1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
|
// This test's runtime explodes if the GC interval is set to 1 (which we do in CI), so we
// override it internally back to the default frequency.
//@compile-flags: -Zmiri-provenance-gc=10000
#![feature(float_gamma, portable_simd, core_intrinsics)]
use std::fmt;
use std::hint::black_box;
#[path = "../utils/mod.rs"]
mod utils;
use utils::check_all_outcomes;
fn ldexp(a: f64, b: i32) -> f64 {
extern "C" {
fn ldexp(x: f64, n: i32) -> f64;
}
unsafe { ldexp(a, b) }
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum Sign {
Neg = 1,
Pos = 0,
}
use Sign::*;
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum NaNKind {
Quiet = 1,
Signaling = 0,
}
use NaNKind::*;
// -- f32 support
#[repr(C)]
#[derive(Copy, Clone, Eq, PartialEq, Hash)]
struct F32(u32);
impl From<f32> for F32 {
fn from(x: f32) -> Self {
F32(x.to_bits())
}
}
/// Returns a value that is `ones` many 1-bits.
fn u32_ones(ones: u32) -> u32 {
assert!(ones <= 32);
if ones == 0 {
// `>>` by 32 doesn't actually shift. So inconsistent :(
return 0;
}
u32::MAX >> (32 - ones)
}
const F32_SIGN_BIT: u32 = 32 - 1; // position of the sign bit
const F32_EXP: u32 = 8; // 8 bits of exponent
const F32_MANTISSA: u32 = F32_SIGN_BIT - F32_EXP;
const F32_NAN_PAYLOAD: u32 = F32_MANTISSA - 1;
impl fmt::Debug for F32 {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// Alaways show raw bits.
write!(f, "0x{:08x} ", self.0)?;
// Also show nice version.
let val = self.0;
let sign = val >> F32_SIGN_BIT;
let val = val & u32_ones(F32_SIGN_BIT); // mask away sign
let exp = val >> F32_MANTISSA;
let mantissa = val & u32_ones(F32_MANTISSA);
if exp == u32_ones(F32_EXP) {
// A NaN! Special printing.
let sign = if sign != 0 { Neg } else { Pos };
let quiet = if (mantissa >> F32_NAN_PAYLOAD) != 0 { Quiet } else { Signaling };
let payload = mantissa & u32_ones(F32_NAN_PAYLOAD);
write!(f, "(NaN: {:?}, {:?}, payload = {:#x})", sign, quiet, payload)
} else {
// Normal float value.
write!(f, "({})", f32::from_bits(self.0))
}
}
}
impl F32 {
fn nan(sign: Sign, kind: NaNKind, payload: u32) -> Self {
// Either the quiet bit must be set of the payload must be non-0;
// otherwise this is not a NaN but an infinity.
assert!(kind == Quiet || payload != 0);
// Payload must fit in 22 bits.
assert!(payload < (1 << F32_NAN_PAYLOAD));
// Concatenate the bits (with a 22bit payload).
// Pattern: [negative] ++ [1]^8 ++ [quiet] ++ [payload]
let val = ((sign as u32) << F32_SIGN_BIT)
| (u32_ones(F32_EXP) << F32_MANTISSA)
| ((kind as u32) << F32_NAN_PAYLOAD)
| payload;
// Sanity check.
assert!(f32::from_bits(val).is_nan());
// Done!
F32(val)
}
fn as_f32(self) -> f32 {
black_box(f32::from_bits(self.0))
}
}
// -- f64 support
#[repr(C)]
#[derive(Copy, Clone, Eq, PartialEq, Hash)]
struct F64(u64);
impl From<f64> for F64 {
fn from(x: f64) -> Self {
F64(x.to_bits())
}
}
/// Returns a value that is `ones` many 1-bits.
fn u64_ones(ones: u32) -> u64 {
assert!(ones <= 64);
if ones == 0 {
// `>>` by 32 doesn't actually shift. So inconsistent :(
return 0;
}
u64::MAX >> (64 - ones)
}
const F64_SIGN_BIT: u32 = 64 - 1; // position of the sign bit
const F64_EXP: u32 = 11; // 11 bits of exponent
const F64_MANTISSA: u32 = F64_SIGN_BIT - F64_EXP;
const F64_NAN_PAYLOAD: u32 = F64_MANTISSA - 1;
impl fmt::Debug for F64 {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// Alaways show raw bits.
write!(f, "0x{:08x} ", self.0)?;
// Also show nice version.
let val = self.0;
let sign = val >> F64_SIGN_BIT;
let val = val & u64_ones(F64_SIGN_BIT); // mask away sign
let exp = val >> F64_MANTISSA;
let mantissa = val & u64_ones(F64_MANTISSA);
if exp == u64_ones(F64_EXP) {
// A NaN! Special printing.
let sign = if sign != 0 { Neg } else { Pos };
let quiet = if (mantissa >> F64_NAN_PAYLOAD) != 0 { Quiet } else { Signaling };
let payload = mantissa & u64_ones(F64_NAN_PAYLOAD);
write!(f, "(NaN: {:?}, {:?}, payload = {:#x})", sign, quiet, payload)
} else {
// Normal float value.
write!(f, "({})", f64::from_bits(self.0))
}
}
}
impl F64 {
fn nan(sign: Sign, kind: NaNKind, payload: u64) -> Self {
// Either the quiet bit must be set of the payload must be non-0;
// otherwise this is not a NaN but an infinity.
assert!(kind == Quiet || payload != 0);
// Payload must fit in 52 bits.
assert!(payload < (1 << F64_NAN_PAYLOAD));
// Concatenate the bits (with a 52bit payload).
// Pattern: [negative] ++ [1]^11 ++ [quiet] ++ [payload]
let val = ((sign as u64) << F64_SIGN_BIT)
| (u64_ones(F64_EXP) << F64_MANTISSA)
| ((kind as u64) << F64_NAN_PAYLOAD)
| payload;
// Sanity check.
assert!(f64::from_bits(val).is_nan());
// Done!
F64(val)
}
fn as_f64(self) -> f64 {
black_box(f64::from_bits(self.0))
}
}
// -- actual tests
fn test_f32() {
// Freshly generated NaNs can have either sign.
check_all_outcomes([F32::nan(Pos, Quiet, 0), F32::nan(Neg, Quiet, 0)], || {
F32::from(0.0 / black_box(0.0))
});
// When there are NaN inputs, their payload can be propagated, with any sign.
let all1_payload = u32_ones(22);
let all1 = F32::nan(Pos, Quiet, all1_payload).as_f32();
check_all_outcomes(
[
F32::nan(Pos, Quiet, 0),
F32::nan(Neg, Quiet, 0),
F32::nan(Pos, Quiet, all1_payload),
F32::nan(Neg, Quiet, all1_payload),
],
|| F32::from(0.0 + all1),
);
// When there are two NaN inputs, the output can be either one, or the preferred NaN.
let just1 = F32::nan(Neg, Quiet, 1).as_f32();
check_all_outcomes(
[
F32::nan(Pos, Quiet, 0),
F32::nan(Neg, Quiet, 0),
F32::nan(Pos, Quiet, 1),
F32::nan(Neg, Quiet, 1),
F32::nan(Pos, Quiet, all1_payload),
F32::nan(Neg, Quiet, all1_payload),
],
|| F32::from(just1 - all1),
);
// When there are *signaling* NaN inputs, they might be quieted or not.
let all1_snan = F32::nan(Pos, Signaling, all1_payload).as_f32();
check_all_outcomes(
[
F32::nan(Pos, Quiet, 0),
F32::nan(Neg, Quiet, 0),
F32::nan(Pos, Quiet, all1_payload),
F32::nan(Neg, Quiet, all1_payload),
F32::nan(Pos, Signaling, all1_payload),
F32::nan(Neg, Signaling, all1_payload),
],
|| F32::from(0.0 * all1_snan),
);
// Mix signaling and non-signaling NaN.
check_all_outcomes(
[
F32::nan(Pos, Quiet, 0),
F32::nan(Neg, Quiet, 0),
F32::nan(Pos, Quiet, 1),
F32::nan(Neg, Quiet, 1),
F32::nan(Pos, Quiet, all1_payload),
F32::nan(Neg, Quiet, all1_payload),
F32::nan(Pos, Signaling, all1_payload),
F32::nan(Neg, Signaling, all1_payload),
],
|| F32::from(just1 % all1_snan),
);
// Unary `-` must preserve payloads exactly.
check_all_outcomes([F32::nan(Neg, Quiet, all1_payload)], || F32::from(-all1));
check_all_outcomes([F32::nan(Neg, Signaling, all1_payload)], || F32::from(-all1_snan));
// Intrinsics
let nan = F32::nan(Neg, Quiet, 0).as_f32();
let snan = F32::nan(Neg, Signaling, 1).as_f32();
check_all_outcomes([F32::nan(Pos, Quiet, 0), F32::nan(Neg, Quiet, 0)], || {
F32::from(f32::min(nan, nan))
});
check_all_outcomes([F32::nan(Pos, Quiet, 0), F32::nan(Neg, Quiet, 0)], || {
F32::from(nan.floor())
});
check_all_outcomes([F32::nan(Pos, Quiet, 0), F32::nan(Neg, Quiet, 0)], || F32::from(nan.sin()));
check_all_outcomes(
[
F32::nan(Pos, Quiet, 0),
F32::nan(Neg, Quiet, 0),
F32::nan(Pos, Quiet, 1),
F32::nan(Neg, Quiet, 1),
F32::nan(Pos, Quiet, 2),
F32::nan(Neg, Quiet, 2),
F32::nan(Pos, Quiet, all1_payload),
F32::nan(Neg, Quiet, all1_payload),
F32::nan(Pos, Signaling, all1_payload),
F32::nan(Neg, Signaling, all1_payload),
],
|| F32::from(just1.mul_add(F32::nan(Neg, Quiet, 2).as_f32(), all1_snan)),
);
check_all_outcomes([F32::nan(Pos, Quiet, 0), F32::nan(Neg, Quiet, 0)], || {
F32::from(nan.powf(nan))
});
check_all_outcomes(
[1.0f32.into()],
|| F32::from(1.0f32.powf(nan)), // special `pow` rule
);
check_all_outcomes([F32::nan(Pos, Quiet, 0), F32::nan(Neg, Quiet, 0)], || {
F32::from(nan.powi(1))
});
// libm functions
check_all_outcomes([F32::nan(Pos, Quiet, 0), F32::nan(Neg, Quiet, 0)], || {
F32::from(nan.sinh())
});
check_all_outcomes([F32::nan(Pos, Quiet, 0), F32::nan(Neg, Quiet, 0)], || {
F32::from(nan.atan2(nan))
});
check_all_outcomes([F32::nan(Pos, Quiet, 0), F32::nan(Neg, Quiet, 0)], || {
F32::from(nan.ln_gamma().0)
});
check_all_outcomes(
[
F32::from(1.0),
F32::nan(Pos, Quiet, 0),
F32::nan(Neg, Quiet, 0),
F32::nan(Pos, Quiet, 1),
F32::nan(Neg, Quiet, 1),
F32::nan(Pos, Signaling, 1),
F32::nan(Neg, Signaling, 1),
],
|| F32::from(snan.powf(0.0)),
);
}
fn test_f64() {
// Freshly generated NaNs can have either sign.
check_all_outcomes([F64::nan(Pos, Quiet, 0), F64::nan(Neg, Quiet, 0)], || {
F64::from(0.0 / black_box(0.0))
});
// When there are NaN inputs, their payload can be propagated, with any sign.
let all1_payload = u64_ones(51);
let all1 = F64::nan(Pos, Quiet, all1_payload).as_f64();
check_all_outcomes(
[
F64::nan(Pos, Quiet, 0),
F64::nan(Neg, Quiet, 0),
F64::nan(Pos, Quiet, all1_payload),
F64::nan(Neg, Quiet, all1_payload),
],
|| F64::from(0.0 + all1),
);
// When there are two NaN inputs, the output can be either one, or the preferred NaN.
let just1 = F64::nan(Neg, Quiet, 1).as_f64();
check_all_outcomes(
[
F64::nan(Pos, Quiet, 0),
F64::nan(Neg, Quiet, 0),
F64::nan(Pos, Quiet, 1),
F64::nan(Neg, Quiet, 1),
F64::nan(Pos, Quiet, all1_payload),
F64::nan(Neg, Quiet, all1_payload),
],
|| F64::from(just1 - all1),
);
// When there are *signaling* NaN inputs, they might be quieted or not.
let all1_snan = F64::nan(Pos, Signaling, all1_payload).as_f64();
check_all_outcomes(
[
F64::nan(Pos, Quiet, 0),
F64::nan(Neg, Quiet, 0),
F64::nan(Pos, Quiet, all1_payload),
F64::nan(Neg, Quiet, all1_payload),
F64::nan(Pos, Signaling, all1_payload),
F64::nan(Neg, Signaling, all1_payload),
],
|| F64::from(0.0 * all1_snan),
);
// Mix signaling and non-signaling NaN.
check_all_outcomes(
[
F64::nan(Pos, Quiet, 0),
F64::nan(Neg, Quiet, 0),
F64::nan(Pos, Quiet, 1),
F64::nan(Neg, Quiet, 1),
F64::nan(Pos, Quiet, all1_payload),
F64::nan(Neg, Quiet, all1_payload),
F64::nan(Pos, Signaling, all1_payload),
F64::nan(Neg, Signaling, all1_payload),
],
|| F64::from(just1 % all1_snan),
);
// Intrinsics
let nan = F64::nan(Neg, Quiet, 0).as_f64();
let snan = F64::nan(Neg, Signaling, 1).as_f64();
check_all_outcomes([F64::nan(Pos, Quiet, 0), F64::nan(Neg, Quiet, 0)], || {
F64::from(f64::min(nan, nan))
});
check_all_outcomes([F64::nan(Pos, Quiet, 0), F64::nan(Neg, Quiet, 0)], || {
F64::from(nan.floor())
});
check_all_outcomes([F64::nan(Pos, Quiet, 0), F64::nan(Neg, Quiet, 0)], || F64::from(nan.sin()));
check_all_outcomes(
[
F64::nan(Pos, Quiet, 0),
F64::nan(Neg, Quiet, 0),
F64::nan(Pos, Quiet, 1),
F64::nan(Neg, Quiet, 1),
F64::nan(Pos, Quiet, 2),
F64::nan(Neg, Quiet, 2),
F64::nan(Pos, Quiet, all1_payload),
F64::nan(Neg, Quiet, all1_payload),
F64::nan(Pos, Signaling, all1_payload),
F64::nan(Neg, Signaling, all1_payload),
],
|| F64::from(just1.mul_add(F64::nan(Neg, Quiet, 2).as_f64(), all1_snan)),
);
check_all_outcomes([F64::nan(Pos, Quiet, 0), F64::nan(Neg, Quiet, 0)], || {
F64::from(nan.powf(nan))
});
check_all_outcomes(
[1.0f64.into()],
|| F64::from(1.0f64.powf(nan)), // special `pow` rule
);
check_all_outcomes([F64::nan(Pos, Quiet, 0), F64::nan(Neg, Quiet, 0)], || {
F64::from(nan.powi(1))
});
// libm functions
check_all_outcomes([F64::nan(Pos, Quiet, 0), F64::nan(Neg, Quiet, 0)], || {
F64::from(nan.sinh())
});
check_all_outcomes([F64::nan(Pos, Quiet, 0), F64::nan(Neg, Quiet, 0)], || {
F64::from(nan.atan2(nan))
});
check_all_outcomes([F64::nan(Pos, Quiet, 0), F64::nan(Neg, Quiet, 0)], || {
F64::from(ldexp(nan, 1))
});
check_all_outcomes([F64::nan(Pos, Quiet, 0), F64::nan(Neg, Quiet, 0)], || {
F64::from(nan.ln_gamma().0)
});
check_all_outcomes(
[
F64::from(1.0),
F64::nan(Pos, Quiet, 0),
F64::nan(Neg, Quiet, 0),
F64::nan(Pos, Quiet, 1),
F64::nan(Neg, Quiet, 1),
F64::nan(Pos, Signaling, 1),
F64::nan(Neg, Signaling, 1),
],
|| F64::from(snan.powf(0.0)),
);
}
fn test_casts() {
let all1_payload_32 = u32_ones(22);
let all1_payload_64 = u64_ones(51);
let left1_payload_64 = (all1_payload_32 as u64) << (51 - 22);
// 64-to-32
check_all_outcomes([F32::nan(Pos, Quiet, 0), F32::nan(Neg, Quiet, 0)], || {
F32::from(F64::nan(Pos, Quiet, 0).as_f64() as f32)
});
// The preferred payload is always a possibility.
check_all_outcomes(
[
F32::nan(Pos, Quiet, 0),
F32::nan(Neg, Quiet, 0),
F32::nan(Pos, Quiet, all1_payload_32),
F32::nan(Neg, Quiet, all1_payload_32),
],
|| F32::from(F64::nan(Pos, Quiet, all1_payload_64).as_f64() as f32),
);
// If the input is signaling, then the output *may* also be signaling.
check_all_outcomes(
[
F32::nan(Pos, Quiet, 0),
F32::nan(Neg, Quiet, 0),
F32::nan(Pos, Quiet, all1_payload_32),
F32::nan(Neg, Quiet, all1_payload_32),
F32::nan(Pos, Signaling, all1_payload_32),
F32::nan(Neg, Signaling, all1_payload_32),
],
|| F32::from(F64::nan(Pos, Signaling, all1_payload_64).as_f64() as f32),
);
// Check that the low bits are gone (not the high bits).
check_all_outcomes([F32::nan(Pos, Quiet, 0), F32::nan(Neg, Quiet, 0)], || {
F32::from(F64::nan(Pos, Quiet, 1).as_f64() as f32)
});
check_all_outcomes(
[
F32::nan(Pos, Quiet, 0),
F32::nan(Neg, Quiet, 0),
F32::nan(Pos, Quiet, 1),
F32::nan(Neg, Quiet, 1),
],
|| F32::from(F64::nan(Pos, Quiet, 1 << (51 - 22)).as_f64() as f32),
);
check_all_outcomes(
[
F32::nan(Pos, Quiet, 0),
F32::nan(Neg, Quiet, 0),
// The `1` payload becomes `0`, and the `0` payload cannot be signaling,
// so these are the only options.
],
|| F32::from(F64::nan(Pos, Signaling, 1).as_f64() as f32),
);
// 32-to-64
check_all_outcomes([F64::nan(Pos, Quiet, 0), F64::nan(Neg, Quiet, 0)], || {
F64::from(F32::nan(Pos, Quiet, 0).as_f32() as f64)
});
// The preferred payload is always a possibility.
// Also checks that 0s are added on the right.
check_all_outcomes(
[
F64::nan(Pos, Quiet, 0),
F64::nan(Neg, Quiet, 0),
F64::nan(Pos, Quiet, left1_payload_64),
F64::nan(Neg, Quiet, left1_payload_64),
],
|| F64::from(F32::nan(Pos, Quiet, all1_payload_32).as_f32() as f64),
);
// If the input is signaling, then the output *may* also be signaling.
check_all_outcomes(
[
F64::nan(Pos, Quiet, 0),
F64::nan(Neg, Quiet, 0),
F64::nan(Pos, Quiet, left1_payload_64),
F64::nan(Neg, Quiet, left1_payload_64),
F64::nan(Pos, Signaling, left1_payload_64),
F64::nan(Neg, Signaling, left1_payload_64),
],
|| F64::from(F32::nan(Pos, Signaling, all1_payload_32).as_f32() as f64),
);
}
fn test_simd() {
use std::intrinsics::simd::*;
use std::simd::*;
let nan = F32::nan(Neg, Quiet, 0).as_f32();
check_all_outcomes([F32::nan(Pos, Quiet, 0), F32::nan(Neg, Quiet, 0)], || {
F32::from(unsafe { simd_div(f32x4::splat(0.0), f32x4::splat(0.0)) }[0])
});
check_all_outcomes([F32::nan(Pos, Quiet, 0), F32::nan(Neg, Quiet, 0)], || {
F32::from(unsafe { simd_fmin(f32x4::splat(nan), f32x4::splat(nan)) }[0])
});
check_all_outcomes([F32::nan(Pos, Quiet, 0), F32::nan(Neg, Quiet, 0)], || {
F32::from(unsafe { simd_fmax(f32x4::splat(nan), f32x4::splat(nan)) }[0])
});
check_all_outcomes([F32::nan(Pos, Quiet, 0), F32::nan(Neg, Quiet, 0)], || {
F32::from(unsafe { simd_fma(f32x4::splat(nan), f32x4::splat(nan), f32x4::splat(nan)) }[0])
});
check_all_outcomes([F32::nan(Pos, Quiet, 0), F32::nan(Neg, Quiet, 0)], || {
F32::from(unsafe { simd_reduce_add_ordered::<_, f32>(f32x4::splat(nan), nan) })
});
check_all_outcomes([F32::nan(Pos, Quiet, 0), F32::nan(Neg, Quiet, 0)], || {
F32::from(unsafe { simd_reduce_max::<_, f32>(f32x4::splat(nan)) })
});
check_all_outcomes([F32::nan(Pos, Quiet, 0), F32::nan(Neg, Quiet, 0)], || {
F32::from(unsafe { simd_fsqrt(f32x4::splat(nan)) }[0])
});
check_all_outcomes([F32::nan(Pos, Quiet, 0), F32::nan(Neg, Quiet, 0)], || {
F32::from(unsafe { simd_ceil(f32x4::splat(nan)) }[0])
});
// Casts
check_all_outcomes([F64::nan(Pos, Quiet, 0), F64::nan(Neg, Quiet, 0)], || {
F64::from(unsafe { simd_cast::<f32x4, f64x4>(f32x4::splat(nan)) }[0])
});
}
fn main() {
// Check our constants against std, just to be sure.
// We add 1 since our numbers are the number of bits stored
// to represent the value, and std has the precision of the value,
// which is one more due to the implicit leading 1.
assert_eq!(F32_MANTISSA + 1, f32::MANTISSA_DIGITS);
assert_eq!(F64_MANTISSA + 1, f64::MANTISSA_DIGITS);
test_f32();
test_f64();
test_casts();
test_simd();
}
|