1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
|
use std::ops::Range;
/// Mersenne Twister implementation based on the C code from wikipedia
/// https://en.wikipedia.org/wiki/Mersenne_Twister#C_code
pub struct MersenneTwister {
state: [u32; Self::N],
state_index: usize,
}
impl MersenneTwister {
// "number of recurrence"
const N: usize = 624;
// " middle word, an offset used in the recurrence relation"
const M: usize = 397;
// ?
const F: u32 = 1812433253;
// "word size (in number of bits)"
const W: u32 = 32;
// "separation point of one word, or the number of bits of the lower bitmask"
const R: u32 = 31;
const UMASK: u32 = 0xffffffff << Self::R;
const LMASK: u32 = 0xffffffff >> (Self::W - Self::R);
// "coefficients of the rational normal form twist matrix"
const A: u32 = 0x9908b0df;
// TGFSR(R) Tempering bitmasks
const B: u32 = 0x9d2c5680;
const C: u32 = 0xefc60000;
// TGFSR(R) Tempering bit shifts
const S: u32 = 7;
const T: u32 = 15;
// Mersenne Twister bit shifts
const U: u32 = 11;
const L: u32 = 18;
fn initialize_state(state: &mut [u32], seed: u32) {
state[0] = seed;
let mut current_seed = seed;
for idx in 1..Self::N {
current_seed =
Self::F.wrapping_mul(current_seed ^ (current_seed >> (Self::W - 2))) + idx as u32;
state[idx] = current_seed;
}
}
fn initialize_by_array(state: &mut [u32], key: &[u32]) {
Self::initialize_state(state, 19650218);
let mut i = 1;
let mut j = 0;
let k = if Self::N > key.len() {
Self::N
} else {
key.len()
};
for _ in 0..k {
state[i] = (state[i] ^ (state[i - 1] ^ (state[i - 1] >> 30)).wrapping_mul(1664525))
+ key[j] + j as u32;
i += 1;
j += 1;
if i >= Self::N {
state[0] = state[Self::N - 1];
i = 1;
}
if j >= key.len() {
j = 0;
}
}
for _ in 0..Self::N - 1 {
state[i] = (state[i] ^ (state[i - 1] ^ (state[i - 1] >> 30)).wrapping_mul(1566083941))
- i as u32;
i += 1;
if i >= Self::N {
state[0] = state[Self::N - 1];
i = 1;
}
}
state[0] = 0x80000000;
}
#[allow(dead_code)]
pub fn new(seed: u32) -> Self {
let mut state = [032; Self::N];
Self::initialize_state(&mut state, seed);
Self {
state,
state_index: 0,
}
}
pub fn new_seed_array(key: &[u32]) -> Self {
let mut state = [032; Self::N];
Self::initialize_by_array(&mut state, key);
Self {
state,
state_index: 0,
}
}
#[allow(non_snake_case)]
pub fn random_u32(&mut self) -> u32 {
let mut j = if self.state_index < Self::N - 1 {
self.state_index + 1
} else {
self.state_index - (Self::N - 1)
};
let mut x = (self.state[self.state_index] & Self::UMASK) | (self.state[j] & Self::LMASK);
let mut xA = x >> 1;
if x & 0x00000001 > 0 {
xA ^= Self::A;
}
j = if self.state_index < (Self::N - Self::M) {
self.state_index + Self::M
} else {
self.state_index - (Self::N - Self::M)
};
x = self.state[j] ^ xA;
self.state[self.state_index] = x;
self.state_index += 1;
if self.state_index >= Self::N {
self.state_index = 0;
};
let mut y = x ^ (x >> Self::U); // tempering
y = y ^ ((y << Self::S) & Self::B);
y = y ^ ((y << Self::T) & Self::C);
y ^ (y >> Self::L)
}
pub fn random_f64(&mut self) -> f64 {
let rand = self.random_u32();
// [0,1)
rand as f64 * (1.0 / (u32::MAX as u64 + 1) as f64)
}
pub fn random_range(&mut self, range: Range<u32>) -> u32 {
(self.random_f64() * (range.end as f64 - range.start as f64) + range.start as f64) as u32
}
pub fn random_range_f32(&mut self, range: Range<f32>) -> f32 {
(self.random_f64() * (range.end as f64 - range.start as f64) + range.start as f64) as f32
}
}
#[cfg(test)]
mod test {
use std::borrow::BorrowMut;
use super::MersenneTwister;
#[test]
fn mersenne_state_simple_seed_matches() {
let mt = MersenneTwister::new(19650218);
let numbers = load_MTwikipedia_state();
for (idx, number) in numbers.into_iter().enumerate() {
let ours = mt.state[idx];
if ours != number {
panic!("reference simple state was {number}, we got {ours}")
}
}
}
#[test]
fn mersenne_state_array_matches() {
let key: [u32; 4] = [0x123, 0x234, 0x345, 0x456];
let mt = MersenneTwister::new_seed_array(&key);
let numbers = load_MTwikipedia_array_state();
for (idx, number) in numbers.into_iter().enumerate() {
let ours = mt.state[idx];
if ours != number {
panic!("reference array state was {number}, we got {ours}")
}
}
}
#[test]
fn mersenne_matches() {
// Initial array
let key: [u32; 4] = [0x123, 0x234, 0x345, 0x456];
let mut mt = MersenneTwister::new_seed_array(&key);
let numbers = load_mt19937ar_cok();
for number in numbers {
let ours = mt.random_u32();
if ours != number {
panic!("reference was {number}, we got {ours}")
}
}
}
#[test]
fn mersenne_matches_real() {
// Initial array
let key: [u32; 4] = [0x123, 0x234, 0x345, 0x456];
let mut mt = MersenneTwister::new_seed_array(&key);
let numbers = load_mt19937ar_cok_real();
// The C program first generated 1000 random u32, so we do it too.
for _ in 0..1000 {
let _ = mt.random_u32();
}
for number in numbers {
let ours = mt.random_f64();
let string = format!("{ours:.8}");
if !string.eq(&number) {
panic!("reference was '{number}', we got '{string}'")
}
}
}
fn load_mt19937ar_cok() -> Vec<u32> {
let string = std::fs::read_to_string("test/mt19937ar-cok").unwrap();
let mut numbers = vec![];
for line in string.lines() {
let mut chars = line.chars();
for _ in 0..5 {
let number: String = chars.borrow_mut().take(10).collect();
let _ = chars.next(); // throwout the space
let ulong: u32 = number.trim().parse().unwrap();
numbers.push(ulong);
}
}
numbers
}
fn load_mt19937ar_cok_real() -> Vec<String> {
let string = std::fs::read_to_string("test/mt19937ar-cok-real").unwrap();
let mut numbers = vec![];
for line in string.lines() {
let mut chars = line.chars();
for _ in 0..5 {
let number: String = chars.borrow_mut().take(10).collect();
let _ = chars.next(); // throwout the space
numbers.push(number);
}
}
numbers
}
#[allow(non_snake_case)]
fn load_MTwikipedia_array_state() -> Vec<u32> {
let string = std::fs::read_to_string("test/MTwikipedia-array_state").unwrap();
let mut numbers = vec![];
for line in string.lines() {
numbers.push(line.trim().parse().unwrap());
}
numbers
}
#[allow(non_snake_case)]
fn load_MTwikipedia_state() -> Vec<u32> {
let string = std::fs::read_to_string("test/MTwikipedia-state").unwrap();
let mut numbers = vec![];
for line in string.lines() {
numbers.push(line.trim().parse().unwrap());
}
numbers
}
}
|