diff options
| author | Murarth <murarth@gmail.com> | 2017-06-13 15:52:59 -0700 |
|---|---|---|
| committer | Murarth <murarth@gmail.com> | 2017-06-13 23:37:34 -0700 |
| commit | eadda7665eb31b1e7cb94a503b4d5cf5c75474c0 (patch) | |
| tree | 406691dc732c762e1424f5110fcbfca97f0b1302 /src/liballoc/binary_heap.rs | |
| parent | e40ef964fe491b19c22dfb8dd36d1eab14223c36 (diff) | |
| download | rust-eadda7665eb31b1e7cb94a503b4d5cf5c75474c0.tar.gz rust-eadda7665eb31b1e7cb94a503b4d5cf5c75474c0.zip | |
Merge crate `collections` into `alloc`
Diffstat (limited to 'src/liballoc/binary_heap.rs')
| -rw-r--r-- | src/liballoc/binary_heap.rs | 1236 |
1 files changed, 1236 insertions, 0 deletions
diff --git a/src/liballoc/binary_heap.rs b/src/liballoc/binary_heap.rs new file mode 100644 index 00000000000..988f8851625 --- /dev/null +++ b/src/liballoc/binary_heap.rs @@ -0,0 +1,1236 @@ +// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! A priority queue implemented with a binary heap. +//! +//! Insertion and popping the largest element have `O(log n)` time complexity. +//! Checking the largest element is `O(1)`. Converting a vector to a binary heap +//! can be done in-place, and has `O(n)` complexity. A binary heap can also be +//! converted to a sorted vector in-place, allowing it to be used for an `O(n +//! log n)` in-place heapsort. +//! +//! # Examples +//! +//! This is a larger example that implements [Dijkstra's algorithm][dijkstra] +//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph]. +//! It shows how to use [`BinaryHeap`] with custom types. +//! +//! [dijkstra]: http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm +//! [sssp]: http://en.wikipedia.org/wiki/Shortest_path_problem +//! [dir_graph]: http://en.wikipedia.org/wiki/Directed_graph +//! [`BinaryHeap`]: struct.BinaryHeap.html +//! +//! ``` +//! use std::cmp::Ordering; +//! use std::collections::BinaryHeap; +//! use std::usize; +//! +//! #[derive(Copy, Clone, Eq, PartialEq)] +//! struct State { +//! cost: usize, +//! position: usize, +//! } +//! +//! // The priority queue depends on `Ord`. +//! // Explicitly implement the trait so the queue becomes a min-heap +//! // instead of a max-heap. +//! impl Ord for State { +//! fn cmp(&self, other: &State) -> Ordering { +//! // Notice that the we flip the ordering on costs. +//! // In case of a tie we compare positions - this step is necessary +//! // to make implementations of `PartialEq` and `Ord` consistent. +//! other.cost.cmp(&self.cost) +//! .then_with(|| self.position.cmp(&other.position)) +//! } +//! } +//! +//! // `PartialOrd` needs to be implemented as well. +//! impl PartialOrd for State { +//! fn partial_cmp(&self, other: &State) -> Option<Ordering> { +//! Some(self.cmp(other)) +//! } +//! } +//! +//! // Each node is represented as an `usize`, for a shorter implementation. +//! struct Edge { +//! node: usize, +//! cost: usize, +//! } +//! +//! // Dijkstra's shortest path algorithm. +//! +//! // Start at `start` and use `dist` to track the current shortest distance +//! // to each node. This implementation isn't memory-efficient as it may leave duplicate +//! // nodes in the queue. It also uses `usize::MAX` as a sentinel value, +//! // for a simpler implementation. +//! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> Option<usize> { +//! // dist[node] = current shortest distance from `start` to `node` +//! let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect(); +//! +//! let mut heap = BinaryHeap::new(); +//! +//! // We're at `start`, with a zero cost +//! dist[start] = 0; +//! heap.push(State { cost: 0, position: start }); +//! +//! // Examine the frontier with lower cost nodes first (min-heap) +//! while let Some(State { cost, position }) = heap.pop() { +//! // Alternatively we could have continued to find all shortest paths +//! if position == goal { return Some(cost); } +//! +//! // Important as we may have already found a better way +//! if cost > dist[position] { continue; } +//! +//! // For each node we can reach, see if we can find a way with +//! // a lower cost going through this node +//! for edge in &adj_list[position] { +//! let next = State { cost: cost + edge.cost, position: edge.node }; +//! +//! // If so, add it to the frontier and continue +//! if next.cost < dist[next.position] { +//! heap.push(next); +//! // Relaxation, we have now found a better way +//! dist[next.position] = next.cost; +//! } +//! } +//! } +//! +//! // Goal not reachable +//! None +//! } +//! +//! fn main() { +//! // This is the directed graph we're going to use. +//! // The node numbers correspond to the different states, +//! // and the edge weights symbolize the cost of moving +//! // from one node to another. +//! // Note that the edges are one-way. +//! // +//! // 7 +//! // +-----------------+ +//! // | | +//! // v 1 2 | 2 +//! // 0 -----> 1 -----> 3 ---> 4 +//! // | ^ ^ ^ +//! // | | 1 | | +//! // | | | 3 | 1 +//! // +------> 2 -------+ | +//! // 10 | | +//! // +---------------+ +//! // +//! // The graph is represented as an adjacency list where each index, +//! // corresponding to a node value, has a list of outgoing edges. +//! // Chosen for its efficiency. +//! let graph = vec![ +//! // Node 0 +//! vec![Edge { node: 2, cost: 10 }, +//! Edge { node: 1, cost: 1 }], +//! // Node 1 +//! vec![Edge { node: 3, cost: 2 }], +//! // Node 2 +//! vec![Edge { node: 1, cost: 1 }, +//! Edge { node: 3, cost: 3 }, +//! Edge { node: 4, cost: 1 }], +//! // Node 3 +//! vec![Edge { node: 0, cost: 7 }, +//! Edge { node: 4, cost: 2 }], +//! // Node 4 +//! vec![]]; +//! +//! assert_eq!(shortest_path(&graph, 0, 1), Some(1)); +//! assert_eq!(shortest_path(&graph, 0, 3), Some(3)); +//! assert_eq!(shortest_path(&graph, 3, 0), Some(7)); +//! assert_eq!(shortest_path(&graph, 0, 4), Some(5)); +//! assert_eq!(shortest_path(&graph, 4, 0), None); +//! } +//! ``` + +#![allow(missing_docs)] +#![stable(feature = "rust1", since = "1.0.0")] + +use core::ops::{Deref, DerefMut, Place, Placer, InPlace}; +use core::iter::{FromIterator, FusedIterator}; +use core::mem::{swap, size_of}; +use core::ptr; +use core::fmt; + +use slice; +use vec::{self, Vec}; + +use super::SpecExtend; + +/// A priority queue implemented with a binary heap. +/// +/// This will be a max-heap. +/// +/// It is a logic error for an item to be modified in such a way that the +/// item's ordering relative to any other item, as determined by the `Ord` +/// trait, changes while it is in the heap. This is normally only possible +/// through `Cell`, `RefCell`, global state, I/O, or unsafe code. +/// +/// # Examples +/// +/// ``` +/// use std::collections::BinaryHeap; +/// +/// // Type inference lets us omit an explicit type signature (which +/// // would be `BinaryHeap<i32>` in this example). +/// let mut heap = BinaryHeap::new(); +/// +/// // We can use peek to look at the next item in the heap. In this case, +/// // there's no items in there yet so we get None. +/// assert_eq!(heap.peek(), None); +/// +/// // Let's add some scores... +/// heap.push(1); +/// heap.push(5); +/// heap.push(2); +/// +/// // Now peek shows the most important item in the heap. +/// assert_eq!(heap.peek(), Some(&5)); +/// +/// // We can check the length of a heap. +/// assert_eq!(heap.len(), 3); +/// +/// // We can iterate over the items in the heap, although they are returned in +/// // a random order. +/// for x in &heap { +/// println!("{}", x); +/// } +/// +/// // If we instead pop these scores, they should come back in order. +/// assert_eq!(heap.pop(), Some(5)); +/// assert_eq!(heap.pop(), Some(2)); +/// assert_eq!(heap.pop(), Some(1)); +/// assert_eq!(heap.pop(), None); +/// +/// // We can clear the heap of any remaining items. +/// heap.clear(); +/// +/// // The heap should now be empty. +/// assert!(heap.is_empty()) +/// ``` +#[stable(feature = "rust1", since = "1.0.0")] +pub struct BinaryHeap<T> { + data: Vec<T>, +} + +/// Structure wrapping a mutable reference to the greatest item on a +/// `BinaryHeap`. +/// +/// This `struct` is created by the [`peek_mut`] method on [`BinaryHeap`]. See +/// its documentation for more. +/// +/// [`peek_mut`]: struct.BinaryHeap.html#method.peek_mut +/// [`BinaryHeap`]: struct.BinaryHeap.html +#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] +pub struct PeekMut<'a, T: 'a + Ord> { + heap: &'a mut BinaryHeap<T>, + sift: bool, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a, T: Ord + fmt::Debug> fmt::Debug for PeekMut<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("PeekMut") + .field(&self.heap.data[0]) + .finish() + } +} + +#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] +impl<'a, T: Ord> Drop for PeekMut<'a, T> { + fn drop(&mut self) { + if self.sift { + self.heap.sift_down(0); + } + } +} + +#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] +impl<'a, T: Ord> Deref for PeekMut<'a, T> { + type Target = T; + fn deref(&self) -> &T { + &self.heap.data[0] + } +} + +#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] +impl<'a, T: Ord> DerefMut for PeekMut<'a, T> { + fn deref_mut(&mut self) -> &mut T { + &mut self.heap.data[0] + } +} + +impl<'a, T: Ord> PeekMut<'a, T> { + /// Removes the peeked value from the heap and returns it. + #[stable(feature = "binary_heap_peek_mut_pop", since = "1.18.0")] + pub fn pop(mut this: PeekMut<'a, T>) -> T { + let value = this.heap.pop().unwrap(); + this.sift = false; + value + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Clone> Clone for BinaryHeap<T> { + fn clone(&self) -> Self { + BinaryHeap { data: self.data.clone() } + } + + fn clone_from(&mut self, source: &Self) { + self.data.clone_from(&source.data); + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Ord> Default for BinaryHeap<T> { + /// Creates an empty `BinaryHeap<T>`. + #[inline] + fn default() -> BinaryHeap<T> { + BinaryHeap::new() + } +} + +#[stable(feature = "binaryheap_debug", since = "1.4.0")] +impl<T: fmt::Debug + Ord> fmt::Debug for BinaryHeap<T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_list().entries(self.iter()).finish() + } +} + +impl<T: Ord> BinaryHeap<T> { + /// Creates an empty `BinaryHeap` as a max-heap. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::new(); + /// heap.push(4); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn new() -> BinaryHeap<T> { + BinaryHeap { data: vec![] } + } + + /// Creates an empty `BinaryHeap` with a specific capacity. + /// This preallocates enough memory for `capacity` elements, + /// so that the `BinaryHeap` does not have to be reallocated + /// until it contains at least that many values. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::with_capacity(10); + /// heap.push(4); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn with_capacity(capacity: usize) -> BinaryHeap<T> { + BinaryHeap { data: Vec::with_capacity(capacity) } + } + + /// Returns an iterator visiting all values in the underlying vector, in + /// arbitrary order. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]); + /// + /// // Print 1, 2, 3, 4 in arbitrary order + /// for x in heap.iter() { + /// println!("{}", x); + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn iter(&self) -> Iter<T> { + Iter { iter: self.data.iter() } + } + + /// Returns the greatest item in the binary heap, or `None` if it is empty. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::new(); + /// assert_eq!(heap.peek(), None); + /// + /// heap.push(1); + /// heap.push(5); + /// heap.push(2); + /// assert_eq!(heap.peek(), Some(&5)); + /// + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn peek(&self) -> Option<&T> { + self.data.get(0) + } + + /// Returns a mutable reference to the greatest item in the binary heap, or + /// `None` if it is empty. + /// + /// Note: If the `PeekMut` value is leaked, the heap may be in an + /// inconsistent state. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::new(); + /// assert!(heap.peek_mut().is_none()); + /// + /// heap.push(1); + /// heap.push(5); + /// heap.push(2); + /// { + /// let mut val = heap.peek_mut().unwrap(); + /// *val = 0; + /// } + /// assert_eq!(heap.peek(), Some(&2)); + /// ``` + #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] + pub fn peek_mut(&mut self) -> Option<PeekMut<T>> { + if self.is_empty() { + None + } else { + Some(PeekMut { + heap: self, + sift: true, + }) + } + } + + /// Returns the number of elements the binary heap can hold without reallocating. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::with_capacity(100); + /// assert!(heap.capacity() >= 100); + /// heap.push(4); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn capacity(&self) -> usize { + self.data.capacity() + } + + /// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the + /// given `BinaryHeap`. Does nothing if the capacity is already sufficient. + /// + /// Note that the allocator may give the collection more space than it requests. Therefore + /// capacity can not be relied upon to be precisely minimal. Prefer [`reserve`] if future + /// insertions are expected. + /// + /// # Panics + /// + /// Panics if the new capacity overflows `usize`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::new(); + /// heap.reserve_exact(100); + /// assert!(heap.capacity() >= 100); + /// heap.push(4); + /// ``` + /// + /// [`reserve`]: #method.reserve + #[stable(feature = "rust1", since = "1.0.0")] + pub fn reserve_exact(&mut self, additional: usize) { + self.data.reserve_exact(additional); + } + + /// Reserves capacity for at least `additional` more elements to be inserted in the + /// `BinaryHeap`. The collection may reserve more space to avoid frequent reallocations. + /// + /// # Panics + /// + /// Panics if the new capacity overflows `usize`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::new(); + /// heap.reserve(100); + /// assert!(heap.capacity() >= 100); + /// heap.push(4); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn reserve(&mut self, additional: usize) { + self.data.reserve(additional); + } + + /// Discards as much additional capacity as possible. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100); + /// + /// assert!(heap.capacity() >= 100); + /// heap.shrink_to_fit(); + /// assert!(heap.capacity() == 0); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn shrink_to_fit(&mut self) { + self.data.shrink_to_fit(); + } + + /// Removes the greatest item from the binary heap and returns it, or `None` if it + /// is empty. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::from(vec![1, 3]); + /// + /// assert_eq!(heap.pop(), Some(3)); + /// assert_eq!(heap.pop(), Some(1)); + /// assert_eq!(heap.pop(), None); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn pop(&mut self) -> Option<T> { + self.data.pop().map(|mut item| { + if !self.is_empty() { + swap(&mut item, &mut self.data[0]); + self.sift_down_to_bottom(0); + } + item + }) + } + + /// Pushes an item onto the binary heap. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::new(); + /// heap.push(3); + /// heap.push(5); + /// heap.push(1); + /// + /// assert_eq!(heap.len(), 3); + /// assert_eq!(heap.peek(), Some(&5)); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn push(&mut self, item: T) { + let old_len = self.len(); + self.data.push(item); + self.sift_up(0, old_len); + } + + /// Consumes the `BinaryHeap` and returns the underlying vector + /// in arbitrary order. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let heap = BinaryHeap::from(vec![1, 2, 3, 4, 5, 6, 7]); + /// let vec = heap.into_vec(); + /// + /// // Will print in some order + /// for x in vec { + /// println!("{}", x); + /// } + /// ``` + #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] + pub fn into_vec(self) -> Vec<T> { + self.into() + } + + /// Consumes the `BinaryHeap` and returns a vector in sorted + /// (ascending) order. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// + /// let mut heap = BinaryHeap::from(vec![1, 2, 4, 5, 7]); + /// heap.push(6); + /// heap.push(3); + /// + /// let vec = heap.into_sorted_vec(); + /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]); + /// ``` + #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] + pub fn into_sorted_vec(mut self) -> Vec<T> { + let mut end = self.len(); + while end > 1 { + end -= 1; + self.data.swap(0, end); + self.sift_down_range(0, end); + } + self.into_vec() + } + + // The implementations of sift_up and sift_down use unsafe blocks in + // order to move an element out of the vector (leaving behind a + // hole), shift along the others and move the removed element back into the + // vector at the final location of the hole. + // The `Hole` type is used to represent this, and make sure + // the hole is filled back at the end of its scope, even on panic. + // Using a hole reduces the constant factor compared to using swaps, + // which involves twice as many moves. + fn sift_up(&mut self, start: usize, pos: usize) -> usize { + unsafe { + // Take out the value at `pos` and create a hole. + let mut hole = Hole::new(&mut self.data, pos); + + while hole.pos() > start { + let parent = (hole.pos() - 1) / 2; + if hole.element() <= hole.get(parent) { + break; + } + hole.move_to(parent); + } + hole.pos() + } + } + + /// Take an element at `pos` and move it down the heap, + /// while its children are larger. + fn sift_down_range(&mut self, pos: usize, end: usize) { + unsafe { + let mut hole = Hole::new(&mut self.data, pos); + let mut child = 2 * pos + 1; + while child < end { + let right = child + 1; + // compare with the greater of the two children + if right < end && !(hole.get(child) > hole.get(right)) { + child = right; + } + // if we are already in order, stop. + if hole.element() >= hole.get(child) { + break; + } + hole.move_to(child); + child = 2 * hole.pos() + 1; + } + } + } + + fn sift_down(&mut self, pos: usize) { + let len = self.len(); + self.sift_down_range(pos, len); + } + + /// Take an element at `pos` and move it all the way down the heap, + /// then sift it up to its position. + /// + /// Note: This is faster when the element is known to be large / should + /// be closer to the bottom. + fn sift_down_to_bottom(&mut self, mut pos: usize) { + let end = self.len(); + let start = pos; + unsafe { + let mut hole = Hole::new(&mut self.data, pos); + let mut child = 2 * pos + 1; + while child < end { + let right = child + 1; + // compare with the greater of the two children + if right < end && !(hole.get(child) > hole.get(right)) { + child = right; + } + hole.move_to(child); + child = 2 * hole.pos() + 1; + } + pos = hole.pos; + } + self.sift_up(start, pos); + } + + /// Returns the length of the binary heap. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let heap = BinaryHeap::from(vec![1, 3]); + /// + /// assert_eq!(heap.len(), 2); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn len(&self) -> usize { + self.data.len() + } + + /// Checks if the binary heap is empty. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::new(); + /// + /// assert!(heap.is_empty()); + /// + /// heap.push(3); + /// heap.push(5); + /// heap.push(1); + /// + /// assert!(!heap.is_empty()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn is_empty(&self) -> bool { + self.len() == 0 + } + + /// Clears the binary heap, returning an iterator over the removed elements. + /// + /// The elements are removed in arbitrary order. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::from(vec![1, 3]); + /// + /// assert!(!heap.is_empty()); + /// + /// for x in heap.drain() { + /// println!("{}", x); + /// } + /// + /// assert!(heap.is_empty()); + /// ``` + #[inline] + #[stable(feature = "drain", since = "1.6.0")] + pub fn drain(&mut self) -> Drain<T> { + Drain { iter: self.data.drain(..) } + } + + /// Drops all items from the binary heap. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::from(vec![1, 3]); + /// + /// assert!(!heap.is_empty()); + /// + /// heap.clear(); + /// + /// assert!(heap.is_empty()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn clear(&mut self) { + self.drain(); + } + + fn rebuild(&mut self) { + let mut n = self.len() / 2; + while n > 0 { + n -= 1; + self.sift_down(n); + } + } + + /// Moves all the elements of `other` into `self`, leaving `other` empty. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// + /// let v = vec![-10, 1, 2, 3, 3]; + /// let mut a = BinaryHeap::from(v); + /// + /// let v = vec![-20, 5, 43]; + /// let mut b = BinaryHeap::from(v); + /// + /// a.append(&mut b); + /// + /// assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]); + /// assert!(b.is_empty()); + /// ``` + #[stable(feature = "binary_heap_append", since = "1.11.0")] + pub fn append(&mut self, other: &mut Self) { + if self.len() < other.len() { + swap(self, other); + } + + if other.is_empty() { + return; + } + + #[inline(always)] + fn log2_fast(x: usize) -> usize { + 8 * size_of::<usize>() - (x.leading_zeros() as usize) - 1 + } + + // `rebuild` takes O(len1 + len2) operations + // and about 2 * (len1 + len2) comparisons in the worst case + // while `extend` takes O(len2 * log_2(len1)) operations + // and about 1 * len2 * log_2(len1) comparisons in the worst case, + // assuming len1 >= len2. + #[inline] + fn better_to_rebuild(len1: usize, len2: usize) -> bool { + 2 * (len1 + len2) < len2 * log2_fast(len1) + } + + if better_to_rebuild(self.len(), other.len()) { + self.data.append(&mut other.data); + self.rebuild(); + } else { + self.extend(other.drain()); + } + } +} + +/// Hole represents a hole in a slice i.e. an index without valid value +/// (because it was moved from or duplicated). +/// In drop, `Hole` will restore the slice by filling the hole +/// position with the value that was originally removed. +struct Hole<'a, T: 'a> { + data: &'a mut [T], + /// `elt` is always `Some` from new until drop. + elt: Option<T>, + pos: usize, +} + +impl<'a, T> Hole<'a, T> { + /// Create a new Hole at index `pos`. + /// + /// Unsafe because pos must be within the data slice. + #[inline] + unsafe fn new(data: &'a mut [T], pos: usize) -> Self { + debug_assert!(pos < data.len()); + let elt = ptr::read(&data[pos]); + Hole { + data: data, + elt: Some(elt), + pos: pos, + } + } + + #[inline] + fn pos(&self) -> usize { + self.pos + } + + /// Returns a reference to the element removed. + #[inline] + fn element(&self) -> &T { + self.elt.as_ref().unwrap() + } + + /// Returns a reference to the element at `index`. + /// + /// Unsafe because index must be within the data slice and not equal to pos. + #[inline] + unsafe fn get(&self, index: usize) -> &T { + debug_assert!(index != self.pos); + debug_assert!(index < self.data.len()); + self.data.get_unchecked(index) + } + + /// Move hole to new location + /// + /// Unsafe because index must be within the data slice and not equal to pos. + #[inline] + unsafe fn move_to(&mut self, index: usize) { + debug_assert!(index != self.pos); + debug_assert!(index < self.data.len()); + let index_ptr: *const _ = self.data.get_unchecked(index); + let hole_ptr = self.data.get_unchecked_mut(self.pos); + ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1); + self.pos = index; + } +} + +impl<'a, T> Drop for Hole<'a, T> { + #[inline] + fn drop(&mut self) { + // fill the hole again + unsafe { + let pos = self.pos; + ptr::write(self.data.get_unchecked_mut(pos), self.elt.take().unwrap()); + } + } +} + +/// An iterator over the elements of a `BinaryHeap`. +/// +/// This `struct` is created by the [`iter`] method on [`BinaryHeap`]. See its +/// documentation for more. +/// +/// [`iter`]: struct.BinaryHeap.html#method.iter +/// [`BinaryHeap`]: struct.BinaryHeap.html +#[stable(feature = "rust1", since = "1.0.0")] +pub struct Iter<'a, T: 'a> { + iter: slice::Iter<'a, T>, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a, T: 'a + fmt::Debug> fmt::Debug for Iter<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("Iter") + .field(&self.iter.as_slice()) + .finish() + } +} + +// FIXME(#19839) Remove in favor of `#[derive(Clone)]` +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> Clone for Iter<'a, T> { + fn clone(&self) -> Iter<'a, T> { + Iter { iter: self.iter.clone() } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> Iterator for Iter<'a, T> { + type Item = &'a T; + + #[inline] + fn next(&mut self) -> Option<&'a T> { + self.iter.next() + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + self.iter.size_hint() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> DoubleEndedIterator for Iter<'a, T> { + #[inline] + fn next_back(&mut self) -> Option<&'a T> { + self.iter.next_back() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> ExactSizeIterator for Iter<'a, T> { + fn is_empty(&self) -> bool { + self.iter.is_empty() + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, T> FusedIterator for Iter<'a, T> {} + +/// An owning iterator over the elements of a `BinaryHeap`. +/// +/// This `struct` is created by the [`into_iter`] method on [`BinaryHeap`][`BinaryHeap`] +/// (provided by the `IntoIterator` trait). See its documentation for more. +/// +/// [`into_iter`]: struct.BinaryHeap.html#method.into_iter +/// [`BinaryHeap`]: struct.BinaryHeap.html +#[stable(feature = "rust1", since = "1.0.0")] +#[derive(Clone)] +pub struct IntoIter<T> { + iter: vec::IntoIter<T>, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<T: fmt::Debug> fmt::Debug for IntoIter<T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("IntoIter") + .field(&self.iter.as_slice()) + .finish() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> Iterator for IntoIter<T> { + type Item = T; + + #[inline] + fn next(&mut self) -> Option<T> { + self.iter.next() + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + self.iter.size_hint() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> DoubleEndedIterator for IntoIter<T> { + #[inline] + fn next_back(&mut self) -> Option<T> { + self.iter.next_back() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> ExactSizeIterator for IntoIter<T> { + fn is_empty(&self) -> bool { + self.iter.is_empty() + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<T> FusedIterator for IntoIter<T> {} + +/// A draining iterator over the elements of a `BinaryHeap`. +/// +/// This `struct` is created by the [`drain`] method on [`BinaryHeap`]. See its +/// documentation for more. +/// +/// [`drain`]: struct.BinaryHeap.html#method.drain +/// [`BinaryHeap`]: struct.BinaryHeap.html +#[stable(feature = "drain", since = "1.6.0")] +#[derive(Debug)] +pub struct Drain<'a, T: 'a> { + iter: vec::Drain<'a, T>, +} + +#[stable(feature = "drain", since = "1.6.0")] +impl<'a, T: 'a> Iterator for Drain<'a, T> { + type Item = T; + + #[inline] + fn next(&mut self) -> Option<T> { + self.iter.next() + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + self.iter.size_hint() + } +} + +#[stable(feature = "drain", since = "1.6.0")] +impl<'a, T: 'a> DoubleEndedIterator for Drain<'a, T> { + #[inline] + fn next_back(&mut self) -> Option<T> { + self.iter.next_back() + } +} + +#[stable(feature = "drain", since = "1.6.0")] +impl<'a, T: 'a> ExactSizeIterator for Drain<'a, T> { + fn is_empty(&self) -> bool { + self.iter.is_empty() + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, T: 'a> FusedIterator for Drain<'a, T> {} + +#[stable(feature = "binary_heap_extras_15", since = "1.5.0")] +impl<T: Ord> From<Vec<T>> for BinaryHeap<T> { + fn from(vec: Vec<T>) -> BinaryHeap<T> { + let mut heap = BinaryHeap { data: vec }; + heap.rebuild(); + heap + } +} + +#[stable(feature = "binary_heap_extras_15", since = "1.5.0")] +impl<T> From<BinaryHeap<T>> for Vec<T> { + fn from(heap: BinaryHeap<T>) -> Vec<T> { + heap.data + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Ord> FromIterator<T> for BinaryHeap<T> { + fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> BinaryHeap<T> { + BinaryHeap::from(iter.into_iter().collect::<Vec<_>>()) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Ord> IntoIterator for BinaryHeap<T> { + type Item = T; + type IntoIter = IntoIter<T>; + + /// Creates a consuming iterator, that is, one that moves each value out of + /// the binary heap in arbitrary order. The binary heap cannot be used + /// after calling this. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]); + /// + /// // Print 1, 2, 3, 4 in arbitrary order + /// for x in heap.into_iter() { + /// // x has type i32, not &i32 + /// println!("{}", x); + /// } + /// ``` + fn into_iter(self) -> IntoIter<T> { + IntoIter { iter: self.data.into_iter() } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> IntoIterator for &'a BinaryHeap<T> + where T: Ord +{ + type Item = &'a T; + type IntoIter = Iter<'a, T>; + + fn into_iter(self) -> Iter<'a, T> { + self.iter() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Ord> Extend<T> for BinaryHeap<T> { + #[inline] + fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) { + <Self as SpecExtend<I>>::spec_extend(self, iter); + } +} + +impl<T: Ord, I: IntoIterator<Item = T>> SpecExtend<I> for BinaryHeap<T> { + default fn spec_extend(&mut self, iter: I) { + self.extend_desugared(iter.into_iter()); + } +} + +impl<T: Ord> SpecExtend<BinaryHeap<T>> for BinaryHeap<T> { + fn spec_extend(&mut self, ref mut other: BinaryHeap<T>) { + self.append(other); + } +} + +impl<T: Ord> BinaryHeap<T> { + fn extend_desugared<I: IntoIterator<Item = T>>(&mut self, iter: I) { + let iterator = iter.into_iter(); + let (lower, _) = iterator.size_hint(); + + self.reserve(lower); + + for elem in iterator { + self.push(elem); + } + } +} + +#[stable(feature = "extend_ref", since = "1.2.0")] +impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for BinaryHeap<T> { + fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) { + self.extend(iter.into_iter().cloned()); + } +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +pub struct BinaryHeapPlace<'a, T: 'a> +where T: Clone + Ord { + heap: *mut BinaryHeap<T>, + place: vec::PlaceBack<'a, T>, +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T: Clone + Ord + fmt::Debug> fmt::Debug for BinaryHeapPlace<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("BinaryHeapPlace") + .field(&self.place) + .finish() + } +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T: 'a> Placer<T> for &'a mut BinaryHeap<T> +where T: Clone + Ord { + type Place = BinaryHeapPlace<'a, T>; + + fn make_place(self) -> Self::Place { + let ptr = self as *mut BinaryHeap<T>; + let place = Placer::make_place(self.data.place_back()); + BinaryHeapPlace { + heap: ptr, + place: place, + } + } +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T> Place<T> for BinaryHeapPlace<'a, T> +where T: Clone + Ord { + fn pointer(&mut self) -> *mut T { + self.place.pointer() + } +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T> InPlace<T> for BinaryHeapPlace<'a, T> +where T: Clone + Ord { + type Owner = &'a T; + + unsafe fn finalize(self) -> &'a T { + self.place.finalize(); + + let heap: &mut BinaryHeap<T> = &mut *self.heap; + let len = heap.len(); + let i = heap.sift_up(0, len - 1); + heap.data.get_unchecked(i) + } +} |
