1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
|
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Earley-like parser for macros.
use ast;
use ast::{matcher, match_tok, match_seq, match_nonterminal, ident};
use codemap::{BytePos, mk_sp};
use codemap;
use parse::lexer::*; //resolve bug?
use parse::ParseSess;
use parse::parser::Parser;
use parse::token::{Token, EOF, to_str, nonterminal, get_ident_interner, ident_to_str};
use parse::token;
use std::hashmap::HashMap;
use std::uint;
use std::vec;
/* This is an Earley-like parser, without support for in-grammar nonterminals,
only by calling out to the main rust parser for named nonterminals (which it
commits to fully when it hits one in a grammar). This means that there are no
completer or predictor rules, and therefore no need to store one column per
token: instead, there's a set of current Earley items and a set of next
ones. Instead of NTs, we have a special case for Kleene star. The big-O, in
pathological cases, is worse than traditional Earley parsing, but it's an
easier fit for Macro-by-Example-style rules, and I think the overhead is
lower. (In order to prevent the pathological case, we'd need to lazily
construct the resulting `named_match`es at the very end. It'd be a pain,
and require more memory to keep around old items, but it would also save
overhead)*/
/* Quick intro to how the parser works:
A 'position' is a dot in the middle of a matcher, usually represented as a
dot. For example `· a $( a )* a b` is a position, as is `a $( · a )* a b`.
The parser walks through the input a character at a time, maintaining a list
of items consistent with the current position in the input string: `cur_eis`.
As it processes them, it fills up `eof_eis` with items that would be valid if
the macro invocation is now over, `bb_eis` with items that are waiting on
a Rust nonterminal like `$e:expr`, and `next_eis` with items that are waiting
on the a particular token. Most of the logic concerns moving the · through the
repetitions indicated by Kleene stars. It only advances or calls out to the
real Rust parser when no `cur_eis` items remain
Example: Start parsing `a a a a b` against [· a $( a )* a b].
Remaining input: `a a a a b`
next_eis: [· a $( a )* a b]
- - - Advance over an `a`. - - -
Remaining input: `a a a b`
cur: [a · $( a )* a b]
Descend/Skip (first item).
next: [a $( · a )* a b] [a $( a )* · a b].
- - - Advance over an `a`. - - -
Remaining input: `a a b`
cur: [a $( a · )* a b] next: [a $( a )* a · b]
Finish/Repeat (first item)
next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
- - - Advance over an `a`. - - - (this looks exactly like the last step)
Remaining input: `a b`
cur: [a $( a · )* a b] next: [a $( a )* a · b]
Finish/Repeat (first item)
next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
- - - Advance over an `a`. - - - (this looks exactly like the last step)
Remaining input: `b`
cur: [a $( a · )* a b] next: [a $( a )* a · b]
Finish/Repeat (first item)
next: [a $( a )* · a b] [a $( · a )* a b]
- - - Advance over a `b`. - - -
Remaining input: ``
eof: [a $( a )* a b ·]
*/
/* to avoid costly uniqueness checks, we require that `match_seq` always has a
nonempty body. */
#[deriving(Clone)]
pub enum matcher_pos_up { /* to break a circularity */
matcher_pos_up(Option<~MatcherPos>)
}
pub fn is_some(mpu: &matcher_pos_up) -> bool {
match *mpu {
matcher_pos_up(None) => false,
_ => true
}
}
#[deriving(Clone)]
pub struct MatcherPos {
elts: ~[ast::matcher], // maybe should be <'>? Need to understand regions.
sep: Option<Token>,
idx: uint,
up: matcher_pos_up, // mutable for swapping only
matches: ~[~[@named_match]],
match_lo: uint, match_hi: uint,
sp_lo: BytePos,
}
pub fn copy_up(mpu: &matcher_pos_up) -> ~MatcherPos {
match *mpu {
matcher_pos_up(Some(ref mp)) => (*mp).clone(),
_ => fail!()
}
}
pub fn count_names(ms: &[matcher]) -> uint {
do ms.iter().fold(0) |ct, m| {
ct + match m.node {
match_tok(_) => 0u,
match_seq(ref more_ms, _, _, _, _) => count_names((*more_ms)),
match_nonterminal(_,_,_) => 1u
}}
}
pub fn initial_matcher_pos(ms: ~[matcher], sep: Option<Token>, lo: BytePos)
-> ~MatcherPos {
let mut match_idx_hi = 0u;
foreach elt in ms.iter() {
match elt.node {
match_tok(_) => (),
match_seq(_,_,_,_,hi) => {
match_idx_hi = hi; // it is monotonic...
}
match_nonterminal(_,_,pos) => {
match_idx_hi = pos+1u; // ...so latest is highest
}
}
}
let matches = vec::from_fn(count_names(ms), |_i| ~[]);
~MatcherPos {
elts: ms,
sep: sep,
idx: 0u,
up: matcher_pos_up(None),
matches: matches,
match_lo: 0u,
match_hi: match_idx_hi,
sp_lo: lo
}
}
// named_match is a pattern-match result for a single ast::match_nonterminal:
// so it is associated with a single ident in a parse, and all
// matched_nonterminals in the named_match have the same nonterminal type
// (expr, item, etc). All the leaves in a single named_match correspond to a
// single matcher_nonterminal in the ast::matcher that produced it.
//
// It should probably be renamed, it has more or less exact correspondence to
// ast::match nodes, and the in-memory structure of a particular named_match
// represents the match that occurred when a particular subset of an
// ast::match -- those ast::matcher nodes leading to a single
// match_nonterminal -- was applied to a particular token tree.
//
// The width of each matched_seq in the named_match, and the identity of the
// matched_nonterminals, will depend on the token tree it was applied to: each
// matched_seq corresponds to a single match_seq in the originating
// ast::matcher. The depth of the named_match structure will therefore depend
// only on the nesting depth of ast::match_seqs in the originating
// ast::matcher it was derived from.
pub enum named_match {
matched_seq(~[@named_match], codemap::span),
matched_nonterminal(nonterminal)
}
pub type earley_item = ~MatcherPos;
pub fn nameize(p_s: @mut ParseSess, ms: &[matcher], res: &[@named_match])
-> HashMap<ident,@named_match> {
fn n_rec(p_s: @mut ParseSess, m: &matcher, res: &[@named_match],
ret_val: &mut HashMap<ident, @named_match>) {
match *m {
codemap::spanned {node: match_tok(_), _} => (),
codemap::spanned {node: match_seq(ref more_ms, _, _, _, _), _} => {
foreach next_m in more_ms.iter() {
n_rec(p_s, next_m, res, ret_val)
};
}
codemap::spanned {
node: match_nonterminal(ref bind_name, _, idx), span: sp
} => {
if ret_val.contains_key(bind_name) {
p_s.span_diagnostic.span_fatal(sp, ~"Duplicated bind name: "+
ident_to_str(bind_name))
}
ret_val.insert(*bind_name, res[idx]);
}
}
}
let mut ret_val = HashMap::new();
foreach m in ms.iter() { n_rec(p_s, m, res, &mut ret_val) }
ret_val
}
pub enum parse_result {
success(HashMap<ident, @named_match>),
failure(codemap::span, ~str),
error(codemap::span, ~str)
}
pub fn parse_or_else(
sess: @mut ParseSess,
cfg: ast::CrateConfig,
rdr: @reader,
ms: ~[matcher]
) -> HashMap<ident, @named_match> {
match parse(sess, cfg, rdr, ms) {
success(m) => m,
failure(sp, str) => sess.span_diagnostic.span_fatal(sp, str),
error(sp, str) => sess.span_diagnostic.span_fatal(sp, str)
}
}
pub fn parse(
sess: @mut ParseSess,
cfg: ast::CrateConfig,
rdr: @reader,
ms: &[matcher]
) -> parse_result {
let mut cur_eis = ~[];
cur_eis.push(initial_matcher_pos(ms.to_owned(), None, rdr.peek().sp.lo));
loop {
let mut bb_eis = ~[]; // black-box parsed by parser.rs
let mut next_eis = ~[]; // or proceed normally
let mut eof_eis = ~[];
let TokenAndSpan {tok: tok, sp: sp} = rdr.peek();
/* we append new items to this while we go */
while !cur_eis.is_empty() { /* for each Earley Item */
let ei = cur_eis.pop();
let idx = ei.idx;
let len = ei.elts.len();
/* at end of sequence */
if idx >= len {
// can't move out of `match`es, so:
if is_some(&ei.up) {
// hack: a matcher sequence is repeating iff it has a
// parent (the top level is just a container)
// disregard separator, try to go up
// (remove this condition to make trailing seps ok)
if idx == len {
// pop from the matcher position
let mut new_pos = copy_up(&ei.up);
// update matches (the MBE "parse tree") by appending
// each tree as a subtree.
// I bet this is a perf problem: we're preemptively
// doing a lot of array work that will get thrown away
// most of the time.
// Only touch the binders we have actually bound
for uint::range(ei.match_lo, ei.match_hi) |idx| {
let sub = ei.matches[idx].clone();
new_pos.matches[idx]
.push(@matched_seq(sub,
mk_sp(ei.sp_lo,
sp.hi)));
}
new_pos.idx += 1;
cur_eis.push(new_pos);
}
// can we go around again?
// the *_t vars are workarounds for the lack of unary move
match ei.sep {
Some(ref t) if idx == len => { // we need a separator
if tok == (*t) { //pass the separator
let mut ei_t = ei.clone();
ei_t.idx += 1;
next_eis.push(ei_t);
}
}
_ => { // we don't need a separator
let mut ei_t = ei;
ei_t.idx = 0;
cur_eis.push(ei_t);
}
}
} else {
eof_eis.push(ei);
}
} else {
match ei.elts[idx].node.clone() {
/* need to descend into sequence */
match_seq(ref matchers, ref sep, zero_ok,
match_idx_lo, match_idx_hi) => {
if zero_ok {
let mut new_ei = ei.clone();
new_ei.idx += 1u;
//we specifically matched zero repeats.
for uint::range(match_idx_lo, match_idx_hi) |idx| {
new_ei.matches[idx].push(@matched_seq(~[], sp));
}
cur_eis.push(new_ei);
}
let matches = vec::from_elem(ei.matches.len(), ~[]);
let ei_t = ei;
cur_eis.push(~MatcherPos {
elts: (*matchers).clone(),
sep: (*sep).clone(),
idx: 0u,
up: matcher_pos_up(Some(ei_t)),
matches: matches,
match_lo: match_idx_lo, match_hi: match_idx_hi,
sp_lo: sp.lo
});
}
match_nonterminal(_,_,_) => { bb_eis.push(ei) }
match_tok(ref t) => {
let mut ei_t = ei.clone();
if (*t) == tok {
ei_t.idx += 1;
next_eis.push(ei_t);
}
}
}
}
}
/* error messages here could be improved with links to orig. rules */
if tok == EOF {
if eof_eis.len() == 1u {
let mut v = ~[];
foreach dv in eof_eis[0u].matches.mut_iter() {
v.push(dv.pop());
}
return success(nameize(sess, ms, v));
} else if eof_eis.len() > 1u {
return error(sp, ~"Ambiguity: multiple successful parses");
} else {
return failure(sp, ~"Unexpected end of macro invocation");
}
} else {
if (bb_eis.len() > 0u && next_eis.len() > 0u)
|| bb_eis.len() > 1u {
let nts = bb_eis.map(|ei| {
match ei.elts[ei.idx].node {
match_nonterminal(ref bind,ref name,_) => {
fmt!("%s ('%s')", ident_to_str(name),
ident_to_str(bind))
}
_ => fail!()
} }).connect(" or ");
return error(sp, fmt!(
"Local ambiguity: multiple parsing options: \
built-in NTs %s or %u other options.",
nts, next_eis.len()));
} else if (bb_eis.len() == 0u && next_eis.len() == 0u) {
return failure(sp, ~"No rules expected the token: "
+ to_str(get_ident_interner(), &tok));
} else if (next_eis.len() > 0u) {
/* Now process the next token */
while(next_eis.len() > 0u) {
cur_eis.push(next_eis.pop());
}
rdr.next_token();
} else /* bb_eis.len() == 1 */ {
let rust_parser = Parser(sess, cfg.clone(), rdr.dup());
let mut ei = bb_eis.pop();
match ei.elts[ei.idx].node {
match_nonterminal(_, ref name, idx) => {
ei.matches[idx].push(@matched_nonterminal(
parse_nt(&rust_parser, ident_to_str(name))));
ei.idx += 1u;
}
_ => fail!()
}
cur_eis.push(ei);
for rust_parser.tokens_consumed.times() || {
rdr.next_token();
}
}
}
assert!(cur_eis.len() > 0u);
}
}
pub fn parse_nt(p: &Parser, name: &str) -> nonterminal {
match name {
"item" => match p.parse_item(~[]) {
Some(i) => token::nt_item(i),
None => p.fatal("expected an item keyword")
},
"block" => token::nt_block(p.parse_block()),
"stmt" => token::nt_stmt(p.parse_stmt(~[])),
"pat" => token::nt_pat(p.parse_pat()),
"expr" => token::nt_expr(p.parse_expr()),
"ty" => token::nt_ty(p.parse_ty(false /* no need to disambiguate*/)),
// this could be handled like a token, since it is one
"ident" => match *p.token {
token::IDENT(sn,b) => { p.bump(); token::nt_ident(sn,b) }
_ => p.fatal(~"expected ident, found "
+ token::to_str(get_ident_interner(), p.token))
},
"path" => token::nt_path(p.parse_path_with_tps(false)),
"tt" => {
*p.quote_depth += 1u; //but in theory, non-quoted tts might be useful
let res = token::nt_tt(@p.parse_token_tree());
*p.quote_depth -= 1u;
res
}
"matchers" => token::nt_matchers(p.parse_matchers()),
_ => p.fatal(~"Unsupported builtin nonterminal parser: " + name)
}
}
|