_eq!(vec.pop(), Some(2));
/// assert_eq!(vec.len(), 1);
/// ```
///
/// The `vec!` macro is provided to make initialization more convenient:
///
/// ```rust
/// let mut vec = vec!(1, 2, 3);
/// vec.push(4);
/// assert_eq!(vec, vec!(1, 2, 3, 4));
/// ```
#[unsafe_no_drop_flag]
pub struct Vec<T> {
    len: uint,
    cap: uint,
    ptr: *mut T
}

impl<T> Vec<T> {
    /// Constructs a new, empty `Vec`.
    ///
    /// The vector will not allocate until elements are pushed onto it.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use std::vec::Vec;
    /// let mut vec: Vec<int> = Vec::new();
    /// ```
    #[inline]
    pub fn new() -> Vec<T> {
        Vec { len: 0, cap: 0, ptr: 0 as *mut T }
    }

    /// Constructs a new, empty `Vec` with the specified capacity.
    ///
    /// The vector will be able to hold exactly `capacity` elements without
    /// reallocating. If `capacity` is 0, the vector will not allocate.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use std::vec::Vec;
    /// let vec: Vec<int> = Vec::with_capacity(10);
    /// ```
    pub fn with_capacity(capacity: uint) -> Vec<T> {
        if mem::size_of::<T>() == 0 {
            Vec { len: 0, cap: ::uint::MAX, ptr: 0 as *mut T }
        } else if capacity == 0 {
            Vec::new()
        } else {
            let size = capacity.checked_mul(&mem::size_of::<T>())
                               .expect("capacity overflow");
            let ptr = unsafe { allocate(size, mem::min_align_of::<T>()) };
            Vec { len: 0, cap: capacity, ptr: ptr as *mut T }
        }
    }

    /// Creates and initializes a `Vec`.
    ///
    /// Creates a `Vec` of size `length` and initializes the elements to the
    /// value returned by the closure `op`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use std::vec::Vec;
    /// let vec = Vec::from_fn(3, |idx| idx * 2);
    /// assert_eq!(vec, vec!(0, 2, 4));
    /// ```
    pub fn from_fn(length: uint, op: |uint| -> T) -> Vec<T> {
        unsafe {
            let mut xs = Vec::with_capacity(length);
            while xs.len < length {
                mem::overwrite(xs.as_mut_slice().unsafe_mut_ref(xs.len),
                                   op(xs.len));
                xs.len += 1;
            }
            xs
        }
    }

    /// Create a `Vec<T>` directly from the raw constituents.
    ///
    /// This is highly unsafe:
    ///
    /// - if `ptr` is null, then `length` and `capacity` should be 0
    /// - `ptr` must point to an allocation of size `capacity`
    /// - there must be `length` valid instances of type `T` at the
    ///   beginning of that allocation
    /// - `ptr` must be allocated by the default `Vec` allocator
    pub unsafe fn from_raw_parts(length: uint, capacity: uint,
                                 ptr: *mut T) -> Vec<T> {
        Vec { len: length, cap: capacity, ptr: ptr }
    }

    /// Consumes the `Vec`, partitioning it based on a predicate.
    ///
    /// Partitions the `Vec` into two `Vec`s `(A,B)`, where all elements of `A`
    /// satisfy `f` and all elements of `B` do not. The order of elements is
    /// preserved.
    ///
    /// # Example
    ///
    /// ```rust
    /// let vec = vec!(1, 2, 3, 4);
    /// let (even, odd) = vec.partition(|&n| n % 2 == 0);
    /// assert_eq!(even, vec!(2, 4));
    /// assert_eq!(odd, vec!(1, 3));
    /// ```
    #[inline]
    pub fn partition(self, f: |&T| -> bool) -> (Vec<T>, Vec<T>) {
        let mut lefts  = Vec::new();
        let mut rights = Vec::new();

        for elt in self.move_iter() {
            if f(&elt) {
                lefts.push(elt);
            } else {
                rights.push(elt);
            }
        }

        (lefts, rights)
    }
}

impl<T: Clone> Vec<T> {
    /// Iterates over the `second` vector, copying each element and appending it to
    /// the `first`. Afterwards, the `first` is then returned for use again.
    ///
    /// # Example
    ///
    /// ```rust
    /// let vec = vec!(1, 2);
    /// let vec = vec.append([3, 4]);
    /// assert_eq!(vec, vec!(1, 2, 3, 4));
    /// ```
    #[inline]
    pub fn append(mut self, second: &[T]) -> Vec<T> {
        self.push_all(second);
        self
    }

    /// Constructs a `Vec` by cloning elements of a slice.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use std::vec::Vec;
    /// let slice = [1, 2, 3];
    /// let vec = Vec::from_slice(slice);
    /// ```
    pub fn from_slice(values: &[T]) -> Vec<T> {
        values.iter().map(|x| x.clone()).collect()
    }

    /// Constructs a `Vec` with copies of a value.
    ///
    /// Creates a `Vec` with `length` copies of `value`.
    ///
    /// # Example
    /// ```rust
    /// # use std::vec::Vec;
    /// let vec = Vec::from_elem(3, "hi");
    /// println!("{}", vec); // prints [hi, hi, hi]
    /// ```
    pub fn from_elem(length: uint, value: T) -> Vec<T> {
        unsafe {
            let mut xs = Vec::with_capacity(length);
            while xs.len < length {
                mem::overwrite(xs.as_mut_slice().unsafe_mut_ref(xs.len),
                                   value.clone());
                xs.len += 1;
            }
            xs
        }
    }

    /// Appends all elements in a slice to the `Vec`.
    ///
    /// Iterates over the slice `other`, clones each element, and then appends
    /// it to this `Vec`. The `other` vector is traversed in-order.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!(1);
    /// vec.push_all([2, 3, 4]);
    /// assert_eq!(vec, vec!(1, 2, 3, 4));
    /// ```
    #[inline]
    pub fn push_all(&mut self, other: &[T]) {
        self.extend(other.iter().map(|e| e.clone()));
    }

    /// Grows the `Vec` in-place.
    ///
    /// Adds `n` copies of `value` to the `Vec`.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!("hello");
    /// vec.grow(2, &("world"));
    /// assert_eq!(vec, vec!("hello", "world", "world"));
    /// ```
    pub fn grow(&mut self, n: uint, value: &T) {
        let new_len = self.len() + n;
        self.reserve(new_len);
        let mut i: uint = 0u;

        while i < n {
            self.push((*value).clone());
            i += 1u;
        }
    }

    /// Sets the value of a vector element at a given index, growing the vector
    /// as needed.
    ///
    /// Sets the element at position `index` to `value`. If `index` is past the
    /// end of the vector, expands the vector by replicating `initval` to fill
    /// the intervening space.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!("a", "b", "c");
    /// vec.grow_set(1, &("fill"), "d");
    /// vec.grow_set(4, &("fill"), "e");
    /// assert_eq!(vec, vec!("a", "d", "c", "fill", "e"));
    /// ```
    pub fn grow_set(&mut self, index: uint, initval: &T, value: T) {
        let l = self.len();
        if index >= l {
            self.grow(index - l + 1u, initval);
        }
        *self.get_mut(index) = value;
    }

    /// Partitions a vector based on a predicate.
    ///
    /// Clones the elements of the vector, partitioning them into two `Vec`s
    /// `(A,B)`, where all elements of `A` satisfy `f` and all elements of `B`
    /// do not. The order of elements is preserved.
    ///
    /// # Example
    ///
    /// ```rust
    /// let vec = vec!(1, 2, 3, 4);
    /// let (even, odd) = vec.partitioned(|&n| n % 2 == 0);
    /// assert_eq!(even, vec!(2, 4));
    /// assert_eq!(odd, vec!(1, 3));
    /// ```
    pub fn partitioned(&self, f: |&T| -> bool) -> (Vec<T>, Vec<T>) {
        let mut lefts = Vec::new();
        let mut rights = Vec::new();

        for elt in self.iter() {
            if f(elt) {
                lefts.push(elt.clone());
            } else {
                rights.push(elt.clone());
            }
        }

        (lefts, rights)
    }
}

impl<T:Clone> Clone for Vec<T> {
    fn clone(&self) -> Vec<T> {
        let len = self.len;
        let mut vector = Vec::with_capacity(len);
        // Unsafe code so this can be optimised to a memcpy (or something
        // similarly fast) when T is Copy. LLVM is easily confused, so any
        // extra operations during the loop can prevent this optimisation
        {
            let this_slice = self.as_slice();
            while vector.len < len {
                unsafe {
                    mem::overwrite(
                        vector.as_mut_slice().unsafe_mut_ref(vector.len),
                        this_slice.unsafe_ref(vector.len).clone());
                }
                vector.len += 1;
            }
        }
        vector
    }

    fn clone_from(&mut self, other: &Vec<T>) {
        // drop anything in self that will not be overwritten
        if self.len() > other.len() {
            self.truncate(other.len())
        }

        // reuse the contained values' allocations/resources.
        for (place, thing) in self.mut_iter().zip(other.iter()) {
            place.clone_from(thing)
        }

        // self.len <= other.len due to the truncate above, so the
        // slice here is always in-bounds.
        let len = self.len();
        self.extend(other.slice_from(len).iter().map(|x| x.clone()));
    }
}

impl<T> FromIterator<T> for Vec<T> {
    fn from_iter<I:Iterator<T>>(mut iterator: I) -> Vec<T> {
        let (lower, _) = iterator.size_hint();
        let mut vector = Vec::with_capacity(lower);
        for element in iterator {
            vector.push(element)
        }
        vector
    }
}

impl<T> Extendable<T> for Vec<T> {
    fn extend<I: Iterator<T>>(&mut self, mut iterator: I) {
        let (lower, _) = iterator.size_hint();
        self.reserve_additional(lower);
        for element in iterator {
            self.push(element)
        }
    }
}

impl<T: PartialEq> PartialEq for Vec<T> {
    #[inline]
    fn eq(&self, other: &Vec<T>) -> bool {
        self.as_slice() == other.as_slice()
    }
}

impl<T: PartialOrd> PartialOrd for Vec<T> {
    #[inline]
    fn lt(&self, other: &Vec<T>) -> bool {
        self.as_slice() < other.as_slice()
    }
}

impl<T: TotalEq> TotalEq for Vec<T> {}

impl<T: TotalOrd> TotalOrd for Vec<T> {
    #[inline]
    fn cmp(&self, other: &Vec<T>) -> Ordering {
        self.as_slice().cmp(&other.as_slice())
    }
}

impl<T> Container for Vec<T> {
    #[inline]
    fn len(&self) -> uint {
        self.len
    }
}

// FIXME: #13996: need a way to mark the return value as `noalias`
#[inline(never)]
unsafe fn alloc_or_realloc<T>(ptr: *mut T, size: uint, old_size: uint) -> *mut T {
    if old_size == 0 {
        allocate(size, mem::min_align_of::<T>()) as *mut T
    } else {
        reallocate(ptr as *mut u8, size,
                   mem::min_align_of::<T>(), old_size) as *mut T
    }
}

#[inline]
unsafe fn dealloc<T>(ptr: *mut T, len: uint) {
    if mem::size_of::<T>() != 0 {
        deallocate(ptr as *mut u8,
                   len * mem::size_of::<T>(),
                   mem::min_align_of::<T>())
    }
}

impl<T> Vec<T> {
    /// Returns the number of elements the vector can hold without
    /// reallocating.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use std::vec::Vec;
    /// let vec: Vec<int> = Vec::with_capacity(10);
    /// assert_eq!(vec.capacity(), 10);
    /// ```
    #[inline]
    pub fn capacity(&self) -> uint {
        self.cap
    }

     /// Reserves capacity for at least `n` additional elements in the given
     /// vector.
     ///
     /// # Failure
     ///
     /// Fails if the new capacity overflows `uint`.
     ///
     /// # Example
     ///
     /// ```rust
     /// # use std::vec::Vec;
     /// let mut vec: Vec<int> = vec!(1);
     /// vec.reserve_additional(10);
     /// assert!(vec.capacity() >= 11);
     /// ```
    pub fn reserve_additional(&mut self, extra: uint) {
        if self.cap - self.len < extra {
            match self.len.checked_add(&extra) {
                None => fail!("Vec::reserve_additional: `uint` overflow"),
                Some(new_cap) => self.reserve(new_cap)
            }
        }
    }

    /// Reserves capacity for at least `n` elements in the given vector.
    ///
    /// This function will over-allocate in order to amortize the allocation
    /// costs in scenarios where the caller may need to repeatedly reserve
    /// additional space.
    ///
    /// If the capacity for `self` is already equal to or greater than the
    /// requested capacity, then no action is taken.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!(1, 2, 3);
    /// vec.reserve(10);
    /// assert!(vec.capacity() >= 10);
    /// ```
    pub fn reserve(&mut self, capacity: uint) {
        if capacity >= self.len {
            self.reserve_exact(num::next_power_of_two(capacity))
        }
    }

    /// Reserves capacity for exactly `capacity` elements in the given vector.
    ///
    /// If the capacity for `self` is already equal to or greater than the
    /// requested capacity, then no action is taken.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use std::vec::Vec;
    /// let mut vec: Vec<int> = Vec::with_capacity(10);
    /// vec.reserve_exact(11);
    /// assert_eq!(vec.capacity(), 11);
    /// ```
    pub fn reserve_exact(&mut self, capacity: uint) {
        if mem::size_of::<T>() == 0 { return }

        if capacity > self.cap {
            let size = capacity.checked_mul(&mem::size_of::<T>())
                               .expect("capacity overflow");
            unsafe {
                self.ptr = alloc_or_realloc(self.ptr, size,
                                            self.cap * mem::size_of::<T>());
            }
            self.cap = capacity;
        }
    }

    /// Shrink the capacity of the vector as much as possible
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!(1, 2, 3);
    /// vec.shrink_to_fit();
    /// ```
    pub fn shrink_to_fit(&mut self) {
        if mem::size_of::<T>() == 0 { return }

        if self.len == 0 {
            if self.cap != 0 {
                unsafe {
                    dealloc(self.ptr, self.cap)
                }
                self.cap = 0;
            }
        } else {
            unsafe {
                // Overflow check is unnecessary as the vector is already at
                // least this large.
                self.ptr = reallocate(self.ptr as *mut u8,
                                      self.len * mem::size_of::<T>(),
                                      mem::min_align_of::<T>(),
                                      self.cap * mem::size_of::<T>()) as *mut T;
            }
            self.cap = self.len;
        }
    }

    /// Remove the last element from a vector and return it, or `None` if it is
    /// empty.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!(1, 2, 3);
    /// assert_eq!(vec.pop(), Some(3));
    /// assert_eq!(vec, vec!(1, 2));
    /// ```
    #[inline]
    pub fn pop(&mut self) -> Option<T> {
        if self.len == 0 {
            None
        } else {
            unsafe {
                self.len -= 1;
                Some(ptr::read(self.as_slice().unsafe_ref(self.len())))
            }
        }
    }

    /// Append an element to a vector.
    ///
    /// # Failure
    ///
    /// Fails if the number of elements in the vector overflows a `uint`.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!(1, 2);
    /// vec.push(3);
    /// assert_eq!(vec, vec!(1, 2, 3));
    /// ```
    #[inline]
    pub fn push(&mut self, value: T) {
        if mem::size_of::<T>() == 0 {
            // zero-size types consume no memory, so we can't rely on the address space running out
            self.len = self.len.checked_add(&1).expect("length overflow");
            unsafe { mem::forget(value); }
            return
        }
        if self.len == self.cap {
            let old_size = self.cap * mem::size_of::<T>();
            let size = max(old_size, 2 * mem::size_of::<T>()) * 2;
            if old_size > size { fail!("capacity overflow") }
            unsafe {
                self.ptr = alloc_or_realloc(self.ptr, size,
                                            self.cap * mem::size_of::<T>());
            }
            self.cap = max(self.cap, 2) * 2;
        }

        unsafe {
            let end = (self.ptr as *T).offset(self.len as int) as *mut T;
            mem::overwrite(&mut *end, value);
            self.len += 1;
        }
    }

    /// Appends one element to the vector provided. The vector itself is then
    /// returned for use again.
    ///
    /// # Example
    ///
    /// ```rust
    /// let vec = vec!(1, 2);
    /// let vec = vec.append_one(3);
    /// assert_eq!(vec, vec!(1, 2, 3));
    /// ```
    #[inline]
    pub fn append_one(mut self, x: T) -> Vec<T> {
        self.push(x);
        self
    }

    /// Shorten a vector, dropping excess elements.
    ///
    /// If `len` is greater than the vector's current length, this has no
    /// effect.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!(1, 2, 3, 4);
    /// vec.truncate(2);
    /// assert_eq!(vec, vec!(1, 2));
    /// ```
    pub fn truncate(&mut self, len: uint) {
        unsafe {
            // drop any extra elements
            while len < self.len {
                // decrement len before the read(), so a failure on Drop doesn't
                // re-drop the just-failed value.
                self.len -= 1;
                ptr::read(self.as_slice().unsafe_ref(self.len));
            }
        }
    }

    /// Work with `self` as a mutable slice.
    ///
    /// # Example
    ///
    /// ```rust
    /// fn foo(slice: &mut [int]) {}
    ///
    /// let mut vec = vec!(1, 2);
    /// foo(vec.as_mut_slice());
    /// ```
    #[inline]
    pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [T] {
        unsafe {
            mem::transmute(Slice { data: self.as_mut_ptr() as *T, len: self.len })
        }
    }

    /// Creates a consuming iterator, that is, one that moves each
    /// value out of the vector (from start to end). The vector cannot
    /// be used after calling this.
    ///
    /// # Example
    ///
    /// ```rust
    /// let v = vec!("a".to_string(), "b".to_string());
    /// for s in v.move_iter() {
    ///     // s has type String, not &String
    ///     println!("{}", s);
    /// }
    /// ```
    #[inline]
    pub fn move_iter(self) -> MoveItems<T> {
        unsafe {
            let iter = mem::transmute(self.as_slice().iter());
            let ptr = self.ptr;
            let cap = self.cap;
            mem::forget(self);
            MoveItems { allocation: ptr, cap: cap, iter: iter }
        }
    }


    /// Sets the length of a vector.
    ///
    /// This will explicitly set the size of the vector, without actually
    /// modifying its buffers, so it is up to the caller to ensure that the
    /// vector is actually the specified size.
    #[inline]
    pub unsafe fn set_len(&mut self, len: uint) {
        self.len = len;
    }

    /// Returns a reference to the value at index `index`.
    ///
    /// # Failure
    ///
    /// Fails if `index` is out of bounds
    ///
    /// # Example
    ///
    /// ```rust
    /// let vec = vec!(1, 2, 3);
    /// assert!(vec.get(1) == &2);
    /// ```
    #[inline]
    pub fn get<'a>(&'a self, index: uint) -> &'a T {
        &self.as_slice()[index]
    }

    /// Returns a mutable reference to the value at index `index`.
    ///
    /// # Failure
    ///
    /// Fails if `index` is out of bounds
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!(1, 2, 3);
    /// *vec.get_mut(1) = 4;
    /// assert_eq!(vec, vec!(1, 4, 3));
    /// ```
    #[inline]
    pub fn get_mut<'a>(&'a mut self, index: uint) -> &'a mut T {
        &mut self.as_mut_slice()[index]
    }

    /// Returns an iterator over references to the elements of the vector in
    /// order.
    ///
    /// # Example
    ///
    /// ```rust
    /// let vec = vec!(1, 2, 3);
    /// for num in vec.iter() {
    ///     println!("{}", *num);
    /// }
    /// ```
    #[inline]
    pub fn iter<'a>(&'a self) -> Items<'a,T> {
        self.as_slice().iter()
    }


    /// Returns an iterator over mutable references to the elements of the
    /// vector in order.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!(1, 2, 3);
    /// for num in vec.mut_iter() {
    ///     *num = 0;
    /// }
    /// ```
    #[inline]
    pub fn mut_iter<'a>(&'a mut self) -> MutItems<'a,T> {
        self.as_mut_slice().mut_iter()
    }

    /// Sort the vector, in place, using `compare` to compare elements.
    ///
    /// This sort is `O(n log n)` worst-case and stable, but allocates
    /// approximately `2 * n`, where `n` is the length of `self`.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut v = vec!(5i, 4, 1, 3, 2);
    /// v.sort_by(|a, b| a.cmp(b));
    /// assert_eq!(v, vec!(1, 2, 3, 4, 5));
    ///
    /// // reverse sorting
    /// v.sort_by(|a, b| b.cmp(a));
    /// assert_eq!(v, vec!(5, 4, 3, 2, 1));
    /// ```
    #[inline]
    pub fn sort_by(&mut self, compare: |&T, &T| -> Ordering) {
        self.as_mut_slice().sort_by(compare)
    }

    /// Returns a slice of `self` between `start` and `end`.
    ///
    /// # Failure
    ///
    /// Fails when `start` or `end` point outside the bounds of `self`, or when
    /// `start` > `end`.
    ///
    /// # Example
    ///
    /// ```rust
    /// let vec = vec!(1, 2, 3, 4);
    /// assert!(vec.slice(0, 2) == [1, 2]);
    /// ```
    #[inline]
    pub fn slice<'a>(&'a self, start: uint, end: uint) -> &'a [T] {
        self.as_slice().slice(start, end)
    }

    /// Returns a slice containing all but the first element of the vector.
    ///
    /// # Failure
    ///
    /// Fails when the vector is empty.
    ///
    /// # Example
    ///
    /// ```rust
    /// let vec = vec!(1, 2, 3);
    /// assert!(vec.tail() == [2, 3]);
    /// ```
    #[inline]
    pub fn tail<'a>(&'a self) -> &'a [T] {
        self.as_slice().tail()
    }

    /// Returns all but the first `n' elements of a vector.
    ///
    /// # Failure
    ///
    /// Fails when there are fewer than `n` elements in the vector.
    ///
    /// # Example
    ///
    /// ```rust
    /// let vec = vec!(1, 2, 3, 4);
    /// assert!(vec.tailn(2) == [3, 4]);
    /// ```
    #[inline]
    pub fn tailn<'a>(&'a self, n: uint) -> &'a [T] {
        self.as_slice().tailn(n)
    }

    /// Returns a reference to the last element of a vector, or `None` if it is
    /// empty.
    ///
    /// # Example
    ///
    /// ```rust
    /// let vec = vec!(1, 2, 3);
    /// assert!(vec.last() == Some(&3));
    /// ```
    #[inline]
    pub fn last<'a>(&'a self) -> Option<&'a T> {
        self.as_slice().last()
    }

    /// Returns a mutable reference to the last element of a vector, or `None`
    /// if it is empty.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!(1, 2, 3);
    /// *vec.mut_last().unwrap() = 4;
    /// assert_eq!(vec, vec!(1, 2, 4));
    /// ```
    #[inline]
    pub fn mut_last<'a>(&'a mut self) -> Option<&'a mut T> {
        self.as_mut_slice().mut_last()
    }

    /// Remove an element from anywhere in the vector and return it, replacing
    /// it with the last element. This does not preserve ordering, but is O(1).
    ///
    /// Returns `None` if `index` is out of bounds.
    ///
    /// # Example
    /// ```rust
    /// let mut v = vec!("foo".to_string(), "bar".to_string(),
    ///                  "baz".to_string(), "qux".to_string());
    ///
    /// assert_eq!(v.swap_remove(1), Some("bar".to_string()));
    /// assert_eq!(v, vec!("foo".to_string(), "qux".to_string(), "baz".to_string()));
    ///
    /// assert_eq!(v.swap_remove(0), Some("foo".to_string()));
    /// assert_eq!(v, vec!("baz".to_string(), "qux".to_string()));
    ///
    /// assert_eq!(v.swap_remove(2), None);
    /// ```
    #[inline]
    pub fn swap_remove(&mut self, index: uint) -> Option<T> {
        let length = self.len();
        if index < length - 1 {
            self.as_mut_slice().swap(index, length - 1);
        } else if index >= length {
            return None
        }
        self.pop()
    }

    /// Prepend an element to the vector.
    ///
    /// # Warning
    ///
    /// This is an O(n) operation as it requires copying every element in the
    /// vector.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!(1, 2, 3);
    /// vec.unshift(4);
    /// assert_eq!(vec, vec!(4, 1, 2, 3));
    /// ```
    #[inline]
    pub fn unshift(&mut self, element: T) {
        self.insert(0, element)
    }

    /// Removes the first element from a vector and returns it, or `None` if
    /// the vector is empty.
    ///
    /// # Warning
    ///
    /// This is an O(n) operation as it requires copying every element in the
    /// vector.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!(1, 2, 3);
    /// assert!(vec.shift() == Some(1));
    /// assert_eq!(vec, vec!(2, 3));
    /// ```
    #[inline]
    pub fn shift(&mut self) -> Option<T> {
        self.remove(0)
    }

    /// Insert an element at position `index` within the vector, shifting all
    /// elements after position i one position to the right.
    ///
    /// # Failure
    ///
    /// Fails if `index` is out of bounds of the vector.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!(1, 2, 3);
    /// vec.insert(1, 4);
    /// assert_eq!(vec, vec!(1, 4, 2, 3));
    /// ```
    pub fn insert(&mut self, index: uint, element: T) {
        let len = self.len();
        assert!(index <= len);
        // space for the new element
        self.reserve(len + 1);

        unsafe { // infallible
            // The spot to put the new value
            {
                let p = self.as_mut_ptr().offset(index as int);
                // Shift everything over to make space. (Duplicating the
                // `index`th element into two consecutive places.)
                ptr::copy_memory(p.offset(1), &*p, len - index);
                // Write it in, overwriting the first copy of the `index`th
                // element.
                mem::overwrite(&mut *p, element);
            }
            self.set_len(len + 1);
        }
    }

    /// Remove and return the element at position `index` within the vector,
    /// shifting all elements after position `index` one position to the left.
    /// Returns `None` if `i` is out of bounds.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut v = vec!(1, 2, 3);
    /// assert_eq!(v.remove(1), Some(2));
    /// assert_eq!(v, vec!(1, 3));
    ///
    /// assert_eq!(v.remove(4), None);
    /// // v is unchanged:
    /// assert_eq!(v, vec!(1, 3));
    /// ```
    pub fn remove(&mut self, index: uint) -> Option<T> {
        let len = self.len();
        if index < len {
            unsafe { // infallible
                let ret;
                {
                    // the place we are taking from.
                    let ptr = self.as_mut_ptr().offset(index as int);
                    // copy it out, unsafely having a copy of the value on
                    // the stack and in the vector at the same time.
                    ret = Some(ptr::read(ptr as *T));

                    // Shift everything down to fill in that spot.
                    ptr::copy_memory(ptr, &*ptr.offset(1), len - index - 1);
                }
                self.set_len(len - 1);
                ret
            }
        } else {
            None
        }
    }

    /// Takes ownership of the vector `other`, moving all elements into
    /// the current vector. This does not copy any elements, and it is
    /// illegal to use the `other` vector after calling this method
    /// (because it is moved here).
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!(box 1);
    /// vec.push_all_move(vec!(box 2, box 3, box 4));
    /// assert_eq!(vec, vec!(box 1, box 2, box 3, box 4));
    /// ```
    pub fn push_all_move(&mut self, other: Vec<T>) {
        self.extend(other.move_iter());
    }

    /// Returns a mutable slice of `self` between `start` and `end`.
    ///
    /// # Failure
    ///
    /// Fails when `start` or `end` point outside the bounds of `self`, or when
    /// `start` > `end`.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!(1, 2, 3, 4);
    /// assert!(vec.mut_slice(0, 2) == [1, 2]);
    /// ```
    #[inline]
    pub fn mut_slice<'a>(&'a mut self, start: uint, end: uint)
                         -> &'a mut [T] {
        self.as_mut_slice().mut_slice(start, end)
    }

    /// Returns a mutable slice of self from `start` to the end of the vec.
    ///
    /// # Failure
    ///
    /// Fails when `start` points outside the bounds of self.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!(1, 2, 3, 4);
    /// assert!(vec.mut_slice_from(2) == [3, 4]);
    /// ```
    #[inline]
    pub fn mut_slice_from<'a>(&'a mut self, start: uint) -> &'a mut [T] {
        self.as_mut_slice().mut_slice_from(start)
    }

    /// Returns a mutable slice of self from the start of the vec to `end`.
    ///
    /// # Failure
    ///
    /// Fails when `end` points outside the bounds of self.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!(1, 2, 3, 4);
    /// assert!(vec.mut_slice_to(2) == [1, 2]);
    /// ```
    #[inline]
    pub fn mut_slice_to<'a>(&'a mut self, end: uint) -> &'a mut [T] {
        self.as_mut_slice().mut_slice_to(end)
    }

    /// Returns a pair of mutable slices that divides the vec at an index.
    ///
    /// The first will contain all indices from `[0, mid)` (excluding
    /// the index `mid` itself) and the second will contain all
    /// indices from `[mid, len)` (excluding the index `len` itself).
    ///
    /// # Failure
    ///
    /// Fails if `mid > len`.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!(1, 2, 3, 4, 5, 6);
    ///
    /// // scoped to restrict the lifetime of the borrows
    /// {
    ///    let (left, right) = vec.mut_split_at(0);
    ///    assert!(left == &mut []);
    ///    assert!(right == &mut [1, 2, 3, 4, 5, 6]);
    /// }
    ///
    /// {
    ///     let (left, right) = vec.mut_split_at(2);
    ///     assert!(left == &mut [1, 2]);
    ///     assert!(right == &mut [3, 4, 5, 6]);
    /// }
    ///
    /// {
    ///     let (left, right) = vec.mut_split_at(6);
    ///     assert!(left == &mut [1, 2, 3, 4, 5, 6]);
    ///     assert!(right == &mut []);
    /// }
    /// ```
    #[inline]
    pub fn mut_split_at<'a>(&'a mut self, mid: uint) -> (&'a mut [T], &'a mut [T]) {
        self.as_mut_slice().mut_split_at(mid)
    }

    /// Reverse the order of elements in a vector, in place.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut v = vec!(1, 2, 3);
    /// v.reverse();
    /// assert_eq!(v, vec!(3, 2, 1));
    /// ```
    #[inline]
    pub fn reverse(&mut self) {
        self.as_mut_slice().reverse()
    }

    /// Returns a slice of `self` from `start` to the end of the vec.
    ///
    /// # Failure
    ///
    /// Fails when `start` points outside the bounds of self.
    ///
    /// # Example
    ///
    /// ```rust
    /// let vec = vec!(1, 2, 3);
    /// assert!(vec.slice_from(1) == [2, 3]);
    /// ```
    #[inline]
    pub fn slice_from<'a>(&'a self, start: uint) -> &'a [T] {
        self.as_slice().slice_from(start)
    }

    /// Returns a slice of self from the start of the vec to `end`.
    ///
    /// # Failure
    ///
    /// Fails when `end` points outside the bounds of self.
    ///
    /// # Example
    ///
    /// ```rust
    /// let vec = vec!(1, 2, 3);
    /// assert!(vec.slice_to(2) == [1, 2]);
    /// ```
    #[inline]
    pub fn slice_to<'a>(&'a self, end: uint) -> &'a [T] {
        self.as_slice().slice_to(end)
    }

    /// Returns a slice containing all but the last element of the vector.
    ///
    /// # Failure
    ///
    /// Fails if the vector is empty
    #[inline]
    pub fn init<'a>(&'a self) -> &'a [T] {
        self.slice(0, self.len() - 1)
    }


    /// Returns an unsafe pointer to the vector's buffer.
    ///
    /// The caller must ensure that the vector outlives the pointer this
    /// function returns, or else it will end up pointing to garbage.
    ///
    /// Modifying the vector may cause its buffer to be reallocated, which
    /// would also make any pointers to it invalid.
    #[inline]
    pub fn as_ptr(&self) -> *T {
        // If we have a 0-sized vector, then the base pointer should not be NULL
        // because an iterator over the slice will attempt to yield the base
        // pointer as the first element in the vector, but this will end up
        // being Some(NULL) which is optimized to None.
        if mem::size_of::<T>() == 0 {
            1 as *T
        } else {
            self.ptr as *T
        }
    }

    /// Returns a mutable unsafe pointer to the vector's buffer.
    ///
    /// The caller must ensure that the vector outlives the pointer this
    /// function returns, or else it will end up pointing to garbage.
    ///
    /// Modifying the vector may cause its buffer to be reallocated, which
    /// would also make any pointers to it invalid.
    #[inline]
    pub fn as_mut_ptr(&mut self) -> *mut T {
        // see above for the 0-size check
        if mem::size_of::<T>() == 0 {
            1 as *mut T
        } else {
            self.ptr
        }
    }

    /// Retains only the elements specified by the predicate.
    ///
    /// In other words, remove all elements `e` such that `f(&e)` returns false.
    /// This method operates in place and preserves the order the retained elements.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!(1i, 2, 3, 4);
    /// vec.retain(|x| x%2 == 0);
    /// assert_eq!(vec, vec!(2, 4));
    /// ```
    pub fn retain(&mut self, f: |&T| -> bool) {
        let len = self.len();
        let mut del = 0u;
        {
            let v = self.as_mut_slice();

            for i in range(0u, len) {
                if !f(&v[i]) {
                    del += 1;
                } else if del > 0 {
                    v.swap(i-del, i);
                }
            }
        }
        if del > 0 {
            self.truncate(len - del);
        }
    }

    /// Expands a vector in place, initializing the new elements to the result of a function.
    ///
    /// The vector is grown by `n` elements. The i-th new element are initialized to the value
    /// returned by `f(i)` where `i` is in the range [0, n).
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!(0u, 1);
    /// vec.grow_fn(3, |i| i);
    /// assert_eq!(vec, vec!(0, 1, 0, 1, 2));
    /// ```
    pub fn grow_fn(&mut self, n: uint, f: |uint| -> T) {
        self.reserve_additional(n);
        for i in range(0u, n) {
            self.push(f(i));
        }
    }
}

impl<T:TotalOrd> Vec<T> {
    /// Sorts the vector in place.
    ///
    /// This sort is `O(n log n)` worst-case and stable, but allocates
    /// approximately `2 * n`, where `n` is the length of `self`.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!(3i, 1, 2);
    /// vec.sort();
    /// assert_eq!(vec, vec!(1, 2, 3));
    /// ```
    pub fn sort(&mut self) {
        self.as_mut_slice().sort()
    }
}

impl<T> Mutable for Vec<T> {
    #[inline]
    fn clear(&mut self) {
        self.truncate(0)
    }
}

impl<T:PartialEq> Vec<T> {
    /// Return true if a vector contains an element with the given value
    ///
    /// # Example
    ///
    /// ```rust
    /// let vec = vec!(1, 2, 3);
    /// assert!(vec.contains(&1));
    /// ```
    pub fn contains(&self, x: &T) -> bool {
        self.as_slice().contains(x)
    }

    /// Remove consecutive repeated elements in the vector.
    ///
    /// If the vector is sorted, this removes all duplicates.
    ///
    /// # Example
    ///
    /// ```rust
    /// let mut vec = vec!(1, 2, 2, 3, 2);
    /// vec.dedup();
    /// assert_eq!(vec, vec!(1, 2, 3, 2));
    /// ```
    pub fn dedup(&mut self) {
        unsafe {
            // Although we have a mutable reference to `self`, we cannot make
            // *arbitrary* changes. The `PartialEq` comparisons could fail, so we
            // must ensure that the vector is in a valid state at all time.
            //
            // The way that we handle this is by using swaps; we iterate
            // over all the elements, swapping as we go so that at the end
            // the elements we wish to keep are in the front, and those we
            // wish to reject are at the back. We can then truncate the
            // vector. This operation is still O(n).
            //
            // Example: We start in this state, where `r` represents "next
            // read" and `w` represents "next_write`.
            //
            //           r
            //     +---+---+---+---+---+---+
            //     | 0 | 1 | 1 | 2 | 3 | 3 |
            //     +---+---+---+---+---+---+
            //           w
            //
            // Comparing self[r] against self[w-1], this is not a duplicate, so
            // we swap self[r] and self[w] (no effect as r==w) and then increment both
            // r and w, leaving us with:
            //
            //               r
            //     +---+---+---+---+---+---+
            //     | 0 | 1 | 1 | 2 | 3 | 3 |
            //     +---+---+---+---+---+---+
            //               w
            //
            // Comparing self[r] against self[w-1], this value is a duplicate,
            // so we increment `r` but leave everything else unchanged:
            //
            //                   r
            //     +---+---+---+---+---+---+
            //     | 0 | 1 | 1 | 2 | 3 | 3 |
            //     +---+---+---+---+---+---+
            //               w
            //
            // Comparing self[r] against self[w-1], this is not a duplicate,
            // so swap self[r] and self[w] and advance r and w:
            //
            //                       r
            //     +---+---+---+---+---+---+
            //     | 0 | 1 | 2 | 1 | 3 | 3 |
            //     +---+---+---+---+---+---+
            //                   w
            //
            // Not a duplicate, repeat:
            //
            //                           r
            //     +---+---+---+---+---+---+
            //     | 0 | 1 | 2 | 3 | 1 | 3 |
            //     +---+---+---+---+---+---+
            //                       w
            //
            // Duplicate, advance r. End of vec. Truncate to w.

            let ln = self.len();
            if ln < 1 { return; }

            // Avoid bounds checks by using unsafe pointers.
            let p = self.as_mut_slice().as_mut_ptr();
            let mut r = 1;
            let mut w = 1;

            while r < ln {
                let p_r = p.offset(r as int);
                let p_wm1 = p.offset((w - 1) as int);
                if *p_r != *p_wm1 {
                    if r != w {
                        let p_w = p_wm1.offset(1);
                        mem::swap(&mut *p_r, &mut *p_w);
                    }
                    w += 1;
                }
                r += 1;
            }

            self.truncate(w);
        }
    }
}

impl<T> Vector<T> for Vec<T> {
    /// Work with `self` as a slice.
    ///
    /// # Example
    ///
    /// ```rust
    /// fn foo(slice: &[int]) {}
    ///
    /// let vec = vec!(1, 2);
    /// foo(vec.as_slice());
    /// ```
    #[inline]
    fn as_slice<'a>(&'a self) -> &'a [T] {
        unsafe { mem::transmute(Slice { data: self.as_ptr(), len: self.len }) }
    }
}

impl<T: Clone, V: Vector<T>> Add<V, Vec<T>> for Vec<T> {
    #[inline]
    fn add(&self, rhs: &V) -> Vec<T> {
        let mut res = Vec::with_capacity(self.len() + rhs.as_slice().len());
        res.push_all(self.as_slice());
        res.push_all(rhs.as_slice());
        res
    }
}

#[unsafe_destructor]
impl<T> Drop for Vec<T> {
    fn drop(&mut self) {
        // This is (and should always remain) a no-op if the fields are
        // zeroed (when moving out, because of #[unsafe_no_drop_flag]).
        if self.cap != 0 {
            unsafe {
                for x in self.as_mut_slice().iter() {
                    ptr::read(x);
                }
                dealloc(self.ptr, self.cap)
            }
        }
    }
}

impl<T> Default for Vec<T> {
    fn default() -> Vec<T> {
        Vec::new()
    }
}

impl<T:fmt::Show> fmt::Show for Vec<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.as_slice().fmt(f)
    }
}

/// An iterator that moves out of a vector.
pub struct MoveItems<T> {
    allocation: *mut T, // the block of memory allocated for the vector
    cap: uint, // the capacity of the vector
    iter: Items<'static, T>
}

impl<T> Iterator<T> for MoveItems<T> {
    #[inline]
    fn next(&mut self) -> Option<T> {
        unsafe {
            self.iter.next().map(|x| ptr::read(x))
        }
    }

    #[inline]
    fn size_hint(&self) -> (uint, Option<uint>) {
        self.iter.size_hint()
    }
}

impl<T> DoubleEndedIterator<T> for MoveItems<T> {
    #[inline]
    fn next_back(&mut self) -> Option<T> {
        unsafe {
            self.iter.next_back().map(|x| ptr::read(x))
        }
    }
}

#[unsafe_destructor]
impl<T> Drop for MoveItems<T> {
    fn drop(&mut self) {
        // destroy the remaining elements
        if self.cap != 0 {
            for _x in *self {}
            unsafe {
                dealloc(self.allocation, self.cap);
            }
        }
    }
}

/**
 * Convert an iterator of pairs into a pair of vectors.
 *
 * Returns a tuple containing two vectors where the i-th element of the first
 * vector contains the first element of the i-th tuple of the input iterator,
 * and the i-th element of the second vector contains the second element
 * of the i-th tuple of the input iterator.
 */
pub fn unzip<T, U, V: Iterator<(T, U)>>(mut iter: V) -> (Vec<T>, Vec<U>) {
    let (lo, _) = iter.size_hint();
    let mut ts = Vec::with_capacity(lo);
    let mut us = Vec::with_capacity(lo);
    for (t, u) in iter {
        ts.push(t);
        us.push(u);
    }
    (ts, us)
}

/// Mechanism to convert from a `Vec<T>` to a `[T]`.
///
/// In a post-DST world this will be used to convert to any `Ptr<[T]>`.
///
/// This could be implemented on more types than just pointers to vectors, but
/// the recommended approach for those types is to implement `FromIterator`.
// FIXME(#12938): Update doc comment when DST lands
pub trait FromVec<T> {
    /// Convert a `Vec<T>` into the receiver type.
    fn from_vec(v: Vec<T>) -> Self;
}

impl<T> FromVec<T> for ~[T] {
    fn from_vec(mut v: Vec<T>) -> ~[T] {
        let len = v.len();
        let data_size = len.checked_mul(&mem::size_of::<T>());
        let data_size = data_size.expect("overflow in from_vec()");
        let size = mem::size_of::<RawVec<()>>().checked_add(&data_size);
        let size = size.expect("overflow in from_vec()");

        // In a post-DST world, we can attempt to reuse the Vec allocation by calling
        // shrink_to_fit() on it. That may involve a reallocation+memcpy, but that's no
        // diffrent than what we're doing manually here.

        let vp = v.as_mut_ptr();

        unsafe {
            let ret = allocate(size, 8) as *mut RawVec<()>;

            let a_size = mem::size_of::<T>();
            let a_size = if a_size == 0 {1} else {a_size};
            (*ret).fill = len * a_size;
            (*ret).alloc = len * a_size;

            ptr::copy_nonoverlapping_memory(&mut (*ret).data as *mut _ as *mut u8,
                                            vp as *u8, data_size);

            // we've transferred ownership of the contents from v, but we can't drop it
            // as it still needs to free its own allocation.
            v.set_len(0);

            mem::transmute(ret)
        }
    }
}

/// Unsafe operations
pub mod raw {
    use super::Vec;
    use ptr;

    /// Constructs a vector from an unsafe pointer to a buffer.
    ///
    /// The elements of the buffer are copied into the vector without cloning,
    /// as if `ptr::read()` were called on them.
    #[inline]
    pub unsafe fn from_buf<T>(ptr: *T, elts: uint) -> Vec<T> {
        let mut dst = Vec::with_capacity(elts);
        dst.set_len(elts);
        ptr::copy_nonoverlapping_memory(dst.as_mut_ptr(), ptr, elts);
        dst
    }
}


#[cfg(test)]
mod tests {
    use prelude::*;
    use mem::size_of;
    use kinds::marker;
    use super::{unzip, raw, FromVec};

    #[test]
    fn test_small_vec_struct() {
        assert!(size_of::<Vec<u8>>() == size_of::<uint>() * 3);
    }

    #[test]
    fn test_double_drop() {
        struct TwoVec<T> {
            x: Vec<T>,
            y: Vec<T>
        }

        struct DropCounter<'a> {
            count: &'a mut int
        }

        #[unsafe_destructor]
        impl<'a> Drop for DropCounter<'a> {
            fn drop(&mut self) {
                *self.count += 1;
            }
        }

        let mut count_x @ mut count_y = 0;
        {
            let mut tv = TwoVec {
                x: Vec::new(),
                y: Vec::new()
            };
            tv.x.push(DropCounter {count: &mut count_x});
            tv.y.push(DropCounter {count: &mut count_y});

            // If Vec had a drop flag, here is where it would be zeroed.
            // Instead, it should rely on its internal state to prevent
            // doing anything significant when dropped multiple times.
            drop(tv.x);

            // Here tv goes out of scope, tv.y should be dropped, but not tv.x.
        }

        assert_eq!(count_x, 1);
        assert_eq!(count_y, 1);
    }

    #[test]
    fn test_reserve_additional() {
        let mut v = Vec::new();
        assert_eq!(v.capacity(), 0);

        v.reserve_additional(2);
        assert!(v.capacity() >= 2);

        for i in range(0, 16) {
            v.push(i);
        }

        assert!(v.capacity() >= 16);
        v.reserve_additional(16);
        assert!(v.capacity() >= 32);

        v.push(16);

        v.reserve_additional(16);
        assert!(v.capacity() >= 33)
    }

    #[test]
    fn test_extend() {
        let mut v = Vec::new();
        let mut w = Vec::new();

        v.extend(range(0, 3));
        for i in range(0, 3) { w.push(i) }

        assert_eq!(v, w);

        v.extend(range(3, 10));
        for i in range(3, 10) { w.push(i) }

        assert_eq!(v, w);
    }

    #[test]
    fn test_mut_slice_from() {
        let mut values = Vec::from_slice([1u8,2,3,4,5]);
        {
            let slice = values.mut_slice_from(2);
            assert!(slice == [3, 4, 5]);
            for p in slice.mut_iter() {
                *p += 2;
            }
        }

        assert!(values.as_slice() == [1, 2, 5, 6, 7]);
    }

    #[test]
    fn test_mut_slice_to() {
        let mut values = Vec::from_slice([1u8,2,3,4,5]);
        {
            let slice = values.mut_slice_to(2);
            assert!(slice == [1, 2]);
            for p in slice.mut_iter() {
                *p += 1;
            }
        }

        assert!(values.as_slice() == [2, 3, 3, 4, 5]);
    }

    #[test]
    fn test_mut_split_at() {
        let mut values = Vec::from_slice([1u8,2,3,4,5]);
        {
            let (left, right) = values.mut_split_at(2);
            assert!(left.slice(0, left.len()) == [1, 2]);
            for p in left.mut_iter() {
                *p += 1;
            }

            assert!(right.slice(0, right.len()) == [3, 4, 5]);
            for p in right.mut_iter() {
                *p += 2;
            }
        }

        assert!(values == Vec::from_slice([2u8, 3, 5, 6, 7]));
    }

    #[test]
    fn test_clone() {
        let v: Vec<int> = vec!();
        let w = vec!(1, 2, 3);

        assert_eq!(v, v.clone());

        let z = w.clone();
        assert_eq!(w, z);
        // they should be disjoint in memory.
        assert!(w.as_ptr() != z.as_ptr())
    }

    #[test]
    fn test_clone_from() {
        let mut v = vec!();
        let three = vec!(box 1, box 2, box 3);
        let two = vec!(box 4, box 5);
        // zero, long
        v.clone_from(&three);
        assert_eq!(v, three);

        // equal
        v.clone_from(&three);
        assert_eq!(v, three);

        // long, short
        v.clone_from(&two);
        assert_eq!(v, two);

        // short, long
        v.clone_from(&three);
        assert_eq!(v, three)
    }

    #[test]
    fn test_grow_fn() {
        let mut v = Vec::from_slice([0u, 1]);
        v.grow_fn(3, |i| i);
        assert!(v == Vec::from_slice([0u, 1, 0, 1, 2]));
    }

    #[test]
    fn test_retain() {
        let mut vec = Vec::from_slice([1u, 2, 3, 4]);
        vec.retain(|x| x%2 == 0);
        assert!(vec == Vec::from_slice([2u, 4]));
    }

    #[test]
    fn zero_sized_values() {
        let mut v = Vec::new();
        assert_eq!(v.len(), 0);
        v.push(());
        assert_eq!(v.len(), 1);
        v.push(());
        assert_eq!(v.len(), 2);
        assert_eq!(v.pop(), Some(()));
        assert_eq!(v.pop(), Some(()));
        assert_eq!(v.pop(), None);

        assert_eq!(v.iter().len(), 0);
        v.push(());
        assert_eq!(v.iter().len(), 1);
        v.push(());
        assert_eq!(v.iter().len(), 2);

        for &() in v.iter() {}

        assert_eq!(v.mut_iter().len(), 2);
        v.push(());
        assert_eq!(v.mut_iter().len(), 3);
        v.push(());
        assert_eq!(v.mut_iter().len(), 4);

        for &() in v.mut_iter() {}
        unsafe { v.set_len(0); }
        assert_eq!(v.mut_iter().len(), 0);
    }

    #[test]
    fn test_partition() {
        assert_eq!(vec![].partition(|x: &int| *x < 3), (vec![], vec![]));
        assert_eq!(vec![1, 2, 3].partition(|x: &int| *x < 4), (vec![1, 2, 3], vec![]));
        assert_eq!(vec![1, 2, 3].partition(|x: &int| *x < 2), (vec![1], vec![2, 3]));
        assert_eq!(vec![1, 2, 3].partition(|x: &int| *x < 0), (vec![], vec![1, 2, 3]));
    }

    #[test]
    fn test_partitioned() {
        assert_eq!(vec![].partitioned(|x: &int| *x < 3), (vec![], vec![]))
        assert_eq!(vec![1, 2, 3].partitioned(|x: &int| *x < 4), (vec![1, 2, 3], vec![]));
        assert_eq!(vec![1, 2, 3].partitioned(|x: &int| *x < 2), (vec![1], vec![2, 3]));
        assert_eq!(vec![1, 2, 3].partitioned(|x: &int| *x < 0), (vec![], vec![1, 2, 3]));
    }

    #[test]
    fn test_zip_unzip() {
        let z1 = vec![(1, 4), (2, 5), (3, 6)];

        let (left, right) = unzip(z1.iter().map(|&x| x));

        let (left, right) = (left.as_slice(), right.as_slice());
        assert_eq!((1, 4), (left[0], right[0]));
        assert_eq!((2, 5), (left[1], right[1]));
        assert_eq!((3, 6), (left[2], right[2]));
    }

    #[test]
    fn test_unsafe_ptrs() {
        unsafe {
            // Test on-stack copy-from-buf.
            let a = [1, 2, 3];
            let ptr = a.as_ptr();
            let b = raw::from_buf(ptr, 3u);
            assert_eq!(b, vec![1, 2, 3]);

            // Test on-heap copy-from-buf.
            let c = box [1, 2, 3, 4, 5];
            let ptr = c.as_ptr();
            let d = raw::from_buf(ptr, 5u);
            assert_eq!(d, vec![1, 2, 3, 4, 5]);
        }
    }

    #[test]
    fn test_from_vec() {
        let a = vec![1u, 2, 3];
        let b: ~[uint] = FromVec::from_vec(a);
        assert_eq!(b.as_slice(), &[1u, 2, 3]);

        let a = vec![];
        let b: ~[u8] = FromVec::from_vec(a);
        assert_eq!(b.as_slice(), &[]);

        let a = vec!["one".to_string(), "two".to_string()];
        let b: ~[String] = FromVec::from_vec(a);
        assert_eq!(b.as_slice(), &["one".to_string(), "two".to_string()]);

        struct Foo {
            x: uint,
            nocopy: marker::NoCopy
        }

        let a = vec![Foo{x: 42, nocopy: marker::NoCopy}, Foo{x: 84, nocopy: marker::NoCopy}];
        let b: ~[Foo] = FromVec::from_vec(a);
        assert_eq!(b.len(), 2);
        assert_eq!(b[0].x, 42);
        assert_eq!(b[1].x, 84);
    }

    #[test]
    fn test_vec_truncate_drop() {
        static mut drops: uint = 0;
        struct Elem(int);
        impl Drop for Elem {
            fn drop(&mut self) {
                unsafe { drops += 1; }
            }
        }

        let mut v = vec![Elem(1), Elem(2), Elem(3), Elem(4), Elem(5)];
        assert_eq!(unsafe { drops }, 0);
        v.truncate(3);
        assert_eq!(unsafe { drops }, 2);
        v.truncate(0);
        assert_eq!(unsafe { drops }, 5);
    }

    #[test]
    #[should_fail]
    fn test_vec_truncate_fail() {
        struct BadElem(int);
        impl Drop for BadElem {
            fn drop(&mut self) {
                let BadElem(ref mut x) = *self;
                if *x == 0xbadbeef {
                    fail!("BadElem failure: 0xbadbeef")
                }
            }
        }

        let mut v = vec![BadElem(1), BadElem(2), BadElem(0xbadbeef), BadElem(4)];
        v.truncate(0);
    }
}