diff options
| author | Murarth <murarth@gmail.com> | 2017-06-13 15:52:59 -0700 |
|---|---|---|
| committer | Murarth <murarth@gmail.com> | 2017-06-13 23:37:34 -0700 |
| commit | eadda7665eb31b1e7cb94a503b4d5cf5c75474c0 (patch) | |
| tree | 406691dc732c762e1424f5110fcbfca97f0b1302 /src/liballoc | |
| parent | e40ef964fe491b19c22dfb8dd36d1eab14223c36 (diff) | |
| download | rust-eadda7665eb31b1e7cb94a503b4d5cf5c75474c0.tar.gz rust-eadda7665eb31b1e7cb94a503b4d5cf5c75474c0.zip | |
Merge crate `collections` into `alloc`
Diffstat (limited to 'src/liballoc')
43 files changed, 29825 insertions, 13 deletions
diff --git a/src/liballoc/Cargo.toml b/src/liballoc/Cargo.toml index 0889ca9fc84..686e5681d12 100644 --- a/src/liballoc/Cargo.toml +++ b/src/liballoc/Cargo.toml @@ -9,3 +9,12 @@ path = "lib.rs" [dependencies] core = { path = "../libcore" } +std_unicode = { path = "../libstd_unicode" } + +[[test]] +name = "collectionstests" +path = "../liballoc/tests/lib.rs" + +[[bench]] +name = "collectionsbenches" +path = "../liballoc/benches/lib.rs" diff --git a/src/liballoc/arc.rs b/src/liballoc/arc.rs index 5ed41f6ffe6..7c51c4b161c 100644 --- a/src/liballoc/arc.rs +++ b/src/liballoc/arc.rs @@ -1222,11 +1222,12 @@ mod tests { use std::sync::atomic; use std::sync::atomic::Ordering::{Acquire, SeqCst}; use std::thread; - use std::vec::Vec; - use super::{Arc, Weak}; use std::sync::Mutex; use std::convert::From; + use super::{Arc, Weak}; + use vec::Vec; + struct Canary(*mut atomic::AtomicUsize); impl Drop for Canary { diff --git a/src/liballoc/benches/btree/map.rs b/src/liballoc/benches/btree/map.rs new file mode 100644 index 00000000000..744afb991b0 --- /dev/null +++ b/src/liballoc/benches/btree/map.rs @@ -0,0 +1,157 @@ +// Copyright 2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + + +use std::iter::Iterator; +use std::vec::Vec; +use std::collections::BTreeMap; +use std::__rand::{Rng, thread_rng}; +use test::{Bencher, black_box}; + +macro_rules! map_insert_rand_bench { + ($name: ident, $n: expr, $map: ident) => ( + #[bench] + pub fn $name(b: &mut Bencher) { + let n: usize = $n; + let mut map = $map::new(); + // setup + let mut rng = thread_rng(); + + for _ in 0..n { + let i = rng.gen::<usize>() % n; + map.insert(i, i); + } + + // measure + b.iter(|| { + let k = rng.gen::<usize>() % n; + map.insert(k, k); + map.remove(&k); + }); + black_box(map); + } + ) +} + +macro_rules! map_insert_seq_bench { + ($name: ident, $n: expr, $map: ident) => ( + #[bench] + pub fn $name(b: &mut Bencher) { + let mut map = $map::new(); + let n: usize = $n; + // setup + for i in 0..n { + map.insert(i * 2, i * 2); + } + + // measure + let mut i = 1; + b.iter(|| { + map.insert(i, i); + map.remove(&i); + i = (i + 2) % n; + }); + black_box(map); + } + ) +} + +macro_rules! map_find_rand_bench { + ($name: ident, $n: expr, $map: ident) => ( + #[bench] + pub fn $name(b: &mut Bencher) { + let mut map = $map::new(); + let n: usize = $n; + + // setup + let mut rng = thread_rng(); + let mut keys: Vec<_> = (0..n).map(|_| rng.gen::<usize>() % n).collect(); + + for &k in &keys { + map.insert(k, k); + } + + rng.shuffle(&mut keys); + + // measure + let mut i = 0; + b.iter(|| { + let t = map.get(&keys[i]); + i = (i + 1) % n; + black_box(t); + }) + } + ) +} + +macro_rules! map_find_seq_bench { + ($name: ident, $n: expr, $map: ident) => ( + #[bench] + pub fn $name(b: &mut Bencher) { + let mut map = $map::new(); + let n: usize = $n; + + // setup + for i in 0..n { + map.insert(i, i); + } + + // measure + let mut i = 0; + b.iter(|| { + let x = map.get(&i); + i = (i + 1) % n; + black_box(x); + }) + } + ) +} + +map_insert_rand_bench!{insert_rand_100, 100, BTreeMap} +map_insert_rand_bench!{insert_rand_10_000, 10_000, BTreeMap} + +map_insert_seq_bench!{insert_seq_100, 100, BTreeMap} +map_insert_seq_bench!{insert_seq_10_000, 10_000, BTreeMap} + +map_find_rand_bench!{find_rand_100, 100, BTreeMap} +map_find_rand_bench!{find_rand_10_000, 10_000, BTreeMap} + +map_find_seq_bench!{find_seq_100, 100, BTreeMap} +map_find_seq_bench!{find_seq_10_000, 10_000, BTreeMap} + +fn bench_iter(b: &mut Bencher, size: i32) { + let mut map = BTreeMap::<i32, i32>::new(); + let mut rng = thread_rng(); + + for _ in 0..size { + map.insert(rng.gen(), rng.gen()); + } + + b.iter(|| { + for entry in &map { + black_box(entry); + } + }); +} + +#[bench] +pub fn iter_20(b: &mut Bencher) { + bench_iter(b, 20); +} + +#[bench] +pub fn iter_1000(b: &mut Bencher) { + bench_iter(b, 1000); +} + +#[bench] +pub fn iter_100000(b: &mut Bencher) { + bench_iter(b, 100000); +} diff --git a/src/liballoc/benches/btree/mod.rs b/src/liballoc/benches/btree/mod.rs new file mode 100644 index 00000000000..f436b0ac0c0 --- /dev/null +++ b/src/liballoc/benches/btree/mod.rs @@ -0,0 +1,11 @@ +// Copyright 2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +mod map; diff --git a/src/liballoc/benches/lib.rs b/src/liballoc/benches/lib.rs new file mode 100644 index 00000000000..958020d0b0e --- /dev/null +++ b/src/liballoc/benches/lib.rs @@ -0,0 +1,28 @@ +// Copyright 2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +#![deny(warnings)] + +#![feature(i128_type)] +#![feature(rand)] +#![feature(repr_simd)] +#![feature(slice_rotate)] +#![feature(sort_unstable)] +#![feature(test)] + +extern crate test; + +mod btree; +mod linked_list; +mod string; +mod str; +mod slice; +mod vec; +mod vec_deque; diff --git a/src/liballoc/benches/linked_list.rs b/src/liballoc/benches/linked_list.rs new file mode 100644 index 00000000000..bbac44553f1 --- /dev/null +++ b/src/liballoc/benches/linked_list.rs @@ -0,0 +1,87 @@ +// Copyright 2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use std::collections::LinkedList; +use test::Bencher; + +#[bench] +fn bench_collect_into(b: &mut Bencher) { + let v = &[0; 64]; + b.iter(|| { + let _: LinkedList<_> = v.iter().cloned().collect(); + }) +} + +#[bench] +fn bench_push_front(b: &mut Bencher) { + let mut m: LinkedList<_> = LinkedList::new(); + b.iter(|| { + m.push_front(0); + }) +} + +#[bench] +fn bench_push_back(b: &mut Bencher) { + let mut m: LinkedList<_> = LinkedList::new(); + b.iter(|| { + m.push_back(0); + }) +} + +#[bench] +fn bench_push_back_pop_back(b: &mut Bencher) { + let mut m: LinkedList<_> = LinkedList::new(); + b.iter(|| { + m.push_back(0); + m.pop_back(); + }) +} + +#[bench] +fn bench_push_front_pop_front(b: &mut Bencher) { + let mut m: LinkedList<_> = LinkedList::new(); + b.iter(|| { + m.push_front(0); + m.pop_front(); + }) +} + +#[bench] +fn bench_iter(b: &mut Bencher) { + let v = &[0; 128]; + let m: LinkedList<_> = v.iter().cloned().collect(); + b.iter(|| { + assert!(m.iter().count() == 128); + }) +} +#[bench] +fn bench_iter_mut(b: &mut Bencher) { + let v = &[0; 128]; + let mut m: LinkedList<_> = v.iter().cloned().collect(); + b.iter(|| { + assert!(m.iter_mut().count() == 128); + }) +} +#[bench] +fn bench_iter_rev(b: &mut Bencher) { + let v = &[0; 128]; + let m: LinkedList<_> = v.iter().cloned().collect(); + b.iter(|| { + assert!(m.iter().rev().count() == 128); + }) +} +#[bench] +fn bench_iter_mut_rev(b: &mut Bencher) { + let v = &[0; 128]; + let mut m: LinkedList<_> = v.iter().cloned().collect(); + b.iter(|| { + assert!(m.iter_mut().rev().count() == 128); + }) +} diff --git a/src/liballoc/benches/slice.rs b/src/liballoc/benches/slice.rs new file mode 100644 index 00000000000..aa5a438b35e --- /dev/null +++ b/src/liballoc/benches/slice.rs @@ -0,0 +1,358 @@ +// Copyright 2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use std::{mem, ptr}; +use std::__rand::{Rng, thread_rng}; + +use test::{Bencher, black_box}; + +#[bench] +fn iterator(b: &mut Bencher) { + // peculiar numbers to stop LLVM from optimising the summation + // out. + let v: Vec<_> = (0..100).map(|i| i ^ (i << 1) ^ (i >> 1)).collect(); + + b.iter(|| { + let mut sum = 0; + for x in &v { + sum += *x; + } + // sum == 11806, to stop dead code elimination. + if sum == 0 { + panic!() + } + }) +} + +#[bench] +fn mut_iterator(b: &mut Bencher) { + let mut v = vec![0; 100]; + + b.iter(|| { + let mut i = 0; + for x in &mut v { + *x = i; + i += 1; + } + }) +} + +#[bench] +fn concat(b: &mut Bencher) { + let xss: Vec<Vec<i32>> = (0..100).map(|i| (0..i).collect()).collect(); + b.iter(|| { + xss.concat(); + }); +} + +#[bench] +fn join(b: &mut Bencher) { + let xss: Vec<Vec<i32>> = (0..100).map(|i| (0..i).collect()).collect(); + b.iter(|| xss.join(&0)); +} + +#[bench] +fn push(b: &mut Bencher) { + let mut vec = Vec::<i32>::new(); + b.iter(|| { + vec.push(0); + black_box(&vec); + }); +} + +#[bench] +fn starts_with_same_vector(b: &mut Bencher) { + let vec: Vec<_> = (0..100).collect(); + b.iter(|| vec.starts_with(&vec)) +} + +#[bench] +fn starts_with_single_element(b: &mut Bencher) { + let vec: Vec<_> = vec![0]; + b.iter(|| vec.starts_with(&vec)) +} + +#[bench] +fn starts_with_diff_one_element_at_end(b: &mut Bencher) { + let vec: Vec<_> = (0..100).collect(); + let mut match_vec: Vec<_> = (0..99).collect(); + match_vec.push(0); + b.iter(|| vec.starts_with(&match_vec)) +} + +#[bench] +fn ends_with_same_vector(b: &mut Bencher) { + let vec: Vec<_> = (0..100).collect(); + b.iter(|| vec.ends_with(&vec)) +} + +#[bench] +fn ends_with_single_element(b: &mut Bencher) { + let vec: Vec<_> = vec![0]; + b.iter(|| vec.ends_with(&vec)) +} + +#[bench] +fn ends_with_diff_one_element_at_beginning(b: &mut Bencher) { + let vec: Vec<_> = (0..100).collect(); + let mut match_vec: Vec<_> = (0..100).collect(); + match_vec[0] = 200; + b.iter(|| vec.starts_with(&match_vec)) +} + +#[bench] +fn contains_last_element(b: &mut Bencher) { + let vec: Vec<_> = (0..100).collect(); + b.iter(|| vec.contains(&99)) +} + +#[bench] +fn zero_1kb_from_elem(b: &mut Bencher) { + b.iter(|| vec![0u8; 1024]); +} + +#[bench] +fn zero_1kb_set_memory(b: &mut Bencher) { + b.iter(|| { + let mut v = Vec::<u8>::with_capacity(1024); + unsafe { + let vp = v.as_mut_ptr(); + ptr::write_bytes(vp, 0, 1024); + v.set_len(1024); + } + v + }); +} + +#[bench] +fn zero_1kb_loop_set(b: &mut Bencher) { + b.iter(|| { + let mut v = Vec::<u8>::with_capacity(1024); + unsafe { + v.set_len(1024); + } + for i in 0..1024 { + v[i] = 0; + } + }); +} + +#[bench] +fn zero_1kb_mut_iter(b: &mut Bencher) { + b.iter(|| { + let mut v = Vec::<u8>::with_capacity(1024); + unsafe { + v.set_len(1024); + } + for x in &mut v { + *x = 0; + } + v + }); +} + +#[bench] +fn random_inserts(b: &mut Bencher) { + let mut rng = thread_rng(); + b.iter(|| { + let mut v = vec![(0, 0); 30]; + for _ in 0..100 { + let l = v.len(); + v.insert(rng.gen::<usize>() % (l + 1), (1, 1)); + } + }) +} + +#[bench] +fn random_removes(b: &mut Bencher) { + let mut rng = thread_rng(); + b.iter(|| { + let mut v = vec![(0, 0); 130]; + for _ in 0..100 { + let l = v.len(); + v.remove(rng.gen::<usize>() % l); + } + }) +} + +fn gen_ascending(len: usize) -> Vec<u64> { + (0..len as u64).collect() +} + +fn gen_descending(len: usize) -> Vec<u64> { + (0..len as u64).rev().collect() +} + +fn gen_random(len: usize) -> Vec<u64> { + let mut rng = thread_rng(); + rng.gen_iter::<u64>().take(len).collect() +} + +fn gen_random_bytes(len: usize) -> Vec<u8> { + let mut rng = thread_rng(); + rng.gen_iter::<u8>().take(len).collect() +} + +fn gen_mostly_ascending(len: usize) -> Vec<u64> { + let mut rng = thread_rng(); + let mut v = gen_ascending(len); + for _ in (0usize..).take_while(|x| x * x <= len) { + let x = rng.gen::<usize>() % len; + let y = rng.gen::<usize>() % len; + v.swap(x, y); + } + v +} + +fn gen_mostly_descending(len: usize) -> Vec<u64> { + let mut rng = thread_rng(); + let mut v = gen_descending(len); + for _ in (0usize..).take_while(|x| x * x <= len) { + let x = rng.gen::<usize>() % len; + let y = rng.gen::<usize>() % len; + v.swap(x, y); + } + v +} + +fn gen_strings(len: usize) -> Vec<String> { + let mut rng = thread_rng(); + let mut v = vec![]; + for _ in 0..len { + let n = rng.gen::<usize>() % 20 + 1; + v.push(rng.gen_ascii_chars().take(n).collect()); + } + v +} + +fn gen_big_random(len: usize) -> Vec<[u64; 16]> { + let mut rng = thread_rng(); + rng.gen_iter().map(|x| [x; 16]).take(len).collect() +} + +macro_rules! sort { + ($f:ident, $name:ident, $gen:expr, $len:expr) => { + #[bench] + fn $name(b: &mut Bencher) { + b.iter(|| $gen($len).$f()); + b.bytes = $len * mem::size_of_val(&$gen(1)[0]) as u64; + } + } +} + +macro_rules! sort_expensive { + ($f:ident, $name:ident, $gen:expr, $len:expr) => { + #[bench] + fn $name(b: &mut Bencher) { + b.iter(|| { + let mut v = $gen($len); + let mut count = 0; + v.$f(|a: &u64, b: &u64| { + count += 1; + if count % 1_000_000_000 == 0 { + panic!("should not happen"); + } + (*a as f64).cos().partial_cmp(&(*b as f64).cos()).unwrap() + }); + black_box(count); + }); + b.bytes = $len as u64 * mem::size_of::<u64>() as u64; + } + } +} + +sort!(sort, sort_small_ascending, gen_ascending, 10); +sort!(sort, sort_small_descending, gen_descending, 10); +sort!(sort, sort_small_random, gen_random, 10); +sort!(sort, sort_small_big_random, gen_big_random, 10); +sort!(sort, sort_medium_random, gen_random, 100); +sort!(sort, sort_large_ascending, gen_ascending, 10000); +sort!(sort, sort_large_descending, gen_descending, 10000); +sort!(sort, sort_large_mostly_ascending, gen_mostly_ascending, 10000); +sort!(sort, sort_large_mostly_descending, gen_mostly_descending, 10000); +sort!(sort, sort_large_random, gen_random, 10000); +sort!(sort, sort_large_big_random, gen_big_random, 10000); +sort!(sort, sort_large_strings, gen_strings, 10000); +sort_expensive!(sort_by, sort_large_random_expensive, gen_random, 10000); + +sort!(sort_unstable, sort_unstable_small_ascending, gen_ascending, 10); +sort!(sort_unstable, sort_unstable_small_descending, gen_descending, 10); +sort!(sort_unstable, sort_unstable_small_random, gen_random, 10); +sort!(sort_unstable, sort_unstable_small_big_random, gen_big_random, 10); +sort!(sort_unstable, sort_unstable_medium_random, gen_random, 100); +sort!(sort_unstable, sort_unstable_large_ascending, gen_ascending, 10000); +sort!(sort_unstable, sort_unstable_large_descending, gen_descending, 10000); +sort!(sort_unstable, sort_unstable_large_mostly_ascending, gen_mostly_ascending, 10000); +sort!(sort_unstable, sort_unstable_large_mostly_descending, gen_mostly_descending, 10000); +sort!(sort_unstable, sort_unstable_large_random, gen_random, 10000); +sort!(sort_unstable, sort_unstable_large_big_random, gen_big_random, 10000); +sort!(sort_unstable, sort_unstable_large_strings, gen_strings, 10000); +sort_expensive!(sort_unstable_by, sort_unstable_large_random_expensive, gen_random, 10000); + +macro_rules! reverse { + ($name:ident, $ty:ty, $f:expr) => { + #[bench] + fn $name(b: &mut Bencher) { + // odd length and offset by 1 to be as unaligned as possible + let n = 0xFFFFF; + let mut v: Vec<_> = + (0..1+(n / mem::size_of::<$ty>() as u64)) + .map($f) + .collect(); + b.iter(|| black_box(&mut v[1..]).reverse()); + b.bytes = n; + } + } +} + +reverse!(reverse_u8, u8, |x| x as u8); +reverse!(reverse_u16, u16, |x| x as u16); +reverse!(reverse_u8x3, [u8;3], |x| [x as u8, (x>>8) as u8, (x>>16) as u8]); +reverse!(reverse_u32, u32, |x| x as u32); +reverse!(reverse_u64, u64, |x| x as u64); +reverse!(reverse_u128, u128, |x| x as u128); +#[repr(simd)] struct F64x4(f64, f64, f64, f64); +reverse!(reverse_simd_f64x4, F64x4, |x| { let x = x as f64; F64x4(x,x,x,x) }); + +macro_rules! rotate { + ($name:ident, $gen:expr, $len:expr, $mid:expr) => { + #[bench] + fn $name(b: &mut Bencher) { + let size = mem::size_of_val(&$gen(1)[0]); + let mut v = $gen($len * 8 / size); + b.iter(|| black_box(&mut v).rotate(($mid*8+size-1)/size)); + b.bytes = (v.len() * size) as u64; + } + } +} + +rotate!(rotate_tiny_by1, gen_random, 16, 1); +rotate!(rotate_tiny_half, gen_random, 16, 16/2); +rotate!(rotate_tiny_half_plus_one, gen_random, 16, 16/2+1); + +rotate!(rotate_medium_by1, gen_random, 9158, 1); +rotate!(rotate_medium_by727_u64, gen_random, 9158, 727); +rotate!(rotate_medium_by727_bytes, gen_random_bytes, 9158, 727); +rotate!(rotate_medium_by727_strings, gen_strings, 9158, 727); +rotate!(rotate_medium_half, gen_random, 9158, 9158/2); +rotate!(rotate_medium_half_plus_one, gen_random, 9158, 9158/2+1); + +// Intended to use more RAM than the machine has cache +rotate!(rotate_huge_by1, gen_random, 5*1024*1024, 1); +rotate!(rotate_huge_by9199_u64, gen_random, 5*1024*1024, 9199); +rotate!(rotate_huge_by9199_bytes, gen_random_bytes, 5*1024*1024, 9199); +rotate!(rotate_huge_by9199_strings, gen_strings, 5*1024*1024, 9199); +rotate!(rotate_huge_by9199_big, gen_big_random, 5*1024*1024, 9199); +rotate!(rotate_huge_by1234577_u64, gen_random, 5*1024*1024, 1234577); +rotate!(rotate_huge_by1234577_bytes, gen_random_bytes, 5*1024*1024, 1234577); +rotate!(rotate_huge_by1234577_strings, gen_strings, 5*1024*1024, 1234577); +rotate!(rotate_huge_by1234577_big, gen_big_random, 5*1024*1024, 1234577); +rotate!(rotate_huge_half, gen_random, 5*1024*1024, 5*1024*1024/2); +rotate!(rotate_huge_half_plus_one, gen_random, 5*1024*1024, 5*1024*1024/2+1); diff --git a/src/liballoc/benches/str.rs b/src/liballoc/benches/str.rs new file mode 100644 index 00000000000..fc4063fae92 --- /dev/null +++ b/src/liballoc/benches/str.rs @@ -0,0 +1,309 @@ +// Copyright 2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use test::{Bencher, black_box}; + +#[bench] +fn char_iterator(b: &mut Bencher) { + let s = "ศไทย中华Việt Nam; Mary had a little lamb, Little lamb"; + + b.iter(|| s.chars().count()); +} + +#[bench] +fn char_iterator_for(b: &mut Bencher) { + let s = "ศไทย中华Việt Nam; Mary had a little lamb, Little lamb"; + + b.iter(|| { + for ch in s.chars() { black_box(ch); } + }); +} + +#[bench] +fn char_iterator_ascii(b: &mut Bencher) { + let s = "Mary had a little lamb, Little lamb + Mary had a little lamb, Little lamb + Mary had a little lamb, Little lamb + Mary had a little lamb, Little lamb + Mary had a little lamb, Little lamb + Mary had a little lamb, Little lamb"; + + b.iter(|| s.chars().count()); +} + +#[bench] +fn char_iterator_rev(b: &mut Bencher) { + let s = "ศไทย中华Việt Nam; Mary had a little lamb, Little lamb"; + + b.iter(|| s.chars().rev().count()); +} + +#[bench] +fn char_iterator_rev_for(b: &mut Bencher) { + let s = "ศไทย中华Việt Nam; Mary had a little lamb, Little lamb"; + + b.iter(|| { + for ch in s.chars().rev() { black_box(ch); } + }); +} + +#[bench] +fn char_indicesator(b: &mut Bencher) { + let s = "ศไทย中华Việt Nam; Mary had a little lamb, Little lamb"; + let len = s.chars().count(); + + b.iter(|| assert_eq!(s.char_indices().count(), len)); +} + +#[bench] +fn char_indicesator_rev(b: &mut Bencher) { + let s = "ศไทย中华Việt Nam; Mary had a little lamb, Little lamb"; + let len = s.chars().count(); + + b.iter(|| assert_eq!(s.char_indices().rev().count(), len)); +} + +#[bench] +fn split_unicode_ascii(b: &mut Bencher) { + let s = "ประเทศไทย中华Việt Namประเทศไทย中华Việt Nam"; + + b.iter(|| assert_eq!(s.split('V').count(), 3)); +} + +#[bench] +fn split_ascii(b: &mut Bencher) { + let s = "Mary had a little lamb, Little lamb, little-lamb."; + let len = s.split(' ').count(); + + b.iter(|| assert_eq!(s.split(' ').count(), len)); +} + +#[bench] +fn split_extern_fn(b: &mut Bencher) { + let s = "Mary had a little lamb, Little lamb, little-lamb."; + let len = s.split(' ').count(); + fn pred(c: char) -> bool { c == ' ' } + + b.iter(|| assert_eq!(s.split(pred).count(), len)); +} + +#[bench] +fn split_closure(b: &mut Bencher) { + let s = "Mary had a little lamb, Little lamb, little-lamb."; + let len = s.split(' ').count(); + + b.iter(|| assert_eq!(s.split(|c: char| c == ' ').count(), len)); +} + +#[bench] +fn split_slice(b: &mut Bencher) { + let s = "Mary had a little lamb, Little lamb, little-lamb."; + let len = s.split(' ').count(); + + let c: &[char] = &[' ']; + b.iter(|| assert_eq!(s.split(c).count(), len)); +} + +#[bench] +fn bench_join(b: &mut Bencher) { + let s = "ศไทย中华Việt Nam; Mary had a little lamb, Little lamb"; + let sep = "→"; + let v = vec![s, s, s, s, s, s, s, s, s, s]; + b.iter(|| { + assert_eq!(v.join(sep).len(), s.len() * 10 + sep.len() * 9); + }) +} + +#[bench] +fn bench_contains_short_short(b: &mut Bencher) { + let haystack = "Lorem ipsum dolor sit amet, consectetur adipiscing elit."; + let needle = "sit"; + + b.iter(|| { + assert!(haystack.contains(needle)); + }) +} + +#[bench] +fn bench_contains_short_long(b: &mut Bencher) { + let haystack = "\ +Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse quis lorem sit amet dolor \ +ultricies condimentum. Praesent iaculis purus elit, ac malesuada quam malesuada in. Duis sed orci \ +eros. Suspendisse sit amet magna mollis, mollis nunc luctus, imperdiet mi. Integer fringilla non \ +sem ut lacinia. Fusce varius tortor a risus porttitor hendrerit. Morbi mauris dui, ultricies nec \ +tempus vel, gravida nec quam. + +In est dui, tincidunt sed tempus interdum, adipiscing laoreet ante. Etiam tempor, tellus quis \ +sagittis interdum, nulla purus mattis sem, quis auctor erat odio ac tellus. In nec nunc sit amet \ +diam volutpat molestie at sed ipsum. Vestibulum laoreet consequat vulputate. Integer accumsan \ +lorem ac dignissim placerat. Suspendisse convallis faucibus lorem. Aliquam erat volutpat. In vel \ +eleifend felis. Sed suscipit nulla lorem, sed mollis est sollicitudin et. Nam fermentum egestas \ +interdum. Curabitur ut nisi justo. + +Sed sollicitudin ipsum tellus, ut condimentum leo eleifend nec. Cras ut velit ante. Phasellus nec \ +mollis odio. Mauris molestie erat in arcu mattis, at aliquet dolor vehicula. Quisque malesuada \ +lectus sit amet nisi pretium, a condimentum ipsum porta. Morbi at dapibus diam. Praesent egestas \ +est sed risus elementum, eu rutrum metus ultrices. Etiam fermentum consectetur magna, id rutrum \ +felis accumsan a. Aliquam ut pellentesque libero. Sed mi nulla, lobortis eu tortor id, suscipit \ +ultricies neque. Morbi iaculis sit amet risus at iaculis. Praesent eget ligula quis turpis \ +feugiat suscipit vel non arcu. Interdum et malesuada fames ac ante ipsum primis in faucibus. \ +Aliquam sit amet placerat lorem. + +Cras a lacus vel ante posuere elementum. Nunc est leo, bibendum ut facilisis vel, bibendum at \ +mauris. Nullam adipiscing diam vel odio ornare, luctus adipiscing mi luctus. Nulla facilisi. \ +Mauris adipiscing bibendum neque, quis adipiscing lectus tempus et. Sed feugiat erat et nisl \ +lobortis pharetra. Donec vitae erat enim. Nullam sit amet felis et quam lacinia tincidunt. Aliquam \ +suscipit dapibus urna. Sed volutpat urna in magna pulvinar volutpat. Phasellus nec tellus ac diam \ +cursus accumsan. + +Nam lectus enim, dapibus non nisi tempor, consectetur convallis massa. Maecenas eleifend dictum \ +feugiat. Etiam quis mauris vel risus luctus mattis a a nunc. Nullam orci quam, imperdiet id \ +vehicula in, porttitor ut nibh. Duis sagittis adipiscing nisl vitae congue. Donec mollis risus eu \ +leo suscipit, varius porttitor nulla porta. Pellentesque ut sem nec nisi euismod vehicula. Nulla \ +malesuada sollicitudin quam eu fermentum."; + let needle = "english"; + + b.iter(|| { + assert!(!haystack.contains(needle)); + }) +} + +#[bench] +fn bench_contains_bad_naive(b: &mut Bencher) { + let haystack = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"; + let needle = "aaaaaaaab"; + + b.iter(|| { + assert!(!haystack.contains(needle)); + }) +} + +#[bench] +fn bench_contains_equal(b: &mut Bencher) { + let haystack = "Lorem ipsum dolor sit amet, consectetur adipiscing elit."; + let needle = "Lorem ipsum dolor sit amet, consectetur adipiscing elit."; + + b.iter(|| { + assert!(haystack.contains(needle)); + }) +} + + +macro_rules! make_test_inner { + ($s:ident, $code:expr, $name:ident, $str:expr, $iters:expr) => { + #[bench] + fn $name(bencher: &mut Bencher) { + let mut $s = $str; + black_box(&mut $s); + bencher.iter(|| for _ in 0..$iters { black_box($code); }); + } + } +} + +macro_rules! make_test { + ($name:ident, $s:ident, $code:expr) => { + make_test!($name, $s, $code, 1); + }; + ($name:ident, $s:ident, $code:expr, $iters:expr) => { + mod $name { + use test::Bencher; + use test::black_box; + + // Short strings: 65 bytes each + make_test_inner!($s, $code, short_ascii, + "Mary had a little lamb, Little lamb Mary had a littl lamb, lamb!", $iters); + make_test_inner!($s, $code, short_mixed, + "ศไทย中华Việt Nam; Mary had a little lamb, Little lam!", $iters); + make_test_inner!($s, $code, short_pile_of_poo, + "💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩!", $iters); + make_test_inner!($s, $code, long_lorem_ipsum,"\ +Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse quis lorem sit amet dolor \ +ultricies condimentum. Praesent iaculis purus elit, ac malesuada quam malesuada in. Duis sed orci \ +eros. Suspendisse sit amet magna mollis, mollis nunc luctus, imperdiet mi. Integer fringilla non \ +sem ut lacinia. Fusce varius tortor a risus porttitor hendrerit. Morbi mauris dui, ultricies nec \ +tempus vel, gravida nec quam. + +In est dui, tincidunt sed tempus interdum, adipiscing laoreet ante. Etiam tempor, tellus quis \ +sagittis interdum, nulla purus mattis sem, quis auctor erat odio ac tellus. In nec nunc sit amet \ +diam volutpat molestie at sed ipsum. Vestibulum laoreet consequat vulputate. Integer accumsan \ +lorem ac dignissim placerat. Suspendisse convallis faucibus lorem. Aliquam erat volutpat. In vel \ +eleifend felis. Sed suscipit nulla lorem, sed mollis est sollicitudin et. Nam fermentum egestas \ +interdum. Curabitur ut nisi justo. + +Sed sollicitudin ipsum tellus, ut condimentum leo eleifend nec. Cras ut velit ante. Phasellus nec \ +mollis odio. Mauris molestie erat in arcu mattis, at aliquet dolor vehicula. Quisque malesuada \ +lectus sit amet nisi pretium, a condimentum ipsum porta. Morbi at dapibus diam. Praesent egestas \ +est sed risus elementum, eu rutrum metus ultrices. Etiam fermentum consectetur magna, id rutrum \ +felis accumsan a. Aliquam ut pellentesque libero. Sed mi nulla, lobortis eu tortor id, suscipit \ +ultricies neque. Morbi iaculis sit amet risus at iaculis. Praesent eget ligula quis turpis \ +feugiat suscipit vel non arcu. Interdum et malesuada fames ac ante ipsum primis in faucibus. \ +Aliquam sit amet placerat lorem. + +Cras a lacus vel ante posuere elementum. Nunc est leo, bibendum ut facilisis vel, bibendum at \ +mauris. Nullam adipiscing diam vel odio ornare, luctus adipiscing mi luctus. Nulla facilisi. \ +Mauris adipiscing bibendum neque, quis adipiscing lectus tempus et. Sed feugiat erat et nisl \ +lobortis pharetra. Donec vitae erat enim. Nullam sit amet felis et quam lacinia tincidunt. Aliquam \ +suscipit dapibus urna. Sed volutpat urna in magna pulvinar volutpat. Phasellus nec tellus ac diam \ +cursus accumsan. + +Nam lectus enim, dapibus non nisi tempor, consectetur convallis massa. Maecenas eleifend dictum \ +feugiat. Etiam quis mauris vel risus luctus mattis a a nunc. Nullam orci quam, imperdiet id \ +vehicula in, porttitor ut nibh. Duis sagittis adipiscing nisl vitae congue. Donec mollis risus eu \ +leo suscipit, varius porttitor nulla porta. Pellentesque ut sem nec nisi euismod vehicula. Nulla \ +malesuada sollicitudin quam eu fermentum!", $iters); + } + } +} + +make_test!(chars_count, s, s.chars().count()); + +make_test!(contains_bang_str, s, s.contains("!")); +make_test!(contains_bang_char, s, s.contains('!')); + +make_test!(match_indices_a_str, s, s.match_indices("a").count()); + +make_test!(split_a_str, s, s.split("a").count()); + +make_test!(trim_ascii_char, s, { + use std::ascii::AsciiExt; + s.trim_matches(|c: char| c.is_ascii()) +}); +make_test!(trim_left_ascii_char, s, { + use std::ascii::AsciiExt; + s.trim_left_matches(|c: char| c.is_ascii()) +}); +make_test!(trim_right_ascii_char, s, { + use std::ascii::AsciiExt; + s.trim_right_matches(|c: char| c.is_ascii()) +}); + +make_test!(find_underscore_char, s, s.find('_')); +make_test!(rfind_underscore_char, s, s.rfind('_')); +make_test!(find_underscore_str, s, s.find("_")); + +make_test!(find_zzz_char, s, s.find('\u{1F4A4}')); +make_test!(rfind_zzz_char, s, s.rfind('\u{1F4A4}')); +make_test!(find_zzz_str, s, s.find("\u{1F4A4}")); + +make_test!(starts_with_ascii_char, s, s.starts_with('/'), 1024); +make_test!(ends_with_ascii_char, s, s.ends_with('/'), 1024); +make_test!(starts_with_unichar, s, s.starts_with('\u{1F4A4}'), 1024); +make_test!(ends_with_unichar, s, s.ends_with('\u{1F4A4}'), 1024); +make_test!(starts_with_str, s, s.starts_with("💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩"), 1024); +make_test!(ends_with_str, s, s.ends_with("💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩"), 1024); + +make_test!(split_space_char, s, s.split(' ').count()); +make_test!(split_terminator_space_char, s, s.split_terminator(' ').count()); + +make_test!(splitn_space_char, s, s.splitn(10, ' ').count()); +make_test!(rsplitn_space_char, s, s.rsplitn(10, ' ').count()); + +make_test!(split_space_str, s, s.split(" ").count()); +make_test!(split_ad_str, s, s.split("ad").count()); diff --git a/src/liballoc/benches/string.rs b/src/liballoc/benches/string.rs new file mode 100644 index 00000000000..36be21d978e --- /dev/null +++ b/src/liballoc/benches/string.rs @@ -0,0 +1,134 @@ +// Copyright 2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use std::iter::repeat; +use test::Bencher; + +#[bench] +fn bench_with_capacity(b: &mut Bencher) { + b.iter(|| String::with_capacity(100)); +} + +#[bench] +fn bench_push_str(b: &mut Bencher) { + let s = "ศไทย中华Việt Nam; Mary had a little lamb, Little lamb"; + b.iter(|| { + let mut r = String::new(); + r.push_str(s); + }); +} + +const REPETITIONS: u64 = 10_000; + +#[bench] +fn bench_push_str_one_byte(b: &mut Bencher) { + b.bytes = REPETITIONS; + b.iter(|| { + let mut r = String::new(); + for _ in 0..REPETITIONS { + r.push_str("a") + } + }); +} + +#[bench] +fn bench_push_char_one_byte(b: &mut Bencher) { + b.bytes = REPETITIONS; + b.iter(|| { + let mut r = String::new(); + for _ in 0..REPETITIONS { + r.push('a') + } + }); +} + +#[bench] +fn bench_push_char_two_bytes(b: &mut Bencher) { + b.bytes = REPETITIONS * 2; + b.iter(|| { + let mut r = String::new(); + for _ in 0..REPETITIONS { + r.push('â') + } + }); +} + +#[bench] +fn from_utf8_lossy_100_ascii(b: &mut Bencher) { + let s = b"Hello there, the quick brown fox jumped over the lazy dog! \ + Lorem ipsum dolor sit amet, consectetur. "; + + assert_eq!(100, s.len()); + b.iter(|| { + let _ = String::from_utf8_lossy(s); + }); +} + +#[bench] +fn from_utf8_lossy_100_multibyte(b: &mut Bencher) { + let s = "𐌀𐌖𐌋𐌄𐌑𐌉ปรدولة الكويتทศไทย中华𐍅𐌿𐌻𐍆𐌹𐌻𐌰".as_bytes(); + assert_eq!(100, s.len()); + b.iter(|| { + let _ = String::from_utf8_lossy(s); + }); +} + +#[bench] +fn from_utf8_lossy_invalid(b: &mut Bencher) { + let s = b"Hello\xC0\x80 There\xE6\x83 Goodbye"; + b.iter(|| { + let _ = String::from_utf8_lossy(s); + }); +} + +#[bench] +fn from_utf8_lossy_100_invalid(b: &mut Bencher) { + let s = repeat(0xf5).take(100).collect::<Vec<_>>(); + b.iter(|| { + let _ = String::from_utf8_lossy(&s); + }); +} + +#[bench] +fn bench_exact_size_shrink_to_fit(b: &mut Bencher) { + let s = "Hello there, the quick brown fox jumped over the lazy dog! \ + Lorem ipsum dolor sit amet, consectetur. "; + // ensure our operation produces an exact-size string before we benchmark it + let mut r = String::with_capacity(s.len()); + r.push_str(s); + assert_eq!(r.len(), r.capacity()); + b.iter(|| { + let mut r = String::with_capacity(s.len()); + r.push_str(s); + r.shrink_to_fit(); + r + }); +} + +#[bench] +fn bench_from_str(b: &mut Bencher) { + let s = "Hello there, the quick brown fox jumped over the lazy dog! \ + Lorem ipsum dolor sit amet, consectetur. "; + b.iter(|| String::from(s)) +} + +#[bench] +fn bench_from(b: &mut Bencher) { + let s = "Hello there, the quick brown fox jumped over the lazy dog! \ + Lorem ipsum dolor sit amet, consectetur. "; + b.iter(|| String::from(s)) +} + +#[bench] +fn bench_to_string(b: &mut Bencher) { + let s = "Hello there, the quick brown fox jumped over the lazy dog! \ + Lorem ipsum dolor sit amet, consectetur. "; + b.iter(|| s.to_string()) +} diff --git a/src/liballoc/benches/vec.rs b/src/liballoc/benches/vec.rs new file mode 100644 index 00000000000..41490117068 --- /dev/null +++ b/src/liballoc/benches/vec.rs @@ -0,0 +1,492 @@ +// Copyright 2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use test::Bencher; +use std::iter::{FromIterator, repeat}; + +#[bench] +fn bench_new(b: &mut Bencher) { + b.iter(|| { + let v: Vec<u32> = Vec::new(); + assert_eq!(v.len(), 0); + assert_eq!(v.capacity(), 0); + }) +} + +fn do_bench_with_capacity(b: &mut Bencher, src_len: usize) { + b.bytes = src_len as u64; + + b.iter(|| { + let v: Vec<u32> = Vec::with_capacity(src_len); + assert_eq!(v.len(), 0); + assert_eq!(v.capacity(), src_len); + }) +} + +#[bench] +fn bench_with_capacity_0000(b: &mut Bencher) { + do_bench_with_capacity(b, 0) +} + +#[bench] +fn bench_with_capacity_0010(b: &mut Bencher) { + do_bench_with_capacity(b, 10) +} + +#[bench] +fn bench_with_capacity_0100(b: &mut Bencher) { + do_bench_with_capacity(b, 100) +} + +#[bench] +fn bench_with_capacity_1000(b: &mut Bencher) { + do_bench_with_capacity(b, 1000) +} + +fn do_bench_from_fn(b: &mut Bencher, src_len: usize) { + b.bytes = src_len as u64; + + b.iter(|| { + let dst = (0..src_len).collect::<Vec<_>>(); + assert_eq!(dst.len(), src_len); + assert!(dst.iter().enumerate().all(|(i, x)| i == *x)); + }) +} + +#[bench] +fn bench_from_fn_0000(b: &mut Bencher) { + do_bench_from_fn(b, 0) +} + +#[bench] +fn bench_from_fn_0010(b: &mut Bencher) { + do_bench_from_fn(b, 10) +} + +#[bench] +fn bench_from_fn_0100(b: &mut Bencher) { + do_bench_from_fn(b, 100) +} + +#[bench] +fn bench_from_fn_1000(b: &mut Bencher) { + do_bench_from_fn(b, 1000) +} + +fn do_bench_from_elem(b: &mut Bencher, src_len: usize) { + b.bytes = src_len as u64; + + b.iter(|| { + let dst: Vec<usize> = repeat(5).take(src_len).collect(); + assert_eq!(dst.len(), src_len); + assert!(dst.iter().all(|x| *x == 5)); + }) +} + +#[bench] +fn bench_from_elem_0000(b: &mut Bencher) { + do_bench_from_elem(b, 0) +} + +#[bench] +fn bench_from_elem_0010(b: &mut Bencher) { + do_bench_from_elem(b, 10) +} + +#[bench] +fn bench_from_elem_0100(b: &mut Bencher) { + do_bench_from_elem(b, 100) +} + +#[bench] +fn bench_from_elem_1000(b: &mut Bencher) { + do_bench_from_elem(b, 1000) +} + +fn do_bench_from_slice(b: &mut Bencher, src_len: usize) { + let src: Vec<_> = FromIterator::from_iter(0..src_len); + + b.bytes = src_len as u64; + + b.iter(|| { + let dst = src.clone()[..].to_vec(); + assert_eq!(dst.len(), src_len); + assert!(dst.iter().enumerate().all(|(i, x)| i == *x)); + }); +} + +#[bench] +fn bench_from_slice_0000(b: &mut Bencher) { + do_bench_from_slice(b, 0) +} + +#[bench] +fn bench_from_slice_0010(b: &mut Bencher) { + do_bench_from_slice(b, 10) +} + +#[bench] +fn bench_from_slice_0100(b: &mut Bencher) { + do_bench_from_slice(b, 100) +} + +#[bench] +fn bench_from_slice_1000(b: &mut Bencher) { + do_bench_from_slice(b, 1000) +} + +fn do_bench_from_iter(b: &mut Bencher, src_len: usize) { + let src: Vec<_> = FromIterator::from_iter(0..src_len); + + b.bytes = src_len as u64; + + b.iter(|| { + let dst: Vec<_> = FromIterator::from_iter(src.clone()); + assert_eq!(dst.len(), src_len); + assert!(dst.iter().enumerate().all(|(i, x)| i == *x)); + }); +} + +#[bench] +fn bench_from_iter_0000(b: &mut Bencher) { + do_bench_from_iter(b, 0) +} + +#[bench] +fn bench_from_iter_0010(b: &mut Bencher) { + do_bench_from_iter(b, 10) +} + +#[bench] +fn bench_from_iter_0100(b: &mut Bencher) { + do_bench_from_iter(b, 100) +} + +#[bench] +fn bench_from_iter_1000(b: &mut Bencher) { + do_bench_from_iter(b, 1000) +} + +fn do_bench_extend(b: &mut Bencher, dst_len: usize, src_len: usize) { + let dst: Vec<_> = FromIterator::from_iter(0..dst_len); + let src: Vec<_> = FromIterator::from_iter(dst_len..dst_len + src_len); + + b.bytes = src_len as u64; + + b.iter(|| { + let mut dst = dst.clone(); + dst.extend(src.clone()); + assert_eq!(dst.len(), dst_len + src_len); + assert!(dst.iter().enumerate().all(|(i, x)| i == *x)); + }); +} + +#[bench] +fn bench_extend_0000_0000(b: &mut Bencher) { + do_bench_extend(b, 0, 0) +} + +#[bench] +fn bench_extend_0000_0010(b: &mut Bencher) { + do_bench_extend(b, 0, 10) +} + +#[bench] +fn bench_extend_0000_0100(b: &mut Bencher) { + do_bench_extend(b, 0, 100) +} + +#[bench] +fn bench_extend_0000_1000(b: &mut Bencher) { + do_bench_extend(b, 0, 1000) +} + +#[bench] +fn bench_extend_0010_0010(b: &mut Bencher) { + do_bench_extend(b, 10, 10) +} + +#[bench] +fn bench_extend_0100_0100(b: &mut Bencher) { + do_bench_extend(b, 100, 100) +} + +#[bench] +fn bench_extend_1000_1000(b: &mut Bencher) { + do_bench_extend(b, 1000, 1000) +} + +fn do_bench_push_all(b: &mut Bencher, dst_len: usize, src_len: usize) { + let dst: Vec<_> = FromIterator::from_iter(0..dst_len); + let src: Vec<_> = FromIterator::from_iter(dst_len..dst_len + src_len); + + b.bytes = src_len as u64; + + b.iter(|| { + let mut dst = dst.clone(); + dst.extend_from_slice(&src); + assert_eq!(dst.len(), dst_len + src_len); + assert!(dst.iter().enumerate().all(|(i, x)| i == *x)); + }); +} + +#[bench] +fn bench_push_all_0000_0000(b: &mut Bencher) { + do_bench_push_all(b, 0, 0) +} + +#[bench] +fn bench_push_all_0000_0010(b: &mut Bencher) { + do_bench_push_all(b, 0, 10) +} + +#[bench] +fn bench_push_all_0000_0100(b: &mut Bencher) { + do_bench_push_all(b, 0, 100) +} + +#[bench] +fn bench_push_all_0000_1000(b: &mut Bencher) { + do_bench_push_all(b, 0, 1000) +} + +#[bench] +fn bench_push_all_0010_0010(b: &mut Bencher) { + do_bench_push_all(b, 10, 10) +} + +#[bench] +fn bench_push_all_0100_0100(b: &mut Bencher) { + do_bench_push_all(b, 100, 100) +} + +#[bench] +fn bench_push_all_1000_1000(b: &mut Bencher) { + do_bench_push_all(b, 1000, 1000) +} + +fn do_bench_push_all_move(b: &mut Bencher, dst_len: usize, src_len: usize) { + let dst: Vec<_> = FromIterator::from_iter(0..dst_len); + let src: Vec<_> = FromIterator::from_iter(dst_len..dst_len + src_len); + + b.bytes = src_len as u64; + + b.iter(|| { + let mut dst = dst.clone(); + dst.extend(src.clone()); + assert_eq!(dst.len(), dst_len + src_len); + assert!(dst.iter().enumerate().all(|(i, x)| i == *x)); + }); +} + +#[bench] +fn bench_push_all_move_0000_0000(b: &mut Bencher) { + do_bench_push_all_move(b, 0, 0) +} + +#[bench] +fn bench_push_all_move_0000_0010(b: &mut Bencher) { + do_bench_push_all_move(b, 0, 10) +} + +#[bench] +fn bench_push_all_move_0000_0100(b: &mut Bencher) { + do_bench_push_all_move(b, 0, 100) +} + +#[bench] +fn bench_push_all_move_0000_1000(b: &mut Bencher) { + do_bench_push_all_move(b, 0, 1000) +} + +#[bench] +fn bench_push_all_move_0010_0010(b: &mut Bencher) { + do_bench_push_all_move(b, 10, 10) +} + +#[bench] +fn bench_push_all_move_0100_0100(b: &mut Bencher) { + do_bench_push_all_move(b, 100, 100) +} + +#[bench] +fn bench_push_all_move_1000_1000(b: &mut Bencher) { + do_bench_push_all_move(b, 1000, 1000) +} + +fn do_bench_clone(b: &mut Bencher, src_len: usize) { + let src: Vec<usize> = FromIterator::from_iter(0..src_len); + + b.bytes = src_len as u64; + + b.iter(|| { + let dst = src.clone(); + assert_eq!(dst.len(), src_len); + assert!(dst.iter().enumerate().all(|(i, x)| i == *x)); + }); +} + +#[bench] +fn bench_clone_0000(b: &mut Bencher) { + do_bench_clone(b, 0) +} + +#[bench] +fn bench_clone_0010(b: &mut Bencher) { + do_bench_clone(b, 10) +} + +#[bench] +fn bench_clone_0100(b: &mut Bencher) { + do_bench_clone(b, 100) +} + +#[bench] +fn bench_clone_1000(b: &mut Bencher) { + do_bench_clone(b, 1000) +} + +fn do_bench_clone_from(b: &mut Bencher, times: usize, dst_len: usize, src_len: usize) { + let dst: Vec<_> = FromIterator::from_iter(0..src_len); + let src: Vec<_> = FromIterator::from_iter(dst_len..dst_len + src_len); + + b.bytes = (times * src_len) as u64; + + b.iter(|| { + let mut dst = dst.clone(); + + for _ in 0..times { + dst.clone_from(&src); + + assert_eq!(dst.len(), src_len); + assert!(dst.iter().enumerate().all(|(i, x)| dst_len + i == *x)); + } + }); +} + +#[bench] +fn bench_clone_from_01_0000_0000(b: &mut Bencher) { + do_bench_clone_from(b, 1, 0, 0) +} + +#[bench] +fn bench_clone_from_01_0000_0010(b: &mut Bencher) { + do_bench_clone_from(b, 1, 0, 10) +} + +#[bench] +fn bench_clone_from_01_0000_0100(b: &mut Bencher) { + do_bench_clone_from(b, 1, 0, 100) +} + +#[bench] +fn bench_clone_from_01_0000_1000(b: &mut Bencher) { + do_bench_clone_from(b, 1, 0, 1000) +} + +#[bench] +fn bench_clone_from_01_0010_0010(b: &mut Bencher) { + do_bench_clone_from(b, 1, 10, 10) +} + +#[bench] +fn bench_clone_from_01_0100_0100(b: &mut Bencher) { + do_bench_clone_from(b, 1, 100, 100) +} + +#[bench] +fn bench_clone_from_01_1000_1000(b: &mut Bencher) { + do_bench_clone_from(b, 1, 1000, 1000) +} + +#[bench] +fn bench_clone_from_01_0010_0100(b: &mut Bencher) { + do_bench_clone_from(b, 1, 10, 100) +} + +#[bench] +fn bench_clone_from_01_0100_1000(b: &mut Bencher) { + do_bench_clone_from(b, 1, 100, 1000) +} + +#[bench] +fn bench_clone_from_01_0010_0000(b: &mut Bencher) { + do_bench_clone_from(b, 1, 10, 0) +} + +#[bench] +fn bench_clone_from_01_0100_0010(b: &mut Bencher) { + do_bench_clone_from(b, 1, 100, 10) +} + +#[bench] +fn bench_clone_from_01_1000_0100(b: &mut Bencher) { + do_bench_clone_from(b, 1, 1000, 100) +} + +#[bench] +fn bench_clone_from_10_0000_0000(b: &mut Bencher) { + do_bench_clone_from(b, 10, 0, 0) +} + +#[bench] +fn bench_clone_from_10_0000_0010(b: &mut Bencher) { + do_bench_clone_from(b, 10, 0, 10) +} + +#[bench] +fn bench_clone_from_10_0000_0100(b: &mut Bencher) { + do_bench_clone_from(b, 10, 0, 100) +} + +#[bench] +fn bench_clone_from_10_0000_1000(b: &mut Bencher) { + do_bench_clone_from(b, 10, 0, 1000) +} + +#[bench] +fn bench_clone_from_10_0010_0010(b: &mut Bencher) { + do_bench_clone_from(b, 10, 10, 10) +} + +#[bench] +fn bench_clone_from_10_0100_0100(b: &mut Bencher) { + do_bench_clone_from(b, 10, 100, 100) +} + +#[bench] +fn bench_clone_from_10_1000_1000(b: &mut Bencher) { + do_bench_clone_from(b, 10, 1000, 1000) +} + +#[bench] +fn bench_clone_from_10_0010_0100(b: &mut Bencher) { + do_bench_clone_from(b, 10, 10, 100) +} + +#[bench] +fn bench_clone_from_10_0100_1000(b: &mut Bencher) { + do_bench_clone_from(b, 10, 100, 1000) +} + +#[bench] +fn bench_clone_from_10_0010_0000(b: &mut Bencher) { + do_bench_clone_from(b, 10, 10, 0) +} + +#[bench] +fn bench_clone_from_10_0100_0010(b: &mut Bencher) { + do_bench_clone_from(b, 10, 100, 10) +} + +#[bench] +fn bench_clone_from_10_1000_0100(b: &mut Bencher) { + do_bench_clone_from(b, 10, 1000, 100) +} diff --git a/src/liballoc/benches/vec_deque.rs b/src/liballoc/benches/vec_deque.rs new file mode 100644 index 00000000000..380645e7cd0 --- /dev/null +++ b/src/liballoc/benches/vec_deque.rs @@ -0,0 +1,57 @@ +// Copyright 2017 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use std::collections::VecDeque; +use test::{Bencher, black_box}; + +#[bench] +fn bench_new(b: &mut Bencher) { + b.iter(|| { + let ring: VecDeque<i32> = VecDeque::new(); + black_box(ring); + }) +} + +#[bench] +fn bench_grow_1025(b: &mut Bencher) { + b.iter(|| { + let mut deq = VecDeque::new(); + for i in 0..1025 { + deq.push_front(i); + } + black_box(deq); + }) +} + +#[bench] +fn bench_iter_1000(b: &mut Bencher) { + let ring: VecDeque<_> = (0..1000).collect(); + + b.iter(|| { + let mut sum = 0; + for &i in &ring { + sum += i; + } + black_box(sum); + }) +} + +#[bench] +fn bench_mut_iter_1000(b: &mut Bencher) { + let mut ring: VecDeque<_> = (0..1000).collect(); + + b.iter(|| { + let mut sum = 0; + for i in &mut ring { + sum += *i; + } + black_box(sum); + }) +} diff --git a/src/liballoc/binary_heap.rs b/src/liballoc/binary_heap.rs new file mode 100644 index 00000000000..988f8851625 --- /dev/null +++ b/src/liballoc/binary_heap.rs @@ -0,0 +1,1236 @@ +// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! A priority queue implemented with a binary heap. +//! +//! Insertion and popping the largest element have `O(log n)` time complexity. +//! Checking the largest element is `O(1)`. Converting a vector to a binary heap +//! can be done in-place, and has `O(n)` complexity. A binary heap can also be +//! converted to a sorted vector in-place, allowing it to be used for an `O(n +//! log n)` in-place heapsort. +//! +//! # Examples +//! +//! This is a larger example that implements [Dijkstra's algorithm][dijkstra] +//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph]. +//! It shows how to use [`BinaryHeap`] with custom types. +//! +//! [dijkstra]: http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm +//! [sssp]: http://en.wikipedia.org/wiki/Shortest_path_problem +//! [dir_graph]: http://en.wikipedia.org/wiki/Directed_graph +//! [`BinaryHeap`]: struct.BinaryHeap.html +//! +//! ``` +//! use std::cmp::Ordering; +//! use std::collections::BinaryHeap; +//! use std::usize; +//! +//! #[derive(Copy, Clone, Eq, PartialEq)] +//! struct State { +//! cost: usize, +//! position: usize, +//! } +//! +//! // The priority queue depends on `Ord`. +//! // Explicitly implement the trait so the queue becomes a min-heap +//! // instead of a max-heap. +//! impl Ord for State { +//! fn cmp(&self, other: &State) -> Ordering { +//! // Notice that the we flip the ordering on costs. +//! // In case of a tie we compare positions - this step is necessary +//! // to make implementations of `PartialEq` and `Ord` consistent. +//! other.cost.cmp(&self.cost) +//! .then_with(|| self.position.cmp(&other.position)) +//! } +//! } +//! +//! // `PartialOrd` needs to be implemented as well. +//! impl PartialOrd for State { +//! fn partial_cmp(&self, other: &State) -> Option<Ordering> { +//! Some(self.cmp(other)) +//! } +//! } +//! +//! // Each node is represented as an `usize`, for a shorter implementation. +//! struct Edge { +//! node: usize, +//! cost: usize, +//! } +//! +//! // Dijkstra's shortest path algorithm. +//! +//! // Start at `start` and use `dist` to track the current shortest distance +//! // to each node. This implementation isn't memory-efficient as it may leave duplicate +//! // nodes in the queue. It also uses `usize::MAX` as a sentinel value, +//! // for a simpler implementation. +//! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> Option<usize> { +//! // dist[node] = current shortest distance from `start` to `node` +//! let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect(); +//! +//! let mut heap = BinaryHeap::new(); +//! +//! // We're at `start`, with a zero cost +//! dist[start] = 0; +//! heap.push(State { cost: 0, position: start }); +//! +//! // Examine the frontier with lower cost nodes first (min-heap) +//! while let Some(State { cost, position }) = heap.pop() { +//! // Alternatively we could have continued to find all shortest paths +//! if position == goal { return Some(cost); } +//! +//! // Important as we may have already found a better way +//! if cost > dist[position] { continue; } +//! +//! // For each node we can reach, see if we can find a way with +//! // a lower cost going through this node +//! for edge in &adj_list[position] { +//! let next = State { cost: cost + edge.cost, position: edge.node }; +//! +//! // If so, add it to the frontier and continue +//! if next.cost < dist[next.position] { +//! heap.push(next); +//! // Relaxation, we have now found a better way +//! dist[next.position] = next.cost; +//! } +//! } +//! } +//! +//! // Goal not reachable +//! None +//! } +//! +//! fn main() { +//! // This is the directed graph we're going to use. +//! // The node numbers correspond to the different states, +//! // and the edge weights symbolize the cost of moving +//! // from one node to another. +//! // Note that the edges are one-way. +//! // +//! // 7 +//! // +-----------------+ +//! // | | +//! // v 1 2 | 2 +//! // 0 -----> 1 -----> 3 ---> 4 +//! // | ^ ^ ^ +//! // | | 1 | | +//! // | | | 3 | 1 +//! // +------> 2 -------+ | +//! // 10 | | +//! // +---------------+ +//! // +//! // The graph is represented as an adjacency list where each index, +//! // corresponding to a node value, has a list of outgoing edges. +//! // Chosen for its efficiency. +//! let graph = vec![ +//! // Node 0 +//! vec![Edge { node: 2, cost: 10 }, +//! Edge { node: 1, cost: 1 }], +//! // Node 1 +//! vec![Edge { node: 3, cost: 2 }], +//! // Node 2 +//! vec![Edge { node: 1, cost: 1 }, +//! Edge { node: 3, cost: 3 }, +//! Edge { node: 4, cost: 1 }], +//! // Node 3 +//! vec![Edge { node: 0, cost: 7 }, +//! Edge { node: 4, cost: 2 }], +//! // Node 4 +//! vec![]]; +//! +//! assert_eq!(shortest_path(&graph, 0, 1), Some(1)); +//! assert_eq!(shortest_path(&graph, 0, 3), Some(3)); +//! assert_eq!(shortest_path(&graph, 3, 0), Some(7)); +//! assert_eq!(shortest_path(&graph, 0, 4), Some(5)); +//! assert_eq!(shortest_path(&graph, 4, 0), None); +//! } +//! ``` + +#![allow(missing_docs)] +#![stable(feature = "rust1", since = "1.0.0")] + +use core::ops::{Deref, DerefMut, Place, Placer, InPlace}; +use core::iter::{FromIterator, FusedIterator}; +use core::mem::{swap, size_of}; +use core::ptr; +use core::fmt; + +use slice; +use vec::{self, Vec}; + +use super::SpecExtend; + +/// A priority queue implemented with a binary heap. +/// +/// This will be a max-heap. +/// +/// It is a logic error for an item to be modified in such a way that the +/// item's ordering relative to any other item, as determined by the `Ord` +/// trait, changes while it is in the heap. This is normally only possible +/// through `Cell`, `RefCell`, global state, I/O, or unsafe code. +/// +/// # Examples +/// +/// ``` +/// use std::collections::BinaryHeap; +/// +/// // Type inference lets us omit an explicit type signature (which +/// // would be `BinaryHeap<i32>` in this example). +/// let mut heap = BinaryHeap::new(); +/// +/// // We can use peek to look at the next item in the heap. In this case, +/// // there's no items in there yet so we get None. +/// assert_eq!(heap.peek(), None); +/// +/// // Let's add some scores... +/// heap.push(1); +/// heap.push(5); +/// heap.push(2); +/// +/// // Now peek shows the most important item in the heap. +/// assert_eq!(heap.peek(), Some(&5)); +/// +/// // We can check the length of a heap. +/// assert_eq!(heap.len(), 3); +/// +/// // We can iterate over the items in the heap, although they are returned in +/// // a random order. +/// for x in &heap { +/// println!("{}", x); +/// } +/// +/// // If we instead pop these scores, they should come back in order. +/// assert_eq!(heap.pop(), Some(5)); +/// assert_eq!(heap.pop(), Some(2)); +/// assert_eq!(heap.pop(), Some(1)); +/// assert_eq!(heap.pop(), None); +/// +/// // We can clear the heap of any remaining items. +/// heap.clear(); +/// +/// // The heap should now be empty. +/// assert!(heap.is_empty()) +/// ``` +#[stable(feature = "rust1", since = "1.0.0")] +pub struct BinaryHeap<T> { + data: Vec<T>, +} + +/// Structure wrapping a mutable reference to the greatest item on a +/// `BinaryHeap`. +/// +/// This `struct` is created by the [`peek_mut`] method on [`BinaryHeap`]. See +/// its documentation for more. +/// +/// [`peek_mut`]: struct.BinaryHeap.html#method.peek_mut +/// [`BinaryHeap`]: struct.BinaryHeap.html +#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] +pub struct PeekMut<'a, T: 'a + Ord> { + heap: &'a mut BinaryHeap<T>, + sift: bool, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a, T: Ord + fmt::Debug> fmt::Debug for PeekMut<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("PeekMut") + .field(&self.heap.data[0]) + .finish() + } +} + +#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] +impl<'a, T: Ord> Drop for PeekMut<'a, T> { + fn drop(&mut self) { + if self.sift { + self.heap.sift_down(0); + } + } +} + +#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] +impl<'a, T: Ord> Deref for PeekMut<'a, T> { + type Target = T; + fn deref(&self) -> &T { + &self.heap.data[0] + } +} + +#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] +impl<'a, T: Ord> DerefMut for PeekMut<'a, T> { + fn deref_mut(&mut self) -> &mut T { + &mut self.heap.data[0] + } +} + +impl<'a, T: Ord> PeekMut<'a, T> { + /// Removes the peeked value from the heap and returns it. + #[stable(feature = "binary_heap_peek_mut_pop", since = "1.18.0")] + pub fn pop(mut this: PeekMut<'a, T>) -> T { + let value = this.heap.pop().unwrap(); + this.sift = false; + value + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Clone> Clone for BinaryHeap<T> { + fn clone(&self) -> Self { + BinaryHeap { data: self.data.clone() } + } + + fn clone_from(&mut self, source: &Self) { + self.data.clone_from(&source.data); + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Ord> Default for BinaryHeap<T> { + /// Creates an empty `BinaryHeap<T>`. + #[inline] + fn default() -> BinaryHeap<T> { + BinaryHeap::new() + } +} + +#[stable(feature = "binaryheap_debug", since = "1.4.0")] +impl<T: fmt::Debug + Ord> fmt::Debug for BinaryHeap<T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_list().entries(self.iter()).finish() + } +} + +impl<T: Ord> BinaryHeap<T> { + /// Creates an empty `BinaryHeap` as a max-heap. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::new(); + /// heap.push(4); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn new() -> BinaryHeap<T> { + BinaryHeap { data: vec![] } + } + + /// Creates an empty `BinaryHeap` with a specific capacity. + /// This preallocates enough memory for `capacity` elements, + /// so that the `BinaryHeap` does not have to be reallocated + /// until it contains at least that many values. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::with_capacity(10); + /// heap.push(4); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn with_capacity(capacity: usize) -> BinaryHeap<T> { + BinaryHeap { data: Vec::with_capacity(capacity) } + } + + /// Returns an iterator visiting all values in the underlying vector, in + /// arbitrary order. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]); + /// + /// // Print 1, 2, 3, 4 in arbitrary order + /// for x in heap.iter() { + /// println!("{}", x); + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn iter(&self) -> Iter<T> { + Iter { iter: self.data.iter() } + } + + /// Returns the greatest item in the binary heap, or `None` if it is empty. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::new(); + /// assert_eq!(heap.peek(), None); + /// + /// heap.push(1); + /// heap.push(5); + /// heap.push(2); + /// assert_eq!(heap.peek(), Some(&5)); + /// + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn peek(&self) -> Option<&T> { + self.data.get(0) + } + + /// Returns a mutable reference to the greatest item in the binary heap, or + /// `None` if it is empty. + /// + /// Note: If the `PeekMut` value is leaked, the heap may be in an + /// inconsistent state. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::new(); + /// assert!(heap.peek_mut().is_none()); + /// + /// heap.push(1); + /// heap.push(5); + /// heap.push(2); + /// { + /// let mut val = heap.peek_mut().unwrap(); + /// *val = 0; + /// } + /// assert_eq!(heap.peek(), Some(&2)); + /// ``` + #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] + pub fn peek_mut(&mut self) -> Option<PeekMut<T>> { + if self.is_empty() { + None + } else { + Some(PeekMut { + heap: self, + sift: true, + }) + } + } + + /// Returns the number of elements the binary heap can hold without reallocating. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::with_capacity(100); + /// assert!(heap.capacity() >= 100); + /// heap.push(4); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn capacity(&self) -> usize { + self.data.capacity() + } + + /// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the + /// given `BinaryHeap`. Does nothing if the capacity is already sufficient. + /// + /// Note that the allocator may give the collection more space than it requests. Therefore + /// capacity can not be relied upon to be precisely minimal. Prefer [`reserve`] if future + /// insertions are expected. + /// + /// # Panics + /// + /// Panics if the new capacity overflows `usize`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::new(); + /// heap.reserve_exact(100); + /// assert!(heap.capacity() >= 100); + /// heap.push(4); + /// ``` + /// + /// [`reserve`]: #method.reserve + #[stable(feature = "rust1", since = "1.0.0")] + pub fn reserve_exact(&mut self, additional: usize) { + self.data.reserve_exact(additional); + } + + /// Reserves capacity for at least `additional` more elements to be inserted in the + /// `BinaryHeap`. The collection may reserve more space to avoid frequent reallocations. + /// + /// # Panics + /// + /// Panics if the new capacity overflows `usize`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::new(); + /// heap.reserve(100); + /// assert!(heap.capacity() >= 100); + /// heap.push(4); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn reserve(&mut self, additional: usize) { + self.data.reserve(additional); + } + + /// Discards as much additional capacity as possible. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100); + /// + /// assert!(heap.capacity() >= 100); + /// heap.shrink_to_fit(); + /// assert!(heap.capacity() == 0); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn shrink_to_fit(&mut self) { + self.data.shrink_to_fit(); + } + + /// Removes the greatest item from the binary heap and returns it, or `None` if it + /// is empty. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::from(vec![1, 3]); + /// + /// assert_eq!(heap.pop(), Some(3)); + /// assert_eq!(heap.pop(), Some(1)); + /// assert_eq!(heap.pop(), None); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn pop(&mut self) -> Option<T> { + self.data.pop().map(|mut item| { + if !self.is_empty() { + swap(&mut item, &mut self.data[0]); + self.sift_down_to_bottom(0); + } + item + }) + } + + /// Pushes an item onto the binary heap. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::new(); + /// heap.push(3); + /// heap.push(5); + /// heap.push(1); + /// + /// assert_eq!(heap.len(), 3); + /// assert_eq!(heap.peek(), Some(&5)); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn push(&mut self, item: T) { + let old_len = self.len(); + self.data.push(item); + self.sift_up(0, old_len); + } + + /// Consumes the `BinaryHeap` and returns the underlying vector + /// in arbitrary order. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let heap = BinaryHeap::from(vec![1, 2, 3, 4, 5, 6, 7]); + /// let vec = heap.into_vec(); + /// + /// // Will print in some order + /// for x in vec { + /// println!("{}", x); + /// } + /// ``` + #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] + pub fn into_vec(self) -> Vec<T> { + self.into() + } + + /// Consumes the `BinaryHeap` and returns a vector in sorted + /// (ascending) order. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// + /// let mut heap = BinaryHeap::from(vec![1, 2, 4, 5, 7]); + /// heap.push(6); + /// heap.push(3); + /// + /// let vec = heap.into_sorted_vec(); + /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]); + /// ``` + #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] + pub fn into_sorted_vec(mut self) -> Vec<T> { + let mut end = self.len(); + while end > 1 { + end -= 1; + self.data.swap(0, end); + self.sift_down_range(0, end); + } + self.into_vec() + } + + // The implementations of sift_up and sift_down use unsafe blocks in + // order to move an element out of the vector (leaving behind a + // hole), shift along the others and move the removed element back into the + // vector at the final location of the hole. + // The `Hole` type is used to represent this, and make sure + // the hole is filled back at the end of its scope, even on panic. + // Using a hole reduces the constant factor compared to using swaps, + // which involves twice as many moves. + fn sift_up(&mut self, start: usize, pos: usize) -> usize { + unsafe { + // Take out the value at `pos` and create a hole. + let mut hole = Hole::new(&mut self.data, pos); + + while hole.pos() > start { + let parent = (hole.pos() - 1) / 2; + if hole.element() <= hole.get(parent) { + break; + } + hole.move_to(parent); + } + hole.pos() + } + } + + /// Take an element at `pos` and move it down the heap, + /// while its children are larger. + fn sift_down_range(&mut self, pos: usize, end: usize) { + unsafe { + let mut hole = Hole::new(&mut self.data, pos); + let mut child = 2 * pos + 1; + while child < end { + let right = child + 1; + // compare with the greater of the two children + if right < end && !(hole.get(child) > hole.get(right)) { + child = right; + } + // if we are already in order, stop. + if hole.element() >= hole.get(child) { + break; + } + hole.move_to(child); + child = 2 * hole.pos() + 1; + } + } + } + + fn sift_down(&mut self, pos: usize) { + let len = self.len(); + self.sift_down_range(pos, len); + } + + /// Take an element at `pos` and move it all the way down the heap, + /// then sift it up to its position. + /// + /// Note: This is faster when the element is known to be large / should + /// be closer to the bottom. + fn sift_down_to_bottom(&mut self, mut pos: usize) { + let end = self.len(); + let start = pos; + unsafe { + let mut hole = Hole::new(&mut self.data, pos); + let mut child = 2 * pos + 1; + while child < end { + let right = child + 1; + // compare with the greater of the two children + if right < end && !(hole.get(child) > hole.get(right)) { + child = right; + } + hole.move_to(child); + child = 2 * hole.pos() + 1; + } + pos = hole.pos; + } + self.sift_up(start, pos); + } + + /// Returns the length of the binary heap. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let heap = BinaryHeap::from(vec![1, 3]); + /// + /// assert_eq!(heap.len(), 2); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn len(&self) -> usize { + self.data.len() + } + + /// Checks if the binary heap is empty. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::new(); + /// + /// assert!(heap.is_empty()); + /// + /// heap.push(3); + /// heap.push(5); + /// heap.push(1); + /// + /// assert!(!heap.is_empty()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn is_empty(&self) -> bool { + self.len() == 0 + } + + /// Clears the binary heap, returning an iterator over the removed elements. + /// + /// The elements are removed in arbitrary order. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::from(vec![1, 3]); + /// + /// assert!(!heap.is_empty()); + /// + /// for x in heap.drain() { + /// println!("{}", x); + /// } + /// + /// assert!(heap.is_empty()); + /// ``` + #[inline] + #[stable(feature = "drain", since = "1.6.0")] + pub fn drain(&mut self) -> Drain<T> { + Drain { iter: self.data.drain(..) } + } + + /// Drops all items from the binary heap. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let mut heap = BinaryHeap::from(vec![1, 3]); + /// + /// assert!(!heap.is_empty()); + /// + /// heap.clear(); + /// + /// assert!(heap.is_empty()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn clear(&mut self) { + self.drain(); + } + + fn rebuild(&mut self) { + let mut n = self.len() / 2; + while n > 0 { + n -= 1; + self.sift_down(n); + } + } + + /// Moves all the elements of `other` into `self`, leaving `other` empty. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// + /// let v = vec![-10, 1, 2, 3, 3]; + /// let mut a = BinaryHeap::from(v); + /// + /// let v = vec![-20, 5, 43]; + /// let mut b = BinaryHeap::from(v); + /// + /// a.append(&mut b); + /// + /// assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]); + /// assert!(b.is_empty()); + /// ``` + #[stable(feature = "binary_heap_append", since = "1.11.0")] + pub fn append(&mut self, other: &mut Self) { + if self.len() < other.len() { + swap(self, other); + } + + if other.is_empty() { + return; + } + + #[inline(always)] + fn log2_fast(x: usize) -> usize { + 8 * size_of::<usize>() - (x.leading_zeros() as usize) - 1 + } + + // `rebuild` takes O(len1 + len2) operations + // and about 2 * (len1 + len2) comparisons in the worst case + // while `extend` takes O(len2 * log_2(len1)) operations + // and about 1 * len2 * log_2(len1) comparisons in the worst case, + // assuming len1 >= len2. + #[inline] + fn better_to_rebuild(len1: usize, len2: usize) -> bool { + 2 * (len1 + len2) < len2 * log2_fast(len1) + } + + if better_to_rebuild(self.len(), other.len()) { + self.data.append(&mut other.data); + self.rebuild(); + } else { + self.extend(other.drain()); + } + } +} + +/// Hole represents a hole in a slice i.e. an index without valid value +/// (because it was moved from or duplicated). +/// In drop, `Hole` will restore the slice by filling the hole +/// position with the value that was originally removed. +struct Hole<'a, T: 'a> { + data: &'a mut [T], + /// `elt` is always `Some` from new until drop. + elt: Option<T>, + pos: usize, +} + +impl<'a, T> Hole<'a, T> { + /// Create a new Hole at index `pos`. + /// + /// Unsafe because pos must be within the data slice. + #[inline] + unsafe fn new(data: &'a mut [T], pos: usize) -> Self { + debug_assert!(pos < data.len()); + let elt = ptr::read(&data[pos]); + Hole { + data: data, + elt: Some(elt), + pos: pos, + } + } + + #[inline] + fn pos(&self) -> usize { + self.pos + } + + /// Returns a reference to the element removed. + #[inline] + fn element(&self) -> &T { + self.elt.as_ref().unwrap() + } + + /// Returns a reference to the element at `index`. + /// + /// Unsafe because index must be within the data slice and not equal to pos. + #[inline] + unsafe fn get(&self, index: usize) -> &T { + debug_assert!(index != self.pos); + debug_assert!(index < self.data.len()); + self.data.get_unchecked(index) + } + + /// Move hole to new location + /// + /// Unsafe because index must be within the data slice and not equal to pos. + #[inline] + unsafe fn move_to(&mut self, index: usize) { + debug_assert!(index != self.pos); + debug_assert!(index < self.data.len()); + let index_ptr: *const _ = self.data.get_unchecked(index); + let hole_ptr = self.data.get_unchecked_mut(self.pos); + ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1); + self.pos = index; + } +} + +impl<'a, T> Drop for Hole<'a, T> { + #[inline] + fn drop(&mut self) { + // fill the hole again + unsafe { + let pos = self.pos; + ptr::write(self.data.get_unchecked_mut(pos), self.elt.take().unwrap()); + } + } +} + +/// An iterator over the elements of a `BinaryHeap`. +/// +/// This `struct` is created by the [`iter`] method on [`BinaryHeap`]. See its +/// documentation for more. +/// +/// [`iter`]: struct.BinaryHeap.html#method.iter +/// [`BinaryHeap`]: struct.BinaryHeap.html +#[stable(feature = "rust1", since = "1.0.0")] +pub struct Iter<'a, T: 'a> { + iter: slice::Iter<'a, T>, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a, T: 'a + fmt::Debug> fmt::Debug for Iter<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("Iter") + .field(&self.iter.as_slice()) + .finish() + } +} + +// FIXME(#19839) Remove in favor of `#[derive(Clone)]` +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> Clone for Iter<'a, T> { + fn clone(&self) -> Iter<'a, T> { + Iter { iter: self.iter.clone() } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> Iterator for Iter<'a, T> { + type Item = &'a T; + + #[inline] + fn next(&mut self) -> Option<&'a T> { + self.iter.next() + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + self.iter.size_hint() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> DoubleEndedIterator for Iter<'a, T> { + #[inline] + fn next_back(&mut self) -> Option<&'a T> { + self.iter.next_back() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> ExactSizeIterator for Iter<'a, T> { + fn is_empty(&self) -> bool { + self.iter.is_empty() + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, T> FusedIterator for Iter<'a, T> {} + +/// An owning iterator over the elements of a `BinaryHeap`. +/// +/// This `struct` is created by the [`into_iter`] method on [`BinaryHeap`][`BinaryHeap`] +/// (provided by the `IntoIterator` trait). See its documentation for more. +/// +/// [`into_iter`]: struct.BinaryHeap.html#method.into_iter +/// [`BinaryHeap`]: struct.BinaryHeap.html +#[stable(feature = "rust1", since = "1.0.0")] +#[derive(Clone)] +pub struct IntoIter<T> { + iter: vec::IntoIter<T>, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<T: fmt::Debug> fmt::Debug for IntoIter<T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("IntoIter") + .field(&self.iter.as_slice()) + .finish() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> Iterator for IntoIter<T> { + type Item = T; + + #[inline] + fn next(&mut self) -> Option<T> { + self.iter.next() + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + self.iter.size_hint() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> DoubleEndedIterator for IntoIter<T> { + #[inline] + fn next_back(&mut self) -> Option<T> { + self.iter.next_back() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> ExactSizeIterator for IntoIter<T> { + fn is_empty(&self) -> bool { + self.iter.is_empty() + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<T> FusedIterator for IntoIter<T> {} + +/// A draining iterator over the elements of a `BinaryHeap`. +/// +/// This `struct` is created by the [`drain`] method on [`BinaryHeap`]. See its +/// documentation for more. +/// +/// [`drain`]: struct.BinaryHeap.html#method.drain +/// [`BinaryHeap`]: struct.BinaryHeap.html +#[stable(feature = "drain", since = "1.6.0")] +#[derive(Debug)] +pub struct Drain<'a, T: 'a> { + iter: vec::Drain<'a, T>, +} + +#[stable(feature = "drain", since = "1.6.0")] +impl<'a, T: 'a> Iterator for Drain<'a, T> { + type Item = T; + + #[inline] + fn next(&mut self) -> Option<T> { + self.iter.next() + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + self.iter.size_hint() + } +} + +#[stable(feature = "drain", since = "1.6.0")] +impl<'a, T: 'a> DoubleEndedIterator for Drain<'a, T> { + #[inline] + fn next_back(&mut self) -> Option<T> { + self.iter.next_back() + } +} + +#[stable(feature = "drain", since = "1.6.0")] +impl<'a, T: 'a> ExactSizeIterator for Drain<'a, T> { + fn is_empty(&self) -> bool { + self.iter.is_empty() + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, T: 'a> FusedIterator for Drain<'a, T> {} + +#[stable(feature = "binary_heap_extras_15", since = "1.5.0")] +impl<T: Ord> From<Vec<T>> for BinaryHeap<T> { + fn from(vec: Vec<T>) -> BinaryHeap<T> { + let mut heap = BinaryHeap { data: vec }; + heap.rebuild(); + heap + } +} + +#[stable(feature = "binary_heap_extras_15", since = "1.5.0")] +impl<T> From<BinaryHeap<T>> for Vec<T> { + fn from(heap: BinaryHeap<T>) -> Vec<T> { + heap.data + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Ord> FromIterator<T> for BinaryHeap<T> { + fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> BinaryHeap<T> { + BinaryHeap::from(iter.into_iter().collect::<Vec<_>>()) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Ord> IntoIterator for BinaryHeap<T> { + type Item = T; + type IntoIter = IntoIter<T>; + + /// Creates a consuming iterator, that is, one that moves each value out of + /// the binary heap in arbitrary order. The binary heap cannot be used + /// after calling this. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BinaryHeap; + /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]); + /// + /// // Print 1, 2, 3, 4 in arbitrary order + /// for x in heap.into_iter() { + /// // x has type i32, not &i32 + /// println!("{}", x); + /// } + /// ``` + fn into_iter(self) -> IntoIter<T> { + IntoIter { iter: self.data.into_iter() } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> IntoIterator for &'a BinaryHeap<T> + where T: Ord +{ + type Item = &'a T; + type IntoIter = Iter<'a, T>; + + fn into_iter(self) -> Iter<'a, T> { + self.iter() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Ord> Extend<T> for BinaryHeap<T> { + #[inline] + fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) { + <Self as SpecExtend<I>>::spec_extend(self, iter); + } +} + +impl<T: Ord, I: IntoIterator<Item = T>> SpecExtend<I> for BinaryHeap<T> { + default fn spec_extend(&mut self, iter: I) { + self.extend_desugared(iter.into_iter()); + } +} + +impl<T: Ord> SpecExtend<BinaryHeap<T>> for BinaryHeap<T> { + fn spec_extend(&mut self, ref mut other: BinaryHeap<T>) { + self.append(other); + } +} + +impl<T: Ord> BinaryHeap<T> { + fn extend_desugared<I: IntoIterator<Item = T>>(&mut self, iter: I) { + let iterator = iter.into_iter(); + let (lower, _) = iterator.size_hint(); + + self.reserve(lower); + + for elem in iterator { + self.push(elem); + } + } +} + +#[stable(feature = "extend_ref", since = "1.2.0")] +impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for BinaryHeap<T> { + fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) { + self.extend(iter.into_iter().cloned()); + } +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +pub struct BinaryHeapPlace<'a, T: 'a> +where T: Clone + Ord { + heap: *mut BinaryHeap<T>, + place: vec::PlaceBack<'a, T>, +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T: Clone + Ord + fmt::Debug> fmt::Debug for BinaryHeapPlace<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("BinaryHeapPlace") + .field(&self.place) + .finish() + } +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T: 'a> Placer<T> for &'a mut BinaryHeap<T> +where T: Clone + Ord { + type Place = BinaryHeapPlace<'a, T>; + + fn make_place(self) -> Self::Place { + let ptr = self as *mut BinaryHeap<T>; + let place = Placer::make_place(self.data.place_back()); + BinaryHeapPlace { + heap: ptr, + place: place, + } + } +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T> Place<T> for BinaryHeapPlace<'a, T> +where T: Clone + Ord { + fn pointer(&mut self) -> *mut T { + self.place.pointer() + } +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T> InPlace<T> for BinaryHeapPlace<'a, T> +where T: Clone + Ord { + type Owner = &'a T; + + unsafe fn finalize(self) -> &'a T { + self.place.finalize(); + + let heap: &mut BinaryHeap<T> = &mut *self.heap; + let len = heap.len(); + let i = heap.sift_up(0, len - 1); + heap.data.get_unchecked(i) + } +} diff --git a/src/liballoc/borrow.rs b/src/liballoc/borrow.rs new file mode 100644 index 00000000000..a662e4b1f4f --- /dev/null +++ b/src/liballoc/borrow.rs @@ -0,0 +1,421 @@ +// Copyright 2014 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! A module for working with borrowed data. + +#![stable(feature = "rust1", since = "1.0.0")] + +use core::cmp::Ordering; +use core::hash::{Hash, Hasher}; +use core::ops::{Add, AddAssign, Deref}; + +use fmt; +use string::String; + +use self::Cow::*; + +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::borrow::{Borrow, BorrowMut}; + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, B: ?Sized> Borrow<B> for Cow<'a, B> + where B: ToOwned, + <B as ToOwned>::Owned: 'a +{ + fn borrow(&self) -> &B { + &**self + } +} + +/// A generalization of `Clone` to borrowed data. +/// +/// Some types make it possible to go from borrowed to owned, usually by +/// implementing the `Clone` trait. But `Clone` works only for going from `&T` +/// to `T`. The `ToOwned` trait generalizes `Clone` to construct owned data +/// from any borrow of a given type. +#[stable(feature = "rust1", since = "1.0.0")] +pub trait ToOwned { + #[stable(feature = "rust1", since = "1.0.0")] + type Owned: Borrow<Self>; + + /// Creates owned data from borrowed data, usually by cloning. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s: &str = "a"; + /// let ss: String = s.to_owned(); + /// + /// let v: &[i32] = &[1, 2]; + /// let vv: Vec<i32> = v.to_owned(); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + fn to_owned(&self) -> Self::Owned; + + /// Uses borrowed data to replace owned data, usually by cloning. + /// + /// This is borrow-generalized version of `Clone::clone_from`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// # #![feature(toowned_clone_into)] + /// let mut s: String = String::new(); + /// "hello".clone_into(&mut s); + /// + /// let mut v: Vec<i32> = Vec::new(); + /// [1, 2][..].clone_into(&mut v); + /// ``` + #[unstable(feature = "toowned_clone_into", + reason = "recently added", + issue = "41263")] + fn clone_into(&self, target: &mut Self::Owned) { + *target = self.to_owned(); + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> ToOwned for T + where T: Clone +{ + type Owned = T; + fn to_owned(&self) -> T { + self.clone() + } + + fn clone_into(&self, target: &mut T) { + target.clone_from(self); + } +} + +/// A clone-on-write smart pointer. +/// +/// The type `Cow` is a smart pointer providing clone-on-write functionality: it +/// can enclose and provide immutable access to borrowed data, and clone the +/// data lazily when mutation or ownership is required. The type is designed to +/// work with general borrowed data via the `Borrow` trait. +/// +/// `Cow` implements `Deref`, which means that you can call +/// non-mutating methods directly on the data it encloses. If mutation +/// is desired, `to_mut` will obtain a mutable reference to an owned +/// value, cloning if necessary. +/// +/// # Examples +/// +/// ``` +/// use std::borrow::Cow; +/// +/// fn abs_all(input: &mut Cow<[i32]>) { +/// for i in 0..input.len() { +/// let v = input[i]; +/// if v < 0 { +/// // Clones into a vector if not already owned. +/// input.to_mut()[i] = -v; +/// } +/// } +/// } +/// +/// // No clone occurs because `input` doesn't need to be mutated. +/// let slice = [0, 1, 2]; +/// let mut input = Cow::from(&slice[..]); +/// abs_all(&mut input); +/// +/// // Clone occurs because `input` needs to be mutated. +/// let slice = [-1, 0, 1]; +/// let mut input = Cow::from(&slice[..]); +/// abs_all(&mut input); +/// +/// // No clone occurs because `input` is already owned. +/// let mut input = Cow::from(vec![-1, 0, 1]); +/// abs_all(&mut input); +/// ``` +#[stable(feature = "rust1", since = "1.0.0")] +pub enum Cow<'a, B: ?Sized + 'a> + where B: ToOwned +{ + /// Borrowed data. + #[stable(feature = "rust1", since = "1.0.0")] + Borrowed(#[stable(feature = "rust1", since = "1.0.0")] + &'a B), + + /// Owned data. + #[stable(feature = "rust1", since = "1.0.0")] + Owned(#[stable(feature = "rust1", since = "1.0.0")] + <B as ToOwned>::Owned), +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, B: ?Sized> Clone for Cow<'a, B> + where B: ToOwned +{ + fn clone(&self) -> Cow<'a, B> { + match *self { + Borrowed(b) => Borrowed(b), + Owned(ref o) => { + let b: &B = o.borrow(); + Owned(b.to_owned()) + } + } + } + + fn clone_from(&mut self, source: &Cow<'a, B>) { + if let Owned(ref mut dest) = *self { + if let Owned(ref o) = *source { + o.borrow().clone_into(dest); + return; + } + } + + *self = source.clone(); + } +} + +impl<'a, B: ?Sized> Cow<'a, B> + where B: ToOwned +{ + /// Acquires a mutable reference to the owned form of the data. + /// + /// Clones the data if it is not already owned. + /// + /// # Examples + /// + /// ``` + /// use std::ascii::AsciiExt; + /// use std::borrow::Cow; + /// + /// let mut cow = Cow::Borrowed("foo"); + /// cow.to_mut().make_ascii_uppercase(); + /// + /// assert_eq!( + /// cow, + /// Cow::Owned(String::from("FOO")) as Cow<str> + /// ); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn to_mut(&mut self) -> &mut <B as ToOwned>::Owned { + match *self { + Borrowed(borrowed) => { + *self = Owned(borrowed.to_owned()); + match *self { + Borrowed(..) => unreachable!(), + Owned(ref mut owned) => owned, + } + } + Owned(ref mut owned) => owned, + } + } + + /// Extracts the owned data. + /// + /// Clones the data if it is not already owned. + /// + /// # Examples + /// + /// Calling `into_owned` on a `Cow::Borrowed` clones the underlying data + /// and becomes a `Cow::Owned`: + /// + /// ``` + /// use std::borrow::Cow; + /// + /// let s = "Hello world!"; + /// let cow = Cow::Borrowed(s); + /// + /// assert_eq!( + /// cow.into_owned(), + /// Cow::Owned(String::from(s)) + /// ); + /// ``` + /// + /// Calling `into_owned` on a `Cow::Owned` is a no-op: + /// + /// ``` + /// use std::borrow::Cow; + /// + /// let s = "Hello world!"; + /// let cow: Cow<str> = Cow::Owned(String::from(s)); + /// + /// assert_eq!( + /// cow.into_owned(), + /// Cow::Owned(String::from(s)) + /// ); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn into_owned(self) -> <B as ToOwned>::Owned { + match self { + Borrowed(borrowed) => borrowed.to_owned(), + Owned(owned) => owned, + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, B: ?Sized> Deref for Cow<'a, B> + where B: ToOwned +{ + type Target = B; + + fn deref(&self) -> &B { + match *self { + Borrowed(borrowed) => borrowed, + Owned(ref owned) => owned.borrow(), + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, B: ?Sized> Eq for Cow<'a, B> where B: Eq + ToOwned {} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, B: ?Sized> Ord for Cow<'a, B> + where B: Ord + ToOwned +{ + #[inline] + fn cmp(&self, other: &Cow<'a, B>) -> Ordering { + Ord::cmp(&**self, &**other) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, 'b, B: ?Sized, C: ?Sized> PartialEq<Cow<'b, C>> for Cow<'a, B> + where B: PartialEq<C> + ToOwned, + C: ToOwned +{ + #[inline] + fn eq(&self, other: &Cow<'b, C>) -> bool { + PartialEq::eq(&**self, &**other) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, B: ?Sized> PartialOrd for Cow<'a, B> + where B: PartialOrd + ToOwned +{ + #[inline] + fn partial_cmp(&self, other: &Cow<'a, B>) -> Option<Ordering> { + PartialOrd::partial_cmp(&**self, &**other) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, B: ?Sized> fmt::Debug for Cow<'a, B> + where B: fmt::Debug + ToOwned, + <B as ToOwned>::Owned: fmt::Debug +{ + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + match *self { + Borrowed(ref b) => fmt::Debug::fmt(b, f), + Owned(ref o) => fmt::Debug::fmt(o, f), + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, B: ?Sized> fmt::Display for Cow<'a, B> + where B: fmt::Display + ToOwned, + <B as ToOwned>::Owned: fmt::Display +{ + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + match *self { + Borrowed(ref b) => fmt::Display::fmt(b, f), + Owned(ref o) => fmt::Display::fmt(o, f), + } + } +} + +#[stable(feature = "default", since = "1.11.0")] +impl<'a, B: ?Sized> Default for Cow<'a, B> + where B: ToOwned, + <B as ToOwned>::Owned: Default +{ + /// Creates an owned Cow<'a, B> with the default value for the contained owned value. + fn default() -> Cow<'a, B> { + Owned(<B as ToOwned>::Owned::default()) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, B: ?Sized> Hash for Cow<'a, B> + where B: Hash + ToOwned +{ + #[inline] + fn hash<H: Hasher>(&self, state: &mut H) { + Hash::hash(&**self, state) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +#[allow(deprecated)] +impl<'a, T: ?Sized + ToOwned> AsRef<T> for Cow<'a, T> { + fn as_ref(&self) -> &T { + self + } +} + +#[stable(feature = "cow_add", since = "1.14.0")] +impl<'a> Add<&'a str> for Cow<'a, str> { + type Output = Cow<'a, str>; + + #[inline] + fn add(mut self, rhs: &'a str) -> Self::Output { + self += rhs; + self + } +} + +#[stable(feature = "cow_add", since = "1.14.0")] +impl<'a> Add<Cow<'a, str>> for Cow<'a, str> { + type Output = Cow<'a, str>; + + #[inline] + fn add(mut self, rhs: Cow<'a, str>) -> Self::Output { + self += rhs; + self + } +} + +#[stable(feature = "cow_add", since = "1.14.0")] +impl<'a> AddAssign<&'a str> for Cow<'a, str> { + fn add_assign(&mut self, rhs: &'a str) { + if self.is_empty() { + *self = Cow::Borrowed(rhs) + } else if rhs.is_empty() { + return; + } else { + if let Cow::Borrowed(lhs) = *self { + let mut s = String::with_capacity(lhs.len() + rhs.len()); + s.push_str(lhs); + *self = Cow::Owned(s); + } + self.to_mut().push_str(rhs); + } + } +} + +#[stable(feature = "cow_add", since = "1.14.0")] +impl<'a> AddAssign<Cow<'a, str>> for Cow<'a, str> { + fn add_assign(&mut self, rhs: Cow<'a, str>) { + if self.is_empty() { + *self = rhs + } else if rhs.is_empty() { + return; + } else { + if let Cow::Borrowed(lhs) = *self { + let mut s = String::with_capacity(lhs.len() + rhs.len()); + s.push_str(lhs); + *self = Cow::Owned(s); + } + self.to_mut().push_str(&rhs); + } + } +} diff --git a/src/liballoc/boxed.rs b/src/liballoc/boxed.rs index 8a39be8fae8..2f867912f58 100644 --- a/src/liballoc/boxed.rs +++ b/src/liballoc/boxed.rs @@ -95,6 +95,7 @@ pub const HEAP: ExchangeHeapSingleton = ExchangeHeapSingleton { _force_singleton #[unstable(feature = "box_heap", reason = "may be renamed; uncertain about custom allocator design", issue = "27779")] +#[allow(missing_debug_implementations)] #[derive(Copy, Clone)] pub struct ExchangeHeapSingleton { _force_singleton: (), @@ -129,6 +130,7 @@ pub struct Box<T: ?Sized>(Unique<T>); #[unstable(feature = "placement_in", reason = "placement box design is still being worked out.", issue = "27779")] +#[allow(missing_debug_implementations)] pub struct IntermediateBox<T: ?Sized> { ptr: *mut u8, size: usize, diff --git a/src/liballoc/btree/map.rs b/src/liballoc/btree/map.rs new file mode 100644 index 00000000000..d73c0254a74 --- /dev/null +++ b/src/liballoc/btree/map.rs @@ -0,0 +1,2460 @@ +// Copyright 2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use core::cmp::Ordering; +use core::fmt::Debug; +use core::hash::{Hash, Hasher}; +use core::iter::{FromIterator, Peekable, FusedIterator}; +use core::marker::PhantomData; +use core::ops::Index; +use core::{fmt, intrinsics, mem, ptr}; + +use borrow::Borrow; +use Bound::{Excluded, Included, Unbounded}; +use range::RangeArgument; + +use super::node::{self, Handle, NodeRef, marker}; +use super::search; + +use super::node::InsertResult::*; +use super::node::ForceResult::*; +use super::search::SearchResult::*; +use self::UnderflowResult::*; +use self::Entry::*; + +/// A map based on a B-Tree. +/// +/// B-Trees represent a fundamental compromise between cache-efficiency and actually minimizing +/// the amount of work performed in a search. In theory, a binary search tree (BST) is the optimal +/// choice for a sorted map, as a perfectly balanced BST performs the theoretical minimum amount of +/// comparisons necessary to find an element (log<sub>2</sub>n). However, in practice the way this +/// is done is *very* inefficient for modern computer architectures. In particular, every element +/// is stored in its own individually heap-allocated node. This means that every single insertion +/// triggers a heap-allocation, and every single comparison should be a cache-miss. Since these +/// are both notably expensive things to do in practice, we are forced to at very least reconsider +/// the BST strategy. +/// +/// A B-Tree instead makes each node contain B-1 to 2B-1 elements in a contiguous array. By doing +/// this, we reduce the number of allocations by a factor of B, and improve cache efficiency in +/// searches. However, this does mean that searches will have to do *more* comparisons on average. +/// The precise number of comparisons depends on the node search strategy used. For optimal cache +/// efficiency, one could search the nodes linearly. For optimal comparisons, one could search +/// the node using binary search. As a compromise, one could also perform a linear search +/// that initially only checks every i<sup>th</sup> element for some choice of i. +/// +/// Currently, our implementation simply performs naive linear search. This provides excellent +/// performance on *small* nodes of elements which are cheap to compare. However in the future we +/// would like to further explore choosing the optimal search strategy based on the choice of B, +/// and possibly other factors. Using linear search, searching for a random element is expected +/// to take O(B log<sub>B</sub>n) comparisons, which is generally worse than a BST. In practice, +/// however, performance is excellent. +/// +/// It is a logic error for a key to be modified in such a way that the key's ordering relative to +/// any other key, as determined by the [`Ord`] trait, changes while it is in the map. This is +/// normally only possible through [`Cell`], [`RefCell`], global state, I/O, or unsafe code. +/// +/// [`Ord`]: ../../std/cmp/trait.Ord.html +/// [`Cell`]: ../../std/cell/struct.Cell.html +/// [`RefCell`]: ../../std/cell/struct.RefCell.html +/// +/// # Examples +/// +/// ``` +/// use std::collections::BTreeMap; +/// +/// // type inference lets us omit an explicit type signature (which +/// // would be `BTreeMap<&str, &str>` in this example). +/// let mut movie_reviews = BTreeMap::new(); +/// +/// // review some movies. +/// movie_reviews.insert("Office Space", "Deals with real issues in the workplace."); +/// movie_reviews.insert("Pulp Fiction", "Masterpiece."); +/// movie_reviews.insert("The Godfather", "Very enjoyable."); +/// movie_reviews.insert("The Blues Brothers", "Eye lyked it alot."); +/// +/// // check for a specific one. +/// if !movie_reviews.contains_key("Les Misérables") { +/// println!("We've got {} reviews, but Les Misérables ain't one.", +/// movie_reviews.len()); +/// } +/// +/// // oops, this review has a lot of spelling mistakes, let's delete it. +/// movie_reviews.remove("The Blues Brothers"); +/// +/// // look up the values associated with some keys. +/// let to_find = ["Up!", "Office Space"]; +/// for book in &to_find { +/// match movie_reviews.get(book) { +/// Some(review) => println!("{}: {}", book, review), +/// None => println!("{} is unreviewed.", book) +/// } +/// } +/// +/// // iterate over everything. +/// for (movie, review) in &movie_reviews { +/// println!("{}: \"{}\"", movie, review); +/// } +/// ``` +/// +/// `BTreeMap` also implements an [`Entry API`](#method.entry), which allows +/// for more complex methods of getting, setting, updating and removing keys and +/// their values: +/// +/// ``` +/// use std::collections::BTreeMap; +/// +/// // type inference lets us omit an explicit type signature (which +/// // would be `BTreeMap<&str, u8>` in this example). +/// let mut player_stats = BTreeMap::new(); +/// +/// fn random_stat_buff() -> u8 { +/// // could actually return some random value here - let's just return +/// // some fixed value for now +/// 42 +/// } +/// +/// // insert a key only if it doesn't already exist +/// player_stats.entry("health").or_insert(100); +/// +/// // insert a key using a function that provides a new value only if it +/// // doesn't already exist +/// player_stats.entry("defence").or_insert_with(random_stat_buff); +/// +/// // update a key, guarding against the key possibly not being set +/// let stat = player_stats.entry("attack").or_insert(100); +/// *stat += random_stat_buff(); +/// ``` +#[stable(feature = "rust1", since = "1.0.0")] +pub struct BTreeMap<K, V> { + root: node::Root<K, V>, + length: usize, +} + +#[stable(feature = "btree_drop", since = "1.7.0")] +unsafe impl<#[may_dangle] K, #[may_dangle] V> Drop for BTreeMap<K, V> { + fn drop(&mut self) { + unsafe { + drop(ptr::read(self).into_iter()); + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<K: Clone, V: Clone> Clone for BTreeMap<K, V> { + fn clone(&self) -> BTreeMap<K, V> { + fn clone_subtree<K: Clone, V: Clone>(node: node::NodeRef<marker::Immut, + K, + V, + marker::LeafOrInternal>) + -> BTreeMap<K, V> { + + match node.force() { + Leaf(leaf) => { + let mut out_tree = BTreeMap { + root: node::Root::new_leaf(), + length: 0, + }; + + { + let mut out_node = match out_tree.root.as_mut().force() { + Leaf(leaf) => leaf, + Internal(_) => unreachable!(), + }; + + let mut in_edge = leaf.first_edge(); + while let Ok(kv) = in_edge.right_kv() { + let (k, v) = kv.into_kv(); + in_edge = kv.right_edge(); + + out_node.push(k.clone(), v.clone()); + out_tree.length += 1; + } + } + + out_tree + } + Internal(internal) => { + let mut out_tree = clone_subtree(internal.first_edge().descend()); + + { + let mut out_node = out_tree.root.push_level(); + let mut in_edge = internal.first_edge(); + while let Ok(kv) = in_edge.right_kv() { + let (k, v) = kv.into_kv(); + in_edge = kv.right_edge(); + + let k = (*k).clone(); + let v = (*v).clone(); + let subtree = clone_subtree(in_edge.descend()); + + // We can't destructure subtree directly + // because BTreeMap implements Drop + let (subroot, sublength) = unsafe { + let root = ptr::read(&subtree.root); + let length = subtree.length; + mem::forget(subtree); + (root, length) + }; + + out_node.push(k, v, subroot); + out_tree.length += 1 + sublength; + } + } + + out_tree + } + } + } + + clone_subtree(self.root.as_ref()) + } +} + +impl<K, Q: ?Sized> super::Recover<Q> for BTreeMap<K, ()> + where K: Borrow<Q> + Ord, + Q: Ord +{ + type Key = K; + + fn get(&self, key: &Q) -> Option<&K> { + match search::search_tree(self.root.as_ref(), key) { + Found(handle) => Some(handle.into_kv().0), + GoDown(_) => None, + } + } + + fn take(&mut self, key: &Q) -> Option<K> { + match search::search_tree(self.root.as_mut(), key) { + Found(handle) => { + Some(OccupiedEntry { + handle: handle, + length: &mut self.length, + _marker: PhantomData, + } + .remove_kv() + .0) + } + GoDown(_) => None, + } + } + + fn replace(&mut self, key: K) -> Option<K> { + match search::search_tree::<marker::Mut, K, (), K>(self.root.as_mut(), &key) { + Found(handle) => Some(mem::replace(handle.into_kv_mut().0, key)), + GoDown(handle) => { + VacantEntry { + key: key, + handle: handle, + length: &mut self.length, + _marker: PhantomData, + } + .insert(()); + None + } + } + } +} + +/// An iterator over the entries of a `BTreeMap`. +/// +/// This `struct` is created by the [`iter`] method on [`BTreeMap`]. See its +/// documentation for more. +/// +/// [`iter`]: struct.BTreeMap.html#method.iter +/// [`BTreeMap`]: struct.BTreeMap.html +#[stable(feature = "rust1", since = "1.0.0")] +pub struct Iter<'a, K: 'a, V: 'a> { + range: Range<'a, K, V>, + length: usize, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a, K: 'a + fmt::Debug, V: 'a + fmt::Debug> fmt::Debug for Iter<'a, K, V> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_list().entries(self.clone()).finish() + } +} + +/// A mutable iterator over the entries of a `BTreeMap`. +/// +/// This `struct` is created by the [`iter_mut`] method on [`BTreeMap`]. See its +/// documentation for more. +/// +/// [`iter_mut`]: struct.BTreeMap.html#method.iter_mut +/// [`BTreeMap`]: struct.BTreeMap.html +#[stable(feature = "rust1", since = "1.0.0")] +#[derive(Debug)] +pub struct IterMut<'a, K: 'a, V: 'a> { + range: RangeMut<'a, K, V>, + length: usize, +} + +/// An owning iterator over the entries of a `BTreeMap`. +/// +/// This `struct` is created by the [`into_iter`] method on [`BTreeMap`][`BTreeMap`] +/// (provided by the `IntoIterator` trait). See its documentation for more. +/// +/// [`into_iter`]: struct.BTreeMap.html#method.into_iter +/// [`BTreeMap`]: struct.BTreeMap.html +#[stable(feature = "rust1", since = "1.0.0")] +pub struct IntoIter<K, V> { + front: Handle<NodeRef<marker::Owned, K, V, marker::Leaf>, marker::Edge>, + back: Handle<NodeRef<marker::Owned, K, V, marker::Leaf>, marker::Edge>, + length: usize, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for IntoIter<K, V> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + let range = Range { + front: self.front.reborrow(), + back: self.back.reborrow(), + }; + f.debug_list().entries(range).finish() + } +} + +/// An iterator over the keys of a `BTreeMap`. +/// +/// This `struct` is created by the [`keys`] method on [`BTreeMap`]. See its +/// documentation for more. +/// +/// [`keys`]: struct.BTreeMap.html#method.keys +/// [`BTreeMap`]: struct.BTreeMap.html +#[stable(feature = "rust1", since = "1.0.0")] +pub struct Keys<'a, K: 'a, V: 'a> { + inner: Iter<'a, K, V>, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a, K: 'a + fmt::Debug, V: 'a + fmt::Debug> fmt::Debug for Keys<'a, K, V> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_list().entries(self.inner.clone()).finish() + } +} + +/// An iterator over the values of a `BTreeMap`. +/// +/// This `struct` is created by the [`values`] method on [`BTreeMap`]. See its +/// documentation for more. +/// +/// [`values`]: struct.BTreeMap.html#method.values +/// [`BTreeMap`]: struct.BTreeMap.html +#[stable(feature = "rust1", since = "1.0.0")] +pub struct Values<'a, K: 'a, V: 'a> { + inner: Iter<'a, K, V>, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a, K: 'a + fmt::Debug, V: 'a + fmt::Debug> fmt::Debug for Values<'a, K, V> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_list().entries(self.inner.clone()).finish() + } +} + +/// A mutable iterator over the values of a `BTreeMap`. +/// +/// This `struct` is created by the [`values_mut`] method on [`BTreeMap`]. See its +/// documentation for more. +/// +/// [`values_mut`]: struct.BTreeMap.html#method.values_mut +/// [`BTreeMap`]: struct.BTreeMap.html +#[stable(feature = "map_values_mut", since = "1.10.0")] +#[derive(Debug)] +pub struct ValuesMut<'a, K: 'a, V: 'a> { + inner: IterMut<'a, K, V>, +} + +/// An iterator over a sub-range of entries in a `BTreeMap`. +/// +/// This `struct` is created by the [`range`] method on [`BTreeMap`]. See its +/// documentation for more. +/// +/// [`range`]: struct.BTreeMap.html#method.range +/// [`BTreeMap`]: struct.BTreeMap.html +#[stable(feature = "btree_range", since = "1.17.0")] +pub struct Range<'a, K: 'a, V: 'a> { + front: Handle<NodeRef<marker::Immut<'a>, K, V, marker::Leaf>, marker::Edge>, + back: Handle<NodeRef<marker::Immut<'a>, K, V, marker::Leaf>, marker::Edge>, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a, K: 'a + fmt::Debug, V: 'a + fmt::Debug> fmt::Debug for Range<'a, K, V> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_list().entries(self.clone()).finish() + } +} + +/// A mutable iterator over a sub-range of entries in a `BTreeMap`. +/// +/// This `struct` is created by the [`range_mut`] method on [`BTreeMap`]. See its +/// documentation for more. +/// +/// [`range_mut`]: struct.BTreeMap.html#method.range_mut +/// [`BTreeMap`]: struct.BTreeMap.html +#[stable(feature = "btree_range", since = "1.17.0")] +pub struct RangeMut<'a, K: 'a, V: 'a> { + front: Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>, + back: Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>, + + // Be invariant in `K` and `V` + _marker: PhantomData<&'a mut (K, V)>, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a, K: 'a + fmt::Debug, V: 'a + fmt::Debug> fmt::Debug for RangeMut<'a, K, V> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + let range = Range { + front: self.front.reborrow(), + back: self.back.reborrow(), + }; + f.debug_list().entries(range).finish() + } +} + +/// A view into a single entry in a map, which may either be vacant or occupied. +/// +/// This `enum` is constructed from the [`entry`] method on [`BTreeMap`]. +/// +/// [`BTreeMap`]: struct.BTreeMap.html +/// [`entry`]: struct.BTreeMap.html#method.entry +#[stable(feature = "rust1", since = "1.0.0")] +pub enum Entry<'a, K: 'a, V: 'a> { + /// A vacant entry. + #[stable(feature = "rust1", since = "1.0.0")] + Vacant(#[stable(feature = "rust1", since = "1.0.0")] + VacantEntry<'a, K, V>), + + /// An occupied entry. + #[stable(feature = "rust1", since = "1.0.0")] + Occupied(#[stable(feature = "rust1", since = "1.0.0")] + OccupiedEntry<'a, K, V>), +} + +#[stable(feature= "debug_btree_map", since = "1.12.0")] +impl<'a, K: 'a + Debug + Ord, V: 'a + Debug> Debug for Entry<'a, K, V> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + match *self { + Vacant(ref v) => f.debug_tuple("Entry") + .field(v) + .finish(), + Occupied(ref o) => f.debug_tuple("Entry") + .field(o) + .finish(), + } + } +} + +/// A view into a vacant entry in a `BTreeMap`. +/// It is part of the [`Entry`] enum. +/// +/// [`Entry`]: enum.Entry.html +#[stable(feature = "rust1", since = "1.0.0")] +pub struct VacantEntry<'a, K: 'a, V: 'a> { + key: K, + handle: Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>, + length: &'a mut usize, + + // Be invariant in `K` and `V` + _marker: PhantomData<&'a mut (K, V)>, +} + +#[stable(feature= "debug_btree_map", since = "1.12.0")] +impl<'a, K: 'a + Debug + Ord, V: 'a> Debug for VacantEntry<'a, K, V> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("VacantEntry") + .field(self.key()) + .finish() + } +} + +/// A view into an occupied entry in a `BTreeMap`. +/// It is part of the [`Entry`] enum. +/// +/// [`Entry`]: enum.Entry.html +#[stable(feature = "rust1", since = "1.0.0")] +pub struct OccupiedEntry<'a, K: 'a, V: 'a> { + handle: Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::KV>, + + length: &'a mut usize, + + // Be invariant in `K` and `V` + _marker: PhantomData<&'a mut (K, V)>, +} + +#[stable(feature= "debug_btree_map", since = "1.12.0")] +impl<'a, K: 'a + Debug + Ord, V: 'a + Debug> Debug for OccupiedEntry<'a, K, V> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_struct("OccupiedEntry") + .field("key", self.key()) + .field("value", self.get()) + .finish() + } +} + +// An iterator for merging two sorted sequences into one +struct MergeIter<K, V, I: Iterator<Item = (K, V)>> { + left: Peekable<I>, + right: Peekable<I>, +} + +impl<K: Ord, V> BTreeMap<K, V> { + /// Makes a new empty BTreeMap with a reasonable choice for B. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map = BTreeMap::new(); + /// + /// // entries can now be inserted into the empty map + /// map.insert(1, "a"); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn new() -> BTreeMap<K, V> { + BTreeMap { + root: node::Root::new_leaf(), + length: 0, + } + } + + /// Clears the map, removing all values. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut a = BTreeMap::new(); + /// a.insert(1, "a"); + /// a.clear(); + /// assert!(a.is_empty()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn clear(&mut self) { + // FIXME(gereeter) .clear() allocates + *self = BTreeMap::new(); + } + + /// Returns a reference to the value corresponding to the key. + /// + /// The key may be any borrowed form of the map's key type, but the ordering + /// on the borrowed form *must* match the ordering on the key type. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map = BTreeMap::new(); + /// map.insert(1, "a"); + /// assert_eq!(map.get(&1), Some(&"a")); + /// assert_eq!(map.get(&2), None); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn get<Q: ?Sized>(&self, key: &Q) -> Option<&V> + where K: Borrow<Q>, + Q: Ord + { + match search::search_tree(self.root.as_ref(), key) { + Found(handle) => Some(handle.into_kv().1), + GoDown(_) => None, + } + } + + /// Returns `true` if the map contains a value for the specified key. + /// + /// The key may be any borrowed form of the map's key type, but the ordering + /// on the borrowed form *must* match the ordering on the key type. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map = BTreeMap::new(); + /// map.insert(1, "a"); + /// assert_eq!(map.contains_key(&1), true); + /// assert_eq!(map.contains_key(&2), false); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn contains_key<Q: ?Sized>(&self, key: &Q) -> bool + where K: Borrow<Q>, + Q: Ord + { + self.get(key).is_some() + } + + /// Returns a mutable reference to the value corresponding to the key. + /// + /// The key may be any borrowed form of the map's key type, but the ordering + /// on the borrowed form *must* match the ordering on the key type. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map = BTreeMap::new(); + /// map.insert(1, "a"); + /// if let Some(x) = map.get_mut(&1) { + /// *x = "b"; + /// } + /// assert_eq!(map[&1], "b"); + /// ``` + // See `get` for implementation notes, this is basically a copy-paste with mut's added + #[stable(feature = "rust1", since = "1.0.0")] + pub fn get_mut<Q: ?Sized>(&mut self, key: &Q) -> Option<&mut V> + where K: Borrow<Q>, + Q: Ord + { + match search::search_tree(self.root.as_mut(), key) { + Found(handle) => Some(handle.into_kv_mut().1), + GoDown(_) => None, + } + } + + /// Inserts a key-value pair into the map. + /// + /// If the map did not have this key present, `None` is returned. + /// + /// If the map did have this key present, the value is updated, and the old + /// value is returned. The key is not updated, though; this matters for + /// types that can be `==` without being identical. See the [module-level + /// documentation] for more. + /// + /// [module-level documentation]: index.html#insert-and-complex-keys + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map = BTreeMap::new(); + /// assert_eq!(map.insert(37, "a"), None); + /// assert_eq!(map.is_empty(), false); + /// + /// map.insert(37, "b"); + /// assert_eq!(map.insert(37, "c"), Some("b")); + /// assert_eq!(map[&37], "c"); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn insert(&mut self, key: K, value: V) -> Option<V> { + match self.entry(key) { + Occupied(mut entry) => Some(entry.insert(value)), + Vacant(entry) => { + entry.insert(value); + None + } + } + } + + /// Removes a key from the map, returning the value at the key if the key + /// was previously in the map. + /// + /// The key may be any borrowed form of the map's key type, but the ordering + /// on the borrowed form *must* match the ordering on the key type. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map = BTreeMap::new(); + /// map.insert(1, "a"); + /// assert_eq!(map.remove(&1), Some("a")); + /// assert_eq!(map.remove(&1), None); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn remove<Q: ?Sized>(&mut self, key: &Q) -> Option<V> + where K: Borrow<Q>, + Q: Ord + { + match search::search_tree(self.root.as_mut(), key) { + Found(handle) => { + Some(OccupiedEntry { + handle: handle, + length: &mut self.length, + _marker: PhantomData, + } + .remove()) + } + GoDown(_) => None, + } + } + + /// Moves all elements from `other` into `Self`, leaving `other` empty. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut a = BTreeMap::new(); + /// a.insert(1, "a"); + /// a.insert(2, "b"); + /// a.insert(3, "c"); + /// + /// let mut b = BTreeMap::new(); + /// b.insert(3, "d"); + /// b.insert(4, "e"); + /// b.insert(5, "f"); + /// + /// a.append(&mut b); + /// + /// assert_eq!(a.len(), 5); + /// assert_eq!(b.len(), 0); + /// + /// assert_eq!(a[&1], "a"); + /// assert_eq!(a[&2], "b"); + /// assert_eq!(a[&3], "d"); + /// assert_eq!(a[&4], "e"); + /// assert_eq!(a[&5], "f"); + /// ``` + #[stable(feature = "btree_append", since = "1.11.0")] + pub fn append(&mut self, other: &mut Self) { + // Do we have to append anything at all? + if other.len() == 0 { + return; + } + + // We can just swap `self` and `other` if `self` is empty. + if self.len() == 0 { + mem::swap(self, other); + return; + } + + // First, we merge `self` and `other` into a sorted sequence in linear time. + let self_iter = mem::replace(self, BTreeMap::new()).into_iter(); + let other_iter = mem::replace(other, BTreeMap::new()).into_iter(); + let iter = MergeIter { + left: self_iter.peekable(), + right: other_iter.peekable(), + }; + + // Second, we build a tree from the sorted sequence in linear time. + self.from_sorted_iter(iter); + self.fix_right_edge(); + } + + /// Constructs a double-ended iterator over a sub-range of elements in the map. + /// The simplest way is to use the range syntax `min..max`, thus `range(min..max)` will + /// yield elements from min (inclusive) to max (exclusive). + /// The range may also be entered as `(Bound<T>, Bound<T>)`, so for example + /// `range((Excluded(4), Included(10)))` will yield a left-exclusive, right-inclusive + /// range from 4 to 10. + /// + /// # Panics + /// + /// Panics if range `start > end`. + /// Panics if range `start == end` and both bounds are `Excluded`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// use std::collections::Bound::Included; + /// + /// let mut map = BTreeMap::new(); + /// map.insert(3, "a"); + /// map.insert(5, "b"); + /// map.insert(8, "c"); + /// for (&key, &value) in map.range((Included(&4), Included(&8))) { + /// println!("{}: {}", key, value); + /// } + /// assert_eq!(Some((&5, &"b")), map.range(4..).next()); + /// ``` + #[stable(feature = "btree_range", since = "1.17.0")] + pub fn range<T: ?Sized, R>(&self, range: R) -> Range<K, V> + where T: Ord, K: Borrow<T>, R: RangeArgument<T> + { + let root1 = self.root.as_ref(); + let root2 = self.root.as_ref(); + let (f, b) = range_search(root1, root2, range); + + Range { front: f, back: b} + } + + /// Constructs a mutable double-ended iterator over a sub-range of elements in the map. + /// The simplest way is to use the range syntax `min..max`, thus `range(min..max)` will + /// yield elements from min (inclusive) to max (exclusive). + /// The range may also be entered as `(Bound<T>, Bound<T>)`, so for example + /// `range((Excluded(4), Included(10)))` will yield a left-exclusive, right-inclusive + /// range from 4 to 10. + /// + /// # Panics + /// + /// Panics if range `start > end`. + /// Panics if range `start == end` and both bounds are `Excluded`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map: BTreeMap<&str, i32> = ["Alice", "Bob", "Carol", "Cheryl"].iter() + /// .map(|&s| (s, 0)) + /// .collect(); + /// for (_, balance) in map.range_mut("B".."Cheryl") { + /// *balance += 100; + /// } + /// for (name, balance) in &map { + /// println!("{} => {}", name, balance); + /// } + /// ``` + #[stable(feature = "btree_range", since = "1.17.0")] + pub fn range_mut<T: ?Sized, R>(&mut self, range: R) -> RangeMut<K, V> + where T: Ord, K: Borrow<T>, R: RangeArgument<T> + { + let root1 = self.root.as_mut(); + let root2 = unsafe { ptr::read(&root1) }; + let (f, b) = range_search(root1, root2, range); + + RangeMut { + front: f, + back: b, + _marker: PhantomData, + } + } + + /// Gets the given key's corresponding entry in the map for in-place manipulation. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut count: BTreeMap<&str, usize> = BTreeMap::new(); + /// + /// // count the number of occurrences of letters in the vec + /// for x in vec!["a","b","a","c","a","b"] { + /// *count.entry(x).or_insert(0) += 1; + /// } + /// + /// assert_eq!(count["a"], 3); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn entry(&mut self, key: K) -> Entry<K, V> { + match search::search_tree(self.root.as_mut(), &key) { + Found(handle) => { + Occupied(OccupiedEntry { + handle: handle, + length: &mut self.length, + _marker: PhantomData, + }) + } + GoDown(handle) => { + Vacant(VacantEntry { + key: key, + handle: handle, + length: &mut self.length, + _marker: PhantomData, + }) + } + } + } + + fn from_sorted_iter<I: Iterator<Item = (K, V)>>(&mut self, iter: I) { + let mut cur_node = last_leaf_edge(self.root.as_mut()).into_node(); + // Iterate through all key-value pairs, pushing them into nodes at the right level. + for (key, value) in iter { + // Try to push key-value pair into the current leaf node. + if cur_node.len() < node::CAPACITY { + cur_node.push(key, value); + } else { + // No space left, go up and push there. + let mut open_node; + let mut test_node = cur_node.forget_type(); + loop { + match test_node.ascend() { + Ok(parent) => { + let parent = parent.into_node(); + if parent.len() < node::CAPACITY { + // Found a node with space left, push here. + open_node = parent; + break; + } else { + // Go up again. + test_node = parent.forget_type(); + } + } + Err(node) => { + // We are at the top, create a new root node and push there. + open_node = node.into_root_mut().push_level(); + break; + } + } + } + + // Push key-value pair and new right subtree. + let tree_height = open_node.height() - 1; + let mut right_tree = node::Root::new_leaf(); + for _ in 0..tree_height { + right_tree.push_level(); + } + open_node.push(key, value, right_tree); + + // Go down to the right-most leaf again. + cur_node = last_leaf_edge(open_node.forget_type()).into_node(); + } + + self.length += 1; + } + } + + fn fix_right_edge(&mut self) { + // Handle underfull nodes, start from the top. + let mut cur_node = self.root.as_mut(); + while let Internal(internal) = cur_node.force() { + // Check if right-most child is underfull. + let mut last_edge = internal.last_edge(); + let right_child_len = last_edge.reborrow().descend().len(); + if right_child_len < node::MIN_LEN { + // We need to steal. + let mut last_kv = match last_edge.left_kv() { + Ok(left) => left, + Err(_) => unreachable!(), + }; + last_kv.bulk_steal_left(node::MIN_LEN - right_child_len); + last_edge = last_kv.right_edge(); + } + + // Go further down. + cur_node = last_edge.descend(); + } + } + + /// Splits the collection into two at the given key. Returns everything after the given key, + /// including the key. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut a = BTreeMap::new(); + /// a.insert(1, "a"); + /// a.insert(2, "b"); + /// a.insert(3, "c"); + /// a.insert(17, "d"); + /// a.insert(41, "e"); + /// + /// let b = a.split_off(&3); + /// + /// assert_eq!(a.len(), 2); + /// assert_eq!(b.len(), 3); + /// + /// assert_eq!(a[&1], "a"); + /// assert_eq!(a[&2], "b"); + /// + /// assert_eq!(b[&3], "c"); + /// assert_eq!(b[&17], "d"); + /// assert_eq!(b[&41], "e"); + /// ``` + #[stable(feature = "btree_split_off", since = "1.11.0")] + pub fn split_off<Q: ?Sized + Ord>(&mut self, key: &Q) -> Self + where K: Borrow<Q> + { + if self.is_empty() { + return Self::new(); + } + + let total_num = self.len(); + + let mut right = Self::new(); + for _ in 0..(self.root.as_ref().height()) { + right.root.push_level(); + } + + { + let mut left_node = self.root.as_mut(); + let mut right_node = right.root.as_mut(); + + loop { + let mut split_edge = match search::search_node(left_node, key) { + // key is going to the right tree + Found(handle) => handle.left_edge(), + GoDown(handle) => handle, + }; + + split_edge.move_suffix(&mut right_node); + + match (split_edge.force(), right_node.force()) { + (Internal(edge), Internal(node)) => { + left_node = edge.descend(); + right_node = node.first_edge().descend(); + } + (Leaf(_), Leaf(_)) => { + break; + } + _ => { + unreachable!(); + } + } + } + } + + self.fix_right_border(); + right.fix_left_border(); + + if self.root.as_ref().height() < right.root.as_ref().height() { + self.recalc_length(); + right.length = total_num - self.len(); + } else { + right.recalc_length(); + self.length = total_num - right.len(); + } + + right + } + + /// Calculates the number of elements if it is incorrect. + fn recalc_length(&mut self) { + fn dfs<K, V>(node: NodeRef<marker::Immut, K, V, marker::LeafOrInternal>) -> usize { + let mut res = node.len(); + + if let Internal(node) = node.force() { + let mut edge = node.first_edge(); + loop { + res += dfs(edge.reborrow().descend()); + match edge.right_kv() { + Ok(right_kv) => { + edge = right_kv.right_edge(); + } + Err(_) => { + break; + } + } + } + } + + res + } + + self.length = dfs(self.root.as_ref()); + } + + /// Removes empty levels on the top. + fn fix_top(&mut self) { + loop { + { + let node = self.root.as_ref(); + if node.height() == 0 || node.len() > 0 { + break; + } + } + self.root.pop_level(); + } + } + + fn fix_right_border(&mut self) { + self.fix_top(); + + { + let mut cur_node = self.root.as_mut(); + + while let Internal(node) = cur_node.force() { + let mut last_kv = node.last_kv(); + + if last_kv.can_merge() { + cur_node = last_kv.merge().descend(); + } else { + let right_len = last_kv.reborrow().right_edge().descend().len(); + // `MINLEN + 1` to avoid readjust if merge happens on the next level. + if right_len < node::MIN_LEN + 1 { + last_kv.bulk_steal_left(node::MIN_LEN + 1 - right_len); + } + cur_node = last_kv.right_edge().descend(); + } + } + } + + self.fix_top(); + } + + /// The symmetric clone of `fix_right_border`. + fn fix_left_border(&mut self) { + self.fix_top(); + + { + let mut cur_node = self.root.as_mut(); + + while let Internal(node) = cur_node.force() { + let mut first_kv = node.first_kv(); + + if first_kv.can_merge() { + cur_node = first_kv.merge().descend(); + } else { + let left_len = first_kv.reborrow().left_edge().descend().len(); + if left_len < node::MIN_LEN + 1 { + first_kv.bulk_steal_right(node::MIN_LEN + 1 - left_len); + } + cur_node = first_kv.left_edge().descend(); + } + } + } + + self.fix_top(); + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, K: 'a, V: 'a> IntoIterator for &'a BTreeMap<K, V> { + type Item = (&'a K, &'a V); + type IntoIter = Iter<'a, K, V>; + + fn into_iter(self) -> Iter<'a, K, V> { + self.iter() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, K: 'a, V: 'a> Iterator for Iter<'a, K, V> { + type Item = (&'a K, &'a V); + + fn next(&mut self) -> Option<(&'a K, &'a V)> { + if self.length == 0 { + None + } else { + self.length -= 1; + unsafe { Some(self.range.next_unchecked()) } + } + } + + fn size_hint(&self) -> (usize, Option<usize>) { + (self.length, Some(self.length)) + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, K, V> FusedIterator for Iter<'a, K, V> {} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, K: 'a, V: 'a> DoubleEndedIterator for Iter<'a, K, V> { + fn next_back(&mut self) -> Option<(&'a K, &'a V)> { + if self.length == 0 { + None + } else { + self.length -= 1; + unsafe { Some(self.range.next_back_unchecked()) } + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, K: 'a, V: 'a> ExactSizeIterator for Iter<'a, K, V> { + fn len(&self) -> usize { + self.length + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, K, V> Clone for Iter<'a, K, V> { + fn clone(&self) -> Iter<'a, K, V> { + Iter { + range: self.range.clone(), + length: self.length, + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, K: 'a, V: 'a> IntoIterator for &'a mut BTreeMap<K, V> { + type Item = (&'a K, &'a mut V); + type IntoIter = IterMut<'a, K, V>; + + fn into_iter(self) -> IterMut<'a, K, V> { + self.iter_mut() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, K: 'a, V: 'a> Iterator for IterMut<'a, K, V> { + type Item = (&'a K, &'a mut V); + + fn next(&mut self) -> Option<(&'a K, &'a mut V)> { + if self.length == 0 { + None + } else { + self.length -= 1; + unsafe { Some(self.range.next_unchecked()) } + } + } + + fn size_hint(&self) -> (usize, Option<usize>) { + (self.length, Some(self.length)) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, K: 'a, V: 'a> DoubleEndedIterator for IterMut<'a, K, V> { + fn next_back(&mut self) -> Option<(&'a K, &'a mut V)> { + if self.length == 0 { + None + } else { + self.length -= 1; + unsafe { Some(self.range.next_back_unchecked()) } + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, K: 'a, V: 'a> ExactSizeIterator for IterMut<'a, K, V> { + fn len(&self) -> usize { + self.length + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, K, V> FusedIterator for IterMut<'a, K, V> {} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<K, V> IntoIterator for BTreeMap<K, V> { + type Item = (K, V); + type IntoIter = IntoIter<K, V>; + + fn into_iter(self) -> IntoIter<K, V> { + let root1 = unsafe { ptr::read(&self.root).into_ref() }; + let root2 = unsafe { ptr::read(&self.root).into_ref() }; + let len = self.length; + mem::forget(self); + + IntoIter { + front: first_leaf_edge(root1), + back: last_leaf_edge(root2), + length: len, + } + } +} + +#[stable(feature = "btree_drop", since = "1.7.0")] +impl<K, V> Drop for IntoIter<K, V> { + fn drop(&mut self) { + for _ in &mut *self { + } + unsafe { + let leaf_node = ptr::read(&self.front).into_node(); + if let Some(first_parent) = leaf_node.deallocate_and_ascend() { + let mut cur_node = first_parent.into_node(); + while let Some(parent) = cur_node.deallocate_and_ascend() { + cur_node = parent.into_node() + } + } + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<K, V> Iterator for IntoIter<K, V> { + type Item = (K, V); + + fn next(&mut self) -> Option<(K, V)> { + if self.length == 0 { + return None; + } else { + self.length -= 1; + } + + let handle = unsafe { ptr::read(&self.front) }; + + let mut cur_handle = match handle.right_kv() { + Ok(kv) => { + let k = unsafe { ptr::read(kv.reborrow().into_kv().0) }; + let v = unsafe { ptr::read(kv.reborrow().into_kv().1) }; + self.front = kv.right_edge(); + return Some((k, v)); + } + Err(last_edge) => unsafe { + unwrap_unchecked(last_edge.into_node().deallocate_and_ascend()) + }, + }; + + loop { + match cur_handle.right_kv() { + Ok(kv) => { + let k = unsafe { ptr::read(kv.reborrow().into_kv().0) }; + let v = unsafe { ptr::read(kv.reborrow().into_kv().1) }; + self.front = first_leaf_edge(kv.right_edge().descend()); + return Some((k, v)); + } + Err(last_edge) => unsafe { + cur_handle = unwrap_unchecked(last_edge.into_node().deallocate_and_ascend()); + }, + } + } + } + + fn size_hint(&self) -> (usize, Option<usize>) { + (self.length, Some(self.length)) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<K, V> DoubleEndedIterator for IntoIter<K, V> { + fn next_back(&mut self) -> Option<(K, V)> { + if self.length == 0 { + return None; + } else { + self.length -= 1; + } + + let handle = unsafe { ptr::read(&self.back) }; + + let mut cur_handle = match handle.left_kv() { + Ok(kv) => { + let k = unsafe { ptr::read(kv.reborrow().into_kv().0) }; + let v = unsafe { ptr::read(kv.reborrow().into_kv().1) }; + self.back = kv.left_edge(); + return Some((k, v)); + } + Err(last_edge) => unsafe { + unwrap_unchecked(last_edge.into_node().deallocate_and_ascend()) + }, + }; + + loop { + match cur_handle.left_kv() { + Ok(kv) => { + let k = unsafe { ptr::read(kv.reborrow().into_kv().0) }; + let v = unsafe { ptr::read(kv.reborrow().into_kv().1) }; + self.back = last_leaf_edge(kv.left_edge().descend()); + return Some((k, v)); + } + Err(last_edge) => unsafe { + cur_handle = unwrap_unchecked(last_edge.into_node().deallocate_and_ascend()); + }, + } + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<K, V> ExactSizeIterator for IntoIter<K, V> { + fn len(&self) -> usize { + self.length + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<K, V> FusedIterator for IntoIter<K, V> {} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, K, V> Iterator for Keys<'a, K, V> { + type Item = &'a K; + + fn next(&mut self) -> Option<&'a K> { + self.inner.next().map(|(k, _)| k) + } + + fn size_hint(&self) -> (usize, Option<usize>) { + self.inner.size_hint() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, K, V> DoubleEndedIterator for Keys<'a, K, V> { + fn next_back(&mut self) -> Option<&'a K> { + self.inner.next_back().map(|(k, _)| k) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, K, V> ExactSizeIterator for Keys<'a, K, V> { + fn len(&self) -> usize { + self.inner.len() + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, K, V> FusedIterator for Keys<'a, K, V> {} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, K, V> Clone for Keys<'a, K, V> { + fn clone(&self) -> Keys<'a, K, V> { + Keys { inner: self.inner.clone() } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, K, V> Iterator for Values<'a, K, V> { + type Item = &'a V; + + fn next(&mut self) -> Option<&'a V> { + self.inner.next().map(|(_, v)| v) + } + + fn size_hint(&self) -> (usize, Option<usize>) { + self.inner.size_hint() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, K, V> DoubleEndedIterator for Values<'a, K, V> { + fn next_back(&mut self) -> Option<&'a V> { + self.inner.next_back().map(|(_, v)| v) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, K, V> ExactSizeIterator for Values<'a, K, V> { + fn len(&self) -> usize { + self.inner.len() + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, K, V> FusedIterator for Values<'a, K, V> {} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, K, V> Clone for Values<'a, K, V> { + fn clone(&self) -> Values<'a, K, V> { + Values { inner: self.inner.clone() } + } +} + +#[stable(feature = "btree_range", since = "1.17.0")] +impl<'a, K, V> Iterator for Range<'a, K, V> { + type Item = (&'a K, &'a V); + + fn next(&mut self) -> Option<(&'a K, &'a V)> { + if self.front == self.back { + None + } else { + unsafe { Some(self.next_unchecked()) } + } + } +} + +#[stable(feature = "map_values_mut", since = "1.10.0")] +impl<'a, K, V> Iterator for ValuesMut<'a, K, V> { + type Item = &'a mut V; + + fn next(&mut self) -> Option<&'a mut V> { + self.inner.next().map(|(_, v)| v) + } + + fn size_hint(&self) -> (usize, Option<usize>) { + self.inner.size_hint() + } +} + +#[stable(feature = "map_values_mut", since = "1.10.0")] +impl<'a, K, V> DoubleEndedIterator for ValuesMut<'a, K, V> { + fn next_back(&mut self) -> Option<&'a mut V> { + self.inner.next_back().map(|(_, v)| v) + } +} + +#[stable(feature = "map_values_mut", since = "1.10.0")] +impl<'a, K, V> ExactSizeIterator for ValuesMut<'a, K, V> { + fn len(&self) -> usize { + self.inner.len() + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, K, V> FusedIterator for ValuesMut<'a, K, V> {} + + +impl<'a, K, V> Range<'a, K, V> { + unsafe fn next_unchecked(&mut self) -> (&'a K, &'a V) { + let handle = self.front; + + let mut cur_handle = match handle.right_kv() { + Ok(kv) => { + let ret = kv.into_kv(); + self.front = kv.right_edge(); + return ret; + } + Err(last_edge) => { + let next_level = last_edge.into_node().ascend().ok(); + unwrap_unchecked(next_level) + } + }; + + loop { + match cur_handle.right_kv() { + Ok(kv) => { + let ret = kv.into_kv(); + self.front = first_leaf_edge(kv.right_edge().descend()); + return ret; + } + Err(last_edge) => { + let next_level = last_edge.into_node().ascend().ok(); + cur_handle = unwrap_unchecked(next_level); + } + } + } + } +} + +#[stable(feature = "btree_range", since = "1.17.0")] +impl<'a, K, V> DoubleEndedIterator for Range<'a, K, V> { + fn next_back(&mut self) -> Option<(&'a K, &'a V)> { + if self.front == self.back { + None + } else { + unsafe { Some(self.next_back_unchecked()) } + } + } +} + +impl<'a, K, V> Range<'a, K, V> { + unsafe fn next_back_unchecked(&mut self) -> (&'a K, &'a V) { + let handle = self.back; + + let mut cur_handle = match handle.left_kv() { + Ok(kv) => { + let ret = kv.into_kv(); + self.back = kv.left_edge(); + return ret; + } + Err(last_edge) => { + let next_level = last_edge.into_node().ascend().ok(); + unwrap_unchecked(next_level) + } + }; + + loop { + match cur_handle.left_kv() { + Ok(kv) => { + let ret = kv.into_kv(); + self.back = last_leaf_edge(kv.left_edge().descend()); + return ret; + } + Err(last_edge) => { + let next_level = last_edge.into_node().ascend().ok(); + cur_handle = unwrap_unchecked(next_level); + } + } + } + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, K, V> FusedIterator for Range<'a, K, V> {} + +#[stable(feature = "btree_range", since = "1.17.0")] +impl<'a, K, V> Clone for Range<'a, K, V> { + fn clone(&self) -> Range<'a, K, V> { + Range { + front: self.front, + back: self.back, + } + } +} + +#[stable(feature = "btree_range", since = "1.17.0")] +impl<'a, K, V> Iterator for RangeMut<'a, K, V> { + type Item = (&'a K, &'a mut V); + + fn next(&mut self) -> Option<(&'a K, &'a mut V)> { + if self.front == self.back { + None + } else { + unsafe { Some(self.next_unchecked()) } + } + } +} + +impl<'a, K, V> RangeMut<'a, K, V> { + unsafe fn next_unchecked(&mut self) -> (&'a K, &'a mut V) { + let handle = ptr::read(&self.front); + + let mut cur_handle = match handle.right_kv() { + Ok(kv) => { + let (k, v) = ptr::read(&kv).into_kv_mut(); + self.front = kv.right_edge(); + return (k, v); + } + Err(last_edge) => { + let next_level = last_edge.into_node().ascend().ok(); + unwrap_unchecked(next_level) + } + }; + + loop { + match cur_handle.right_kv() { + Ok(kv) => { + let (k, v) = ptr::read(&kv).into_kv_mut(); + self.front = first_leaf_edge(kv.right_edge().descend()); + return (k, v); + } + Err(last_edge) => { + let next_level = last_edge.into_node().ascend().ok(); + cur_handle = unwrap_unchecked(next_level); + } + } + } + } +} + +#[stable(feature = "btree_range", since = "1.17.0")] +impl<'a, K, V> DoubleEndedIterator for RangeMut<'a, K, V> { + fn next_back(&mut self) -> Option<(&'a K, &'a mut V)> { + if self.front == self.back { + None + } else { + unsafe { Some(self.next_back_unchecked()) } + } + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, K, V> FusedIterator for RangeMut<'a, K, V> {} + +impl<'a, K, V> RangeMut<'a, K, V> { + unsafe fn next_back_unchecked(&mut self) -> (&'a K, &'a mut V) { + let handle = ptr::read(&self.back); + + let mut cur_handle = match handle.left_kv() { + Ok(kv) => { + let (k, v) = ptr::read(&kv).into_kv_mut(); + self.back = kv.left_edge(); + return (k, v); + } + Err(last_edge) => { + let next_level = last_edge.into_node().ascend().ok(); + unwrap_unchecked(next_level) + } + }; + + loop { + match cur_handle.left_kv() { + Ok(kv) => { + let (k, v) = ptr::read(&kv).into_kv_mut(); + self.back = last_leaf_edge(kv.left_edge().descend()); + return (k, v); + } + Err(last_edge) => { + let next_level = last_edge.into_node().ascend().ok(); + cur_handle = unwrap_unchecked(next_level); + } + } + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<K: Ord, V> FromIterator<(K, V)> for BTreeMap<K, V> { + fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> BTreeMap<K, V> { + let mut map = BTreeMap::new(); + map.extend(iter); + map + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<K: Ord, V> Extend<(K, V)> for BTreeMap<K, V> { + #[inline] + fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T) { + for (k, v) in iter { + self.insert(k, v); + } + } +} + +#[stable(feature = "extend_ref", since = "1.2.0")] +impl<'a, K: Ord + Copy, V: Copy> Extend<(&'a K, &'a V)> for BTreeMap<K, V> { + fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: I) { + self.extend(iter.into_iter().map(|(&key, &value)| (key, value))); + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<K: Hash, V: Hash> Hash for BTreeMap<K, V> { + fn hash<H: Hasher>(&self, state: &mut H) { + for elt in self { + elt.hash(state); + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<K: Ord, V> Default for BTreeMap<K, V> { + /// Creates an empty `BTreeMap<K, V>`. + fn default() -> BTreeMap<K, V> { + BTreeMap::new() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<K: PartialEq, V: PartialEq> PartialEq for BTreeMap<K, V> { + fn eq(&self, other: &BTreeMap<K, V>) -> bool { + self.len() == other.len() && self.iter().zip(other).all(|(a, b)| a == b) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<K: Eq, V: Eq> Eq for BTreeMap<K, V> {} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<K: PartialOrd, V: PartialOrd> PartialOrd for BTreeMap<K, V> { + #[inline] + fn partial_cmp(&self, other: &BTreeMap<K, V>) -> Option<Ordering> { + self.iter().partial_cmp(other.iter()) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<K: Ord, V: Ord> Ord for BTreeMap<K, V> { + #[inline] + fn cmp(&self, other: &BTreeMap<K, V>) -> Ordering { + self.iter().cmp(other.iter()) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<K: Debug, V: Debug> Debug for BTreeMap<K, V> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_map().entries(self.iter()).finish() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, K: Ord, Q: ?Sized, V> Index<&'a Q> for BTreeMap<K, V> + where K: Borrow<Q>, + Q: Ord +{ + type Output = V; + + #[inline] + fn index(&self, key: &Q) -> &V { + self.get(key).expect("no entry found for key") + } +} + +fn first_leaf_edge<BorrowType, K, V> + (mut node: NodeRef<BorrowType, K, V, marker::LeafOrInternal>) + -> Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge> { + loop { + match node.force() { + Leaf(leaf) => return leaf.first_edge(), + Internal(internal) => { + node = internal.first_edge().descend(); + } + } + } +} + +fn last_leaf_edge<BorrowType, K, V> + (mut node: NodeRef<BorrowType, K, V, marker::LeafOrInternal>) + -> Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge> { + loop { + match node.force() { + Leaf(leaf) => return leaf.last_edge(), + Internal(internal) => { + node = internal.last_edge().descend(); + } + } + } +} + +fn range_search<BorrowType, K, V, Q: ?Sized, R: RangeArgument<Q>>( + root1: NodeRef<BorrowType, K, V, marker::LeafOrInternal>, + root2: NodeRef<BorrowType, K, V, marker::LeafOrInternal>, + range: R +)-> (Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge>, + Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge>) + where Q: Ord, K: Borrow<Q> +{ + match (range.start(), range.end()) { + (Excluded(s), Excluded(e)) if s==e => + panic!("range start and end are equal and excluded in BTreeMap"), + (Included(s), Included(e)) | + (Included(s), Excluded(e)) | + (Excluded(s), Included(e)) | + (Excluded(s), Excluded(e)) if s>e => + panic!("range start is greater than range end in BTreeMap"), + _ => {}, + }; + + let mut min_node = root1; + let mut max_node = root2; + let mut min_found = false; + let mut max_found = false; + let mut diverged = false; + + loop { + let min_edge = match (min_found, range.start()) { + (false, Included(key)) => match search::search_linear(&min_node, key) { + (i, true) => { min_found = true; i }, + (i, false) => i, + }, + (false, Excluded(key)) => match search::search_linear(&min_node, key) { + (i, true) => { min_found = true; i+1 }, + (i, false) => i, + }, + (_, Unbounded) => 0, + (true, Included(_)) => min_node.keys().len(), + (true, Excluded(_)) => 0, + }; + + let max_edge = match (max_found, range.end()) { + (false, Included(key)) => match search::search_linear(&max_node, key) { + (i, true) => { max_found = true; i+1 }, + (i, false) => i, + }, + (false, Excluded(key)) => match search::search_linear(&max_node, key) { + (i, true) => { max_found = true; i }, + (i, false) => i, + }, + (_, Unbounded) => max_node.keys().len(), + (true, Included(_)) => 0, + (true, Excluded(_)) => max_node.keys().len(), + }; + + if !diverged { + if max_edge < min_edge { panic!("Ord is ill-defined in BTreeMap range") } + if min_edge != max_edge { diverged = true; } + } + + let front = Handle::new_edge(min_node, min_edge); + let back = Handle::new_edge(max_node, max_edge); + match (front.force(), back.force()) { + (Leaf(f), Leaf(b)) => { + return (f, b); + }, + (Internal(min_int), Internal(max_int)) => { + min_node = min_int.descend(); + max_node = max_int.descend(); + }, + _ => unreachable!("BTreeMap has different depths"), + }; + } +} + +#[inline(always)] +unsafe fn unwrap_unchecked<T>(val: Option<T>) -> T { + val.unwrap_or_else(|| { + if cfg!(debug_assertions) { + panic!("'unchecked' unwrap on None in BTreeMap"); + } else { + intrinsics::unreachable(); + } + }) +} + +impl<K, V> BTreeMap<K, V> { + /// Gets an iterator over the entries of the map, sorted by key. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map = BTreeMap::new(); + /// map.insert(3, "c"); + /// map.insert(2, "b"); + /// map.insert(1, "a"); + /// + /// for (key, value) in map.iter() { + /// println!("{}: {}", key, value); + /// } + /// + /// let (first_key, first_value) = map.iter().next().unwrap(); + /// assert_eq!((*first_key, *first_value), (1, "a")); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn iter(&self) -> Iter<K, V> { + Iter { + range: Range { + front: first_leaf_edge(self.root.as_ref()), + back: last_leaf_edge(self.root.as_ref()), + }, + length: self.length, + } + } + + /// Gets a mutable iterator over the entries of the map, sorted by key. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map = BTreeMap::new(); + /// map.insert("a", 1); + /// map.insert("b", 2); + /// map.insert("c", 3); + /// + /// // add 10 to the value if the key isn't "a" + /// for (key, value) in map.iter_mut() { + /// if key != &"a" { + /// *value += 10; + /// } + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn iter_mut(&mut self) -> IterMut<K, V> { + let root1 = self.root.as_mut(); + let root2 = unsafe { ptr::read(&root1) }; + IterMut { + range: RangeMut { + front: first_leaf_edge(root1), + back: last_leaf_edge(root2), + _marker: PhantomData, + }, + length: self.length, + } + } + + /// Gets an iterator over the keys of the map, in sorted order. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut a = BTreeMap::new(); + /// a.insert(2, "b"); + /// a.insert(1, "a"); + /// + /// let keys: Vec<_> = a.keys().cloned().collect(); + /// assert_eq!(keys, [1, 2]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn keys<'a>(&'a self) -> Keys<'a, K, V> { + Keys { inner: self.iter() } + } + + /// Gets an iterator over the values of the map, in order by key. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut a = BTreeMap::new(); + /// a.insert(1, "hello"); + /// a.insert(2, "goodbye"); + /// + /// let values: Vec<&str> = a.values().cloned().collect(); + /// assert_eq!(values, ["hello", "goodbye"]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn values<'a>(&'a self) -> Values<'a, K, V> { + Values { inner: self.iter() } + } + + /// Gets a mutable iterator over the values of the map, in order by key. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut a = BTreeMap::new(); + /// a.insert(1, String::from("hello")); + /// a.insert(2, String::from("goodbye")); + /// + /// for value in a.values_mut() { + /// value.push_str("!"); + /// } + /// + /// let values: Vec<String> = a.values().cloned().collect(); + /// assert_eq!(values, [String::from("hello!"), + /// String::from("goodbye!")]); + /// ``` + #[stable(feature = "map_values_mut", since = "1.10.0")] + pub fn values_mut(&mut self) -> ValuesMut<K, V> { + ValuesMut { inner: self.iter_mut() } + } + + /// Returns the number of elements in the map. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut a = BTreeMap::new(); + /// assert_eq!(a.len(), 0); + /// a.insert(1, "a"); + /// assert_eq!(a.len(), 1); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn len(&self) -> usize { + self.length + } + + /// Returns `true` if the map contains no elements. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut a = BTreeMap::new(); + /// assert!(a.is_empty()); + /// a.insert(1, "a"); + /// assert!(!a.is_empty()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn is_empty(&self) -> bool { + self.len() == 0 + } +} + +impl<'a, K: Ord, V> Entry<'a, K, V> { + /// Ensures a value is in the entry by inserting the default if empty, and returns + /// a mutable reference to the value in the entry. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// map.entry("poneyland").or_insert(12); + /// + /// assert_eq!(map["poneyland"], 12); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn or_insert(self, default: V) -> &'a mut V { + match self { + Occupied(entry) => entry.into_mut(), + Vacant(entry) => entry.insert(default), + } + } + + /// Ensures a value is in the entry by inserting the result of the default function if empty, + /// and returns a mutable reference to the value in the entry. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map: BTreeMap<&str, String> = BTreeMap::new(); + /// let s = "hoho".to_string(); + /// + /// map.entry("poneyland").or_insert_with(|| s); + /// + /// assert_eq!(map["poneyland"], "hoho".to_string()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V { + match self { + Occupied(entry) => entry.into_mut(), + Vacant(entry) => entry.insert(default()), + } + } + + /// Returns a reference to this entry's key. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); + /// ``` + #[stable(feature = "map_entry_keys", since = "1.10.0")] + pub fn key(&self) -> &K { + match *self { + Occupied(ref entry) => entry.key(), + Vacant(ref entry) => entry.key(), + } + } +} + +impl<'a, K: Ord, V> VacantEntry<'a, K, V> { + /// Gets a reference to the key that would be used when inserting a value + /// through the VacantEntry. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); + /// ``` + #[stable(feature = "map_entry_keys", since = "1.10.0")] + pub fn key(&self) -> &K { + &self.key + } + + /// Take ownership of the key. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// use std::collections::btree_map::Entry; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// + /// if let Entry::Vacant(v) = map.entry("poneyland") { + /// v.into_key(); + /// } + /// ``` + #[stable(feature = "map_entry_recover_keys2", since = "1.12.0")] + pub fn into_key(self) -> K { + self.key + } + + /// Sets the value of the entry with the `VacantEntry`'s key, + /// and returns a mutable reference to it. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut count: BTreeMap<&str, usize> = BTreeMap::new(); + /// + /// // count the number of occurrences of letters in the vec + /// for x in vec!["a","b","a","c","a","b"] { + /// *count.entry(x).or_insert(0) += 1; + /// } + /// + /// assert_eq!(count["a"], 3); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn insert(self, value: V) -> &'a mut V { + *self.length += 1; + + let out_ptr; + + let mut ins_k; + let mut ins_v; + let mut ins_edge; + + let mut cur_parent = match self.handle.insert(self.key, value) { + (Fit(handle), _) => return handle.into_kv_mut().1, + (Split(left, k, v, right), ptr) => { + ins_k = k; + ins_v = v; + ins_edge = right; + out_ptr = ptr; + left.ascend().map_err(|n| n.into_root_mut()) + } + }; + + loop { + match cur_parent { + Ok(parent) => { + match parent.insert(ins_k, ins_v, ins_edge) { + Fit(_) => return unsafe { &mut *out_ptr }, + Split(left, k, v, right) => { + ins_k = k; + ins_v = v; + ins_edge = right; + cur_parent = left.ascend().map_err(|n| n.into_root_mut()); + } + } + } + Err(root) => { + root.push_level().push(ins_k, ins_v, ins_edge); + return unsafe { &mut *out_ptr }; + } + } + } + } +} + +impl<'a, K: Ord, V> OccupiedEntry<'a, K, V> { + /// Gets a reference to the key in the entry. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// map.entry("poneyland").or_insert(12); + /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); + /// ``` + #[stable(feature = "map_entry_keys", since = "1.10.0")] + pub fn key(&self) -> &K { + self.handle.reborrow().into_kv().0 + } + + /// Take ownership of the key and value from the map. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// use std::collections::btree_map::Entry; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// map.entry("poneyland").or_insert(12); + /// + /// if let Entry::Occupied(o) = map.entry("poneyland") { + /// // We delete the entry from the map. + /// o.remove_entry(); + /// } + /// + /// // If now try to get the value, it will panic: + /// // println!("{}", map["poneyland"]); + /// ``` + #[stable(feature = "map_entry_recover_keys2", since = "1.12.0")] + pub fn remove_entry(self) -> (K, V) { + self.remove_kv() + } + + /// Gets a reference to the value in the entry. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// use std::collections::btree_map::Entry; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// map.entry("poneyland").or_insert(12); + /// + /// if let Entry::Occupied(o) = map.entry("poneyland") { + /// assert_eq!(o.get(), &12); + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn get(&self) -> &V { + self.handle.reborrow().into_kv().1 + } + + /// Gets a mutable reference to the value in the entry. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// use std::collections::btree_map::Entry; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// map.entry("poneyland").or_insert(12); + /// + /// assert_eq!(map["poneyland"], 12); + /// if let Entry::Occupied(mut o) = map.entry("poneyland") { + /// *o.get_mut() += 10; + /// } + /// assert_eq!(map["poneyland"], 22); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn get_mut(&mut self) -> &mut V { + self.handle.kv_mut().1 + } + + /// Converts the entry into a mutable reference to its value. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// use std::collections::btree_map::Entry; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// map.entry("poneyland").or_insert(12); + /// + /// assert_eq!(map["poneyland"], 12); + /// if let Entry::Occupied(o) = map.entry("poneyland") { + /// *o.into_mut() += 10; + /// } + /// assert_eq!(map["poneyland"], 22); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn into_mut(self) -> &'a mut V { + self.handle.into_kv_mut().1 + } + + /// Sets the value of the entry with the `OccupiedEntry`'s key, + /// and returns the entry's old value. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// use std::collections::btree_map::Entry; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// map.entry("poneyland").or_insert(12); + /// + /// if let Entry::Occupied(mut o) = map.entry("poneyland") { + /// assert_eq!(o.insert(15), 12); + /// } + /// assert_eq!(map["poneyland"], 15); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn insert(&mut self, value: V) -> V { + mem::replace(self.get_mut(), value) + } + + /// Takes the value of the entry out of the map, and returns it. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeMap; + /// use std::collections::btree_map::Entry; + /// + /// let mut map: BTreeMap<&str, usize> = BTreeMap::new(); + /// map.entry("poneyland").or_insert(12); + /// + /// if let Entry::Occupied(o) = map.entry("poneyland") { + /// assert_eq!(o.remove(), 12); + /// } + /// // If we try to get "poneyland"'s value, it'll panic: + /// // println!("{}", map["poneyland"]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn remove(self) -> V { + self.remove_kv().1 + } + + fn remove_kv(self) -> (K, V) { + *self.length -= 1; + + let (small_leaf, old_key, old_val) = match self.handle.force() { + Leaf(leaf) => { + let (hole, old_key, old_val) = leaf.remove(); + (hole.into_node(), old_key, old_val) + } + Internal(mut internal) => { + let key_loc = internal.kv_mut().0 as *mut K; + let val_loc = internal.kv_mut().1 as *mut V; + + let to_remove = first_leaf_edge(internal.right_edge().descend()).right_kv().ok(); + let to_remove = unsafe { unwrap_unchecked(to_remove) }; + + let (hole, key, val) = to_remove.remove(); + + let old_key = unsafe { mem::replace(&mut *key_loc, key) }; + let old_val = unsafe { mem::replace(&mut *val_loc, val) }; + + (hole.into_node(), old_key, old_val) + } + }; + + // Handle underflow + let mut cur_node = small_leaf.forget_type(); + while cur_node.len() < node::CAPACITY / 2 { + match handle_underfull_node(cur_node) { + AtRoot => break, + EmptyParent(_) => unreachable!(), + Merged(parent) => { + if parent.len() == 0 { + // We must be at the root + parent.into_root_mut().pop_level(); + break; + } else { + cur_node = parent.forget_type(); + } + } + Stole(_) => break, + } + } + + (old_key, old_val) + } +} + +enum UnderflowResult<'a, K, V> { + AtRoot, + EmptyParent(NodeRef<marker::Mut<'a>, K, V, marker::Internal>), + Merged(NodeRef<marker::Mut<'a>, K, V, marker::Internal>), + Stole(NodeRef<marker::Mut<'a>, K, V, marker::Internal>), +} + +fn handle_underfull_node<'a, K, V>(node: NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>) + -> UnderflowResult<'a, K, V> { + let parent = if let Ok(parent) = node.ascend() { + parent + } else { + return AtRoot; + }; + + let (is_left, mut handle) = match parent.left_kv() { + Ok(left) => (true, left), + Err(parent) => { + match parent.right_kv() { + Ok(right) => (false, right), + Err(parent) => { + return EmptyParent(parent.into_node()); + } + } + } + }; + + if handle.can_merge() { + Merged(handle.merge().into_node()) + } else { + if is_left { + handle.steal_left(); + } else { + handle.steal_right(); + } + Stole(handle.into_node()) + } +} + +impl<K: Ord, V, I: Iterator<Item = (K, V)>> Iterator for MergeIter<K, V, I> { + type Item = (K, V); + + fn next(&mut self) -> Option<(K, V)> { + let res = match (self.left.peek(), self.right.peek()) { + (Some(&(ref left_key, _)), Some(&(ref right_key, _))) => left_key.cmp(right_key), + (Some(_), None) => Ordering::Less, + (None, Some(_)) => Ordering::Greater, + (None, None) => return None, + }; + + // Check which elements comes first and only advance the corresponding iterator. + // If two keys are equal, take the value from `right`. + match res { + Ordering::Less => self.left.next(), + Ordering::Greater => self.right.next(), + Ordering::Equal => { + self.left.next(); + self.right.next() + } + } + } +} diff --git a/src/liballoc/btree/mod.rs b/src/liballoc/btree/mod.rs new file mode 100644 index 00000000000..087c9f228d4 --- /dev/null +++ b/src/liballoc/btree/mod.rs @@ -0,0 +1,23 @@ +// Copyright 2014 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +mod node; +mod search; +pub mod map; +pub mod set; + +#[doc(hidden)] +trait Recover<Q: ?Sized> { + type Key; + + fn get(&self, key: &Q) -> Option<&Self::Key>; + fn take(&mut self, key: &Q) -> Option<Self::Key>; + fn replace(&mut self, key: Self::Key) -> Option<Self::Key>; +} diff --git a/src/liballoc/btree/node.rs b/src/liballoc/btree/node.rs new file mode 100644 index 00000000000..811174b331e --- /dev/null +++ b/src/liballoc/btree/node.rs @@ -0,0 +1,1556 @@ +// Copyright 2014 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +// This is an attempt at an implementation following the ideal +// +// ``` +// struct BTreeMap<K, V> { +// height: usize, +// root: Option<Box<Node<K, V, height>>> +// } +// +// struct Node<K, V, height: usize> { +// keys: [K; 2 * B - 1], +// vals: [V; 2 * B - 1], +// edges: if height > 0 { +// [Box<Node<K, V, height - 1>>; 2 * B] +// } else { () }, +// parent: *const Node<K, V, height + 1>, +// parent_idx: u16, +// len: u16, +// } +// ``` +// +// Since Rust doesn't actually have dependent types and polymorphic recursion, +// we make do with lots of unsafety. + +// A major goal of this module is to avoid complexity by treating the tree as a generic (if +// weirdly shaped) container and avoiding dealing with most of the B-Tree invariants. As such, +// this module doesn't care whether the entries are sorted, which nodes can be underfull, or +// even what underfull means. However, we do rely on a few invariants: +// +// - Trees must have uniform depth/height. This means that every path down to a leaf from a +// given node has exactly the same length. +// - A node of length `n` has `n` keys, `n` values, and (in an internal node) `n + 1` edges. +// This implies that even an empty internal node has at least one edge. + +use core::marker::PhantomData; +use core::mem; +use core::nonzero::NonZero; +use core::ptr::{self, Unique}; +use core::slice; + +use boxed::Box; +use heap; + +const B: usize = 6; +pub const MIN_LEN: usize = B - 1; +pub const CAPACITY: usize = 2 * B - 1; + +/// The underlying representation of leaf nodes. Note that it is often unsafe to actually store +/// these, since only the first `len` keys and values are assumed to be initialized. As such, +/// these should always be put behind pointers, and specifically behind `BoxedNode` in the owned +/// case. +/// +/// See also rust-lang/rfcs#197, which would make this structure significantly more safe by +/// avoiding accidentally dropping unused and uninitialized keys and values. +struct LeafNode<K, V> { + /// The arrays storing the actual data of the node. Only the first `len` elements of each + /// array are initialized and valid. + keys: [K; CAPACITY], + vals: [V; CAPACITY], + + /// We use `*const` as opposed to `*mut` so as to be covariant in `K` and `V`. + /// This either points to an actual node or is null. + parent: *const InternalNode<K, V>, + + /// This node's index into the parent node's `edges` array. + /// `*node.parent.edges[node.parent_idx]` should be the same thing as `node`. + /// This is only guaranteed to be initialized when `parent` is nonnull. + parent_idx: u16, + + /// The number of keys and values this node stores. + /// + /// This is at the end of the node's representation and next to `parent_idx` to encourage + /// the compiler to join `len` and `parent_idx` into the same 32-bit word, reducing space + /// overhead. + len: u16, +} + +impl<K, V> LeafNode<K, V> { + /// Creates a new `LeafNode`. Unsafe because all nodes should really be hidden behind + /// `BoxedNode`, preventing accidental dropping of uninitialized keys and values. + unsafe fn new() -> Self { + LeafNode { + // As a general policy, we leave fields uninitialized if they can be, as this should + // be both slightly faster and easier to track in Valgrind. + keys: mem::uninitialized(), + vals: mem::uninitialized(), + parent: ptr::null(), + parent_idx: mem::uninitialized(), + len: 0 + } + } +} + +/// The underlying representation of internal nodes. As with `LeafNode`s, these should be hidden +/// behind `BoxedNode`s to prevent dropping uninitialized keys and values. Any pointer to an +/// `InternalNode` can be directly casted to a pointer to the underlying `LeafNode` portion of the +/// node, allowing code to act on leaf and internal nodes generically without having to even check +/// which of the two a pointer is pointing at. This property is enabled by the use of `repr(C)`. +#[repr(C)] +struct InternalNode<K, V> { + data: LeafNode<K, V>, + + /// The pointers to the children of this node. `len + 1` of these are considered + /// initialized and valid. + edges: [BoxedNode<K, V>; 2 * B], +} + +impl<K, V> InternalNode<K, V> { + /// Creates a new `InternalNode`. + /// + /// This is unsafe for two reasons. First, it returns an `InternalNode` by value, risking + /// dropping of uninitialized fields. Second, an invariant of internal nodes is that `len + 1` + /// edges are initialized and valid, meaning that even when the node is empty (having a + /// `len` of 0), there must be one initialized and valid edge. This function does not set up + /// such an edge. + unsafe fn new() -> Self { + InternalNode { + data: LeafNode::new(), + edges: mem::uninitialized() + } + } +} + +/// An owned pointer to a node. This basically is either `Box<LeafNode<K, V>>` or +/// `Box<InternalNode<K, V>>`. However, it contains no information as to which of the two types +/// of nodes is acutally behind the box, and, partially due to this lack of information, has no +/// destructor. +struct BoxedNode<K, V> { + ptr: Unique<LeafNode<K, V>> +} + +impl<K, V> BoxedNode<K, V> { + fn from_leaf(node: Box<LeafNode<K, V>>) -> Self { + unsafe { + BoxedNode { ptr: Unique::new(Box::into_raw(node)) } + } + } + + fn from_internal(node: Box<InternalNode<K, V>>) -> Self { + unsafe { + BoxedNode { ptr: Unique::new(Box::into_raw(node) as *mut LeafNode<K, V>) } + } + } + + unsafe fn from_ptr(ptr: NonZero<*const LeafNode<K, V>>) -> Self { + BoxedNode { ptr: Unique::new(ptr.get() as *mut LeafNode<K, V>) } + } + + fn as_ptr(&self) -> NonZero<*const LeafNode<K, V>> { + unsafe { + NonZero::new(self.ptr.as_ptr()) + } + } +} + +/// An owned tree. Note that despite being owned, this does not have a destructor, +/// and must be cleaned up manually. +pub struct Root<K, V> { + node: BoxedNode<K, V>, + height: usize +} + +unsafe impl<K: Sync, V: Sync> Sync for Root<K, V> { } +unsafe impl<K: Send, V: Send> Send for Root<K, V> { } + +impl<K, V> Root<K, V> { + pub fn new_leaf() -> Self { + Root { + node: BoxedNode::from_leaf(Box::new(unsafe { LeafNode::new() })), + height: 0 + } + } + + pub fn as_ref(&self) + -> NodeRef<marker::Immut, K, V, marker::LeafOrInternal> { + NodeRef { + height: self.height, + node: self.node.as_ptr(), + root: self as *const _ as *mut _, + _marker: PhantomData, + } + } + + pub fn as_mut(&mut self) + -> NodeRef<marker::Mut, K, V, marker::LeafOrInternal> { + NodeRef { + height: self.height, + node: self.node.as_ptr(), + root: self as *mut _, + _marker: PhantomData, + } + } + + pub fn into_ref(self) + -> NodeRef<marker::Owned, K, V, marker::LeafOrInternal> { + NodeRef { + height: self.height, + node: self.node.as_ptr(), + root: ptr::null_mut(), // FIXME: Is there anything better to do here? + _marker: PhantomData, + } + } + + /// Adds a new internal node with a single edge, pointing to the previous root, and make that + /// new node the root. This increases the height by 1 and is the opposite of `pop_level`. + pub fn push_level(&mut self) + -> NodeRef<marker::Mut, K, V, marker::Internal> { + let mut new_node = Box::new(unsafe { InternalNode::new() }); + new_node.edges[0] = unsafe { BoxedNode::from_ptr(self.node.as_ptr()) }; + + self.node = BoxedNode::from_internal(new_node); + self.height += 1; + + let mut ret = NodeRef { + height: self.height, + node: self.node.as_ptr(), + root: self as *mut _, + _marker: PhantomData + }; + + unsafe { + ret.reborrow_mut().first_edge().correct_parent_link(); + } + + ret + } + + /// Removes the root node, using its first child as the new root. This cannot be called when + /// the tree consists only of a leaf node. As it is intended only to be called when the root + /// has only one edge, no cleanup is done on any of the other children are elements of the root. + /// This decreases the height by 1 and is the opposite of `push_level`. + pub fn pop_level(&mut self) { + debug_assert!(self.height > 0); + + let top = self.node.ptr.as_ptr() as *mut u8; + + self.node = unsafe { + BoxedNode::from_ptr(self.as_mut() + .cast_unchecked::<marker::Internal>() + .first_edge() + .descend() + .node) + }; + self.height -= 1; + self.as_mut().as_leaf_mut().parent = ptr::null(); + + unsafe { + heap::deallocate( + top, + mem::size_of::<InternalNode<K, V>>(), + mem::align_of::<InternalNode<K, V>>() + ); + } + } +} + +// N.B. `NodeRef` is always covariant in `K` and `V`, even when the `BorrowType` +// is `Mut`. This is technically wrong, but cannot result in any unsafety due to +// internal use of `NodeRef` because we stay completely generic over `K` and `V`. +// However, whenever a public type wraps `NodeRef`, make sure that it has the +// correct variance. +/// A reference to a node. +/// +/// This type has a number of paramaters that controls how it acts: +/// - `BorrowType`: This can be `Immut<'a>` or `Mut<'a>` for some `'a` or `Owned`. +/// When this is `Immut<'a>`, the `NodeRef` acts roughly like `&'a Node`, +/// when this is `Mut<'a>`, the `NodeRef` acts roughly like `&'a mut Node`, +/// and when this is `Owned`, the `NodeRef` acts roughly like `Box<Node>`. +/// - `K` and `V`: These control what types of things are stored in the nodes. +/// - `Type`: This can be `Leaf`, `Internal`, or `LeafOrInternal`. When this is +/// `Leaf`, the `NodeRef` points to a leaf node, when this is `Internal` the +/// `NodeRef` points to an internal node, and when this is `LeafOrInternal` the +/// `NodeRef` could be pointing to either type of node. +pub struct NodeRef<BorrowType, K, V, Type> { + height: usize, + node: NonZero<*const LeafNode<K, V>>, + // This is null unless the borrow type is `Mut` + root: *const Root<K, V>, + _marker: PhantomData<(BorrowType, Type)> +} + +impl<'a, K: 'a, V: 'a, Type> Copy for NodeRef<marker::Immut<'a>, K, V, Type> { } +impl<'a, K: 'a, V: 'a, Type> Clone for NodeRef<marker::Immut<'a>, K, V, Type> { + fn clone(&self) -> Self { + *self + } +} + +unsafe impl<BorrowType, K: Sync, V: Sync, Type> Sync + for NodeRef<BorrowType, K, V, Type> { } + +unsafe impl<'a, K: Sync + 'a, V: Sync + 'a, Type> Send + for NodeRef<marker::Immut<'a>, K, V, Type> { } +unsafe impl<'a, K: Send + 'a, V: Send + 'a, Type> Send + for NodeRef<marker::Mut<'a>, K, V, Type> { } +unsafe impl<K: Send, V: Send, Type> Send + for NodeRef<marker::Owned, K, V, Type> { } + +impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Internal> { + fn as_internal(&self) -> &InternalNode<K, V> { + unsafe { + &*(self.node.get() as *const InternalNode<K, V>) + } + } +} + +impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Internal> { + fn as_internal_mut(&mut self) -> &mut InternalNode<K, V> { + unsafe { + &mut *(self.node.get() as *mut InternalNode<K, V>) + } + } +} + + +impl<BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> { + /// Finds the length of the node. This is the number of keys or values. In an + /// internal node, the number of edges is `len() + 1`. + pub fn len(&self) -> usize { + self.as_leaf().len as usize + } + + /// Returns the height of this node in the whole tree. Zero height denotes the + /// leaf level. + pub fn height(&self) -> usize { + self.height + } + + /// Removes any static information about whether this node is a `Leaf` or an + /// `Internal` node. + pub fn forget_type(self) -> NodeRef<BorrowType, K, V, marker::LeafOrInternal> { + NodeRef { + height: self.height, + node: self.node, + root: self.root, + _marker: PhantomData + } + } + + /// Temporarily takes out another, immutable reference to the same node. + fn reborrow<'a>(&'a self) -> NodeRef<marker::Immut<'a>, K, V, Type> { + NodeRef { + height: self.height, + node: self.node, + root: self.root, + _marker: PhantomData + } + } + + fn as_leaf(&self) -> &LeafNode<K, V> { + unsafe { + &*self.node.get() + } + } + + pub fn keys(&self) -> &[K] { + self.reborrow().into_slices().0 + } + + pub fn vals(&self) -> &[V] { + self.reborrow().into_slices().1 + } + + /// Finds the parent of the current node. Returns `Ok(handle)` if the current + /// node actually has a parent, where `handle` points to the edge of the parent + /// that points to the current node. Returns `Err(self)` if the current node has + /// no parent, giving back the original `NodeRef`. + /// + /// `edge.descend().ascend().unwrap()` and `node.ascend().unwrap().descend()` should + /// both, upon success, do nothing. + pub fn ascend(self) -> Result< + Handle< + NodeRef< + BorrowType, + K, V, + marker::Internal + >, + marker::Edge + >, + Self + > { + if self.as_leaf().parent.is_null() { + Err(self) + } else { + Ok(Handle { + node: NodeRef { + height: self.height + 1, + node: unsafe { + NonZero::new(self.as_leaf().parent as *mut LeafNode<K, V>) + }, + root: self.root, + _marker: PhantomData + }, + idx: self.as_leaf().parent_idx as usize, + _marker: PhantomData + }) + } + } + + pub fn first_edge(self) -> Handle<Self, marker::Edge> { + Handle::new_edge(self, 0) + } + + pub fn last_edge(self) -> Handle<Self, marker::Edge> { + let len = self.len(); + Handle::new_edge(self, len) + } + + /// Note that `self` must be nonempty. + pub fn first_kv(self) -> Handle<Self, marker::KV> { + debug_assert!(self.len() > 0); + Handle::new_kv(self, 0) + } + + /// Note that `self` must be nonempty. + pub fn last_kv(self) -> Handle<Self, marker::KV> { + let len = self.len(); + debug_assert!(len > 0); + Handle::new_kv(self, len - 1) + } +} + +impl<K, V> NodeRef<marker::Owned, K, V, marker::Leaf> { + /// Similar to `ascend`, gets a reference to a node's parent node, but also + /// deallocate the current node in the process. This is unsafe because the + /// current node will still be accessible despite being deallocated. + pub unsafe fn deallocate_and_ascend(self) -> Option< + Handle< + NodeRef< + marker::Owned, + K, V, + marker::Internal + >, + marker::Edge + > + > { + let ptr = self.as_leaf() as *const LeafNode<K, V> as *const u8 as *mut u8; + let ret = self.ascend().ok(); + heap::deallocate(ptr, mem::size_of::<LeafNode<K, V>>(), mem::align_of::<LeafNode<K, V>>()); + ret + } +} + +impl<K, V> NodeRef<marker::Owned, K, V, marker::Internal> { + /// Similar to `ascend`, gets a reference to a node's parent node, but also + /// deallocate the current node in the process. This is unsafe because the + /// current node will still be accessible despite being deallocated. + pub unsafe fn deallocate_and_ascend(self) -> Option< + Handle< + NodeRef< + marker::Owned, + K, V, + marker::Internal + >, + marker::Edge + > + > { + let ptr = self.as_internal() as *const InternalNode<K, V> as *const u8 as *mut u8; + let ret = self.ascend().ok(); + heap::deallocate( + ptr, + mem::size_of::<InternalNode<K, V>>(), + mem::align_of::<InternalNode<K, V>>() + ); + ret + } +} + +impl<'a, K, V, Type> NodeRef<marker::Mut<'a>, K, V, Type> { + /// Unsafely asserts to the compiler some static information about whether this + /// node is a `Leaf`. + unsafe fn cast_unchecked<NewType>(&mut self) + -> NodeRef<marker::Mut, K, V, NewType> { + + NodeRef { + height: self.height, + node: self.node, + root: self.root, + _marker: PhantomData + } + } + + /// Temporarily takes out another, mutable reference to the same node. Beware, as + /// this method is very dangerous, doubly so since it may not immediately appear + /// dangerous. + /// + /// Because mutable pointers can roam anywhere around the tree and can even (through + /// `into_root_mut`) mess with the root of the tree, the result of `reborrow_mut` + /// can easily be used to make the original mutable pointer dangling, or, in the case + /// of a reborrowed handle, out of bounds. + // FIXME(@gereeter) consider adding yet another type parameter to `NodeRef` that restricts + // the use of `ascend` and `into_root_mut` on reborrowed pointers, preventing this unsafety. + unsafe fn reborrow_mut(&mut self) -> NodeRef<marker::Mut, K, V, Type> { + NodeRef { + height: self.height, + node: self.node, + root: self.root, + _marker: PhantomData + } + } + + fn as_leaf_mut(&mut self) -> &mut LeafNode<K, V> { + unsafe { + &mut *(self.node.get() as *mut LeafNode<K, V>) + } + } + + pub fn keys_mut(&mut self) -> &mut [K] { + unsafe { self.reborrow_mut().into_slices_mut().0 } + } + + pub fn vals_mut(&mut self) -> &mut [V] { + unsafe { self.reborrow_mut().into_slices_mut().1 } + } +} + +impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Immut<'a>, K, V, Type> { + pub fn into_slices(self) -> (&'a [K], &'a [V]) { + unsafe { + ( + slice::from_raw_parts( + self.as_leaf().keys.as_ptr(), + self.len() + ), + slice::from_raw_parts( + self.as_leaf().vals.as_ptr(), + self.len() + ) + ) + } + } +} + +impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Mut<'a>, K, V, Type> { + /// Gets a mutable reference to the root itself. This is useful primarily when the + /// height of the tree needs to be adjusted. Never call this on a reborrowed pointer. + pub fn into_root_mut(self) -> &'a mut Root<K, V> { + unsafe { + &mut *(self.root as *mut Root<K, V>) + } + } + + pub fn into_slices_mut(mut self) -> (&'a mut [K], &'a mut [V]) { + unsafe { + ( + slice::from_raw_parts_mut( + &mut self.as_leaf_mut().keys as *mut [K] as *mut K, + self.len() + ), + slice::from_raw_parts_mut( + &mut self.as_leaf_mut().vals as *mut [V] as *mut V, + self.len() + ) + ) + } + } +} + +impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Leaf> { + /// Adds a key/value pair the end of the node. + pub fn push(&mut self, key: K, val: V) { + // Necessary for correctness, but this is an internal module + debug_assert!(self.len() < CAPACITY); + + let idx = self.len(); + + unsafe { + ptr::write(self.keys_mut().get_unchecked_mut(idx), key); + ptr::write(self.vals_mut().get_unchecked_mut(idx), val); + } + + self.as_leaf_mut().len += 1; + } + + /// Adds a key/value pair to the beginning of the node. + pub fn push_front(&mut self, key: K, val: V) { + // Necessary for correctness, but this is an internal module + debug_assert!(self.len() < CAPACITY); + + unsafe { + slice_insert(self.keys_mut(), 0, key); + slice_insert(self.vals_mut(), 0, val); + } + + self.as_leaf_mut().len += 1; + } +} + +impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Internal> { + /// Adds a key/value pair and an edge to go to the right of that pair to + /// the end of the node. + pub fn push(&mut self, key: K, val: V, edge: Root<K, V>) { + // Necessary for correctness, but this is an internal module + debug_assert!(edge.height == self.height - 1); + debug_assert!(self.len() < CAPACITY); + + let idx = self.len(); + + unsafe { + ptr::write(self.keys_mut().get_unchecked_mut(idx), key); + ptr::write(self.vals_mut().get_unchecked_mut(idx), val); + ptr::write(self.as_internal_mut().edges.get_unchecked_mut(idx + 1), edge.node); + + self.as_leaf_mut().len += 1; + + Handle::new_edge(self.reborrow_mut(), idx + 1).correct_parent_link(); + } + } + + fn correct_childrens_parent_links(&mut self, first: usize, after_last: usize) { + for i in first..after_last { + Handle::new_edge(unsafe { self.reborrow_mut() }, i).correct_parent_link(); + } + } + + fn correct_all_childrens_parent_links(&mut self) { + let len = self.len(); + self.correct_childrens_parent_links(0, len + 1); + } + + /// Adds a key/value pair and an edge to go to the left of that pair to + /// the beginning of the node. + pub fn push_front(&mut self, key: K, val: V, edge: Root<K, V>) { + // Necessary for correctness, but this is an internal module + debug_assert!(edge.height == self.height - 1); + debug_assert!(self.len() < CAPACITY); + + unsafe { + slice_insert(self.keys_mut(), 0, key); + slice_insert(self.vals_mut(), 0, val); + slice_insert( + slice::from_raw_parts_mut( + self.as_internal_mut().edges.as_mut_ptr(), + self.len()+1 + ), + 0, + edge.node + ); + + self.as_leaf_mut().len += 1; + + self.correct_all_childrens_parent_links(); + } + } +} + +impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> { + /// Removes a key/value pair from the end of this node. If this is an internal node, + /// also removes the edge that was to the right of that pair. + pub fn pop(&mut self) -> (K, V, Option<Root<K, V>>) { + // Necessary for correctness, but this is an internal module + debug_assert!(self.len() > 0); + + let idx = self.len() - 1; + + unsafe { + let key = ptr::read(self.keys().get_unchecked(idx)); + let val = ptr::read(self.vals().get_unchecked(idx)); + let edge = match self.reborrow_mut().force() { + ForceResult::Leaf(_) => None, + ForceResult::Internal(internal) => { + let edge = ptr::read(internal.as_internal().edges.get_unchecked(idx + 1)); + let mut new_root = Root { node: edge, height: internal.height - 1 }; + new_root.as_mut().as_leaf_mut().parent = ptr::null(); + Some(new_root) + } + }; + + self.as_leaf_mut().len -= 1; + (key, val, edge) + } + } + + /// Removes a key/value pair from the beginning of this node. If this is an internal node, + /// also removes the edge that was to the left of that pair. + pub fn pop_front(&mut self) -> (K, V, Option<Root<K, V>>) { + // Necessary for correctness, but this is an internal module + debug_assert!(self.len() > 0); + + let old_len = self.len(); + + unsafe { + let key = slice_remove(self.keys_mut(), 0); + let val = slice_remove(self.vals_mut(), 0); + let edge = match self.reborrow_mut().force() { + ForceResult::Leaf(_) => None, + ForceResult::Internal(mut internal) => { + let edge = slice_remove( + slice::from_raw_parts_mut( + internal.as_internal_mut().edges.as_mut_ptr(), + old_len+1 + ), + 0 + ); + + let mut new_root = Root { node: edge, height: internal.height - 1 }; + new_root.as_mut().as_leaf_mut().parent = ptr::null(); + + for i in 0..old_len { + Handle::new_edge(internal.reborrow_mut(), i).correct_parent_link(); + } + + Some(new_root) + } + }; + + self.as_leaf_mut().len -= 1; + + (key, val, edge) + } + } + + fn into_kv_pointers_mut(mut self) -> (*mut K, *mut V) { + ( + self.keys_mut().as_mut_ptr(), + self.vals_mut().as_mut_ptr() + ) + } +} + +impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::LeafOrInternal> { + /// Checks whether a node is an `Internal` node or a `Leaf` node. + pub fn force(self) -> ForceResult< + NodeRef<BorrowType, K, V, marker::Leaf>, + NodeRef<BorrowType, K, V, marker::Internal> + > { + if self.height == 0 { + ForceResult::Leaf(NodeRef { + height: self.height, + node: self.node, + root: self.root, + _marker: PhantomData + }) + } else { + ForceResult::Internal(NodeRef { + height: self.height, + node: self.node, + root: self.root, + _marker: PhantomData + }) + } + } +} + +/// A reference to a specific key/value pair or edge within a node. The `Node` parameter +/// must be a `NodeRef`, while the `Type` can either be `KV` (signifying a handle on a key/value +/// pair) or `Edge` (signifying a handle on an edge). +/// +/// Note that even `Leaf` nodes can have `Edge` handles. Instead of representing a pointer to +/// a child node, these represent the spaces where child pointers would go between the key/value +/// pairs. For example, in a node with length 2, there would be 3 possible edge locations - one +/// to the left of the node, one between the two pairs, and one at the right of the node. +pub struct Handle<Node, Type> { + node: Node, + idx: usize, + _marker: PhantomData<Type> +} + +impl<Node: Copy, Type> Copy for Handle<Node, Type> { } +// We don't need the full generality of `#[derive(Clone)]`, as the only time `Node` will be +// `Clone`able is when it is an immutable reference and therefore `Copy`. +impl<Node: Copy, Type> Clone for Handle<Node, Type> { + fn clone(&self) -> Self { + *self + } +} + +impl<Node, Type> Handle<Node, Type> { + /// Retrieves the node that contains the edge of key/value pair this handle pointes to. + pub fn into_node(self) -> Node { + self.node + } +} + +impl<BorrowType, K, V, NodeType> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV> { + /// Creates a new handle to a key/value pair in `node`. `idx` must be less than `node.len()`. + pub fn new_kv(node: NodeRef<BorrowType, K, V, NodeType>, idx: usize) -> Self { + // Necessary for correctness, but in a private module + debug_assert!(idx < node.len()); + + Handle { + node: node, + idx: idx, + _marker: PhantomData + } + } + + pub fn left_edge(self) -> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> { + Handle::new_edge(self.node, self.idx) + } + + pub fn right_edge(self) -> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> { + Handle::new_edge(self.node, self.idx + 1) + } +} + +impl<BorrowType, K, V, NodeType, HandleType> PartialEq + for Handle<NodeRef<BorrowType, K, V, NodeType>, HandleType> { + + fn eq(&self, other: &Self) -> bool { + self.node.node == other.node.node && self.idx == other.idx + } +} + +impl<BorrowType, K, V, NodeType, HandleType> + Handle<NodeRef<BorrowType, K, V, NodeType>, HandleType> { + + /// Temporarily takes out another, immutable handle on the same location. + pub fn reborrow(&self) + -> Handle<NodeRef<marker::Immut, K, V, NodeType>, HandleType> { + + // We can't use Handle::new_kv or Handle::new_edge because we don't know our type + Handle { + node: self.node.reborrow(), + idx: self.idx, + _marker: PhantomData + } + } +} + +impl<'a, K, V, NodeType, HandleType> + Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, HandleType> { + + /// Temporarily takes out another, mutable handle on the same location. Beware, as + /// this method is very dangerous, doubly so since it may not immediately appear + /// dangerous. + /// + /// Because mutable pointers can roam anywhere around the tree and can even (through + /// `into_root_mut`) mess with the root of the tree, the result of `reborrow_mut` + /// can easily be used to make the original mutable pointer dangling, or, in the case + /// of a reborrowed handle, out of bounds. + // FIXME(@gereeter) consider adding yet another type parameter to `NodeRef` that restricts + // the use of `ascend` and `into_root_mut` on reborrowed pointers, preventing this unsafety. + pub unsafe fn reborrow_mut(&mut self) + -> Handle<NodeRef<marker::Mut, K, V, NodeType>, HandleType> { + + // We can't use Handle::new_kv or Handle::new_edge because we don't know our type + Handle { + node: self.node.reborrow_mut(), + idx: self.idx, + _marker: PhantomData + } + } +} + +impl<BorrowType, K, V, NodeType> + Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> { + + /// Creates a new handle to an edge in `node`. `idx` must be less than or equal to + /// `node.len()`. + pub fn new_edge(node: NodeRef<BorrowType, K, V, NodeType>, idx: usize) -> Self { + // Necessary for correctness, but in a private module + debug_assert!(idx <= node.len()); + + Handle { + node: node, + idx: idx, + _marker: PhantomData + } + } + + pub fn left_kv(self) + -> Result<Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV>, Self> { + + if self.idx > 0 { + Ok(Handle::new_kv(self.node, self.idx - 1)) + } else { + Err(self) + } + } + + pub fn right_kv(self) + -> Result<Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV>, Self> { + + if self.idx < self.node.len() { + Ok(Handle::new_kv(self.node, self.idx)) + } else { + Err(self) + } + } +} + +impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge> { + /// Inserts a new key/value pair between the key/value pairs to the right and left of + /// this edge. This method assumes that there is enough space in the node for the new + /// pair to fit. + /// + /// The returned pointer points to the inserted value. + fn insert_fit(&mut self, key: K, val: V) -> *mut V { + // Necessary for correctness, but in a private module + debug_assert!(self.node.len() < CAPACITY); + + unsafe { + slice_insert(self.node.keys_mut(), self.idx, key); + slice_insert(self.node.vals_mut(), self.idx, val); + + self.node.as_leaf_mut().len += 1; + + self.node.vals_mut().get_unchecked_mut(self.idx) + } + } + + /// Inserts a new key/value pair between the key/value pairs to the right and left of + /// this edge. This method splits the node if there isn't enough room. + /// + /// The returned pointer points to the inserted value. + pub fn insert(mut self, key: K, val: V) + -> (InsertResult<'a, K, V, marker::Leaf>, *mut V) { + + if self.node.len() < CAPACITY { + let ptr = self.insert_fit(key, val); + (InsertResult::Fit(Handle::new_kv(self.node, self.idx)), ptr) + } else { + let middle = Handle::new_kv(self.node, B); + let (mut left, k, v, mut right) = middle.split(); + let ptr = if self.idx <= B { + unsafe { + Handle::new_edge(left.reborrow_mut(), self.idx).insert_fit(key, val) + } + } else { + unsafe { + Handle::new_edge( + right.as_mut().cast_unchecked::<marker::Leaf>(), + self.idx - (B + 1) + ).insert_fit(key, val) + } + }; + (InsertResult::Split(left, k, v, right), ptr) + } + } +} + +impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::Edge> { + /// Fixes the parent pointer and index in the child node below this edge. This is useful + /// when the ordering of edges has been changed, such as in the various `insert` methods. + fn correct_parent_link(mut self) { + let idx = self.idx as u16; + let ptr = self.node.as_internal_mut() as *mut _; + let mut child = self.descend(); + child.as_leaf_mut().parent = ptr; + child.as_leaf_mut().parent_idx = idx; + } + + /// Unsafely asserts to the compiler some static information about whether the underlying + /// node of this handle is a `Leaf`. + unsafe fn cast_unchecked<NewType>(&mut self) + -> Handle<NodeRef<marker::Mut, K, V, NewType>, marker::Edge> { + + Handle::new_edge(self.node.cast_unchecked(), self.idx) + } + + /// Inserts a new key/value pair and an edge that will go to the right of that new pair + /// between this edge and the key/value pair to the right of this edge. This method assumes + /// that there is enough space in the node for the new pair to fit. + fn insert_fit(&mut self, key: K, val: V, edge: Root<K, V>) { + // Necessary for correctness, but in an internal module + debug_assert!(self.node.len() < CAPACITY); + debug_assert!(edge.height == self.node.height - 1); + + unsafe { + // This cast is a lie, but it allows us to reuse the key/value insertion logic. + self.cast_unchecked::<marker::Leaf>().insert_fit(key, val); + + slice_insert( + slice::from_raw_parts_mut( + self.node.as_internal_mut().edges.as_mut_ptr(), + self.node.len() + ), + self.idx + 1, + edge.node + ); + + for i in (self.idx+1)..(self.node.len()+1) { + Handle::new_edge(self.node.reborrow_mut(), i).correct_parent_link(); + } + } + } + + /// Inserts a new key/value pair and an edge that will go to the right of that new pair + /// between this edge and the key/value pair to the right of this edge. This method splits + /// the node if there isn't enough room. + pub fn insert(mut self, key: K, val: V, edge: Root<K, V>) + -> InsertResult<'a, K, V, marker::Internal> { + + // Necessary for correctness, but this is an internal module + debug_assert!(edge.height == self.node.height - 1); + + if self.node.len() < CAPACITY { + self.insert_fit(key, val, edge); + InsertResult::Fit(Handle::new_kv(self.node, self.idx)) + } else { + let middle = Handle::new_kv(self.node, B); + let (mut left, k, v, mut right) = middle.split(); + if self.idx <= B { + unsafe { + Handle::new_edge(left.reborrow_mut(), self.idx).insert_fit(key, val, edge); + } + } else { + unsafe { + Handle::new_edge( + right.as_mut().cast_unchecked::<marker::Internal>(), + self.idx - (B + 1) + ).insert_fit(key, val, edge); + } + } + InsertResult::Split(left, k, v, right) + } + } +} + +impl<BorrowType, K, V> + Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::Edge> { + + /// Finds the node pointed to by this edge. + /// + /// `edge.descend().ascend().unwrap()` and `node.ascend().unwrap().descend()` should + /// both, upon success, do nothing. + pub fn descend(self) -> NodeRef<BorrowType, K, V, marker::LeafOrInternal> { + NodeRef { + height: self.node.height - 1, + node: unsafe { self.node.as_internal().edges.get_unchecked(self.idx).as_ptr() }, + root: self.node.root, + _marker: PhantomData + } + } +} + +impl<'a, K: 'a, V: 'a, NodeType> + Handle<NodeRef<marker::Immut<'a>, K, V, NodeType>, marker::KV> { + + pub fn into_kv(self) -> (&'a K, &'a V) { + let (keys, vals) = self.node.into_slices(); + unsafe { + (keys.get_unchecked(self.idx), vals.get_unchecked(self.idx)) + } + } +} + +impl<'a, K: 'a, V: 'a, NodeType> + Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, marker::KV> { + + pub fn into_kv_mut(self) -> (&'a mut K, &'a mut V) { + let (mut keys, mut vals) = self.node.into_slices_mut(); + unsafe { + (keys.get_unchecked_mut(self.idx), vals.get_unchecked_mut(self.idx)) + } + } +} + +impl<'a, K, V, NodeType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, marker::KV> { + pub fn kv_mut(&mut self) -> (&mut K, &mut V) { + unsafe { + let (mut keys, mut vals) = self.node.reborrow_mut().into_slices_mut(); + (keys.get_unchecked_mut(self.idx), vals.get_unchecked_mut(self.idx)) + } + } +} + +impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::KV> { + /// Splits the underlying node into three parts: + /// + /// - The node is truncated to only contain the key/value pairs to the right of + /// this handle. + /// - The key and value pointed to by this handle and extracted. + /// - All the key/value pairs to the right of this handle are put into a newly + /// allocated node. + pub fn split(mut self) + -> (NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, K, V, Root<K, V>) { + unsafe { + let mut new_node = Box::new(LeafNode::new()); + + let k = ptr::read(self.node.keys().get_unchecked(self.idx)); + let v = ptr::read(self.node.vals().get_unchecked(self.idx)); + + let new_len = self.node.len() - self.idx - 1; + + ptr::copy_nonoverlapping( + self.node.keys().as_ptr().offset(self.idx as isize + 1), + new_node.keys.as_mut_ptr(), + new_len + ); + ptr::copy_nonoverlapping( + self.node.vals().as_ptr().offset(self.idx as isize + 1), + new_node.vals.as_mut_ptr(), + new_len + ); + + self.node.as_leaf_mut().len = self.idx as u16; + new_node.len = new_len as u16; + + ( + self.node, + k, v, + Root { + node: BoxedNode::from_leaf(new_node), + height: 0 + } + ) + } + } + + /// Removes the key/value pair pointed to by this handle, returning the edge between the + /// now adjacent key/value pairs to the left and right of this handle. + pub fn remove(mut self) + -> (Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>, K, V) { + unsafe { + let k = slice_remove(self.node.keys_mut(), self.idx); + let v = slice_remove(self.node.vals_mut(), self.idx); + self.node.as_leaf_mut().len -= 1; + (self.left_edge(), k, v) + } + } +} + +impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::KV> { + /// Splits the underlying node into three parts: + /// + /// - The node is truncated to only contain the edges and key/value pairs to the + /// right of this handle. + /// - The key and value pointed to by this handle and extracted. + /// - All the edges and key/value pairs to the right of this handle are put into + /// a newly allocated node. + pub fn split(mut self) + -> (NodeRef<marker::Mut<'a>, K, V, marker::Internal>, K, V, Root<K, V>) { + unsafe { + let mut new_node = Box::new(InternalNode::new()); + + let k = ptr::read(self.node.keys().get_unchecked(self.idx)); + let v = ptr::read(self.node.vals().get_unchecked(self.idx)); + + let height = self.node.height; + let new_len = self.node.len() - self.idx - 1; + + ptr::copy_nonoverlapping( + self.node.keys().as_ptr().offset(self.idx as isize + 1), + new_node.data.keys.as_mut_ptr(), + new_len + ); + ptr::copy_nonoverlapping( + self.node.vals().as_ptr().offset(self.idx as isize + 1), + new_node.data.vals.as_mut_ptr(), + new_len + ); + ptr::copy_nonoverlapping( + self.node.as_internal().edges.as_ptr().offset(self.idx as isize + 1), + new_node.edges.as_mut_ptr(), + new_len + 1 + ); + + self.node.as_leaf_mut().len = self.idx as u16; + new_node.data.len = new_len as u16; + + let mut new_root = Root { + node: BoxedNode::from_internal(new_node), + height: height + }; + + for i in 0..(new_len+1) { + Handle::new_edge(new_root.as_mut().cast_unchecked(), i).correct_parent_link(); + } + + ( + self.node, + k, v, + new_root + ) + } + } + + /// Returns whether it is valid to call `.merge()`, i.e., whether there is enough room in + /// a node to hold the combination of the nodes to the left and right of this handle along + /// with the key/value pair at this handle. + pub fn can_merge(&self) -> bool { + ( + self.reborrow() + .left_edge() + .descend() + .len() + + self.reborrow() + .right_edge() + .descend() + .len() + + 1 + ) <= CAPACITY + } + + /// Combines the node immediately to the left of this handle, the key/value pair pointed + /// to by this handle, and the node immediately to the right of this handle into one new + /// child of the underlying node, returning an edge referencing that new child. + /// + /// Assumes that this edge `.can_merge()`. + pub fn merge(mut self) + -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::Edge> { + let self1 = unsafe { ptr::read(&self) }; + let self2 = unsafe { ptr::read(&self) }; + let mut left_node = self1.left_edge().descend(); + let left_len = left_node.len(); + let mut right_node = self2.right_edge().descend(); + let right_len = right_node.len(); + + // necessary for correctness, but in a private module + debug_assert!(left_len + right_len + 1 <= CAPACITY); + + unsafe { + ptr::write(left_node.keys_mut().get_unchecked_mut(left_len), + slice_remove(self.node.keys_mut(), self.idx)); + ptr::copy_nonoverlapping( + right_node.keys().as_ptr(), + left_node.keys_mut().as_mut_ptr().offset(left_len as isize + 1), + right_len + ); + ptr::write(left_node.vals_mut().get_unchecked_mut(left_len), + slice_remove(self.node.vals_mut(), self.idx)); + ptr::copy_nonoverlapping( + right_node.vals().as_ptr(), + left_node.vals_mut().as_mut_ptr().offset(left_len as isize + 1), + right_len + ); + + slice_remove(&mut self.node.as_internal_mut().edges, self.idx + 1); + for i in self.idx+1..self.node.len() { + Handle::new_edge(self.node.reborrow_mut(), i).correct_parent_link(); + } + self.node.as_leaf_mut().len -= 1; + + left_node.as_leaf_mut().len += right_len as u16 + 1; + + if self.node.height > 1 { + ptr::copy_nonoverlapping( + right_node.cast_unchecked().as_internal().edges.as_ptr(), + left_node.cast_unchecked() + .as_internal_mut() + .edges + .as_mut_ptr() + .offset(left_len as isize + 1), + right_len + 1 + ); + + for i in left_len+1..left_len+right_len+2 { + Handle::new_edge( + left_node.cast_unchecked().reborrow_mut(), + i + ).correct_parent_link(); + } + + heap::deallocate( + right_node.node.get() as *mut u8, + mem::size_of::<InternalNode<K, V>>(), + mem::align_of::<InternalNode<K, V>>() + ); + } else { + heap::deallocate( + right_node.node.get() as *mut u8, + mem::size_of::<LeafNode<K, V>>(), + mem::align_of::<LeafNode<K, V>>() + ); + } + + Handle::new_edge(self.node, self.idx) + } + } + + /// This removes a key/value pair from the left child and replaces it with the key/value pair + /// pointed to by this handle while pushing the old key/value pair of this handle into the right + /// child. + pub fn steal_left(&mut self) { + unsafe { + let (k, v, edge) = self.reborrow_mut().left_edge().descend().pop(); + + let k = mem::replace(self.reborrow_mut().into_kv_mut().0, k); + let v = mem::replace(self.reborrow_mut().into_kv_mut().1, v); + + match self.reborrow_mut().right_edge().descend().force() { + ForceResult::Leaf(mut leaf) => leaf.push_front(k, v), + ForceResult::Internal(mut internal) => internal.push_front(k, v, edge.unwrap()) + } + } + } + + /// This removes a key/value pair from the right child and replaces it with the key/value pair + /// pointed to by this handle while pushing the old key/value pair of this handle into the left + /// child. + pub fn steal_right(&mut self) { + unsafe { + let (k, v, edge) = self.reborrow_mut().right_edge().descend().pop_front(); + + let k = mem::replace(self.reborrow_mut().into_kv_mut().0, k); + let v = mem::replace(self.reborrow_mut().into_kv_mut().1, v); + + match self.reborrow_mut().left_edge().descend().force() { + ForceResult::Leaf(mut leaf) => leaf.push(k, v), + ForceResult::Internal(mut internal) => internal.push(k, v, edge.unwrap()) + } + } + } + + /// This does stealing similar to `steal_left` but steals multiple elements at once. + pub fn bulk_steal_left(&mut self, count: usize) { + unsafe { + let mut left_node = ptr::read(self).left_edge().descend(); + let left_len = left_node.len(); + let mut right_node = ptr::read(self).right_edge().descend(); + let right_len = right_node.len(); + + // Make sure that we may steal safely. + debug_assert!(right_len + count <= CAPACITY); + debug_assert!(left_len >= count); + + let new_left_len = left_len - count; + + // Move data. + { + let left_kv = left_node.reborrow_mut().into_kv_pointers_mut(); + let right_kv = right_node.reborrow_mut().into_kv_pointers_mut(); + let parent_kv = { + let kv = self.reborrow_mut().into_kv_mut(); + (kv.0 as *mut K, kv.1 as *mut V) + }; + + // Make room for stolen elements in the right child. + ptr::copy(right_kv.0, + right_kv.0.offset(count as isize), + right_len); + ptr::copy(right_kv.1, + right_kv.1.offset(count as isize), + right_len); + + // Move elements from the left child to the right one. + move_kv(left_kv, new_left_len + 1, right_kv, 0, count - 1); + + // Move parent's key/value pair to the right child. + move_kv(parent_kv, 0, right_kv, count - 1, 1); + + // Move the left-most stolen pair to the parent. + move_kv(left_kv, new_left_len, parent_kv, 0, 1); + } + + left_node.reborrow_mut().as_leaf_mut().len -= count as u16; + right_node.reborrow_mut().as_leaf_mut().len += count as u16; + + match (left_node.force(), right_node.force()) { + (ForceResult::Internal(left), ForceResult::Internal(mut right)) => { + // Make room for stolen edges. + let right_edges = right.reborrow_mut().as_internal_mut().edges.as_mut_ptr(); + ptr::copy(right_edges, + right_edges.offset(count as isize), + right_len + 1); + right.correct_childrens_parent_links(count, count + right_len + 1); + + move_edges(left, new_left_len + 1, right, 0, count); + }, + (ForceResult::Leaf(_), ForceResult::Leaf(_)) => { } + _ => { unreachable!(); } + } + } + } + + /// The symmetric clone of `bulk_steal_left`. + pub fn bulk_steal_right(&mut self, count: usize) { + unsafe { + let mut left_node = ptr::read(self).left_edge().descend(); + let left_len = left_node.len(); + let mut right_node = ptr::read(self).right_edge().descend(); + let right_len = right_node.len(); + + // Make sure that we may steal safely. + debug_assert!(left_len + count <= CAPACITY); + debug_assert!(right_len >= count); + + let new_right_len = right_len - count; + + // Move data. + { + let left_kv = left_node.reborrow_mut().into_kv_pointers_mut(); + let right_kv = right_node.reborrow_mut().into_kv_pointers_mut(); + let parent_kv = { + let kv = self.reborrow_mut().into_kv_mut(); + (kv.0 as *mut K, kv.1 as *mut V) + }; + + // Move parent's key/value pair to the left child. + move_kv(parent_kv, 0, left_kv, left_len, 1); + + // Move elements from the right child to the left one. + move_kv(right_kv, 0, left_kv, left_len + 1, count - 1); + + // Move the right-most stolen pair to the parent. + move_kv(right_kv, count - 1, parent_kv, 0, 1); + + // Fix right indexing + ptr::copy(right_kv.0.offset(count as isize), + right_kv.0, + new_right_len); + ptr::copy(right_kv.1.offset(count as isize), + right_kv.1, + new_right_len); + } + + left_node.reborrow_mut().as_leaf_mut().len += count as u16; + right_node.reborrow_mut().as_leaf_mut().len -= count as u16; + + match (left_node.force(), right_node.force()) { + (ForceResult::Internal(left), ForceResult::Internal(mut right)) => { + move_edges(right.reborrow_mut(), 0, left, left_len + 1, count); + + // Fix right indexing. + let right_edges = right.reborrow_mut().as_internal_mut().edges.as_mut_ptr(); + ptr::copy(right_edges.offset(count as isize), + right_edges, + new_right_len + 1); + right.correct_childrens_parent_links(0, new_right_len + 1); + }, + (ForceResult::Leaf(_), ForceResult::Leaf(_)) => { } + _ => { unreachable!(); } + } + } + } +} + +unsafe fn move_kv<K, V>( + source: (*mut K, *mut V), source_offset: usize, + dest: (*mut K, *mut V), dest_offset: usize, + count: usize) +{ + ptr::copy_nonoverlapping(source.0.offset(source_offset as isize), + dest.0.offset(dest_offset as isize), + count); + ptr::copy_nonoverlapping(source.1.offset(source_offset as isize), + dest.1.offset(dest_offset as isize), + count); +} + +// Source and destination must have the same height. +unsafe fn move_edges<K, V>( + mut source: NodeRef<marker::Mut, K, V, marker::Internal>, source_offset: usize, + mut dest: NodeRef<marker::Mut, K, V, marker::Internal>, dest_offset: usize, + count: usize) +{ + let source_ptr = source.as_internal_mut().edges.as_mut_ptr(); + let dest_ptr = dest.as_internal_mut().edges.as_mut_ptr(); + ptr::copy_nonoverlapping(source_ptr.offset(source_offset as isize), + dest_ptr.offset(dest_offset as isize), + count); + dest.correct_childrens_parent_links(dest_offset, dest_offset + count); +} + +impl<BorrowType, K, V, HandleType> + Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, HandleType> { + + /// Check whether the underlying node is an `Internal` node or a `Leaf` node. + pub fn force(self) -> ForceResult< + Handle<NodeRef<BorrowType, K, V, marker::Leaf>, HandleType>, + Handle<NodeRef<BorrowType, K, V, marker::Internal>, HandleType> + > { + match self.node.force() { + ForceResult::Leaf(node) => ForceResult::Leaf(Handle { + node: node, + idx: self.idx, + _marker: PhantomData + }), + ForceResult::Internal(node) => ForceResult::Internal(Handle { + node: node, + idx: self.idx, + _marker: PhantomData + }) + } + } +} + +impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::Edge> { + /// Move the suffix after `self` from one node to another one. `right` must be empty. + /// The first edge of `right` remains unchanged. + pub fn move_suffix(&mut self, + right: &mut NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>) { + unsafe { + let left_new_len = self.idx; + let mut left_node = self.reborrow_mut().into_node(); + + let right_new_len = left_node.len() - left_new_len; + let mut right_node = right.reborrow_mut(); + + debug_assert!(right_node.len() == 0); + debug_assert!(left_node.height == right_node.height); + + let left_kv = left_node.reborrow_mut().into_kv_pointers_mut(); + let right_kv = right_node.reborrow_mut().into_kv_pointers_mut(); + + + move_kv(left_kv, left_new_len, right_kv, 0, right_new_len); + + left_node.reborrow_mut().as_leaf_mut().len = left_new_len as u16; + right_node.reborrow_mut().as_leaf_mut().len = right_new_len as u16; + + match (left_node.force(), right_node.force()) { + (ForceResult::Internal(left), ForceResult::Internal(right)) => { + move_edges(left, left_new_len + 1, right, 1, right_new_len); + }, + (ForceResult::Leaf(_), ForceResult::Leaf(_)) => { } + _ => { unreachable!(); } + } + } + } +} + +pub enum ForceResult<Leaf, Internal> { + Leaf(Leaf), + Internal(Internal) +} + +pub enum InsertResult<'a, K, V, Type> { + Fit(Handle<NodeRef<marker::Mut<'a>, K, V, Type>, marker::KV>), + Split(NodeRef<marker::Mut<'a>, K, V, Type>, K, V, Root<K, V>) +} + +pub mod marker { + use core::marker::PhantomData; + + pub enum Leaf { } + pub enum Internal { } + pub enum LeafOrInternal { } + + pub enum Owned { } + pub struct Immut<'a>(PhantomData<&'a ()>); + pub struct Mut<'a>(PhantomData<&'a mut ()>); + + pub enum KV { } + pub enum Edge { } +} + +unsafe fn slice_insert<T>(slice: &mut [T], idx: usize, val: T) { + ptr::copy( + slice.as_ptr().offset(idx as isize), + slice.as_mut_ptr().offset(idx as isize + 1), + slice.len() - idx + ); + ptr::write(slice.get_unchecked_mut(idx), val); +} + +unsafe fn slice_remove<T>(slice: &mut [T], idx: usize) -> T { + let ret = ptr::read(slice.get_unchecked(idx)); + ptr::copy( + slice.as_ptr().offset(idx as isize + 1), + slice.as_mut_ptr().offset(idx as isize), + slice.len() - idx - 1 + ); + ret +} diff --git a/src/liballoc/btree/search.rs b/src/liballoc/btree/search.rs new file mode 100644 index 00000000000..bc1272fbc78 --- /dev/null +++ b/src/liballoc/btree/search.rs @@ -0,0 +1,75 @@ +// Copyright 2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use core::cmp::Ordering; + +use borrow::Borrow; + +use super::node::{Handle, NodeRef, marker}; + +use super::node::ForceResult::*; +use self::SearchResult::*; + +pub enum SearchResult<BorrowType, K, V, FoundType, GoDownType> { + Found(Handle<NodeRef<BorrowType, K, V, FoundType>, marker::KV>), + GoDown(Handle<NodeRef<BorrowType, K, V, GoDownType>, marker::Edge>) +} + +pub fn search_tree<BorrowType, K, V, Q: ?Sized>( + mut node: NodeRef<BorrowType, K, V, marker::LeafOrInternal>, + key: &Q +) -> SearchResult<BorrowType, K, V, marker::LeafOrInternal, marker::Leaf> + where Q: Ord, K: Borrow<Q> { + + loop { + match search_node(node, key) { + Found(handle) => return Found(handle), + GoDown(handle) => match handle.force() { + Leaf(leaf) => return GoDown(leaf), + Internal(internal) => { + node = internal.descend(); + continue; + } + } + } + } +} + +pub fn search_node<BorrowType, K, V, Type, Q: ?Sized>( + node: NodeRef<BorrowType, K, V, Type>, + key: &Q +) -> SearchResult<BorrowType, K, V, Type, Type> + where Q: Ord, K: Borrow<Q> { + + match search_linear(&node, key) { + (idx, true) => Found( + Handle::new_kv(node, idx) + ), + (idx, false) => SearchResult::GoDown( + Handle::new_edge(node, idx) + ) + } +} + +pub fn search_linear<BorrowType, K, V, Type, Q: ?Sized>( + node: &NodeRef<BorrowType, K, V, Type>, + key: &Q +) -> (usize, bool) + where Q: Ord, K: Borrow<Q> { + + for (i, k) in node.keys().iter().enumerate() { + match key.cmp(k.borrow()) { + Ordering::Greater => {}, + Ordering::Equal => return (i, true), + Ordering::Less => return (i, false) + } + } + (node.keys().len(), false) +} diff --git a/src/liballoc/btree/set.rs b/src/liballoc/btree/set.rs new file mode 100644 index 00000000000..d32460da939 --- /dev/null +++ b/src/liballoc/btree/set.rs @@ -0,0 +1,1133 @@ +// Copyright 2014 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +// This is pretty much entirely stolen from TreeSet, since BTreeMap has an identical interface +// to TreeMap + +use core::cmp::Ordering::{self, Less, Greater, Equal}; +use core::cmp::{min, max}; +use core::fmt::Debug; +use core::fmt; +use core::iter::{Peekable, FromIterator, FusedIterator}; +use core::ops::{BitOr, BitAnd, BitXor, Sub}; + +use borrow::Borrow; +use btree_map::{BTreeMap, Keys}; +use super::Recover; +use range::RangeArgument; + +// FIXME(conventions): implement bounded iterators + +/// A set based on a B-Tree. +/// +/// See [`BTreeMap`]'s documentation for a detailed discussion of this collection's performance +/// benefits and drawbacks. +/// +/// It is a logic error for an item to be modified in such a way that the item's ordering relative +/// to any other item, as determined by the [`Ord`] trait, changes while it is in the set. This is +/// normally only possible through [`Cell`], [`RefCell`], global state, I/O, or unsafe code. +/// +/// [`BTreeMap`]: struct.BTreeMap.html +/// [`Ord`]: ../../std/cmp/trait.Ord.html +/// [`Cell`]: ../../std/cell/struct.Cell.html +/// [`RefCell`]: ../../std/cell/struct.RefCell.html +/// +/// # Examples +/// +/// ``` +/// use std::collections::BTreeSet; +/// +/// // Type inference lets us omit an explicit type signature (which +/// // would be `BTreeSet<&str>` in this example). +/// let mut books = BTreeSet::new(); +/// +/// // Add some books. +/// books.insert("A Dance With Dragons"); +/// books.insert("To Kill a Mockingbird"); +/// books.insert("The Odyssey"); +/// books.insert("The Great Gatsby"); +/// +/// // Check for a specific one. +/// if !books.contains("The Winds of Winter") { +/// println!("We have {} books, but The Winds of Winter ain't one.", +/// books.len()); +/// } +/// +/// // Remove a book. +/// books.remove("The Odyssey"); +/// +/// // Iterate over everything. +/// for book in &books { +/// println!("{}", book); +/// } +/// ``` +#[derive(Clone, Hash, PartialEq, Eq, Ord, PartialOrd)] +#[stable(feature = "rust1", since = "1.0.0")] +pub struct BTreeSet<T> { + map: BTreeMap<T, ()>, +} + +/// An iterator over the items of a `BTreeSet`. +/// +/// This `struct` is created by the [`iter`] method on [`BTreeSet`]. +/// See its documentation for more. +/// +/// [`BTreeSet`]: struct.BTreeSet.html +/// [`iter`]: struct.BTreeSet.html#method.iter +#[stable(feature = "rust1", since = "1.0.0")] +pub struct Iter<'a, T: 'a> { + iter: Keys<'a, T, ()>, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a, T: 'a + fmt::Debug> fmt::Debug for Iter<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("Iter") + .field(&self.iter.clone()) + .finish() + } +} + +/// An owning iterator over the items of a `BTreeSet`. +/// +/// This `struct` is created by the [`into_iter`] method on [`BTreeSet`][`BTreeSet`] +/// (provided by the `IntoIterator` trait). See its documentation for more. +/// +/// [`BTreeSet`]: struct.BTreeSet.html +/// [`into_iter`]: struct.BTreeSet.html#method.into_iter +#[stable(feature = "rust1", since = "1.0.0")] +#[derive(Debug)] +pub struct IntoIter<T> { + iter: ::btree_map::IntoIter<T, ()>, +} + +/// An iterator over a sub-range of items in a `BTreeSet`. +/// +/// This `struct` is created by the [`range`] method on [`BTreeSet`]. +/// See its documentation for more. +/// +/// [`BTreeSet`]: struct.BTreeSet.html +/// [`range`]: struct.BTreeSet.html#method.range +#[derive(Debug)] +#[stable(feature = "btree_range", since = "1.17.0")] +pub struct Range<'a, T: 'a> { + iter: ::btree_map::Range<'a, T, ()>, +} + +/// A lazy iterator producing elements in the difference of `BTreeSet`s. +/// +/// This `struct` is created by the [`difference`] method on [`BTreeSet`]. +/// See its documentation for more. +/// +/// [`BTreeSet`]: struct.BTreeSet.html +/// [`difference`]: struct.BTreeSet.html#method.difference +#[stable(feature = "rust1", since = "1.0.0")] +pub struct Difference<'a, T: 'a> { + a: Peekable<Iter<'a, T>>, + b: Peekable<Iter<'a, T>>, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a, T: 'a + fmt::Debug> fmt::Debug for Difference<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("Difference") + .field(&self.a) + .field(&self.b) + .finish() + } +} + +/// A lazy iterator producing elements in the symmetric difference of `BTreeSet`s. +/// +/// This `struct` is created by the [`symmetric_difference`] method on +/// [`BTreeSet`]. See its documentation for more. +/// +/// [`BTreeSet`]: struct.BTreeSet.html +/// [`symmetric_difference`]: struct.BTreeSet.html#method.symmetric_difference +#[stable(feature = "rust1", since = "1.0.0")] +pub struct SymmetricDifference<'a, T: 'a> { + a: Peekable<Iter<'a, T>>, + b: Peekable<Iter<'a, T>>, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a, T: 'a + fmt::Debug> fmt::Debug for SymmetricDifference<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("SymmetricDifference") + .field(&self.a) + .field(&self.b) + .finish() + } +} + +/// A lazy iterator producing elements in the intersection of `BTreeSet`s. +/// +/// This `struct` is created by the [`intersection`] method on [`BTreeSet`]. +/// See its documentation for more. +/// +/// [`BTreeSet`]: struct.BTreeSet.html +/// [`intersection`]: struct.BTreeSet.html#method.intersection +#[stable(feature = "rust1", since = "1.0.0")] +pub struct Intersection<'a, T: 'a> { + a: Peekable<Iter<'a, T>>, + b: Peekable<Iter<'a, T>>, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a, T: 'a + fmt::Debug> fmt::Debug for Intersection<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("Intersection") + .field(&self.a) + .field(&self.b) + .finish() + } +} + +/// A lazy iterator producing elements in the union of `BTreeSet`s. +/// +/// This `struct` is created by the [`union`] method on [`BTreeSet`]. +/// See its documentation for more. +/// +/// [`BTreeSet`]: struct.BTreeSet.html +/// [`union`]: struct.BTreeSet.html#method.union +#[stable(feature = "rust1", since = "1.0.0")] +pub struct Union<'a, T: 'a> { + a: Peekable<Iter<'a, T>>, + b: Peekable<Iter<'a, T>>, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a, T: 'a + fmt::Debug> fmt::Debug for Union<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("Union") + .field(&self.a) + .field(&self.b) + .finish() + } +} + +impl<T: Ord> BTreeSet<T> { + /// Makes a new `BTreeSet` with a reasonable choice of B. + /// + /// # Examples + /// + /// ``` + /// # #![allow(unused_mut)] + /// use std::collections::BTreeSet; + /// + /// let mut set: BTreeSet<i32> = BTreeSet::new(); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn new() -> BTreeSet<T> { + BTreeSet { map: BTreeMap::new() } + } +} + +impl<T> BTreeSet<T> { + /// Gets an iterator that visits the values in the `BTreeSet` in ascending order. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeSet; + /// + /// let set: BTreeSet<usize> = [1, 2, 3].iter().cloned().collect(); + /// let mut set_iter = set.iter(); + /// assert_eq!(set_iter.next(), Some(&1)); + /// assert_eq!(set_iter.next(), Some(&2)); + /// assert_eq!(set_iter.next(), Some(&3)); + /// assert_eq!(set_iter.next(), None); + /// ``` + /// + /// Values returned by the iterator are returned in ascending order: + /// + /// ``` + /// use std::collections::BTreeSet; + /// + /// let set: BTreeSet<usize> = [3, 1, 2].iter().cloned().collect(); + /// let mut set_iter = set.iter(); + /// assert_eq!(set_iter.next(), Some(&1)); + /// assert_eq!(set_iter.next(), Some(&2)); + /// assert_eq!(set_iter.next(), Some(&3)); + /// assert_eq!(set_iter.next(), None); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn iter(&self) -> Iter<T> { + Iter { iter: self.map.keys() } + } +} + +impl<T: Ord> BTreeSet<T> { + /// Constructs a double-ended iterator over a sub-range of elements in the set. + /// The simplest way is to use the range syntax `min..max`, thus `range(min..max)` will + /// yield elements from min (inclusive) to max (exclusive). + /// The range may also be entered as `(Bound<T>, Bound<T>)`, so for example + /// `range((Excluded(4), Included(10)))` will yield a left-exclusive, right-inclusive + /// range from 4 to 10. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeSet; + /// use std::collections::Bound::Included; + /// + /// let mut set = BTreeSet::new(); + /// set.insert(3); + /// set.insert(5); + /// set.insert(8); + /// for &elem in set.range((Included(&4), Included(&8))) { + /// println!("{}", elem); + /// } + /// assert_eq!(Some(&5), set.range(4..).next()); + /// ``` + #[stable(feature = "btree_range", since = "1.17.0")] + pub fn range<K: ?Sized, R>(&self, range: R) -> Range<T> + where K: Ord, T: Borrow<K>, R: RangeArgument<K> + { + Range { iter: self.map.range(range) } + } +} + +impl<T: Ord> BTreeSet<T> { + /// Visits the values representing the difference, + /// i.e. the values that are in `self` but not in `other`, + /// in ascending order. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeSet; + /// + /// let mut a = BTreeSet::new(); + /// a.insert(1); + /// a.insert(2); + /// + /// let mut b = BTreeSet::new(); + /// b.insert(2); + /// b.insert(3); + /// + /// let diff: Vec<_> = a.difference(&b).cloned().collect(); + /// assert_eq!(diff, [1]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn difference<'a>(&'a self, other: &'a BTreeSet<T>) -> Difference<'a, T> { + Difference { + a: self.iter().peekable(), + b: other.iter().peekable(), + } + } + + /// Visits the values representing the symmetric difference, + /// i.e. the values that are in `self` or in `other` but not in both, + /// in ascending order. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeSet; + /// + /// let mut a = BTreeSet::new(); + /// a.insert(1); + /// a.insert(2); + /// + /// let mut b = BTreeSet::new(); + /// b.insert(2); + /// b.insert(3); + /// + /// let sym_diff: Vec<_> = a.symmetric_difference(&b).cloned().collect(); + /// assert_eq!(sym_diff, [1, 3]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn symmetric_difference<'a>(&'a self, + other: &'a BTreeSet<T>) + -> SymmetricDifference<'a, T> { + SymmetricDifference { + a: self.iter().peekable(), + b: other.iter().peekable(), + } + } + + /// Visits the values representing the intersection, + /// i.e. the values that are both in `self` and `other`, + /// in ascending order. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeSet; + /// + /// let mut a = BTreeSet::new(); + /// a.insert(1); + /// a.insert(2); + /// + /// let mut b = BTreeSet::new(); + /// b.insert(2); + /// b.insert(3); + /// + /// let intersection: Vec<_> = a.intersection(&b).cloned().collect(); + /// assert_eq!(intersection, [2]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn intersection<'a>(&'a self, other: &'a BTreeSet<T>) -> Intersection<'a, T> { + Intersection { + a: self.iter().peekable(), + b: other.iter().peekable(), + } + } + + /// Visits the values representing the union, + /// i.e. all the values in `self` or `other`, without duplicates, + /// in ascending order. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeSet; + /// + /// let mut a = BTreeSet::new(); + /// a.insert(1); + /// + /// let mut b = BTreeSet::new(); + /// b.insert(2); + /// + /// let union: Vec<_> = a.union(&b).cloned().collect(); + /// assert_eq!(union, [1, 2]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn union<'a>(&'a self, other: &'a BTreeSet<T>) -> Union<'a, T> { + Union { + a: self.iter().peekable(), + b: other.iter().peekable(), + } + } + + /// Returns the number of elements in the set. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeSet; + /// + /// let mut v = BTreeSet::new(); + /// assert_eq!(v.len(), 0); + /// v.insert(1); + /// assert_eq!(v.len(), 1); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn len(&self) -> usize { + self.map.len() + } + + /// Returns `true` if the set contains no elements. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeSet; + /// + /// let mut v = BTreeSet::new(); + /// assert!(v.is_empty()); + /// v.insert(1); + /// assert!(!v.is_empty()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn is_empty(&self) -> bool { + self.len() == 0 + } + + /// Clears the set, removing all values. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeSet; + /// + /// let mut v = BTreeSet::new(); + /// v.insert(1); + /// v.clear(); + /// assert!(v.is_empty()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn clear(&mut self) { + self.map.clear() + } + + /// Returns `true` if the set contains a value. + /// + /// The value may be any borrowed form of the set's value type, + /// but the ordering on the borrowed form *must* match the + /// ordering on the value type. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeSet; + /// + /// let set: BTreeSet<_> = [1, 2, 3].iter().cloned().collect(); + /// assert_eq!(set.contains(&1), true); + /// assert_eq!(set.contains(&4), false); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn contains<Q: ?Sized>(&self, value: &Q) -> bool + where T: Borrow<Q>, + Q: Ord + { + self.map.contains_key(value) + } + + /// Returns a reference to the value in the set, if any, that is equal to the given value. + /// + /// The value may be any borrowed form of the set's value type, + /// but the ordering on the borrowed form *must* match the + /// ordering on the value type. + #[stable(feature = "set_recovery", since = "1.9.0")] + pub fn get<Q: ?Sized>(&self, value: &Q) -> Option<&T> + where T: Borrow<Q>, + Q: Ord + { + Recover::get(&self.map, value) + } + + /// Returns `true` if `self` has no elements in common with `other`. + /// This is equivalent to checking for an empty intersection. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeSet; + /// + /// let a: BTreeSet<_> = [1, 2, 3].iter().cloned().collect(); + /// let mut b = BTreeSet::new(); + /// + /// assert_eq!(a.is_disjoint(&b), true); + /// b.insert(4); + /// assert_eq!(a.is_disjoint(&b), true); + /// b.insert(1); + /// assert_eq!(a.is_disjoint(&b), false); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn is_disjoint(&self, other: &BTreeSet<T>) -> bool { + self.intersection(other).next().is_none() + } + + /// Returns `true` if the set is a subset of another, + /// i.e. `other` contains at least all the values in `self`. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeSet; + /// + /// let sup: BTreeSet<_> = [1, 2, 3].iter().cloned().collect(); + /// let mut set = BTreeSet::new(); + /// + /// assert_eq!(set.is_subset(&sup), true); + /// set.insert(2); + /// assert_eq!(set.is_subset(&sup), true); + /// set.insert(4); + /// assert_eq!(set.is_subset(&sup), false); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn is_subset(&self, other: &BTreeSet<T>) -> bool { + // Stolen from TreeMap + let mut x = self.iter(); + let mut y = other.iter(); + let mut a = x.next(); + let mut b = y.next(); + while a.is_some() { + if b.is_none() { + return false; + } + + let a1 = a.unwrap(); + let b1 = b.unwrap(); + + match b1.cmp(a1) { + Less => (), + Greater => return false, + Equal => a = x.next(), + } + + b = y.next(); + } + true + } + + /// Returns `true` if the set is a superset of another, + /// i.e. `self` contains at least all the values in `other`. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeSet; + /// + /// let sub: BTreeSet<_> = [1, 2].iter().cloned().collect(); + /// let mut set = BTreeSet::new(); + /// + /// assert_eq!(set.is_superset(&sub), false); + /// + /// set.insert(0); + /// set.insert(1); + /// assert_eq!(set.is_superset(&sub), false); + /// + /// set.insert(2); + /// assert_eq!(set.is_superset(&sub), true); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn is_superset(&self, other: &BTreeSet<T>) -> bool { + other.is_subset(self) + } + + /// Adds a value to the set. + /// + /// If the set did not have this value present, `true` is returned. + /// + /// If the set did have this value present, `false` is returned, and the + /// entry is not updated. See the [module-level documentation] for more. + /// + /// [module-level documentation]: index.html#insert-and-complex-keys + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeSet; + /// + /// let mut set = BTreeSet::new(); + /// + /// assert_eq!(set.insert(2), true); + /// assert_eq!(set.insert(2), false); + /// assert_eq!(set.len(), 1); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn insert(&mut self, value: T) -> bool { + self.map.insert(value, ()).is_none() + } + + /// Adds a value to the set, replacing the existing value, if any, that is equal to the given + /// one. Returns the replaced value. + #[stable(feature = "set_recovery", since = "1.9.0")] + pub fn replace(&mut self, value: T) -> Option<T> { + Recover::replace(&mut self.map, value) + } + + /// Removes a value from the set. Returns `true` if the value was + /// present in the set. + /// + /// The value may be any borrowed form of the set's value type, + /// but the ordering on the borrowed form *must* match the + /// ordering on the value type. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeSet; + /// + /// let mut set = BTreeSet::new(); + /// + /// set.insert(2); + /// assert_eq!(set.remove(&2), true); + /// assert_eq!(set.remove(&2), false); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool + where T: Borrow<Q>, + Q: Ord + { + self.map.remove(value).is_some() + } + + /// Removes and returns the value in the set, if any, that is equal to the given one. + /// + /// The value may be any borrowed form of the set's value type, + /// but the ordering on the borrowed form *must* match the + /// ordering on the value type. + #[stable(feature = "set_recovery", since = "1.9.0")] + pub fn take<Q: ?Sized>(&mut self, value: &Q) -> Option<T> + where T: Borrow<Q>, + Q: Ord + { + Recover::take(&mut self.map, value) + } + + /// Moves all elements from `other` into `Self`, leaving `other` empty. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeSet; + /// + /// let mut a = BTreeSet::new(); + /// a.insert(1); + /// a.insert(2); + /// a.insert(3); + /// + /// let mut b = BTreeSet::new(); + /// b.insert(3); + /// b.insert(4); + /// b.insert(5); + /// + /// a.append(&mut b); + /// + /// assert_eq!(a.len(), 5); + /// assert_eq!(b.len(), 0); + /// + /// assert!(a.contains(&1)); + /// assert!(a.contains(&2)); + /// assert!(a.contains(&3)); + /// assert!(a.contains(&4)); + /// assert!(a.contains(&5)); + /// ``` + #[stable(feature = "btree_append", since = "1.11.0")] + pub fn append(&mut self, other: &mut Self) { + self.map.append(&mut other.map); + } + + /// Splits the collection into two at the given key. Returns everything after the given key, + /// including the key. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::collections::BTreeMap; + /// + /// let mut a = BTreeMap::new(); + /// a.insert(1, "a"); + /// a.insert(2, "b"); + /// a.insert(3, "c"); + /// a.insert(17, "d"); + /// a.insert(41, "e"); + /// + /// let b = a.split_off(&3); + /// + /// assert_eq!(a.len(), 2); + /// assert_eq!(b.len(), 3); + /// + /// assert_eq!(a[&1], "a"); + /// assert_eq!(a[&2], "b"); + /// + /// assert_eq!(b[&3], "c"); + /// assert_eq!(b[&17], "d"); + /// assert_eq!(b[&41], "e"); + /// ``` + #[stable(feature = "btree_split_off", since = "1.11.0")] + pub fn split_off<Q: ?Sized + Ord>(&mut self, key: &Q) -> Self where T: Borrow<Q> { + BTreeSet { map: self.map.split_off(key) } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Ord> FromIterator<T> for BTreeSet<T> { + fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> BTreeSet<T> { + let mut set = BTreeSet::new(); + set.extend(iter); + set + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> IntoIterator for BTreeSet<T> { + type Item = T; + type IntoIter = IntoIter<T>; + + /// Gets an iterator for moving out the `BTreeSet`'s contents. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeSet; + /// + /// let set: BTreeSet<usize> = [1, 2, 3, 4].iter().cloned().collect(); + /// + /// let v: Vec<_> = set.into_iter().collect(); + /// assert_eq!(v, [1, 2, 3, 4]); + /// ``` + fn into_iter(self) -> IntoIter<T> { + IntoIter { iter: self.map.into_iter() } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> IntoIterator for &'a BTreeSet<T> { + type Item = &'a T; + type IntoIter = Iter<'a, T>; + + fn into_iter(self) -> Iter<'a, T> { + self.iter() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Ord> Extend<T> for BTreeSet<T> { + #[inline] + fn extend<Iter: IntoIterator<Item = T>>(&mut self, iter: Iter) { + for elem in iter { + self.insert(elem); + } + } +} + +#[stable(feature = "extend_ref", since = "1.2.0")] +impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for BTreeSet<T> { + fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) { + self.extend(iter.into_iter().cloned()); + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Ord> Default for BTreeSet<T> { + /// Makes an empty `BTreeSet<T>` with a reasonable choice of B. + fn default() -> BTreeSet<T> { + BTreeSet::new() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, 'b, T: Ord + Clone> Sub<&'b BTreeSet<T>> for &'a BTreeSet<T> { + type Output = BTreeSet<T>; + + /// Returns the difference of `self` and `rhs` as a new `BTreeSet<T>`. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeSet; + /// + /// let a: BTreeSet<_> = vec![1, 2, 3].into_iter().collect(); + /// let b: BTreeSet<_> = vec![3, 4, 5].into_iter().collect(); + /// + /// let result = &a - &b; + /// let result_vec: Vec<_> = result.into_iter().collect(); + /// assert_eq!(result_vec, [1, 2]); + /// ``` + fn sub(self, rhs: &BTreeSet<T>) -> BTreeSet<T> { + self.difference(rhs).cloned().collect() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, 'b, T: Ord + Clone> BitXor<&'b BTreeSet<T>> for &'a BTreeSet<T> { + type Output = BTreeSet<T>; + + /// Returns the symmetric difference of `self` and `rhs` as a new `BTreeSet<T>`. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeSet; + /// + /// let a: BTreeSet<_> = vec![1, 2, 3].into_iter().collect(); + /// let b: BTreeSet<_> = vec![2, 3, 4].into_iter().collect(); + /// + /// let result = &a ^ &b; + /// let result_vec: Vec<_> = result.into_iter().collect(); + /// assert_eq!(result_vec, [1, 4]); + /// ``` + fn bitxor(self, rhs: &BTreeSet<T>) -> BTreeSet<T> { + self.symmetric_difference(rhs).cloned().collect() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, 'b, T: Ord + Clone> BitAnd<&'b BTreeSet<T>> for &'a BTreeSet<T> { + type Output = BTreeSet<T>; + + /// Returns the intersection of `self` and `rhs` as a new `BTreeSet<T>`. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeSet; + /// + /// let a: BTreeSet<_> = vec![1, 2, 3].into_iter().collect(); + /// let b: BTreeSet<_> = vec![2, 3, 4].into_iter().collect(); + /// + /// let result = &a & &b; + /// let result_vec: Vec<_> = result.into_iter().collect(); + /// assert_eq!(result_vec, [2, 3]); + /// ``` + fn bitand(self, rhs: &BTreeSet<T>) -> BTreeSet<T> { + self.intersection(rhs).cloned().collect() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, 'b, T: Ord + Clone> BitOr<&'b BTreeSet<T>> for &'a BTreeSet<T> { + type Output = BTreeSet<T>; + + /// Returns the union of `self` and `rhs` as a new `BTreeSet<T>`. + /// + /// # Examples + /// + /// ``` + /// use std::collections::BTreeSet; + /// + /// let a: BTreeSet<_> = vec![1, 2, 3].into_iter().collect(); + /// let b: BTreeSet<_> = vec![3, 4, 5].into_iter().collect(); + /// + /// let result = &a | &b; + /// let result_vec: Vec<_> = result.into_iter().collect(); + /// assert_eq!(result_vec, [1, 2, 3, 4, 5]); + /// ``` + fn bitor(self, rhs: &BTreeSet<T>) -> BTreeSet<T> { + self.union(rhs).cloned().collect() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Debug> Debug for BTreeSet<T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_set().entries(self.iter()).finish() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> Clone for Iter<'a, T> { + fn clone(&self) -> Iter<'a, T> { + Iter { iter: self.iter.clone() } + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> Iterator for Iter<'a, T> { + type Item = &'a T; + + fn next(&mut self) -> Option<&'a T> { + self.iter.next() + } + fn size_hint(&self) -> (usize, Option<usize>) { + self.iter.size_hint() + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> DoubleEndedIterator for Iter<'a, T> { + fn next_back(&mut self) -> Option<&'a T> { + self.iter.next_back() + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> ExactSizeIterator for Iter<'a, T> { + fn len(&self) -> usize { self.iter.len() } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, T> FusedIterator for Iter<'a, T> {} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> Iterator for IntoIter<T> { + type Item = T; + + fn next(&mut self) -> Option<T> { + self.iter.next().map(|(k, _)| k) + } + fn size_hint(&self) -> (usize, Option<usize>) { + self.iter.size_hint() + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> DoubleEndedIterator for IntoIter<T> { + fn next_back(&mut self) -> Option<T> { + self.iter.next_back().map(|(k, _)| k) + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> ExactSizeIterator for IntoIter<T> { + fn len(&self) -> usize { self.iter.len() } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<T> FusedIterator for IntoIter<T> {} + +#[stable(feature = "btree_range", since = "1.17.0")] +impl<'a, T> Clone for Range<'a, T> { + fn clone(&self) -> Range<'a, T> { + Range { iter: self.iter.clone() } + } +} + +#[stable(feature = "btree_range", since = "1.17.0")] +impl<'a, T> Iterator for Range<'a, T> { + type Item = &'a T; + + fn next(&mut self) -> Option<&'a T> { + self.iter.next().map(|(k, _)| k) + } +} + +#[stable(feature = "btree_range", since = "1.17.0")] +impl<'a, T> DoubleEndedIterator for Range<'a, T> { + fn next_back(&mut self) -> Option<&'a T> { + self.iter.next_back().map(|(k, _)| k) + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, T> FusedIterator for Range<'a, T> {} + +/// Compare `x` and `y`, but return `short` if x is None and `long` if y is None +fn cmp_opt<T: Ord>(x: Option<&T>, y: Option<&T>, short: Ordering, long: Ordering) -> Ordering { + match (x, y) { + (None, _) => short, + (_, None) => long, + (Some(x1), Some(y1)) => x1.cmp(y1), + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> Clone for Difference<'a, T> { + fn clone(&self) -> Difference<'a, T> { + Difference { + a: self.a.clone(), + b: self.b.clone(), + } + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T: Ord> Iterator for Difference<'a, T> { + type Item = &'a T; + + fn next(&mut self) -> Option<&'a T> { + loop { + match cmp_opt(self.a.peek(), self.b.peek(), Less, Less) { + Less => return self.a.next(), + Equal => { + self.a.next(); + self.b.next(); + } + Greater => { + self.b.next(); + } + } + } + } + + fn size_hint(&self) -> (usize, Option<usize>) { + let a_len = self.a.len(); + let b_len = self.b.len(); + (a_len.saturating_sub(b_len), Some(a_len)) + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, T: Ord> FusedIterator for Difference<'a, T> {} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> Clone for SymmetricDifference<'a, T> { + fn clone(&self) -> SymmetricDifference<'a, T> { + SymmetricDifference { + a: self.a.clone(), + b: self.b.clone(), + } + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T: Ord> Iterator for SymmetricDifference<'a, T> { + type Item = &'a T; + + fn next(&mut self) -> Option<&'a T> { + loop { + match cmp_opt(self.a.peek(), self.b.peek(), Greater, Less) { + Less => return self.a.next(), + Equal => { + self.a.next(); + self.b.next(); + } + Greater => return self.b.next(), + } + } + } + + fn size_hint(&self) -> (usize, Option<usize>) { + (0, Some(self.a.len() + self.b.len())) + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, T: Ord> FusedIterator for SymmetricDifference<'a, T> {} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> Clone for Intersection<'a, T> { + fn clone(&self) -> Intersection<'a, T> { + Intersection { + a: self.a.clone(), + b: self.b.clone(), + } + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T: Ord> Iterator for Intersection<'a, T> { + type Item = &'a T; + + fn next(&mut self) -> Option<&'a T> { + loop { + let o_cmp = match (self.a.peek(), self.b.peek()) { + (None, _) => None, + (_, None) => None, + (Some(a1), Some(b1)) => Some(a1.cmp(b1)), + }; + match o_cmp { + None => return None, + Some(Less) => { + self.a.next(); + } + Some(Equal) => { + self.b.next(); + return self.a.next(); + } + Some(Greater) => { + self.b.next(); + } + } + } + } + + fn size_hint(&self) -> (usize, Option<usize>) { + (0, Some(min(self.a.len(), self.b.len()))) + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, T: Ord> FusedIterator for Intersection<'a, T> {} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> Clone for Union<'a, T> { + fn clone(&self) -> Union<'a, T> { + Union { + a: self.a.clone(), + b: self.b.clone(), + } + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T: Ord> Iterator for Union<'a, T> { + type Item = &'a T; + + fn next(&mut self) -> Option<&'a T> { + loop { + match cmp_opt(self.a.peek(), self.b.peek(), Greater, Less) { + Less => return self.a.next(), + Equal => { + self.b.next(); + return self.a.next(); + } + Greater => return self.b.next(), + } + } + } + + fn size_hint(&self) -> (usize, Option<usize>) { + let a_len = self.a.len(); + let b_len = self.b.len(); + (max(a_len, b_len), Some(a_len + b_len)) + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, T: Ord> FusedIterator for Union<'a, T> {} diff --git a/src/liballoc/fmt.rs b/src/liballoc/fmt.rs new file mode 100644 index 00000000000..62a88164621 --- /dev/null +++ b/src/liballoc/fmt.rs @@ -0,0 +1,535 @@ +// Copyright 2013-2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Utilities for formatting and printing `String`s +//! +//! This module contains the runtime support for the `format!` syntax extension. +//! This macro is implemented in the compiler to emit calls to this module in +//! order to format arguments at runtime into strings. +//! +//! # Usage +//! +//! The `format!` macro is intended to be familiar to those coming from C's +//! printf/fprintf functions or Python's `str.format` function. +//! +//! Some examples of the `format!` extension are: +//! +//! ``` +//! format!("Hello"); // => "Hello" +//! format!("Hello, {}!", "world"); // => "Hello, world!" +//! format!("The number is {}", 1); // => "The number is 1" +//! format!("{:?}", (3, 4)); // => "(3, 4)" +//! format!("{value}", value=4); // => "4" +//! format!("{} {}", 1, 2); // => "1 2" +//! format!("{:04}", 42); // => "0042" with leading zeros +//! ``` +//! +//! From these, you can see that the first argument is a format string. It is +//! required by the compiler for this to be a string literal; it cannot be a +//! variable passed in (in order to perform validity checking). The compiler +//! will then parse the format string and determine if the list of arguments +//! provided is suitable to pass to this format string. +//! +//! ## Positional parameters +//! +//! Each formatting argument is allowed to specify which value argument it's +//! referencing, and if omitted it is assumed to be "the next argument". For +//! example, the format string `{} {} {}` would take three parameters, and they +//! would be formatted in the same order as they're given. The format string +//! `{2} {1} {0}`, however, would format arguments in reverse order. +//! +//! Things can get a little tricky once you start intermingling the two types of +//! positional specifiers. The "next argument" specifier can be thought of as an +//! iterator over the argument. Each time a "next argument" specifier is seen, +//! the iterator advances. This leads to behavior like this: +//! +//! ``` +//! format!("{1} {} {0} {}", 1, 2); // => "2 1 1 2" +//! ``` +//! +//! The internal iterator over the argument has not been advanced by the time +//! the first `{}` is seen, so it prints the first argument. Then upon reaching +//! the second `{}`, the iterator has advanced forward to the second argument. +//! Essentially, parameters which explicitly name their argument do not affect +//! parameters which do not name an argument in terms of positional specifiers. +//! +//! A format string is required to use all of its arguments, otherwise it is a +//! compile-time error. You may refer to the same argument more than once in the +//! format string. +//! +//! ## Named parameters +//! +//! Rust itself does not have a Python-like equivalent of named parameters to a +//! function, but the `format!` macro is a syntax extension which allows it to +//! leverage named parameters. Named parameters are listed at the end of the +//! argument list and have the syntax: +//! +//! ```text +//! identifier '=' expression +//! ``` +//! +//! For example, the following `format!` expressions all use named argument: +//! +//! ``` +//! format!("{argument}", argument = "test"); // => "test" +//! format!("{name} {}", 1, name = 2); // => "2 1" +//! format!("{a} {c} {b}", a="a", b='b', c=3); // => "a 3 b" +//! ``` +//! +//! It is not valid to put positional parameters (those without names) after +//! arguments which have names. Like with positional parameters, it is not +//! valid to provide named parameters that are unused by the format string. +//! +//! ## Argument types +//! +//! Each argument's type is dictated by the format string. +//! There are various parameters which require a particular type, however. +//! An example is the `{:.*}` syntax, which sets the number of decimal places +//! in floating-point types: +//! +//! ``` +//! let formatted_number = format!("{:.*}", 2, 1.234567); +//! +//! assert_eq!("1.23", formatted_number) +//! ``` +//! +//! If this syntax is used, then the number of characters to print precedes the +//! actual object being formatted, and the number of characters must have the +//! type `usize`. +//! +//! ## Formatting traits +//! +//! When requesting that an argument be formatted with a particular type, you +//! are actually requesting that an argument ascribes to a particular trait. +//! This allows multiple actual types to be formatted via `{:x}` (like `i8` as +//! well as `isize`). The current mapping of types to traits is: +//! +//! * *nothing* ⇒ [`Display`](trait.Display.html) +//! * `?` ⇒ [`Debug`](trait.Debug.html) +//! * `o` ⇒ [`Octal`](trait.Octal.html) +//! * `x` ⇒ [`LowerHex`](trait.LowerHex.html) +//! * `X` ⇒ [`UpperHex`](trait.UpperHex.html) +//! * `p` ⇒ [`Pointer`](trait.Pointer.html) +//! * `b` ⇒ [`Binary`](trait.Binary.html) +//! * `e` ⇒ [`LowerExp`](trait.LowerExp.html) +//! * `E` ⇒ [`UpperExp`](trait.UpperExp.html) +//! +//! What this means is that any type of argument which implements the +//! `fmt::Binary` trait can then be formatted with `{:b}`. Implementations +//! are provided for these traits for a number of primitive types by the +//! standard library as well. If no format is specified (as in `{}` or `{:6}`), +//! then the format trait used is the `Display` trait. +//! +//! When implementing a format trait for your own type, you will have to +//! implement a method of the signature: +//! +//! ``` +//! # #![allow(dead_code)] +//! # use std::fmt; +//! # struct Foo; // our custom type +//! # impl fmt::Display for Foo { +//! fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { +//! # write!(f, "testing, testing") +//! # } } +//! ``` +//! +//! Your type will be passed as `self` by-reference, and then the function +//! should emit output into the `f.buf` stream. It is up to each format trait +//! implementation to correctly adhere to the requested formatting parameters. +//! The values of these parameters will be listed in the fields of the +//! `Formatter` struct. In order to help with this, the `Formatter` struct also +//! provides some helper methods. +//! +//! Additionally, the return value of this function is `fmt::Result` which is a +//! type alias of `Result<(), std::fmt::Error>`. Formatting implementations +//! should ensure that they propagate errors from the `Formatter` (e.g., when +//! calling `write!`) however, they should never return errors spuriously. That +//! is, a formatting implementation must and may only return an error if the +//! passed-in `Formatter` returns an error. This is because, contrary to what +//! the function signature might suggest, string formatting is an infallible +//! operation. This function only returns a result because writing to the +//! underlying stream might fail and it must provide a way to propagate the fact +//! that an error has occurred back up the stack. +//! +//! An example of implementing the formatting traits would look +//! like: +//! +//! ``` +//! use std::fmt; +//! +//! #[derive(Debug)] +//! struct Vector2D { +//! x: isize, +//! y: isize, +//! } +//! +//! impl fmt::Display for Vector2D { +//! fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { +//! // The `f` value implements the `Write` trait, which is what the +//! // write! macro is expecting. Note that this formatting ignores the +//! // various flags provided to format strings. +//! write!(f, "({}, {})", self.x, self.y) +//! } +//! } +//! +//! // Different traits allow different forms of output of a type. The meaning +//! // of this format is to print the magnitude of a vector. +//! impl fmt::Binary for Vector2D { +//! fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { +//! let magnitude = (self.x * self.x + self.y * self.y) as f64; +//! let magnitude = magnitude.sqrt(); +//! +//! // Respect the formatting flags by using the helper method +//! // `pad_integral` on the Formatter object. See the method +//! // documentation for details, and the function `pad` can be used +//! // to pad strings. +//! let decimals = f.precision().unwrap_or(3); +//! let string = format!("{:.*}", decimals, magnitude); +//! f.pad_integral(true, "", &string) +//! } +//! } +//! +//! fn main() { +//! let myvector = Vector2D { x: 3, y: 4 }; +//! +//! println!("{}", myvector); // => "(3, 4)" +//! println!("{:?}", myvector); // => "Vector2D {x: 3, y:4}" +//! println!("{:10.3b}", myvector); // => " 5.000" +//! } +//! ``` +//! +//! ### `fmt::Display` vs `fmt::Debug` +//! +//! These two formatting traits have distinct purposes: +//! +//! - `fmt::Display` implementations assert that the type can be faithfully +//! represented as a UTF-8 string at all times. It is **not** expected that +//! all types implement the `Display` trait. +//! - `fmt::Debug` implementations should be implemented for **all** public types. +//! Output will typically represent the internal state as faithfully as possible. +//! The purpose of the `Debug` trait is to facilitate debugging Rust code. In +//! most cases, using `#[derive(Debug)]` is sufficient and recommended. +//! +//! Some examples of the output from both traits: +//! +//! ``` +//! assert_eq!(format!("{} {:?}", 3, 4), "3 4"); +//! assert_eq!(format!("{} {:?}", 'a', 'b'), "a 'b'"); +//! assert_eq!(format!("{} {:?}", "foo\n", "bar\n"), "foo\n \"bar\\n\""); +//! ``` +//! +//! ## Related macros +//! +//! There are a number of related macros in the `format!` family. The ones that +//! are currently implemented are: +//! +//! ```ignore +//! format! // described above +//! write! // first argument is a &mut io::Write, the destination +//! writeln! // same as write but appends a newline +//! print! // the format string is printed to the standard output +//! println! // same as print but appends a newline +//! format_args! // described below. +//! ``` +//! +//! ### `write!` +//! +//! This and `writeln` are two macros which are used to emit the format string +//! to a specified stream. This is used to prevent intermediate allocations of +//! format strings and instead directly write the output. Under the hood, this +//! function is actually invoking the `write_fmt` function defined on the +//! `std::io::Write` trait. Example usage is: +//! +//! ``` +//! # #![allow(unused_must_use)] +//! use std::io::Write; +//! let mut w = Vec::new(); +//! write!(&mut w, "Hello {}!", "world"); +//! ``` +//! +//! ### `print!` +//! +//! This and `println` emit their output to stdout. Similarly to the `write!` +//! macro, the goal of these macros is to avoid intermediate allocations when +//! printing output. Example usage is: +//! +//! ``` +//! print!("Hello {}!", "world"); +//! println!("I have a newline {}", "character at the end"); +//! ``` +//! +//! ### `format_args!` +//! +//! This is a curious macro which is used to safely pass around +//! an opaque object describing the format string. This object +//! does not require any heap allocations to create, and it only +//! references information on the stack. Under the hood, all of +//! the related macros are implemented in terms of this. First +//! off, some example usage is: +//! +//! ``` +//! # #![allow(unused_must_use)] +//! use std::fmt; +//! use std::io::{self, Write}; +//! +//! let mut some_writer = io::stdout(); +//! write!(&mut some_writer, "{}", format_args!("print with a {}", "macro")); +//! +//! fn my_fmt_fn(args: fmt::Arguments) { +//! write!(&mut io::stdout(), "{}", args); +//! } +//! my_fmt_fn(format_args!(", or a {} too", "function")); +//! ``` +//! +//! The result of the `format_args!` macro is a value of type `fmt::Arguments`. +//! This structure can then be passed to the `write` and `format` functions +//! inside this module in order to process the format string. +//! The goal of this macro is to even further prevent intermediate allocations +//! when dealing formatting strings. +//! +//! For example, a logging library could use the standard formatting syntax, but +//! it would internally pass around this structure until it has been determined +//! where output should go to. +//! +//! # Syntax +//! +//! The syntax for the formatting language used is drawn from other languages, +//! so it should not be too alien. Arguments are formatted with Python-like +//! syntax, meaning that arguments are surrounded by `{}` instead of the C-like +//! `%`. The actual grammar for the formatting syntax is: +//! +//! ```text +//! format_string := <text> [ maybe-format <text> ] * +//! maybe-format := '{' '{' | '}' '}' | <format> +//! format := '{' [ argument ] [ ':' format_spec ] '}' +//! argument := integer | identifier +//! +//! format_spec := [[fill]align][sign]['#']['0'][width]['.' precision][type] +//! fill := character +//! align := '<' | '^' | '>' +//! sign := '+' | '-' +//! width := count +//! precision := count | '*' +//! type := identifier | '' +//! count := parameter | integer +//! parameter := argument '$' +//! ``` +//! +//! # Formatting Parameters +//! +//! Each argument being formatted can be transformed by a number of formatting +//! parameters (corresponding to `format_spec` in the syntax above). These +//! parameters affect the string representation of what's being formatted. This +//! syntax draws heavily from Python's, so it may seem a bit familiar. +//! +//! ## Fill/Alignment +//! +//! The fill character is provided normally in conjunction with the `width` +//! parameter. This indicates that if the value being formatted is smaller than +//! `width` some extra characters will be printed around it. The extra +//! characters are specified by `fill`, and the alignment can be one of the +//! following options: +//! +//! * `<` - the argument is left-aligned in `width` columns +//! * `^` - the argument is center-aligned in `width` columns +//! * `>` - the argument is right-aligned in `width` columns +//! +//! Note that alignment may not be implemented by some types. A good way +//! to ensure padding is applied is to format your input, then use this +//! resulting string to pad your output. +//! +//! ## Sign/`#`/`0` +//! +//! These can all be interpreted as flags for a particular formatter. +//! +//! * `+` - This is intended for numeric types and indicates that the sign +//! should always be printed. Positive signs are never printed by +//! default, and the negative sign is only printed by default for the +//! `Signed` trait. This flag indicates that the correct sign (`+` or `-`) +//! should always be printed. +//! * `-` - Currently not used +//! * `#` - This flag is indicates that the "alternate" form of printing should +//! be used. The alternate forms are: +//! * `#?` - pretty-print the `Debug` formatting +//! * `#x` - precedes the argument with a `0x` +//! * `#X` - precedes the argument with a `0x` +//! * `#b` - precedes the argument with a `0b` +//! * `#o` - precedes the argument with a `0o` +//! * `0` - This is used to indicate for integer formats that the padding should +//! both be done with a `0` character as well as be sign-aware. A format +//! like `{:08}` would yield `00000001` for the integer `1`, while the +//! same format would yield `-0000001` for the integer `-1`. Notice that +//! the negative version has one fewer zero than the positive version. +//! Note that padding zeroes are always placed after the sign (if any) +//! and before the digits. When used together with the `#` flag, a similar +//! rule applies: padding zeroes are inserted after the prefix but before +//! the digits. +//! +//! ## Width +//! +//! This is a parameter for the "minimum width" that the format should take up. +//! If the value's string does not fill up this many characters, then the +//! padding specified by fill/alignment will be used to take up the required +//! space. +//! +//! The default fill/alignment for non-numerics is a space and left-aligned. The +//! defaults for numeric formatters is also a space but with right-alignment. If +//! the `0` flag is specified for numerics, then the implicit fill character is +//! `0`. +//! +//! The value for the width can also be provided as a `usize` in the list of +//! parameters by using the dollar syntax indicating that the second argument is +//! a `usize` specifying the width, for example: +//! +//! ``` +//! // All of these print "Hello x !" +//! println!("Hello {:5}!", "x"); +//! println!("Hello {:1$}!", "x", 5); +//! println!("Hello {1:0$}!", 5, "x"); +//! println!("Hello {:width$}!", "x", width = 5); +//! ``` +//! +//! Referring to an argument with the dollar syntax does not affect the "next +//! argument" counter, so it's usually a good idea to refer to arguments by +//! position, or use named arguments. +//! +//! ## Precision +//! +//! For non-numeric types, this can be considered a "maximum width". If the resulting string is +//! longer than this width, then it is truncated down to this many characters and that truncated +//! value is emitted with proper `fill`, `alignment` and `width` if those parameters are set. +//! +//! For integral types, this is ignored. +//! +//! For floating-point types, this indicates how many digits after the decimal point should be +//! printed. +//! +//! There are three possible ways to specify the desired `precision`: +//! +//! 1. An integer `.N`: +//! +//! the integer `N` itself is the precision. +//! +//! 2. An integer or name followed by dollar sign `.N$`: +//! +//! use format *argument* `N` (which must be a `usize`) as the precision. +//! +//! 3. An asterisk `.*`: +//! +//! `.*` means that this `{...}` is associated with *two* format inputs rather than one: the +//! first input holds the `usize` precision, and the second holds the value to print. Note that +//! in this case, if one uses the format string `{<arg>:<spec>.*}`, then the `<arg>` part refers +//! to the *value* to print, and the `precision` must come in the input preceding `<arg>`. +//! +//! For example, the following calls all print the same thing `Hello x is 0.01000`: +//! +//! ``` +//! // Hello {arg 0 ("x")} is {arg 1 (0.01) with precision specified inline (5)} +//! println!("Hello {0} is {1:.5}", "x", 0.01); +//! +//! // Hello {arg 1 ("x")} is {arg 2 (0.01) with precision specified in arg 0 (5)} +//! println!("Hello {1} is {2:.0$}", 5, "x", 0.01); +//! +//! // Hello {arg 0 ("x")} is {arg 2 (0.01) with precision specified in arg 1 (5)} +//! println!("Hello {0} is {2:.1$}", "x", 5, 0.01); +//! +//! // Hello {next arg ("x")} is {second of next two args (0.01) with precision +//! // specified in first of next two args (5)} +//! println!("Hello {} is {:.*}", "x", 5, 0.01); +//! +//! // Hello {next arg ("x")} is {arg 2 (0.01) with precision +//! // specified in its predecessor (5)} +//! println!("Hello {} is {2:.*}", "x", 5, 0.01); +//! +//! // Hello {next arg ("x")} is {arg "number" (0.01) with precision specified +//! // in arg "prec" (5)} +//! println!("Hello {} is {number:.prec$}", "x", prec = 5, number = 0.01); +//! ``` +//! +//! While these: +//! +//! ``` +//! println!("{}, `{name:.*}` has 3 fractional digits", "Hello", 3, name=1234.56); +//! println!("{}, `{name:.*}` has 3 characters", "Hello", 3, name="1234.56"); +//! println!("{}, `{name:>8.*}` has 3 right-aligned characters", "Hello", 3, name="1234.56"); +//! ``` +//! +//! print two significantly different things: +//! +//! ```text +//! Hello, `1234.560` has 3 fractional digits +//! Hello, `123` has 3 characters +//! Hello, ` 123` has 3 right-aligned characters +//! ``` +//! +//! # Escaping +//! +//! The literal characters `{` and `}` may be included in a string by preceding +//! them with the same character. For example, the `{` character is escaped with +//! `{{` and the `}` character is escaped with `}}`. + +#![stable(feature = "rust1", since = "1.0.0")] + +#[unstable(feature = "fmt_internals", issue = "0")] +pub use core::fmt::rt; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::fmt::{Formatter, Result, Write}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::fmt::{Octal, Binary}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::fmt::{Display, Debug}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::fmt::{LowerHex, UpperHex, Pointer}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::fmt::{LowerExp, UpperExp}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::fmt::Error; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::fmt::{ArgumentV1, Arguments, write}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::fmt::{DebugList, DebugMap, DebugSet, DebugStruct, DebugTuple}; + +use string; + +/// The format function takes a precompiled format string and a list of +/// arguments, to return the resulting formatted string. +/// +/// # Arguments +/// +/// * args - a structure of arguments generated via the `format_args!` macro. +/// +/// # Examples +/// +/// Basic usage: +/// +/// ``` +/// use std::fmt; +/// +/// let s = fmt::format(format_args!("Hello, {}!", "world")); +/// assert_eq!(s, "Hello, world!"); +/// ``` +/// +/// Please note that using [`format!`][format!] might be preferrable. +/// Example: +/// +/// ``` +/// let s = format!("Hello, {}!", "world"); +/// assert_eq!(s, "Hello, world!"); +/// ``` +/// +/// [format!]: ../macro.format.html +#[stable(feature = "rust1", since = "1.0.0")] +pub fn format(args: Arguments) -> string::String { + let capacity = args.estimated_capacity(); + let mut output = string::String::with_capacity(capacity); + output.write_fmt(args) + .expect("a formatting trait implementation returned an error"); + output +} diff --git a/src/liballoc/lib.rs b/src/liballoc/lib.rs index 418a084da67..5252dabc127 100644 --- a/src/liballoc/lib.rs +++ b/src/liballoc/lib.rs @@ -1,4 +1,4 @@ -// Copyright 2014 The Rust Project Developers. See the COPYRIGHT +// Copyright 2014-2017 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // @@ -8,18 +8,16 @@ // option. This file may not be copied, modified, or distributed // except according to those terms. -//! # The Rust core allocation library +//! # The Rust core allocation and collections library //! -//! This is the lowest level library through which allocation in Rust can be -//! performed. +//! This library provides smart pointers and collections for managing +//! heap-allocated values. //! //! This library, like libcore, is not intended for general usage, but rather as //! a building block of other libraries. The types and interfaces in this //! library are reexported through the [standard library](../std/index.html), //! and should not be used through this library. //! -//! Currently, there are four major definitions in this library. -//! //! ## Boxed values //! //! The [`Box`](boxed/index.html) type is a smart pointer type. There can @@ -51,6 +49,12 @@ //! paired with synchronization primitives such as mutexes to allow mutation of //! shared resources. //! +//! ## Collections +//! +//! Implementations of the most common general purpose data structures are +//! defined in this library. They are reexported through the +//! [standard collections library](../std/collections/index.html). +//! //! ## Heap interfaces //! //! The [`heap`](heap/index.html) module defines the low-level interface to the @@ -71,8 +75,20 @@ #![no_std] #![needs_allocator] #![deny(warnings)] +#![deny(missing_debug_implementations)] +#![cfg_attr(test, allow(deprecated))] // rand +#![cfg_attr(test, feature(placement_in))] +#![cfg_attr(not(test), feature(char_escape_debug))] +#![cfg_attr(not(test), feature(core_float))] +#![cfg_attr(not(test), feature(exact_size_is_empty))] +#![cfg_attr(not(test), feature(slice_rotate))] +#![cfg_attr(not(test), feature(sort_unstable))] +#![cfg_attr(not(test), feature(str_checked_slicing))] +#![cfg_attr(test, feature(rand, test))] #![feature(allocator)] +#![feature(allow_internal_unstable)] +#![feature(box_patterns)] #![feature(box_syntax)] #![feature(cfg_target_has_atomic)] #![feature(coerce_unsized)] @@ -80,16 +96,33 @@ #![feature(core_intrinsics)] #![feature(custom_attribute)] #![feature(dropck_eyepatch)] -#![cfg_attr(not(test), feature(exact_size_is_empty))] +#![feature(exact_size_is_empty)] +#![feature(fmt_internals)] #![feature(fundamental)] +#![feature(fused)] #![feature(generic_param_attrs)] +#![feature(i128_type)] +#![feature(inclusive_range)] #![feature(lang_items)] +#![feature(manually_drop)] #![feature(needs_allocator)] +#![feature(nonzero)] +#![feature(offset_to)] #![feature(optin_builtin_traits)] +#![feature(pattern)] #![feature(placement_in_syntax)] +#![feature(placement_new_protocol)] #![feature(shared)] +#![feature(slice_get_slice)] +#![feature(slice_patterns)] +#![feature(slice_rsplit)] +#![feature(specialization)] #![feature(staged_api)] +#![feature(str_internals)] +#![feature(str_mut_extras)] +#![feature(trusted_len)] #![feature(unboxed_closures)] +#![feature(unicode)] #![feature(unique)] #![feature(unsize)] @@ -101,6 +134,10 @@ #[cfg(test)] #[macro_use] extern crate std; +#[cfg(test)] +extern crate test; + +extern crate std_unicode; // Module with internal macros used by other modules (needs to be included before other modules). #[macro_use] @@ -120,7 +157,7 @@ pub mod heap; pub mod boxed; #[cfg(test)] mod boxed { - pub use std::boxed::{Box, HEAP}; + pub use std::boxed::{Box, IntermediateBox, HEAP}; } #[cfg(test)] mod boxed_test; @@ -128,8 +165,111 @@ mod boxed_test; pub mod arc; pub mod rc; pub mod raw_vec; -#[unstable(feature = "str_box_extras", issue = "41119")] -pub mod str; pub mod oom; +// collections modules +pub mod binary_heap; +mod btree; +pub mod borrow; +pub mod fmt; +pub mod linked_list; +pub mod range; +pub mod slice; +pub mod str; +pub mod string; +pub mod vec; +pub mod vec_deque; + +#[stable(feature = "rust1", since = "1.0.0")] +pub mod btree_map { + //! A map based on a B-Tree. + #[stable(feature = "rust1", since = "1.0.0")] + pub use btree::map::*; +} + +#[stable(feature = "rust1", since = "1.0.0")] +pub mod btree_set { + //! A set based on a B-Tree. + #[stable(feature = "rust1", since = "1.0.0")] + pub use btree::set::*; +} + +#[cfg(not(test))] +mod std { + pub use core::ops; // RangeFull +} + +/// An endpoint of a range of keys. +/// +/// # Examples +/// +/// `Bound`s are range endpoints: +/// +/// ``` +/// #![feature(collections_range)] +/// +/// use std::collections::range::RangeArgument; +/// use std::collections::Bound::*; +/// +/// assert_eq!((..100).start(), Unbounded); +/// assert_eq!((1..12).start(), Included(&1)); +/// assert_eq!((1..12).end(), Excluded(&12)); +/// ``` +/// +/// Using a tuple of `Bound`s as an argument to [`BTreeMap::range`]. +/// Note that in most cases, it's better to use range syntax (`1..5`) instead. +/// +/// ``` +/// use std::collections::BTreeMap; +/// use std::collections::Bound::{Excluded, Included, Unbounded}; +/// +/// let mut map = BTreeMap::new(); +/// map.insert(3, "a"); +/// map.insert(5, "b"); +/// map.insert(8, "c"); +/// +/// for (key, value) in map.range((Excluded(3), Included(8))) { +/// println!("{}: {}", key, value); +/// } +/// +/// assert_eq!(Some((&3, &"a")), map.range((Unbounded, Included(5))).next()); +/// ``` +/// +/// [`BTreeMap::range`]: btree_map/struct.BTreeMap.html#method.range +#[stable(feature = "collections_bound", since = "1.17.0")] +#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)] +pub enum Bound<T> { + /// An inclusive bound. + #[stable(feature = "collections_bound", since = "1.17.0")] + Included(T), + /// An exclusive bound. + #[stable(feature = "collections_bound", since = "1.17.0")] + Excluded(T), + /// An infinite endpoint. Indicates that there is no bound in this direction. + #[stable(feature = "collections_bound", since = "1.17.0")] + Unbounded, +} + +/// An intermediate trait for specialization of `Extend`. +#[doc(hidden)] +trait SpecExtend<I: IntoIterator> { + /// Extends `self` with the contents of the given iterator. + fn spec_extend(&mut self, iter: I); +} + pub use oom::oom; + +#[doc(no_inline)] +pub use binary_heap::BinaryHeap; +#[doc(no_inline)] +pub use btree_map::BTreeMap; +#[doc(no_inline)] +pub use btree_set::BTreeSet; +#[doc(no_inline)] +pub use linked_list::LinkedList; +#[doc(no_inline)] +pub use vec_deque::VecDeque; +#[doc(no_inline)] +pub use string::String; +#[doc(no_inline)] +pub use vec::Vec; diff --git a/src/liballoc/linked_list.rs b/src/liballoc/linked_list.rs new file mode 100644 index 00000000000..e8973b7d285 --- /dev/null +++ b/src/liballoc/linked_list.rs @@ -0,0 +1,1504 @@ +// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! A doubly-linked list with owned nodes. +//! +//! The `LinkedList` allows pushing and popping elements at either end +//! in constant time. +//! +//! Almost always it is better to use `Vec` or [`VecDeque`] instead of +//! [`LinkedList`]. In general, array-based containers are faster, +//! more memory efficient and make better use of CPU cache. +//! +//! [`LinkedList`]: ../linked_list/struct.LinkedList.html +//! [`VecDeque`]: ../vec_deque/struct.VecDeque.html + +#![stable(feature = "rust1", since = "1.0.0")] + +use core::cmp::Ordering; +use core::fmt; +use core::hash::{Hasher, Hash}; +use core::iter::{FromIterator, FusedIterator}; +use core::marker::PhantomData; +use core::mem; +use core::ops::{BoxPlace, InPlace, Place, Placer}; +use core::ptr::{self, Shared}; + +use boxed::{Box, IntermediateBox}; +use super::SpecExtend; + +/// A doubly-linked list with owned nodes. +/// +/// The `LinkedList` allows pushing and popping elements at either end +/// in constant time. +/// +/// Almost always it is better to use `Vec` or `VecDeque` instead of +/// `LinkedList`. In general, array-based containers are faster, +/// more memory efficient and make better use of CPU cache. +#[stable(feature = "rust1", since = "1.0.0")] +pub struct LinkedList<T> { + head: Option<Shared<Node<T>>>, + tail: Option<Shared<Node<T>>>, + len: usize, + marker: PhantomData<Box<Node<T>>>, +} + +struct Node<T> { + next: Option<Shared<Node<T>>>, + prev: Option<Shared<Node<T>>>, + element: T, +} + +/// An iterator over the elements of a `LinkedList`. +/// +/// This `struct` is created by the [`iter`] method on [`LinkedList`]. See its +/// documentation for more. +/// +/// [`iter`]: struct.LinkedList.html#method.iter +/// [`LinkedList`]: struct.LinkedList.html +#[stable(feature = "rust1", since = "1.0.0")] +pub struct Iter<'a, T: 'a> { + head: Option<Shared<Node<T>>>, + tail: Option<Shared<Node<T>>>, + len: usize, + marker: PhantomData<&'a Node<T>>, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a, T: 'a + fmt::Debug> fmt::Debug for Iter<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("Iter") + .field(&self.len) + .finish() + } +} + +// FIXME #19839: deriving is too aggressive on the bounds (T doesn't need to be Clone). +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> Clone for Iter<'a, T> { + fn clone(&self) -> Self { + Iter { ..*self } + } +} + +/// A mutable iterator over the elements of a `LinkedList`. +/// +/// This `struct` is created by the [`iter_mut`] method on [`LinkedList`]. See its +/// documentation for more. +/// +/// [`iter_mut`]: struct.LinkedList.html#method.iter_mut +/// [`LinkedList`]: struct.LinkedList.html +#[stable(feature = "rust1", since = "1.0.0")] +pub struct IterMut<'a, T: 'a> { + list: &'a mut LinkedList<T>, + head: Option<Shared<Node<T>>>, + tail: Option<Shared<Node<T>>>, + len: usize, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a, T: 'a + fmt::Debug> fmt::Debug for IterMut<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("IterMut") + .field(&self.list) + .field(&self.len) + .finish() + } +} + +/// An owning iterator over the elements of a `LinkedList`. +/// +/// This `struct` is created by the [`into_iter`] method on [`LinkedList`][`LinkedList`] +/// (provided by the `IntoIterator` trait). See its documentation for more. +/// +/// [`into_iter`]: struct.LinkedList.html#method.into_iter +/// [`LinkedList`]: struct.LinkedList.html +#[derive(Clone)] +#[stable(feature = "rust1", since = "1.0.0")] +pub struct IntoIter<T> { + list: LinkedList<T>, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<T: fmt::Debug> fmt::Debug for IntoIter<T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("IntoIter") + .field(&self.list) + .finish() + } +} + +impl<T> Node<T> { + fn new(element: T) -> Self { + Node { + next: None, + prev: None, + element: element, + } + } + + fn into_element(self: Box<Self>) -> T { + self.element + } +} + +// private methods +impl<T> LinkedList<T> { + /// Adds the given node to the front of the list. + #[inline] + fn push_front_node(&mut self, mut node: Box<Node<T>>) { + unsafe { + node.next = self.head; + node.prev = None; + let node = Some(Shared::new(Box::into_raw(node))); + + match self.head { + None => self.tail = node, + Some(mut head) => head.as_mut().prev = node, + } + + self.head = node; + self.len += 1; + } + } + + /// Removes and returns the node at the front of the list. + #[inline] + fn pop_front_node(&mut self) -> Option<Box<Node<T>>> { + self.head.map(|node| unsafe { + let node = Box::from_raw(node.as_ptr()); + self.head = node.next; + + match self.head { + None => self.tail = None, + Some(mut head) => head.as_mut().prev = None, + } + + self.len -= 1; + node + }) + } + + /// Adds the given node to the back of the list. + #[inline] + fn push_back_node(&mut self, mut node: Box<Node<T>>) { + unsafe { + node.next = None; + node.prev = self.tail; + let node = Some(Shared::new(Box::into_raw(node))); + + match self.tail { + None => self.head = node, + Some(mut tail) => tail.as_mut().next = node, + } + + self.tail = node; + self.len += 1; + } + } + + /// Removes and returns the node at the back of the list. + #[inline] + fn pop_back_node(&mut self) -> Option<Box<Node<T>>> { + self.tail.map(|node| unsafe { + let node = Box::from_raw(node.as_ptr()); + self.tail = node.prev; + + match self.tail { + None => self.head = None, + Some(mut tail) => tail.as_mut().next = None, + } + + self.len -= 1; + node + }) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> Default for LinkedList<T> { + /// Creates an empty `LinkedList<T>`. + #[inline] + fn default() -> Self { + Self::new() + } +} + +impl<T> LinkedList<T> { + /// Creates an empty `LinkedList`. + /// + /// # Examples + /// + /// ``` + /// use std::collections::LinkedList; + /// + /// let list: LinkedList<u32> = LinkedList::new(); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn new() -> Self { + LinkedList { + head: None, + tail: None, + len: 0, + marker: PhantomData, + } + } + + /// Moves all elements from `other` to the end of the list. + /// + /// This reuses all the nodes from `other` and moves them into `self`. After + /// this operation, `other` becomes empty. + /// + /// This operation should compute in O(1) time and O(1) memory. + /// + /// # Examples + /// + /// ``` + /// use std::collections::LinkedList; + /// + /// let mut list1 = LinkedList::new(); + /// list1.push_back('a'); + /// + /// let mut list2 = LinkedList::new(); + /// list2.push_back('b'); + /// list2.push_back('c'); + /// + /// list1.append(&mut list2); + /// + /// let mut iter = list1.iter(); + /// assert_eq!(iter.next(), Some(&'a')); + /// assert_eq!(iter.next(), Some(&'b')); + /// assert_eq!(iter.next(), Some(&'c')); + /// assert!(iter.next().is_none()); + /// + /// assert!(list2.is_empty()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn append(&mut self, other: &mut Self) { + match self.tail { + None => mem::swap(self, other), + Some(mut tail) => { + if let Some(mut other_head) = other.head.take() { + unsafe { + tail.as_mut().next = Some(other_head); + other_head.as_mut().prev = Some(tail); + } + + self.tail = other.tail.take(); + self.len += mem::replace(&mut other.len, 0); + } + } + } + } + + /// Provides a forward iterator. + /// + /// # Examples + /// + /// ``` + /// use std::collections::LinkedList; + /// + /// let mut list: LinkedList<u32> = LinkedList::new(); + /// + /// list.push_back(0); + /// list.push_back(1); + /// list.push_back(2); + /// + /// let mut iter = list.iter(); + /// assert_eq!(iter.next(), Some(&0)); + /// assert_eq!(iter.next(), Some(&1)); + /// assert_eq!(iter.next(), Some(&2)); + /// assert_eq!(iter.next(), None); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn iter(&self) -> Iter<T> { + Iter { + head: self.head, + tail: self.tail, + len: self.len, + marker: PhantomData, + } + } + + /// Provides a forward iterator with mutable references. + /// + /// # Examples + /// + /// ``` + /// use std::collections::LinkedList; + /// + /// let mut list: LinkedList<u32> = LinkedList::new(); + /// + /// list.push_back(0); + /// list.push_back(1); + /// list.push_back(2); + /// + /// for element in list.iter_mut() { + /// *element += 10; + /// } + /// + /// let mut iter = list.iter(); + /// assert_eq!(iter.next(), Some(&10)); + /// assert_eq!(iter.next(), Some(&11)); + /// assert_eq!(iter.next(), Some(&12)); + /// assert_eq!(iter.next(), None); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn iter_mut(&mut self) -> IterMut<T> { + IterMut { + head: self.head, + tail: self.tail, + len: self.len, + list: self, + } + } + + /// Returns `true` if the `LinkedList` is empty. + /// + /// This operation should compute in O(1) time. + /// + /// # Examples + /// + /// ``` + /// use std::collections::LinkedList; + /// + /// let mut dl = LinkedList::new(); + /// assert!(dl.is_empty()); + /// + /// dl.push_front("foo"); + /// assert!(!dl.is_empty()); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn is_empty(&self) -> bool { + self.head.is_none() + } + + /// Returns the length of the `LinkedList`. + /// + /// This operation should compute in O(1) time. + /// + /// # Examples + /// + /// ``` + /// use std::collections::LinkedList; + /// + /// let mut dl = LinkedList::new(); + /// + /// dl.push_front(2); + /// assert_eq!(dl.len(), 1); + /// + /// dl.push_front(1); + /// assert_eq!(dl.len(), 2); + /// + /// dl.push_back(3); + /// assert_eq!(dl.len(), 3); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn len(&self) -> usize { + self.len + } + + /// Removes all elements from the `LinkedList`. + /// + /// This operation should compute in O(n) time. + /// + /// # Examples + /// + /// ``` + /// use std::collections::LinkedList; + /// + /// let mut dl = LinkedList::new(); + /// + /// dl.push_front(2); + /// dl.push_front(1); + /// assert_eq!(dl.len(), 2); + /// assert_eq!(dl.front(), Some(&1)); + /// + /// dl.clear(); + /// assert_eq!(dl.len(), 0); + /// assert_eq!(dl.front(), None); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn clear(&mut self) { + *self = Self::new(); + } + + /// Returns `true` if the `LinkedList` contains an element equal to the + /// given value. + /// + /// # Examples + /// + /// ``` + /// use std::collections::LinkedList; + /// + /// let mut list: LinkedList<u32> = LinkedList::new(); + /// + /// list.push_back(0); + /// list.push_back(1); + /// list.push_back(2); + /// + /// assert_eq!(list.contains(&0), true); + /// assert_eq!(list.contains(&10), false); + /// ``` + #[stable(feature = "linked_list_contains", since = "1.12.0")] + pub fn contains(&self, x: &T) -> bool + where T: PartialEq<T> + { + self.iter().any(|e| e == x) + } + + /// Provides a reference to the front element, or `None` if the list is + /// empty. + /// + /// # Examples + /// + /// ``` + /// use std::collections::LinkedList; + /// + /// let mut dl = LinkedList::new(); + /// assert_eq!(dl.front(), None); + /// + /// dl.push_front(1); + /// assert_eq!(dl.front(), Some(&1)); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn front(&self) -> Option<&T> { + unsafe { + self.head.as_ref().map(|node| &node.as_ref().element) + } + } + + /// Provides a mutable reference to the front element, or `None` if the list + /// is empty. + /// + /// # Examples + /// + /// ``` + /// use std::collections::LinkedList; + /// + /// let mut dl = LinkedList::new(); + /// assert_eq!(dl.front(), None); + /// + /// dl.push_front(1); + /// assert_eq!(dl.front(), Some(&1)); + /// + /// match dl.front_mut() { + /// None => {}, + /// Some(x) => *x = 5, + /// } + /// assert_eq!(dl.front(), Some(&5)); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn front_mut(&mut self) -> Option<&mut T> { + unsafe { + self.head.as_mut().map(|node| &mut node.as_mut().element) + } + } + + /// Provides a reference to the back element, or `None` if the list is + /// empty. + /// + /// # Examples + /// + /// ``` + /// use std::collections::LinkedList; + /// + /// let mut dl = LinkedList::new(); + /// assert_eq!(dl.back(), None); + /// + /// dl.push_back(1); + /// assert_eq!(dl.back(), Some(&1)); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn back(&self) -> Option<&T> { + unsafe { + self.tail.as_ref().map(|node| &node.as_ref().element) + } + } + + /// Provides a mutable reference to the back element, or `None` if the list + /// is empty. + /// + /// # Examples + /// + /// ``` + /// use std::collections::LinkedList; + /// + /// let mut dl = LinkedList::new(); + /// assert_eq!(dl.back(), None); + /// + /// dl.push_back(1); + /// assert_eq!(dl.back(), Some(&1)); + /// + /// match dl.back_mut() { + /// None => {}, + /// Some(x) => *x = 5, + /// } + /// assert_eq!(dl.back(), Some(&5)); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn back_mut(&mut self) -> Option<&mut T> { + unsafe { + self.tail.as_mut().map(|node| &mut node.as_mut().element) + } + } + + /// Adds an element first in the list. + /// + /// This operation should compute in O(1) time. + /// + /// # Examples + /// + /// ``` + /// use std::collections::LinkedList; + /// + /// let mut dl = LinkedList::new(); + /// + /// dl.push_front(2); + /// assert_eq!(dl.front().unwrap(), &2); + /// + /// dl.push_front(1); + /// assert_eq!(dl.front().unwrap(), &1); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn push_front(&mut self, elt: T) { + self.push_front_node(box Node::new(elt)); + } + + /// Removes the first element and returns it, or `None` if the list is + /// empty. + /// + /// This operation should compute in O(1) time. + /// + /// # Examples + /// + /// ``` + /// use std::collections::LinkedList; + /// + /// let mut d = LinkedList::new(); + /// assert_eq!(d.pop_front(), None); + /// + /// d.push_front(1); + /// d.push_front(3); + /// assert_eq!(d.pop_front(), Some(3)); + /// assert_eq!(d.pop_front(), Some(1)); + /// assert_eq!(d.pop_front(), None); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn pop_front(&mut self) -> Option<T> { + self.pop_front_node().map(Node::into_element) + } + + /// Appends an element to the back of a list + /// + /// # Examples + /// + /// ``` + /// use std::collections::LinkedList; + /// + /// let mut d = LinkedList::new(); + /// d.push_back(1); + /// d.push_back(3); + /// assert_eq!(3, *d.back().unwrap()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn push_back(&mut self, elt: T) { + self.push_back_node(box Node::new(elt)); + } + + /// Removes the last element from a list and returns it, or `None` if + /// it is empty. + /// + /// # Examples + /// + /// ``` + /// use std::collections::LinkedList; + /// + /// let mut d = LinkedList::new(); + /// assert_eq!(d.pop_back(), None); + /// d.push_back(1); + /// d.push_back(3); + /// assert_eq!(d.pop_back(), Some(3)); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn pop_back(&mut self) -> Option<T> { + self.pop_back_node().map(Node::into_element) + } + + /// Splits the list into two at the given index. Returns everything after the given index, + /// including the index. + /// + /// This operation should compute in O(n) time. + /// + /// # Panics + /// + /// Panics if `at > len`. + /// + /// # Examples + /// + /// ``` + /// use std::collections::LinkedList; + /// + /// let mut d = LinkedList::new(); + /// + /// d.push_front(1); + /// d.push_front(2); + /// d.push_front(3); + /// + /// let mut splitted = d.split_off(2); + /// + /// assert_eq!(splitted.pop_front(), Some(1)); + /// assert_eq!(splitted.pop_front(), None); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn split_off(&mut self, at: usize) -> LinkedList<T> { + let len = self.len(); + assert!(at <= len, "Cannot split off at a nonexistent index"); + if at == 0 { + return mem::replace(self, Self::new()); + } else if at == len { + return Self::new(); + } + + // Below, we iterate towards the `i-1`th node, either from the start or the end, + // depending on which would be faster. + let split_node = if at - 1 <= len - 1 - (at - 1) { + let mut iter = self.iter_mut(); + // instead of skipping using .skip() (which creates a new struct), + // we skip manually so we can access the head field without + // depending on implementation details of Skip + for _ in 0..at - 1 { + iter.next(); + } + iter.head + } else { + // better off starting from the end + let mut iter = self.iter_mut(); + for _ in 0..len - 1 - (at - 1) { + iter.next_back(); + } + iter.tail + }; + + // The split node is the new tail node of the first part and owns + // the head of the second part. + let second_part_head; + + unsafe { + second_part_head = split_node.unwrap().as_mut().next.take(); + if let Some(mut head) = second_part_head { + head.as_mut().prev = None; + } + } + + let second_part = LinkedList { + head: second_part_head, + tail: self.tail, + len: len - at, + marker: PhantomData, + }; + + // Fix the tail ptr of the first part + self.tail = split_node; + self.len = at; + + second_part + } + + /// Returns a place for insertion at the front of the list. + /// + /// Using this method with placement syntax is equivalent to + /// [`push_front`](#method.push_front), but may be more efficient. + /// + /// # Examples + /// + /// ``` + /// #![feature(collection_placement)] + /// #![feature(placement_in_syntax)] + /// + /// use std::collections::LinkedList; + /// + /// let mut list = LinkedList::new(); + /// list.front_place() <- 2; + /// list.front_place() <- 4; + /// assert!(list.iter().eq(&[4, 2])); + /// ``` + #[unstable(feature = "collection_placement", + reason = "method name and placement protocol are subject to change", + issue = "30172")] + pub fn front_place(&mut self) -> FrontPlace<T> { + FrontPlace { + list: self, + node: IntermediateBox::make_place(), + } + } + + /// Returns a place for insertion at the back of the list. + /// + /// Using this method with placement syntax is equivalent to [`push_back`](#method.push_back), + /// but may be more efficient. + /// + /// # Examples + /// + /// ``` + /// #![feature(collection_placement)] + /// #![feature(placement_in_syntax)] + /// + /// use std::collections::LinkedList; + /// + /// let mut list = LinkedList::new(); + /// list.back_place() <- 2; + /// list.back_place() <- 4; + /// assert!(list.iter().eq(&[2, 4])); + /// ``` + #[unstable(feature = "collection_placement", + reason = "method name and placement protocol are subject to change", + issue = "30172")] + pub fn back_place(&mut self) -> BackPlace<T> { + BackPlace { + list: self, + node: IntermediateBox::make_place(), + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +unsafe impl<#[may_dangle] T> Drop for LinkedList<T> { + fn drop(&mut self) { + while let Some(_) = self.pop_front_node() {} + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> Iterator for Iter<'a, T> { + type Item = &'a T; + + #[inline] + fn next(&mut self) -> Option<&'a T> { + if self.len == 0 { + None + } else { + self.head.map(|node| unsafe { + // Need an unbound lifetime to get 'a + let node = &*node.as_ptr(); + self.len -= 1; + self.head = node.next; + &node.element + }) + } + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + (self.len, Some(self.len)) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> DoubleEndedIterator for Iter<'a, T> { + #[inline] + fn next_back(&mut self) -> Option<&'a T> { + if self.len == 0 { + None + } else { + self.tail.map(|node| unsafe { + // Need an unbound lifetime to get 'a + let node = &*node.as_ptr(); + self.len -= 1; + self.tail = node.prev; + &node.element + }) + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> ExactSizeIterator for Iter<'a, T> {} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, T> FusedIterator for Iter<'a, T> {} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> Iterator for IterMut<'a, T> { + type Item = &'a mut T; + + #[inline] + fn next(&mut self) -> Option<&'a mut T> { + if self.len == 0 { + None + } else { + self.head.map(|node| unsafe { + // Need an unbound lifetime to get 'a + let node = &mut *node.as_ptr(); + self.len -= 1; + self.head = node.next; + &mut node.element + }) + } + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + (self.len, Some(self.len)) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> DoubleEndedIterator for IterMut<'a, T> { + #[inline] + fn next_back(&mut self) -> Option<&'a mut T> { + if self.len == 0 { + None + } else { + self.tail.map(|node| unsafe { + // Need an unbound lifetime to get 'a + let node = &mut *node.as_ptr(); + self.len -= 1; + self.tail = node.prev; + &mut node.element + }) + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> ExactSizeIterator for IterMut<'a, T> {} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, T> FusedIterator for IterMut<'a, T> {} + +impl<'a, T> IterMut<'a, T> { + /// Inserts the given element just after the element most recently returned by `.next()`. + /// The inserted element does not appear in the iteration. + /// + /// # Examples + /// + /// ``` + /// #![feature(linked_list_extras)] + /// + /// use std::collections::LinkedList; + /// + /// let mut list: LinkedList<_> = vec![1, 3, 4].into_iter().collect(); + /// + /// { + /// let mut it = list.iter_mut(); + /// assert_eq!(it.next().unwrap(), &1); + /// // insert `2` after `1` + /// it.insert_next(2); + /// } + /// { + /// let vec: Vec<_> = list.into_iter().collect(); + /// assert_eq!(vec, [1, 2, 3, 4]); + /// } + /// ``` + #[inline] + #[unstable(feature = "linked_list_extras", + reason = "this is probably better handled by a cursor type -- we'll see", + issue = "27794")] + pub fn insert_next(&mut self, element: T) { + match self.head { + None => self.list.push_back(element), + Some(mut head) => unsafe { + let mut prev = match head.as_ref().prev { + None => return self.list.push_front(element), + Some(prev) => prev, + }; + + let node = Some(Shared::new(Box::into_raw(box Node { + next: Some(head), + prev: Some(prev), + element: element, + }))); + + prev.as_mut().next = node; + head.as_mut().prev = node; + + self.list.len += 1; + }, + } + } + + /// Provides a reference to the next element, without changing the iterator. + /// + /// # Examples + /// + /// ``` + /// #![feature(linked_list_extras)] + /// + /// use std::collections::LinkedList; + /// + /// let mut list: LinkedList<_> = vec![1, 2, 3].into_iter().collect(); + /// + /// let mut it = list.iter_mut(); + /// assert_eq!(it.next().unwrap(), &1); + /// assert_eq!(it.peek_next().unwrap(), &2); + /// // We just peeked at 2, so it was not consumed from the iterator. + /// assert_eq!(it.next().unwrap(), &2); + /// ``` + #[inline] + #[unstable(feature = "linked_list_extras", + reason = "this is probably better handled by a cursor type -- we'll see", + issue = "27794")] + pub fn peek_next(&mut self) -> Option<&mut T> { + if self.len == 0 { + None + } else { + unsafe { + self.head.as_mut().map(|node| &mut node.as_mut().element) + } + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> Iterator for IntoIter<T> { + type Item = T; + + #[inline] + fn next(&mut self) -> Option<T> { + self.list.pop_front() + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + (self.list.len, Some(self.list.len)) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> DoubleEndedIterator for IntoIter<T> { + #[inline] + fn next_back(&mut self) -> Option<T> { + self.list.pop_back() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> ExactSizeIterator for IntoIter<T> {} + +#[unstable(feature = "fused", issue = "35602")] +impl<T> FusedIterator for IntoIter<T> {} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> FromIterator<T> for LinkedList<T> { + fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self { + let mut list = Self::new(); + list.extend(iter); + list + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> IntoIterator for LinkedList<T> { + type Item = T; + type IntoIter = IntoIter<T>; + + /// Consumes the list into an iterator yielding elements by value. + #[inline] + fn into_iter(self) -> IntoIter<T> { + IntoIter { list: self } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> IntoIterator for &'a LinkedList<T> { + type Item = &'a T; + type IntoIter = Iter<'a, T>; + + fn into_iter(self) -> Iter<'a, T> { + self.iter() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> IntoIterator for &'a mut LinkedList<T> { + type Item = &'a mut T; + type IntoIter = IterMut<'a, T>; + + fn into_iter(self) -> IterMut<'a, T> { + self.iter_mut() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> Extend<T> for LinkedList<T> { + fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) { + <Self as SpecExtend<I>>::spec_extend(self, iter); + } +} + +impl<I: IntoIterator> SpecExtend<I> for LinkedList<I::Item> { + default fn spec_extend(&mut self, iter: I) { + for elt in iter { + self.push_back(elt); + } + } +} + +impl<T> SpecExtend<LinkedList<T>> for LinkedList<T> { + fn spec_extend(&mut self, ref mut other: LinkedList<T>) { + self.append(other); + } +} + +#[stable(feature = "extend_ref", since = "1.2.0")] +impl<'a, T: 'a + Copy> Extend<&'a T> for LinkedList<T> { + fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) { + self.extend(iter.into_iter().cloned()); + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: PartialEq> PartialEq for LinkedList<T> { + fn eq(&self, other: &Self) -> bool { + self.len() == other.len() && self.iter().eq(other) + } + + fn ne(&self, other: &Self) -> bool { + self.len() != other.len() || self.iter().ne(other) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Eq> Eq for LinkedList<T> {} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: PartialOrd> PartialOrd for LinkedList<T> { + fn partial_cmp(&self, other: &Self) -> Option<Ordering> { + self.iter().partial_cmp(other) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Ord> Ord for LinkedList<T> { + #[inline] + fn cmp(&self, other: &Self) -> Ordering { + self.iter().cmp(other) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Clone> Clone for LinkedList<T> { + fn clone(&self) -> Self { + self.iter().cloned().collect() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: fmt::Debug> fmt::Debug for LinkedList<T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_list().entries(self).finish() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Hash> Hash for LinkedList<T> { + fn hash<H: Hasher>(&self, state: &mut H) { + self.len().hash(state); + for elt in self { + elt.hash(state); + } + } +} + +unsafe fn finalize<T>(node: IntermediateBox<Node<T>>) -> Box<Node<T>> { + let mut node = node.finalize(); + ptr::write(&mut node.next, None); + ptr::write(&mut node.prev, None); + node +} + +/// A place for insertion at the front of a `LinkedList`. +/// +/// See [`LinkedList::front_place`](struct.LinkedList.html#method.front_place) for details. +#[must_use = "places do nothing unless written to with `<-` syntax"] +#[unstable(feature = "collection_placement", + reason = "struct name and placement protocol are subject to change", + issue = "30172")] +pub struct FrontPlace<'a, T: 'a> { + list: &'a mut LinkedList<T>, + node: IntermediateBox<Node<T>>, +} + +#[unstable(feature = "collection_placement", + reason = "struct name and placement protocol are subject to change", + issue = "30172")] +impl<'a, T: 'a + fmt::Debug> fmt::Debug for FrontPlace<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("FrontPlace") + .field(&self.list) + .finish() + } +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T> Placer<T> for FrontPlace<'a, T> { + type Place = Self; + + fn make_place(self) -> Self { + self + } +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T> Place<T> for FrontPlace<'a, T> { + fn pointer(&mut self) -> *mut T { + unsafe { &mut (*self.node.pointer()).element } + } +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T> InPlace<T> for FrontPlace<'a, T> { + type Owner = (); + + unsafe fn finalize(self) { + let FrontPlace { list, node } = self; + list.push_front_node(finalize(node)); + } +} + +/// A place for insertion at the back of a `LinkedList`. +/// +/// See [`LinkedList::back_place`](struct.LinkedList.html#method.back_place) for details. +#[must_use = "places do nothing unless written to with `<-` syntax"] +#[unstable(feature = "collection_placement", + reason = "struct name and placement protocol are subject to change", + issue = "30172")] +pub struct BackPlace<'a, T: 'a> { + list: &'a mut LinkedList<T>, + node: IntermediateBox<Node<T>>, +} + +#[unstable(feature = "collection_placement", + reason = "struct name and placement protocol are subject to change", + issue = "30172")] +impl<'a, T: 'a + fmt::Debug> fmt::Debug for BackPlace<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("BackPlace") + .field(&self.list) + .finish() + } +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T> Placer<T> for BackPlace<'a, T> { + type Place = Self; + + fn make_place(self) -> Self { + self + } +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T> Place<T> for BackPlace<'a, T> { + fn pointer(&mut self) -> *mut T { + unsafe { &mut (*self.node.pointer()).element } + } +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T> InPlace<T> for BackPlace<'a, T> { + type Owner = (); + + unsafe fn finalize(self) { + let BackPlace { list, node } = self; + list.push_back_node(finalize(node)); + } +} + +// Ensure that `LinkedList` and its read-only iterators are covariant in their type parameters. +#[allow(dead_code)] +fn assert_covariance() { + fn a<'a>(x: LinkedList<&'static str>) -> LinkedList<&'a str> { + x + } + fn b<'i, 'a>(x: Iter<'i, &'static str>) -> Iter<'i, &'a str> { + x + } + fn c<'a>(x: IntoIter<&'static str>) -> IntoIter<&'a str> { + x + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +unsafe impl<T: Send> Send for LinkedList<T> {} + +#[stable(feature = "rust1", since = "1.0.0")] +unsafe impl<T: Sync> Sync for LinkedList<T> {} + +#[stable(feature = "rust1", since = "1.0.0")] +unsafe impl<'a, T: Sync> Send for Iter<'a, T> {} + +#[stable(feature = "rust1", since = "1.0.0")] +unsafe impl<'a, T: Sync> Sync for Iter<'a, T> {} + +#[stable(feature = "rust1", since = "1.0.0")] +unsafe impl<'a, T: Send> Send for IterMut<'a, T> {} + +#[stable(feature = "rust1", since = "1.0.0")] +unsafe impl<'a, T: Sync> Sync for IterMut<'a, T> {} + +#[cfg(test)] +mod tests { + use std::__rand::{thread_rng, Rng}; + use std::thread; + use std::vec::Vec; + + use super::{LinkedList, Node}; + + #[cfg(test)] + fn list_from<T: Clone>(v: &[T]) -> LinkedList<T> { + v.iter().cloned().collect() + } + + pub fn check_links<T>(list: &LinkedList<T>) { + unsafe { + let mut len = 0; + let mut last_ptr: Option<&Node<T>> = None; + let mut node_ptr: &Node<T>; + match list.head { + None => { + assert_eq!(0, list.len); + return; + } + Some(node) => node_ptr = &*node.as_ptr(), + } + loop { + match (last_ptr, node_ptr.prev) { + (None, None) => {} + (None, _) => panic!("prev link for head"), + (Some(p), Some(pptr)) => { + assert_eq!(p as *const Node<T>, pptr.as_ptr() as *const Node<T>); + } + _ => panic!("prev link is none, not good"), + } + match node_ptr.next { + Some(next) => { + last_ptr = Some(node_ptr); + node_ptr = &*next.as_ptr(); + len += 1; + } + None => { + len += 1; + break; + } + } + } + assert_eq!(len, list.len); + } + } + + #[test] + fn test_append() { + // Empty to empty + { + let mut m = LinkedList::<i32>::new(); + let mut n = LinkedList::new(); + m.append(&mut n); + check_links(&m); + assert_eq!(m.len(), 0); + assert_eq!(n.len(), 0); + } + // Non-empty to empty + { + let mut m = LinkedList::new(); + let mut n = LinkedList::new(); + n.push_back(2); + m.append(&mut n); + check_links(&m); + assert_eq!(m.len(), 1); + assert_eq!(m.pop_back(), Some(2)); + assert_eq!(n.len(), 0); + check_links(&m); + } + // Empty to non-empty + { + let mut m = LinkedList::new(); + let mut n = LinkedList::new(); + m.push_back(2); + m.append(&mut n); + check_links(&m); + assert_eq!(m.len(), 1); + assert_eq!(m.pop_back(), Some(2)); + check_links(&m); + } + + // Non-empty to non-empty + let v = vec![1, 2, 3, 4, 5]; + let u = vec![9, 8, 1, 2, 3, 4, 5]; + let mut m = list_from(&v); + let mut n = list_from(&u); + m.append(&mut n); + check_links(&m); + let mut sum = v; + sum.extend_from_slice(&u); + assert_eq!(sum.len(), m.len()); + for elt in sum { + assert_eq!(m.pop_front(), Some(elt)) + } + assert_eq!(n.len(), 0); + // let's make sure it's working properly, since we + // did some direct changes to private members + n.push_back(3); + assert_eq!(n.len(), 1); + assert_eq!(n.pop_front(), Some(3)); + check_links(&n); + } + + #[test] + fn test_insert_prev() { + let mut m = list_from(&[0, 2, 4, 6, 8]); + let len = m.len(); + { + let mut it = m.iter_mut(); + it.insert_next(-2); + loop { + match it.next() { + None => break, + Some(elt) => { + it.insert_next(*elt + 1); + match it.peek_next() { + Some(x) => assert_eq!(*x, *elt + 2), + None => assert_eq!(8, *elt), + } + } + } + } + it.insert_next(0); + it.insert_next(1); + } + check_links(&m); + assert_eq!(m.len(), 3 + len * 2); + assert_eq!(m.into_iter().collect::<Vec<_>>(), + [-2, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1]); + } + + #[test] + #[cfg_attr(target_os = "emscripten", ignore)] + fn test_send() { + let n = list_from(&[1, 2, 3]); + thread::spawn(move || { + check_links(&n); + let a: &[_] = &[&1, &2, &3]; + assert_eq!(a, &*n.iter().collect::<Vec<_>>()); + }) + .join() + .ok() + .unwrap(); + } + + #[test] + fn test_fuzz() { + for _ in 0..25 { + fuzz_test(3); + fuzz_test(16); + fuzz_test(189); + } + } + + #[test] + fn test_26021() { + // There was a bug in split_off that failed to null out the RHS's head's prev ptr. + // This caused the RHS's dtor to walk up into the LHS at drop and delete all of + // its nodes. + // + // https://github.com/rust-lang/rust/issues/26021 + let mut v1 = LinkedList::new(); + v1.push_front(1); + v1.push_front(1); + v1.push_front(1); + v1.push_front(1); + let _ = v1.split_off(3); // Dropping this now should not cause laundry consumption + assert_eq!(v1.len(), 3); + + assert_eq!(v1.iter().len(), 3); + assert_eq!(v1.iter().collect::<Vec<_>>().len(), 3); + } + + #[test] + fn test_split_off() { + let mut v1 = LinkedList::new(); + v1.push_front(1); + v1.push_front(1); + v1.push_front(1); + v1.push_front(1); + + // test all splits + for ix in 0..1 + v1.len() { + let mut a = v1.clone(); + let b = a.split_off(ix); + check_links(&a); + check_links(&b); + a.extend(b); + assert_eq!(v1, a); + } + } + + #[cfg(test)] + fn fuzz_test(sz: i32) { + let mut m: LinkedList<_> = LinkedList::new(); + let mut v = vec![]; + for i in 0..sz { + check_links(&m); + let r: u8 = thread_rng().next_u32() as u8; + match r % 6 { + 0 => { + m.pop_back(); + v.pop(); + } + 1 => { + if !v.is_empty() { + m.pop_front(); + v.remove(0); + } + } + 2 | 4 => { + m.push_front(-i); + v.insert(0, -i); + } + 3 | 5 | _ => { + m.push_back(i); + v.push(i); + } + } + } + + check_links(&m); + + let mut i = 0; + for (a, &b) in m.into_iter().zip(&v) { + i += 1; + assert_eq!(a, b); + } + assert_eq!(i, v.len()); + } +} diff --git a/src/liballoc/macros.rs b/src/liballoc/macros.rs index 7da91c87e96..763f04fcd0d 100644 --- a/src/liballoc/macros.rs +++ b/src/liballoc/macros.rs @@ -8,6 +8,89 @@ // option. This file may not be copied, modified, or distributed // except according to those terms. +/// Creates a `Vec` containing the arguments. +/// +/// `vec!` allows `Vec`s to be defined with the same syntax as array expressions. +/// There are two forms of this macro: +/// +/// - Create a `Vec` containing a given list of elements: +/// +/// ``` +/// let v = vec![1, 2, 3]; +/// assert_eq!(v[0], 1); +/// assert_eq!(v[1], 2); +/// assert_eq!(v[2], 3); +/// ``` +/// +/// - Create a `Vec` from a given element and size: +/// +/// ``` +/// let v = vec![1; 3]; +/// assert_eq!(v, [1, 1, 1]); +/// ``` +/// +/// Note that unlike array expressions this syntax supports all elements +/// which implement `Clone` and the number of elements doesn't have to be +/// a constant. +/// +/// This will use `clone()` to duplicate an expression, so one should be careful +/// using this with types having a nonstandard `Clone` implementation. For +/// example, `vec![Rc::new(1); 5]` will create a vector of five references +/// to the same boxed integer value, not five references pointing to independently +/// boxed integers. +#[cfg(not(test))] +#[macro_export] +#[stable(feature = "rust1", since = "1.0.0")] +#[allow_internal_unstable] +macro_rules! vec { + ($elem:expr; $n:expr) => ( + $crate::vec::from_elem($elem, $n) + ); + ($($x:expr),*) => ( + <[_]>::into_vec(box [$($x),*]) + ); + ($($x:expr,)*) => (vec![$($x),*]) +} + +// HACK(japaric): with cfg(test) the inherent `[T]::into_vec` method, which is +// required for this macro definition, is not available. Instead use the +// `slice::into_vec` function which is only available with cfg(test) +// NB see the slice::hack module in slice.rs for more information +#[cfg(test)] +macro_rules! vec { + ($elem:expr; $n:expr) => ( + $crate::vec::from_elem($elem, $n) + ); + ($($x:expr),*) => ( + $crate::slice::into_vec(box [$($x),*]) + ); + ($($x:expr,)*) => (vec![$($x),*]) +} + +/// Use the syntax described in `std::fmt` to create a value of type `String`. +/// See [`std::fmt`][fmt] for more information. +/// +/// [fmt]: ../std/fmt/index.html +/// +/// # Panics +/// +/// `format!` panics if a formatting trait implementation returns an error. +/// This indicates an incorrect implementation +/// since `fmt::Write for String` never returns an error itself. +/// +/// # Examples +/// +/// ``` +/// format!("test"); +/// format!("hello {}", "world!"); +/// format!("x = {}, y = {y}", 10, y = 30); +/// ``` +#[macro_export] +#[stable(feature = "rust1", since = "1.0.0")] +macro_rules! format { + ($($arg:tt)*) => ($crate::fmt::format(format_args!($($arg)*))) +} + // Private macro to get the offset of a struct field in bytes from the address of the struct. macro_rules! offset_of { ($container:path, $field:ident) => {{ diff --git a/src/liballoc/range.rs b/src/liballoc/range.rs new file mode 100644 index 00000000000..f862da0d61e --- /dev/null +++ b/src/liballoc/range.rs @@ -0,0 +1,152 @@ +// Copyright 2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +#![unstable(feature = "collections_range", + reason = "waiting for dust to settle on inclusive ranges", + issue = "30877")] + +//! Range syntax. + +use core::ops::{RangeFull, Range, RangeTo, RangeFrom, RangeInclusive, RangeToInclusive}; +use Bound::{self, Excluded, Included, Unbounded}; + +/// `RangeArgument` is implemented by Rust's built-in range types, produced +/// by range syntax like `..`, `a..`, `..b` or `c..d`. +pub trait RangeArgument<T: ?Sized> { + /// Start index bound. + /// + /// Returns the start value as a `Bound`. + /// + /// # Examples + /// + /// ``` + /// #![feature(alloc)] + /// #![feature(collections_range)] + /// + /// extern crate alloc; + /// + /// # fn main() { + /// use alloc::range::RangeArgument; + /// use alloc::Bound::*; + /// + /// assert_eq!((..10).start(), Unbounded); + /// assert_eq!((3..10).start(), Included(&3)); + /// # } + /// ``` + fn start(&self) -> Bound<&T>; + + /// End index bound. + /// + /// Returns the end value as a `Bound`. + /// + /// # Examples + /// + /// ``` + /// #![feature(alloc)] + /// #![feature(collections_range)] + /// + /// extern crate alloc; + /// + /// # fn main() { + /// use alloc::range::RangeArgument; + /// use alloc::Bound::*; + /// + /// assert_eq!((3..).end(), Unbounded); + /// assert_eq!((3..10).end(), Excluded(&10)); + /// # } + /// ``` + fn end(&self) -> Bound<&T>; +} + +// FIXME add inclusive ranges to RangeArgument + +impl<T: ?Sized> RangeArgument<T> for RangeFull { + fn start(&self) -> Bound<&T> { + Unbounded + } + fn end(&self) -> Bound<&T> { + Unbounded + } +} + +impl<T> RangeArgument<T> for RangeFrom<T> { + fn start(&self) -> Bound<&T> { + Included(&self.start) + } + fn end(&self) -> Bound<&T> { + Unbounded + } +} + +impl<T> RangeArgument<T> for RangeTo<T> { + fn start(&self) -> Bound<&T> { + Unbounded + } + fn end(&self) -> Bound<&T> { + Excluded(&self.end) + } +} + +impl<T> RangeArgument<T> for Range<T> { + fn start(&self) -> Bound<&T> { + Included(&self.start) + } + fn end(&self) -> Bound<&T> { + Excluded(&self.end) + } +} + +#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")] +impl<T> RangeArgument<T> for RangeInclusive<T> { + fn start(&self) -> Bound<&T> { + Included(&self.start) + } + fn end(&self) -> Bound<&T> { + Included(&self.end) + } +} + +#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")] +impl<T> RangeArgument<T> for RangeToInclusive<T> { + fn start(&self) -> Bound<&T> { + Unbounded + } + fn end(&self) -> Bound<&T> { + Included(&self.end) + } +} + +impl<T> RangeArgument<T> for (Bound<T>, Bound<T>) { + fn start(&self) -> Bound<&T> { + match *self { + (Included(ref start), _) => Included(start), + (Excluded(ref start), _) => Excluded(start), + (Unbounded, _) => Unbounded, + } + } + + fn end(&self) -> Bound<&T> { + match *self { + (_, Included(ref end)) => Included(end), + (_, Excluded(ref end)) => Excluded(end), + (_, Unbounded) => Unbounded, + } + } +} + +impl<'a, T: ?Sized + 'a> RangeArgument<T> for (Bound<&'a T>, Bound<&'a T>) { + fn start(&self) -> Bound<&T> { + self.0 + } + + fn end(&self) -> Bound<&T> { + self.1 + } +} diff --git a/src/liballoc/raw_vec.rs b/src/liballoc/raw_vec.rs index 7edf07944ec..34ab0a19d4e 100644 --- a/src/liballoc/raw_vec.rs +++ b/src/liballoc/raw_vec.rs @@ -44,6 +44,7 @@ use core::cmp; /// `shrink_to_fit`, and `from_box` will actually set RawVec's private capacity /// field. This allows zero-sized types to not be special-cased by consumers of /// this type. +#[allow(missing_debug_implementations)] pub struct RawVec<T> { ptr: Unique<T>, cap: usize, diff --git a/src/liballoc/slice.rs b/src/liballoc/slice.rs new file mode 100644 index 00000000000..88876999d76 --- /dev/null +++ b/src/liballoc/slice.rs @@ -0,0 +1,1943 @@ +// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! A dynamically-sized view into a contiguous sequence, `[T]`. +//! +//! Slices are a view into a block of memory represented as a pointer and a +//! length. +//! +//! ``` +//! // slicing a Vec +//! let vec = vec![1, 2, 3]; +//! let int_slice = &vec[..]; +//! // coercing an array to a slice +//! let str_slice: &[&str] = &["one", "two", "three"]; +//! ``` +//! +//! Slices are either mutable or shared. The shared slice type is `&[T]`, +//! while the mutable slice type is `&mut [T]`, where `T` represents the element +//! type. For example, you can mutate the block of memory that a mutable slice +//! points to: +//! +//! ``` +//! let x = &mut [1, 2, 3]; +//! x[1] = 7; +//! assert_eq!(x, &[1, 7, 3]); +//! ``` +//! +//! Here are some of the things this module contains: +//! +//! ## Structs +//! +//! There are several structs that are useful for slices, such as [`Iter`], which +//! represents iteration over a slice. +//! +//! ## Trait Implementations +//! +//! There are several implementations of common traits for slices. Some examples +//! include: +//! +//! * [`Clone`] +//! * [`Eq`], [`Ord`] - for slices whose element type are [`Eq`] or [`Ord`]. +//! * [`Hash`] - for slices whose element type is [`Hash`]. +//! +//! ## Iteration +//! +//! The slices implement `IntoIterator`. The iterator yields references to the +//! slice elements. +//! +//! ``` +//! let numbers = &[0, 1, 2]; +//! for n in numbers { +//! println!("{} is a number!", n); +//! } +//! ``` +//! +//! The mutable slice yields mutable references to the elements: +//! +//! ``` +//! let mut scores = [7, 8, 9]; +//! for score in &mut scores[..] { +//! *score += 1; +//! } +//! ``` +//! +//! This iterator yields mutable references to the slice's elements, so while +//! the element type of the slice is `i32`, the element type of the iterator is +//! `&mut i32`. +//! +//! * [`.iter`] and [`.iter_mut`] are the explicit methods to return the default +//! iterators. +//! * Further methods that return iterators are [`.split`], [`.splitn`], +//! [`.chunks`], [`.windows`] and more. +//! +//! *[See also the slice primitive type](../../std/primitive.slice.html).* +//! +//! [`Clone`]: ../../std/clone/trait.Clone.html +//! [`Eq`]: ../../std/cmp/trait.Eq.html +//! [`Ord`]: ../../std/cmp/trait.Ord.html +//! [`Iter`]: struct.Iter.html +//! [`Hash`]: ../../std/hash/trait.Hash.html +//! [`.iter`]: ../../std/primitive.slice.html#method.iter +//! [`.iter_mut`]: ../../std/primitive.slice.html#method.iter_mut +//! [`.split`]: ../../std/primitive.slice.html#method.split +//! [`.splitn`]: ../../std/primitive.slice.html#method.splitn +//! [`.chunks`]: ../../std/primitive.slice.html#method.chunks +//! [`.windows`]: ../../std/primitive.slice.html#method.windows +#![stable(feature = "rust1", since = "1.0.0")] + +// Many of the usings in this module are only used in the test configuration. +// It's cleaner to just turn off the unused_imports warning than to fix them. +#![cfg_attr(test, allow(unused_imports, dead_code))] + +use core::cmp::Ordering::{self, Less}; +use core::mem::size_of; +use core::mem; +use core::ptr; +use core::slice as core_slice; + +use borrow::{Borrow, BorrowMut, ToOwned}; +use boxed::Box; +use vec::Vec; + +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::slice::{Chunks, Windows}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::slice::{Iter, IterMut}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::slice::{SplitMut, ChunksMut, Split}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::slice::{SplitN, RSplitN, SplitNMut, RSplitNMut}; +#[unstable(feature = "slice_rsplit", issue = "41020")] +pub use core::slice::{RSplit, RSplitMut}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::slice::{from_raw_parts, from_raw_parts_mut}; +#[unstable(feature = "slice_get_slice", issue = "35729")] +pub use core::slice::SliceIndex; + +//////////////////////////////////////////////////////////////////////////////// +// Basic slice extension methods +//////////////////////////////////////////////////////////////////////////////// + +// HACK(japaric) needed for the implementation of `vec!` macro during testing +// NB see the hack module in this file for more details +#[cfg(test)] +pub use self::hack::into_vec; + +// HACK(japaric) needed for the implementation of `Vec::clone` during testing +// NB see the hack module in this file for more details +#[cfg(test)] +pub use self::hack::to_vec; + +// HACK(japaric): With cfg(test) `impl [T]` is not available, these three +// functions are actually methods that are in `impl [T]` but not in +// `core::slice::SliceExt` - we need to supply these functions for the +// `test_permutations` test +mod hack { + use boxed::Box; + use core::mem; + + #[cfg(test)] + use string::ToString; + use vec::Vec; + + pub fn into_vec<T>(mut b: Box<[T]>) -> Vec<T> { + unsafe { + let xs = Vec::from_raw_parts(b.as_mut_ptr(), b.len(), b.len()); + mem::forget(b); + xs + } + } + + #[inline] + pub fn to_vec<T>(s: &[T]) -> Vec<T> + where T: Clone + { + let mut vector = Vec::with_capacity(s.len()); + vector.extend_from_slice(s); + vector + } +} + +#[lang = "slice"] +#[cfg(not(test))] +impl<T> [T] { + /// Returns the number of elements in the slice. + /// + /// # Example + /// + /// ``` + /// let a = [1, 2, 3]; + /// assert_eq!(a.len(), 3); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn len(&self) -> usize { + core_slice::SliceExt::len(self) + } + + /// Returns `true` if the slice has a length of 0. + /// + /// # Example + /// + /// ``` + /// let a = [1, 2, 3]; + /// assert!(!a.is_empty()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn is_empty(&self) -> bool { + core_slice::SliceExt::is_empty(self) + } + + /// Returns the first element of the slice, or `None` if it is empty. + /// + /// # Examples + /// + /// ``` + /// let v = [10, 40, 30]; + /// assert_eq!(Some(&10), v.first()); + /// + /// let w: &[i32] = &[]; + /// assert_eq!(None, w.first()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn first(&self) -> Option<&T> { + core_slice::SliceExt::first(self) + } + + /// Returns a mutable pointer to the first element of the slice, or `None` if it is empty. + /// + /// # Examples + /// + /// ``` + /// let x = &mut [0, 1, 2]; + /// + /// if let Some(first) = x.first_mut() { + /// *first = 5; + /// } + /// assert_eq!(x, &[5, 1, 2]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn first_mut(&mut self) -> Option<&mut T> { + core_slice::SliceExt::first_mut(self) + } + + /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty. + /// + /// # Examples + /// + /// ``` + /// let x = &[0, 1, 2]; + /// + /// if let Some((first, elements)) = x.split_first() { + /// assert_eq!(first, &0); + /// assert_eq!(elements, &[1, 2]); + /// } + /// ``` + #[stable(feature = "slice_splits", since = "1.5.0")] + #[inline] + pub fn split_first(&self) -> Option<(&T, &[T])> { + core_slice::SliceExt::split_first(self) + } + + /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty. + /// + /// # Examples + /// + /// ``` + /// let x = &mut [0, 1, 2]; + /// + /// if let Some((first, elements)) = x.split_first_mut() { + /// *first = 3; + /// elements[0] = 4; + /// elements[1] = 5; + /// } + /// assert_eq!(x, &[3, 4, 5]); + /// ``` + #[stable(feature = "slice_splits", since = "1.5.0")] + #[inline] + pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> { + core_slice::SliceExt::split_first_mut(self) + } + + /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty. + /// + /// # Examples + /// + /// ``` + /// let x = &[0, 1, 2]; + /// + /// if let Some((last, elements)) = x.split_last() { + /// assert_eq!(last, &2); + /// assert_eq!(elements, &[0, 1]); + /// } + /// ``` + #[stable(feature = "slice_splits", since = "1.5.0")] + #[inline] + pub fn split_last(&self) -> Option<(&T, &[T])> { + core_slice::SliceExt::split_last(self) + + } + + /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty. + /// + /// # Examples + /// + /// ``` + /// let x = &mut [0, 1, 2]; + /// + /// if let Some((last, elements)) = x.split_last_mut() { + /// *last = 3; + /// elements[0] = 4; + /// elements[1] = 5; + /// } + /// assert_eq!(x, &[4, 5, 3]); + /// ``` + #[stable(feature = "slice_splits", since = "1.5.0")] + #[inline] + pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> { + core_slice::SliceExt::split_last_mut(self) + } + + /// Returns the last element of the slice, or `None` if it is empty. + /// + /// # Examples + /// + /// ``` + /// let v = [10, 40, 30]; + /// assert_eq!(Some(&30), v.last()); + /// + /// let w: &[i32] = &[]; + /// assert_eq!(None, w.last()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn last(&self) -> Option<&T> { + core_slice::SliceExt::last(self) + } + + /// Returns a mutable pointer to the last item in the slice. + /// + /// # Examples + /// + /// ``` + /// let x = &mut [0, 1, 2]; + /// + /// if let Some(last) = x.last_mut() { + /// *last = 10; + /// } + /// assert_eq!(x, &[0, 1, 10]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn last_mut(&mut self) -> Option<&mut T> { + core_slice::SliceExt::last_mut(self) + } + + /// Returns a reference to an element or subslice depending on the type of + /// index. + /// + /// - If given a position, returns a reference to the element at that + /// position or `None` if out of bounds. + /// - If given a range, returns the subslice corresponding to that range, + /// or `None` if out of bounds. + /// + /// # Examples + /// + /// ``` + /// let v = [10, 40, 30]; + /// assert_eq!(Some(&40), v.get(1)); + /// assert_eq!(Some(&[10, 40][..]), v.get(0..2)); + /// assert_eq!(None, v.get(3)); + /// assert_eq!(None, v.get(0..4)); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn get<I>(&self, index: I) -> Option<&I::Output> + where I: SliceIndex<Self> + { + core_slice::SliceExt::get(self, index) + } + + /// Returns a mutable reference to an element or subslice depending on the + /// type of index (see [`get`]) or `None` if the index is out of bounds. + /// + /// [`get`]: #method.get + /// + /// # Examples + /// + /// ``` + /// let x = &mut [0, 1, 2]; + /// + /// if let Some(elem) = x.get_mut(1) { + /// *elem = 42; + /// } + /// assert_eq!(x, &[0, 42, 2]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output> + where I: SliceIndex<Self> + { + core_slice::SliceExt::get_mut(self, index) + } + + /// Returns a reference to an element or subslice, without doing bounds + /// checking. + /// + /// This is generally not recommended, use with caution! For a safe + /// alternative see [`get`]. + /// + /// [`get`]: #method.get + /// + /// # Examples + /// + /// ``` + /// let x = &[1, 2, 4]; + /// + /// unsafe { + /// assert_eq!(x.get_unchecked(1), &2); + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output + where I: SliceIndex<Self> + { + core_slice::SliceExt::get_unchecked(self, index) + } + + /// Returns a mutable reference to an element or subslice, without doing + /// bounds checking. + /// + /// This is generally not recommended, use with caution! For a safe + /// alternative see [`get_mut`]. + /// + /// [`get_mut`]: #method.get_mut + /// + /// # Examples + /// + /// ``` + /// let x = &mut [1, 2, 4]; + /// + /// unsafe { + /// let elem = x.get_unchecked_mut(1); + /// *elem = 13; + /// } + /// assert_eq!(x, &[1, 13, 4]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output + where I: SliceIndex<Self> + { + core_slice::SliceExt::get_unchecked_mut(self, index) + } + + /// Returns a raw pointer to the slice's buffer. + /// + /// The caller must ensure that the slice outlives the pointer this + /// function returns, or else it will end up pointing to garbage. + /// + /// Modifying the container referenced by this slice may cause its buffer + /// to be reallocated, which would also make any pointers to it invalid. + /// + /// # Examples + /// + /// ``` + /// let x = &[1, 2, 4]; + /// let x_ptr = x.as_ptr(); + /// + /// unsafe { + /// for i in 0..x.len() { + /// assert_eq!(x.get_unchecked(i), &*x_ptr.offset(i as isize)); + /// } + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn as_ptr(&self) -> *const T { + core_slice::SliceExt::as_ptr(self) + } + + /// Returns an unsafe mutable pointer to the slice's buffer. + /// + /// The caller must ensure that the slice outlives the pointer this + /// function returns, or else it will end up pointing to garbage. + /// + /// Modifying the container referenced by this slice may cause its buffer + /// to be reallocated, which would also make any pointers to it invalid. + /// + /// # Examples + /// + /// ``` + /// let x = &mut [1, 2, 4]; + /// let x_ptr = x.as_mut_ptr(); + /// + /// unsafe { + /// for i in 0..x.len() { + /// *x_ptr.offset(i as isize) += 2; + /// } + /// } + /// assert_eq!(x, &[3, 4, 6]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn as_mut_ptr(&mut self) -> *mut T { + core_slice::SliceExt::as_mut_ptr(self) + } + + /// Swaps two elements in the slice. + /// + /// # Arguments + /// + /// * a - The index of the first element + /// * b - The index of the second element + /// + /// # Panics + /// + /// Panics if `a` or `b` are out of bounds. + /// + /// # Examples + /// + /// ``` + /// let mut v = ["a", "b", "c", "d"]; + /// v.swap(1, 3); + /// assert!(v == ["a", "d", "c", "b"]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn swap(&mut self, a: usize, b: usize) { + core_slice::SliceExt::swap(self, a, b) + } + + /// Reverses the order of elements in the slice, in place. + /// + /// # Example + /// + /// ``` + /// let mut v = [1, 2, 3]; + /// v.reverse(); + /// assert!(v == [3, 2, 1]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn reverse(&mut self) { + core_slice::SliceExt::reverse(self) + } + + /// Returns an iterator over the slice. + /// + /// # Examples + /// + /// ``` + /// let x = &[1, 2, 4]; + /// let mut iterator = x.iter(); + /// + /// assert_eq!(iterator.next(), Some(&1)); + /// assert_eq!(iterator.next(), Some(&2)); + /// assert_eq!(iterator.next(), Some(&4)); + /// assert_eq!(iterator.next(), None); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn iter(&self) -> Iter<T> { + core_slice::SliceExt::iter(self) + } + + /// Returns an iterator that allows modifying each value. + /// + /// # Examples + /// + /// ``` + /// let x = &mut [1, 2, 4]; + /// for elem in x.iter_mut() { + /// *elem += 2; + /// } + /// assert_eq!(x, &[3, 4, 6]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn iter_mut(&mut self) -> IterMut<T> { + core_slice::SliceExt::iter_mut(self) + } + + /// Returns an iterator over all contiguous windows of length + /// `size`. The windows overlap. If the slice is shorter than + /// `size`, the iterator returns no values. + /// + /// # Panics + /// + /// Panics if `size` is 0. + /// + /// # Example + /// + /// ``` + /// let slice = ['r', 'u', 's', 't']; + /// let mut iter = slice.windows(2); + /// assert_eq!(iter.next().unwrap(), &['r', 'u']); + /// assert_eq!(iter.next().unwrap(), &['u', 's']); + /// assert_eq!(iter.next().unwrap(), &['s', 't']); + /// assert!(iter.next().is_none()); + /// ``` + /// + /// If the slice is shorter than `size`: + /// + /// ``` + /// let slice = ['f', 'o', 'o']; + /// let mut iter = slice.windows(4); + /// assert!(iter.next().is_none()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn windows(&self, size: usize) -> Windows<T> { + core_slice::SliceExt::windows(self, size) + } + + /// Returns an iterator over `size` elements of the slice at a + /// time. The chunks are slices and do not overlap. If `size` does + /// not divide the length of the slice, then the last chunk will + /// not have length `size`. + /// + /// # Panics + /// + /// Panics if `size` is 0. + /// + /// # Example + /// + /// ``` + /// let slice = ['l', 'o', 'r', 'e', 'm']; + /// let mut iter = slice.chunks(2); + /// assert_eq!(iter.next().unwrap(), &['l', 'o']); + /// assert_eq!(iter.next().unwrap(), &['r', 'e']); + /// assert_eq!(iter.next().unwrap(), &['m']); + /// assert!(iter.next().is_none()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn chunks(&self, size: usize) -> Chunks<T> { + core_slice::SliceExt::chunks(self, size) + } + + /// Returns an iterator over `chunk_size` elements of the slice at a time. + /// The chunks are mutable slices, and do not overlap. If `chunk_size` does + /// not divide the length of the slice, then the last chunk will not + /// have length `chunk_size`. + /// + /// # Panics + /// + /// Panics if `chunk_size` is 0. + /// + /// # Examples + /// + /// ``` + /// let v = &mut [0, 0, 0, 0, 0]; + /// let mut count = 1; + /// + /// for chunk in v.chunks_mut(2) { + /// for elem in chunk.iter_mut() { + /// *elem += count; + /// } + /// count += 1; + /// } + /// assert_eq!(v, &[1, 1, 2, 2, 3]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T> { + core_slice::SliceExt::chunks_mut(self, chunk_size) + } + + /// Divides one slice into two at an index. + /// + /// The first will contain all indices from `[0, mid)` (excluding + /// the index `mid` itself) and the second will contain all + /// indices from `[mid, len)` (excluding the index `len` itself). + /// + /// # Panics + /// + /// Panics if `mid > len`. + /// + /// # Examples + /// + /// ``` + /// let v = [10, 40, 30, 20, 50]; + /// let (v1, v2) = v.split_at(2); + /// assert_eq!([10, 40], v1); + /// assert_eq!([30, 20, 50], v2); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn split_at(&self, mid: usize) -> (&[T], &[T]) { + core_slice::SliceExt::split_at(self, mid) + } + + /// Divides one `&mut` into two at an index. + /// + /// The first will contain all indices from `[0, mid)` (excluding + /// the index `mid` itself) and the second will contain all + /// indices from `[mid, len)` (excluding the index `len` itself). + /// + /// # Panics + /// + /// Panics if `mid > len`. + /// + /// # Examples + /// + /// ``` + /// let mut v = [1, 2, 3, 4, 5, 6]; + /// + /// // scoped to restrict the lifetime of the borrows + /// { + /// let (left, right) = v.split_at_mut(0); + /// assert!(left == []); + /// assert!(right == [1, 2, 3, 4, 5, 6]); + /// } + /// + /// { + /// let (left, right) = v.split_at_mut(2); + /// assert!(left == [1, 2]); + /// assert!(right == [3, 4, 5, 6]); + /// } + /// + /// { + /// let (left, right) = v.split_at_mut(6); + /// assert!(left == [1, 2, 3, 4, 5, 6]); + /// assert!(right == []); + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) { + core_slice::SliceExt::split_at_mut(self, mid) + } + + /// Returns an iterator over subslices separated by elements that match + /// `pred`. The matched element is not contained in the subslices. + /// + /// # Examples + /// + /// ``` + /// let slice = [10, 40, 33, 20]; + /// let mut iter = slice.split(|num| num % 3 == 0); + /// + /// assert_eq!(iter.next().unwrap(), &[10, 40]); + /// assert_eq!(iter.next().unwrap(), &[20]); + /// assert!(iter.next().is_none()); + /// ``` + /// + /// If the first element is matched, an empty slice will be the first item + /// returned by the iterator. Similarly, if the last element in the slice + /// is matched, an empty slice will be the last item returned by the + /// iterator: + /// + /// ``` + /// let slice = [10, 40, 33]; + /// let mut iter = slice.split(|num| num % 3 == 0); + /// + /// assert_eq!(iter.next().unwrap(), &[10, 40]); + /// assert_eq!(iter.next().unwrap(), &[]); + /// assert!(iter.next().is_none()); + /// ``` + /// + /// If two matched elements are directly adjacent, an empty slice will be + /// present between them: + /// + /// ``` + /// let slice = [10, 6, 33, 20]; + /// let mut iter = slice.split(|num| num % 3 == 0); + /// + /// assert_eq!(iter.next().unwrap(), &[10]); + /// assert_eq!(iter.next().unwrap(), &[]); + /// assert_eq!(iter.next().unwrap(), &[20]); + /// assert!(iter.next().is_none()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn split<F>(&self, pred: F) -> Split<T, F> + where F: FnMut(&T) -> bool + { + core_slice::SliceExt::split(self, pred) + } + + /// Returns an iterator over mutable subslices separated by elements that + /// match `pred`. The matched element is not contained in the subslices. + /// + /// # Examples + /// + /// ``` + /// let mut v = [10, 40, 30, 20, 60, 50]; + /// + /// for group in v.split_mut(|num| *num % 3 == 0) { + /// group[0] = 1; + /// } + /// assert_eq!(v, [1, 40, 30, 1, 60, 1]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> + where F: FnMut(&T) -> bool + { + core_slice::SliceExt::split_mut(self, pred) + } + + /// Returns an iterator over subslices separated by elements that match + /// `pred`, starting at the end of the slice and working backwards. + /// The matched element is not contained in the subslices. + /// + /// # Examples + /// + /// ``` + /// #![feature(slice_rsplit)] + /// + /// let slice = [11, 22, 33, 0, 44, 55]; + /// let mut iter = slice.rsplit(|num| *num == 0); + /// + /// assert_eq!(iter.next().unwrap(), &[44, 55]); + /// assert_eq!(iter.next().unwrap(), &[11, 22, 33]); + /// assert_eq!(iter.next(), None); + /// ``` + /// + /// As with `split()`, if the first or last element is matched, an empty + /// slice will be the first (or last) item returned by the iterator. + /// + /// ``` + /// #![feature(slice_rsplit)] + /// + /// let v = &[0, 1, 1, 2, 3, 5, 8]; + /// let mut it = v.rsplit(|n| *n % 2 == 0); + /// assert_eq!(it.next().unwrap(), &[]); + /// assert_eq!(it.next().unwrap(), &[3, 5]); + /// assert_eq!(it.next().unwrap(), &[1, 1]); + /// assert_eq!(it.next().unwrap(), &[]); + /// assert_eq!(it.next(), None); + /// ``` + #[unstable(feature = "slice_rsplit", issue = "41020")] + #[inline] + pub fn rsplit<F>(&self, pred: F) -> RSplit<T, F> + where F: FnMut(&T) -> bool + { + core_slice::SliceExt::rsplit(self, pred) + } + + /// Returns an iterator over mutable subslices separated by elements that + /// match `pred`, starting at the end of the slice and working + /// backwards. The matched element is not contained in the subslices. + /// + /// # Examples + /// + /// ``` + /// #![feature(slice_rsplit)] + /// + /// let mut v = [100, 400, 300, 200, 600, 500]; + /// + /// let mut count = 0; + /// for group in v.rsplit_mut(|num| *num % 3 == 0) { + /// count += 1; + /// group[0] = count; + /// } + /// assert_eq!(v, [3, 400, 300, 2, 600, 1]); + /// ``` + /// + #[unstable(feature = "slice_rsplit", issue = "41020")] + #[inline] + pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<T, F> + where F: FnMut(&T) -> bool + { + core_slice::SliceExt::rsplit_mut(self, pred) + } + + /// Returns an iterator over subslices separated by elements that match + /// `pred`, limited to returning at most `n` items. The matched element is + /// not contained in the subslices. + /// + /// The last element returned, if any, will contain the remainder of the + /// slice. + /// + /// # Examples + /// + /// Print the slice split once by numbers divisible by 3 (i.e. `[10, 40]`, + /// `[20, 60, 50]`): + /// + /// ``` + /// let v = [10, 40, 30, 20, 60, 50]; + /// + /// for group in v.splitn(2, |num| *num % 3 == 0) { + /// println!("{:?}", group); + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> + where F: FnMut(&T) -> bool + { + core_slice::SliceExt::splitn(self, n, pred) + } + + /// Returns an iterator over subslices separated by elements that match + /// `pred`, limited to returning at most `n` items. The matched element is + /// not contained in the subslices. + /// + /// The last element returned, if any, will contain the remainder of the + /// slice. + /// + /// # Examples + /// + /// ``` + /// let mut v = [10, 40, 30, 20, 60, 50]; + /// + /// for group in v.splitn_mut(2, |num| *num % 3 == 0) { + /// group[0] = 1; + /// } + /// assert_eq!(v, [1, 40, 30, 1, 60, 50]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> + where F: FnMut(&T) -> bool + { + core_slice::SliceExt::splitn_mut(self, n, pred) + } + + /// Returns an iterator over subslices separated by elements that match + /// `pred` limited to returning at most `n` items. This starts at the end of + /// the slice and works backwards. The matched element is not contained in + /// the subslices. + /// + /// The last element returned, if any, will contain the remainder of the + /// slice. + /// + /// # Examples + /// + /// Print the slice split once, starting from the end, by numbers divisible + /// by 3 (i.e. `[50]`, `[10, 40, 30, 20]`): + /// + /// ``` + /// let v = [10, 40, 30, 20, 60, 50]; + /// + /// for group in v.rsplitn(2, |num| *num % 3 == 0) { + /// println!("{:?}", group); + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> + where F: FnMut(&T) -> bool + { + core_slice::SliceExt::rsplitn(self, n, pred) + } + + /// Returns an iterator over subslices separated by elements that match + /// `pred` limited to returning at most `n` items. This starts at the end of + /// the slice and works backwards. The matched element is not contained in + /// the subslices. + /// + /// The last element returned, if any, will contain the remainder of the + /// slice. + /// + /// # Examples + /// + /// ``` + /// let mut s = [10, 40, 30, 20, 60, 50]; + /// + /// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) { + /// group[0] = 1; + /// } + /// assert_eq!(s, [1, 40, 30, 20, 60, 1]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> + where F: FnMut(&T) -> bool + { + core_slice::SliceExt::rsplitn_mut(self, n, pred) + } + + /// Returns `true` if the slice contains an element with the given value. + /// + /// # Examples + /// + /// ``` + /// let v = [10, 40, 30]; + /// assert!(v.contains(&30)); + /// assert!(!v.contains(&50)); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn contains(&self, x: &T) -> bool + where T: PartialEq + { + core_slice::SliceExt::contains(self, x) + } + + /// Returns `true` if `needle` is a prefix of the slice. + /// + /// # Examples + /// + /// ``` + /// let v = [10, 40, 30]; + /// assert!(v.starts_with(&[10])); + /// assert!(v.starts_with(&[10, 40])); + /// assert!(!v.starts_with(&[50])); + /// assert!(!v.starts_with(&[10, 50])); + /// ``` + /// + /// Always returns `true` if `needle` is an empty slice: + /// + /// ``` + /// let v = &[10, 40, 30]; + /// assert!(v.starts_with(&[])); + /// let v: &[u8] = &[]; + /// assert!(v.starts_with(&[])); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn starts_with(&self, needle: &[T]) -> bool + where T: PartialEq + { + core_slice::SliceExt::starts_with(self, needle) + } + + /// Returns `true` if `needle` is a suffix of the slice. + /// + /// # Examples + /// + /// ``` + /// let v = [10, 40, 30]; + /// assert!(v.ends_with(&[30])); + /// assert!(v.ends_with(&[40, 30])); + /// assert!(!v.ends_with(&[50])); + /// assert!(!v.ends_with(&[50, 30])); + /// ``` + /// + /// Always returns `true` if `needle` is an empty slice: + /// + /// ``` + /// let v = &[10, 40, 30]; + /// assert!(v.ends_with(&[])); + /// let v: &[u8] = &[]; + /// assert!(v.ends_with(&[])); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn ends_with(&self, needle: &[T]) -> bool + where T: PartialEq + { + core_slice::SliceExt::ends_with(self, needle) + } + + /// Binary searches this sorted slice for a given element. + /// + /// If the value is found then `Ok` is returned, containing the + /// index of the matching element; if the value is not found then + /// `Err` is returned, containing the index where a matching + /// element could be inserted while maintaining sorted order. + /// + /// # Example + /// + /// Looks up a series of four elements. The first is found, with a + /// uniquely determined position; the second and third are not + /// found; the fourth could match any position in `[1, 4]`. + /// + /// ``` + /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; + /// + /// assert_eq!(s.binary_search(&13), Ok(9)); + /// assert_eq!(s.binary_search(&4), Err(7)); + /// assert_eq!(s.binary_search(&100), Err(13)); + /// let r = s.binary_search(&1); + /// assert!(match r { Ok(1...4) => true, _ => false, }); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn binary_search(&self, x: &T) -> Result<usize, usize> + where T: Ord + { + core_slice::SliceExt::binary_search(self, x) + } + + /// Binary searches this sorted slice with a comparator function. + /// + /// The comparator function should implement an order consistent + /// with the sort order of the underlying slice, returning an + /// order code that indicates whether its argument is `Less`, + /// `Equal` or `Greater` the desired target. + /// + /// If a matching value is found then returns `Ok`, containing + /// the index for the matched element; if no match is found then + /// `Err` is returned, containing the index where a matching + /// element could be inserted while maintaining sorted order. + /// + /// # Example + /// + /// Looks up a series of four elements. The first is found, with a + /// uniquely determined position; the second and third are not + /// found; the fourth could match any position in `[1, 4]`. + /// + /// ``` + /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; + /// + /// let seek = 13; + /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); + /// let seek = 4; + /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); + /// let seek = 100; + /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); + /// let seek = 1; + /// let r = s.binary_search_by(|probe| probe.cmp(&seek)); + /// assert!(match r { Ok(1...4) => true, _ => false, }); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> + where F: FnMut(&'a T) -> Ordering + { + core_slice::SliceExt::binary_search_by(self, f) + } + + /// Binary searches this sorted slice with a key extraction function. + /// + /// Assumes that the slice is sorted by the key, for instance with + /// [`sort_by_key`] using the same key extraction function. + /// + /// If a matching value is found then returns `Ok`, containing the + /// index for the matched element; if no match is found then `Err` + /// is returned, containing the index where a matching element could + /// be inserted while maintaining sorted order. + /// + /// [`sort_by_key`]: #method.sort_by_key + /// + /// # Examples + /// + /// Looks up a series of four elements in a slice of pairs sorted by + /// their second elements. The first is found, with a uniquely + /// determined position; the second and third are not found; the + /// fourth could match any position in `[1, 4]`. + /// + /// ``` + /// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1), + /// (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), + /// (1, 21), (2, 34), (4, 55)]; + /// + /// assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b), Ok(9)); + /// assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b), Err(7)); + /// assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13)); + /// let r = s.binary_search_by_key(&1, |&(a,b)| b); + /// assert!(match r { Ok(1...4) => true, _ => false, }); + /// ``` + #[stable(feature = "slice_binary_search_by_key", since = "1.10.0")] + #[inline] + pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize> + where F: FnMut(&'a T) -> B, + B: Ord + { + core_slice::SliceExt::binary_search_by_key(self, b, f) + } + + /// Sorts the slice. + /// + /// This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case. + /// + /// # Current implementation + /// + /// The current algorithm is an adaptive, iterative merge sort inspired by + /// [timsort](https://en.wikipedia.org/wiki/Timsort). + /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of + /// two or more sorted sequences concatenated one after another. + /// + /// Also, it allocates temporary storage half the size of `self`, but for short slices a + /// non-allocating insertion sort is used instead. + /// + /// # Examples + /// + /// ``` + /// let mut v = [-5, 4, 1, -3, 2]; + /// + /// v.sort(); + /// assert!(v == [-5, -3, 1, 2, 4]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn sort(&mut self) + where T: Ord + { + merge_sort(self, |a, b| a.lt(b)); + } + + /// Sorts the slice with a comparator function. + /// + /// This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case. + /// + /// # Current implementation + /// + /// The current algorithm is an adaptive, iterative merge sort inspired by + /// [timsort](https://en.wikipedia.org/wiki/Timsort). + /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of + /// two or more sorted sequences concatenated one after another. + /// + /// Also, it allocates temporary storage half the size of `self`, but for short slices a + /// non-allocating insertion sort is used instead. + /// + /// # Examples + /// + /// ``` + /// let mut v = [5, 4, 1, 3, 2]; + /// v.sort_by(|a, b| a.cmp(b)); + /// assert!(v == [1, 2, 3, 4, 5]); + /// + /// // reverse sorting + /// v.sort_by(|a, b| b.cmp(a)); + /// assert!(v == [5, 4, 3, 2, 1]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn sort_by<F>(&mut self, mut compare: F) + where F: FnMut(&T, &T) -> Ordering + { + merge_sort(self, |a, b| compare(a, b) == Less); + } + + /// Sorts the slice with a key extraction function. + /// + /// This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case. + /// + /// # Current implementation + /// + /// The current algorithm is an adaptive, iterative merge sort inspired by + /// [timsort](https://en.wikipedia.org/wiki/Timsort). + /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of + /// two or more sorted sequences concatenated one after another. + /// + /// Also, it allocates temporary storage half the size of `self`, but for short slices a + /// non-allocating insertion sort is used instead. + /// + /// # Examples + /// + /// ``` + /// let mut v = [-5i32, 4, 1, -3, 2]; + /// + /// v.sort_by_key(|k| k.abs()); + /// assert!(v == [1, 2, -3, 4, -5]); + /// ``` + #[stable(feature = "slice_sort_by_key", since = "1.7.0")] + #[inline] + pub fn sort_by_key<B, F>(&mut self, mut f: F) + where F: FnMut(&T) -> B, B: Ord + { + merge_sort(self, |a, b| f(a).lt(&f(b))); + } + + /// Sorts the slice, but may not preserve the order of equal elements. + /// + /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), + /// and `O(n log n)` worst-case. + /// + /// # Current implementation + /// + /// The current algorithm is based on Orson Peters' [pattern-defeating quicksort][pdqsort], + /// which is a quicksort variant designed to be very fast on certain kinds of patterns, + /// sometimes achieving linear time. It is randomized but deterministic, and falls back to + /// heapsort on degenerate inputs. + /// + /// It is generally faster than stable sorting, except in a few special cases, e.g. when the + /// slice consists of several concatenated sorted sequences. + /// + /// # Examples + /// + /// ``` + /// #![feature(sort_unstable)] + /// + /// let mut v = [-5, 4, 1, -3, 2]; + /// + /// v.sort_unstable(); + /// assert!(v == [-5, -3, 1, 2, 4]); + /// ``` + /// + /// [pdqsort]: https://github.com/orlp/pdqsort + // FIXME #40585: Mention `sort_unstable` in the documentation for `sort`. + #[unstable(feature = "sort_unstable", issue = "40585")] + #[inline] + pub fn sort_unstable(&mut self) + where T: Ord + { + core_slice::SliceExt::sort_unstable(self); + } + + /// Sorts the slice with a comparator function, but may not preserve the order of equal + /// elements. + /// + /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), + /// and `O(n log n)` worst-case. + /// + /// # Current implementation + /// + /// The current algorithm is based on Orson Peters' [pattern-defeating quicksort][pdqsort], + /// which is a quicksort variant designed to be very fast on certain kinds of patterns, + /// sometimes achieving linear time. It is randomized but deterministic, and falls back to + /// heapsort on degenerate inputs. + /// + /// It is generally faster than stable sorting, except in a few special cases, e.g. when the + /// slice consists of several concatenated sorted sequences. + /// + /// # Examples + /// + /// ``` + /// #![feature(sort_unstable)] + /// + /// let mut v = [5, 4, 1, 3, 2]; + /// v.sort_unstable_by(|a, b| a.cmp(b)); + /// assert!(v == [1, 2, 3, 4, 5]); + /// + /// // reverse sorting + /// v.sort_unstable_by(|a, b| b.cmp(a)); + /// assert!(v == [5, 4, 3, 2, 1]); + /// ``` + /// + /// [pdqsort]: https://github.com/orlp/pdqsort + // FIXME #40585: Mention `sort_unstable_by` in the documentation for `sort_by`. + #[unstable(feature = "sort_unstable", issue = "40585")] + #[inline] + pub fn sort_unstable_by<F>(&mut self, compare: F) + where F: FnMut(&T, &T) -> Ordering + { + core_slice::SliceExt::sort_unstable_by(self, compare); + } + + /// Sorts the slice with a key extraction function, but may not preserve the order of equal + /// elements. + /// + /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), + /// and `O(n log n)` worst-case. + /// + /// # Current implementation + /// + /// The current algorithm is based on Orson Peters' [pattern-defeating quicksort][pdqsort], + /// which is a quicksort variant designed to be very fast on certain kinds of patterns, + /// sometimes achieving linear time. It is randomized but deterministic, and falls back to + /// heapsort on degenerate inputs. + /// + /// It is generally faster than stable sorting, except in a few special cases, e.g. when the + /// slice consists of several concatenated sorted sequences. + /// + /// # Examples + /// + /// ``` + /// #![feature(sort_unstable)] + /// + /// let mut v = [-5i32, 4, 1, -3, 2]; + /// + /// v.sort_unstable_by_key(|k| k.abs()); + /// assert!(v == [1, 2, -3, 4, -5]); + /// ``` + /// + /// [pdqsort]: https://github.com/orlp/pdqsort + // FIXME #40585: Mention `sort_unstable_by_key` in the documentation for `sort_by_key`. + #[unstable(feature = "sort_unstable", issue = "40585")] + #[inline] + pub fn sort_unstable_by_key<B, F>(&mut self, f: F) + where F: FnMut(&T) -> B, + B: Ord + { + core_slice::SliceExt::sort_unstable_by_key(self, f); + } + + /// Permutes the slice in-place such that `self[mid..]` moves to the + /// beginning of the slice while `self[..mid]` moves to the end of the + /// slice. Equivalently, rotates the slice `mid` places to the left + /// or `k = self.len() - mid` places to the right. + /// + /// This is a "k-rotation", a permutation in which item `i` moves to + /// position `i + k`, modulo the length of the slice. See _Elements + /// of Programming_ [§10.4][eop]. + /// + /// Rotation by `mid` and rotation by `k` are inverse operations. + /// + /// [eop]: https://books.google.com/books?id=CO9ULZGINlsC&pg=PA178&q=k-rotation + /// + /// # Panics + /// + /// This function will panic if `mid` is greater than the length of the + /// slice. (Note that `mid == self.len()` does _not_ panic; it's a nop + /// rotation with `k == 0`, the inverse of a rotation with `mid == 0`.) + /// + /// # Complexity + /// + /// Takes linear (in `self.len()`) time. + /// + /// # Examples + /// + /// ``` + /// #![feature(slice_rotate)] + /// + /// let mut a = [1, 2, 3, 4, 5, 6, 7]; + /// let mid = 2; + /// a.rotate(mid); + /// assert_eq!(&a, &[3, 4, 5, 6, 7, 1, 2]); + /// let k = a.len() - mid; + /// a.rotate(k); + /// assert_eq!(&a, &[1, 2, 3, 4, 5, 6, 7]); + /// + /// use std::ops::Range; + /// fn slide<T>(slice: &mut [T], range: Range<usize>, to: usize) { + /// if to < range.start { + /// slice[to..range.end].rotate(range.start-to); + /// } else if to > range.end { + /// slice[range.start..to].rotate(range.end-range.start); + /// } + /// } + /// let mut v: Vec<_> = (0..10).collect(); + /// slide(&mut v, 1..4, 7); + /// assert_eq!(&v, &[0, 4, 5, 6, 1, 2, 3, 7, 8, 9]); + /// slide(&mut v, 6..8, 1); + /// assert_eq!(&v, &[0, 3, 7, 4, 5, 6, 1, 2, 8, 9]); + /// ``` + #[unstable(feature = "slice_rotate", issue = "41891")] + pub fn rotate(&mut self, mid: usize) { + core_slice::SliceExt::rotate(self, mid); + } + + /// Copies the elements from `src` into `self`. + /// + /// The length of `src` must be the same as `self`. + /// + /// If `src` implements `Copy`, it can be more performant to use + /// [`copy_from_slice`]. + /// + /// # Panics + /// + /// This function will panic if the two slices have different lengths. + /// + /// # Example + /// + /// ``` + /// let mut dst = [0, 0, 0]; + /// let src = [1, 2, 3]; + /// + /// dst.clone_from_slice(&src); + /// assert!(dst == [1, 2, 3]); + /// ``` + /// + /// [`copy_from_slice`]: #method.copy_from_slice + #[stable(feature = "clone_from_slice", since = "1.7.0")] + pub fn clone_from_slice(&mut self, src: &[T]) where T: Clone { + core_slice::SliceExt::clone_from_slice(self, src) + } + + /// Copies all elements from `src` into `self`, using a memcpy. + /// + /// The length of `src` must be the same as `self`. + /// + /// If `src` does not implement `Copy`, use [`clone_from_slice`]. + /// + /// # Panics + /// + /// This function will panic if the two slices have different lengths. + /// + /// # Example + /// + /// ``` + /// let mut dst = [0, 0, 0]; + /// let src = [1, 2, 3]; + /// + /// dst.copy_from_slice(&src); + /// assert_eq!(src, dst); + /// ``` + /// + /// [`clone_from_slice`]: #method.clone_from_slice + #[stable(feature = "copy_from_slice", since = "1.9.0")] + pub fn copy_from_slice(&mut self, src: &[T]) where T: Copy { + core_slice::SliceExt::copy_from_slice(self, src) + } + + /// Copies `self` into a new `Vec`. + /// + /// # Examples + /// + /// ``` + /// let s = [10, 40, 30]; + /// let x = s.to_vec(); + /// // Here, `s` and `x` can be modified independently. + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn to_vec(&self) -> Vec<T> + where T: Clone + { + // NB see hack module in this file + hack::to_vec(self) + } + + /// Converts `self` into a vector without clones or allocation. + /// + /// The resulting vector can be converted back into a box via + /// `Vec<T>`'s `into_boxed_slice` method. + /// + /// # Examples + /// + /// ``` + /// let s: Box<[i32]> = Box::new([10, 40, 30]); + /// let x = s.into_vec(); + /// // `s` cannot be used anymore because it has been converted into `x`. + /// + /// assert_eq!(x, vec![10, 40, 30]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn into_vec(self: Box<Self>) -> Vec<T> { + // NB see hack module in this file + hack::into_vec(self) + } +} + +//////////////////////////////////////////////////////////////////////////////// +// Extension traits for slices over specific kinds of data +//////////////////////////////////////////////////////////////////////////////// +#[unstable(feature = "slice_concat_ext", + reason = "trait should not have to exist", + issue = "27747")] +/// An extension trait for concatenating slices +pub trait SliceConcatExt<T: ?Sized> { + #[unstable(feature = "slice_concat_ext", + reason = "trait should not have to exist", + issue = "27747")] + /// The resulting type after concatenation + type Output; + + /// Flattens a slice of `T` into a single value `Self::Output`. + /// + /// # Examples + /// + /// ``` + /// assert_eq!(["hello", "world"].concat(), "helloworld"); + /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + fn concat(&self) -> Self::Output; + + /// Flattens a slice of `T` into a single value `Self::Output`, placing a + /// given separator between each. + /// + /// # Examples + /// + /// ``` + /// assert_eq!(["hello", "world"].join(" "), "hello world"); + /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]); + /// ``` + #[stable(feature = "rename_connect_to_join", since = "1.3.0")] + fn join(&self, sep: &T) -> Self::Output; + + #[stable(feature = "rust1", since = "1.0.0")] + #[rustc_deprecated(since = "1.3.0", reason = "renamed to join")] + fn connect(&self, sep: &T) -> Self::Output; +} + +#[unstable(feature = "slice_concat_ext", + reason = "trait should not have to exist", + issue = "27747")] +impl<T: Clone, V: Borrow<[T]>> SliceConcatExt<T> for [V] { + type Output = Vec<T>; + + fn concat(&self) -> Vec<T> { + let size = self.iter().fold(0, |acc, v| acc + v.borrow().len()); + let mut result = Vec::with_capacity(size); + for v in self { + result.extend_from_slice(v.borrow()) + } + result + } + + fn join(&self, sep: &T) -> Vec<T> { + let size = self.iter().fold(0, |acc, v| acc + v.borrow().len()); + let mut result = Vec::with_capacity(size + self.len()); + let mut first = true; + for v in self { + if first { + first = false + } else { + result.push(sep.clone()) + } + result.extend_from_slice(v.borrow()) + } + result + } + + fn connect(&self, sep: &T) -> Vec<T> { + self.join(sep) + } +} + +//////////////////////////////////////////////////////////////////////////////// +// Standard trait implementations for slices +//////////////////////////////////////////////////////////////////////////////// + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> Borrow<[T]> for Vec<T> { + fn borrow(&self) -> &[T] { + &self[..] + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> BorrowMut<[T]> for Vec<T> { + fn borrow_mut(&mut self) -> &mut [T] { + &mut self[..] + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Clone> ToOwned for [T] { + type Owned = Vec<T>; + #[cfg(not(test))] + fn to_owned(&self) -> Vec<T> { + self.to_vec() + } + + #[cfg(test)] + fn to_owned(&self) -> Vec<T> { + hack::to_vec(self) + } + + fn clone_into(&self, target: &mut Vec<T>) { + // drop anything in target that will not be overwritten + target.truncate(self.len()); + let len = target.len(); + + // reuse the contained values' allocations/resources. + target.clone_from_slice(&self[..len]); + + // target.len <= self.len due to the truncate above, so the + // slice here is always in-bounds. + target.extend_from_slice(&self[len..]); + } +} + +//////////////////////////////////////////////////////////////////////////////// +// Sorting +//////////////////////////////////////////////////////////////////////////////// + +/// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted. +/// +/// This is the integral subroutine of insertion sort. +fn insert_head<T, F>(v: &mut [T], is_less: &mut F) + where F: FnMut(&T, &T) -> bool +{ + if v.len() >= 2 && is_less(&v[1], &v[0]) { + unsafe { + // There are three ways to implement insertion here: + // + // 1. Swap adjacent elements until the first one gets to its final destination. + // However, this way we copy data around more than is necessary. If elements are big + // structures (costly to copy), this method will be slow. + // + // 2. Iterate until the right place for the first element is found. Then shift the + // elements succeeding it to make room for it and finally place it into the + // remaining hole. This is a good method. + // + // 3. Copy the first element into a temporary variable. Iterate until the right place + // for it is found. As we go along, copy every traversed element into the slot + // preceding it. Finally, copy data from the temporary variable into the remaining + // hole. This method is very good. Benchmarks demonstrated slightly better + // performance than with the 2nd method. + // + // All methods were benchmarked, and the 3rd showed best results. So we chose that one. + let mut tmp = mem::ManuallyDrop::new(ptr::read(&v[0])); + + // Intermediate state of the insertion process is always tracked by `hole`, which + // serves two purposes: + // 1. Protects integrity of `v` from panics in `is_less`. + // 2. Fills the remaining hole in `v` in the end. + // + // Panic safety: + // + // If `is_less` panics at any point during the process, `hole` will get dropped and + // fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it + // initially held exactly once. + let mut hole = InsertionHole { + src: &mut *tmp, + dest: &mut v[1], + }; + ptr::copy_nonoverlapping(&v[1], &mut v[0], 1); + + for i in 2..v.len() { + if !is_less(&v[i], &*tmp) { + break; + } + ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1); + hole.dest = &mut v[i]; + } + // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`. + } + } + + // When dropped, copies from `src` into `dest`. + struct InsertionHole<T> { + src: *mut T, + dest: *mut T, + } + + impl<T> Drop for InsertionHole<T> { + fn drop(&mut self) { + unsafe { ptr::copy_nonoverlapping(self.src, self.dest, 1); } + } + } +} + +/// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and +/// stores the result into `v[..]`. +/// +/// # Safety +/// +/// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough +/// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type. +unsafe fn merge<T, F>(v: &mut [T], mid: usize, buf: *mut T, is_less: &mut F) + where F: FnMut(&T, &T) -> bool +{ + let len = v.len(); + let v = v.as_mut_ptr(); + let v_mid = v.offset(mid as isize); + let v_end = v.offset(len as isize); + + // The merge process first copies the shorter run into `buf`. Then it traces the newly copied + // run and the longer run forwards (or backwards), comparing their next unconsumed elements and + // copying the lesser (or greater) one into `v`. + // + // As soon as the shorter run is fully consumed, the process is done. If the longer run gets + // consumed first, then we must copy whatever is left of the shorter run into the remaining + // hole in `v`. + // + // Intermediate state of the process is always tracked by `hole`, which serves two purposes: + // 1. Protects integrity of `v` from panics in `is_less`. + // 2. Fills the remaining hole in `v` if the longer run gets consumed first. + // + // Panic safety: + // + // If `is_less` panics at any point during the process, `hole` will get dropped and fill the + // hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every + // object it initially held exactly once. + let mut hole; + + if mid <= len - mid { + // The left run is shorter. + ptr::copy_nonoverlapping(v, buf, mid); + hole = MergeHole { + start: buf, + end: buf.offset(mid as isize), + dest: v, + }; + + // Initially, these pointers point to the beginnings of their arrays. + let left = &mut hole.start; + let mut right = v_mid; + let out = &mut hole.dest; + + while *left < hole.end && right < v_end { + // Consume the lesser side. + // If equal, prefer the left run to maintain stability. + let to_copy = if is_less(&*right, &**left) { + get_and_increment(&mut right) + } else { + get_and_increment(left) + }; + ptr::copy_nonoverlapping(to_copy, get_and_increment(out), 1); + } + } else { + // The right run is shorter. + ptr::copy_nonoverlapping(v_mid, buf, len - mid); + hole = MergeHole { + start: buf, + end: buf.offset((len - mid) as isize), + dest: v_mid, + }; + + // Initially, these pointers point past the ends of their arrays. + let left = &mut hole.dest; + let right = &mut hole.end; + let mut out = v_end; + + while v < *left && buf < *right { + // Consume the greater side. + // If equal, prefer the right run to maintain stability. + let to_copy = if is_less(&*right.offset(-1), &*left.offset(-1)) { + decrement_and_get(left) + } else { + decrement_and_get(right) + }; + ptr::copy_nonoverlapping(to_copy, decrement_and_get(&mut out), 1); + } + } + // Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of + // it will now be copied into the hole in `v`. + + unsafe fn get_and_increment<T>(ptr: &mut *mut T) -> *mut T { + let old = *ptr; + *ptr = ptr.offset(1); + old + } + + unsafe fn decrement_and_get<T>(ptr: &mut *mut T) -> *mut T { + *ptr = ptr.offset(-1); + *ptr + } + + // When dropped, copies the range `start..end` into `dest..`. + struct MergeHole<T> { + start: *mut T, + end: *mut T, + dest: *mut T, + } + + impl<T> Drop for MergeHole<T> { + fn drop(&mut self) { + // `T` is not a zero-sized type, so it's okay to divide by it's size. + let len = (self.end as usize - self.start as usize) / mem::size_of::<T>(); + unsafe { ptr::copy_nonoverlapping(self.start, self.dest, len); } + } + } +} + +/// This merge sort borrows some (but not all) ideas from TimSort, which is described in detail +/// [here](http://svn.python.org/projects/python/trunk/Objects/listsort.txt). +/// +/// The algorithm identifies strictly descending and non-descending subsequences, which are called +/// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed +/// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are +/// satisfied: +/// +/// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len` +/// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len` +/// +/// The invariants ensure that the total running time is `O(n log n)` worst-case. +fn merge_sort<T, F>(v: &mut [T], mut is_less: F) + where F: FnMut(&T, &T) -> bool +{ + // Slices of up to this length get sorted using insertion sort. + const MAX_INSERTION: usize = 20; + // Very short runs are extended using insertion sort to span at least this many elements. + const MIN_RUN: usize = 10; + + // Sorting has no meaningful behavior on zero-sized types. + if size_of::<T>() == 0 { + return; + } + + let len = v.len(); + + // Short arrays get sorted in-place via insertion sort to avoid allocations. + if len <= MAX_INSERTION { + if len >= 2 { + for i in (0..len-1).rev() { + insert_head(&mut v[i..], &mut is_less); + } + } + return; + } + + // Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it + // shallow copies of the contents of `v` without risking the dtors running on copies if + // `is_less` panics. When merging two sorted runs, this buffer holds a copy of the shorter run, + // which will always have length at most `len / 2`. + let mut buf = Vec::with_capacity(len / 2); + + // In order to identify natural runs in `v`, we traverse it backwards. That might seem like a + // strange decision, but consider the fact that merges more often go in the opposite direction + // (forwards). According to benchmarks, merging forwards is slightly faster than merging + // backwards. To conclude, identifying runs by traversing backwards improves performance. + let mut runs = vec![]; + let mut end = len; + while end > 0 { + // Find the next natural run, and reverse it if it's strictly descending. + let mut start = end - 1; + if start > 0 { + start -= 1; + unsafe { + if is_less(v.get_unchecked(start + 1), v.get_unchecked(start)) { + while start > 0 && is_less(v.get_unchecked(start), + v.get_unchecked(start - 1)) { + start -= 1; + } + v[start..end].reverse(); + } else { + while start > 0 && !is_less(v.get_unchecked(start), + v.get_unchecked(start - 1)) { + start -= 1; + } + } + } + } + + // Insert some more elements into the run if it's too short. Insertion sort is faster than + // merge sort on short sequences, so this significantly improves performance. + while start > 0 && end - start < MIN_RUN { + start -= 1; + insert_head(&mut v[start..end], &mut is_less); + } + + // Push this run onto the stack. + runs.push(Run { + start: start, + len: end - start, + }); + end = start; + + // Merge some pairs of adjacent runs to satisfy the invariants. + while let Some(r) = collapse(&runs) { + let left = runs[r + 1]; + let right = runs[r]; + unsafe { + merge(&mut v[left.start .. right.start + right.len], left.len, buf.as_mut_ptr(), + &mut is_less); + } + runs[r] = Run { + start: left.start, + len: left.len + right.len, + }; + runs.remove(r + 1); + } + } + + // Finally, exactly one run must remain in the stack. + debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len); + + // Examines the stack of runs and identifies the next pair of runs to merge. More specifically, + // if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the + // algorithm should continue building a new run instead, `None` is returned. + // + // TimSort is infamous for it's buggy implementations, as described here: + // http://envisage-project.eu/timsort-specification-and-verification/ + // + // The gist of the story is: we must enforce the invariants on the top four runs on the stack. + // Enforcing them on just top three is not sufficient to ensure that the invariants will still + // hold for *all* runs in the stack. + // + // This function correctly checks invariants for the top four runs. Additionally, if the top + // run starts at index 0, it will always demand a merge operation until the stack is fully + // collapsed, in order to complete the sort. + #[inline] + fn collapse(runs: &[Run]) -> Option<usize> { + let n = runs.len(); + if n >= 2 && (runs[n - 1].start == 0 || + runs[n - 2].len <= runs[n - 1].len || + (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len) || + (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len)) { + if n >= 3 && runs[n - 3].len < runs[n - 1].len { + Some(n - 3) + } else { + Some(n - 2) + } + } else { + None + } + } + + #[derive(Clone, Copy)] + struct Run { + start: usize, + len: usize, + } +} diff --git a/src/liballoc/str.rs b/src/liballoc/str.rs index c87db16a0f4..f56288c3013 100644 --- a/src/liballoc/str.rs +++ b/src/liballoc/str.rs @@ -8,11 +8,1992 @@ // option. This file may not be copied, modified, or distributed // except according to those terms. -//! Methods for dealing with boxed strings. +//! Unicode string slices. +//! +//! The `&str` type is one of the two main string types, the other being `String`. +//! Unlike its `String` counterpart, its contents are borrowed. +//! +//! # Basic Usage +//! +//! A basic string declaration of `&str` type: +//! +//! ``` +//! let hello_world = "Hello, World!"; +//! ``` +//! +//! Here we have declared a string literal, also known as a string slice. +//! String literals have a static lifetime, which means the string `hello_world` +//! is guaranteed to be valid for the duration of the entire program. +//! We can explicitly specify `hello_world`'s lifetime as well: +//! +//! ``` +//! let hello_world: &'static str = "Hello, world!"; +//! ``` +//! +//! *[See also the `str` primitive type](../../std/primitive.str.html).* + +#![stable(feature = "rust1", since = "1.0.0")] + +// Many of the usings in this module are only used in the test configuration. +// It's cleaner to just turn off the unused_imports warning than to fix them. +#![allow(unused_imports)] + +use core::fmt; +use core::str as core_str; +use core::str::pattern::Pattern; +use core::str::pattern::{Searcher, ReverseSearcher, DoubleEndedSearcher}; use core::mem; +use core::iter::FusedIterator; +use std_unicode::str::{UnicodeStr, Utf16Encoder}; +use vec_deque::VecDeque; +use borrow::{Borrow, ToOwned}; +use string::String; +use std_unicode; +use vec::Vec; +use slice::{SliceConcatExt, SliceIndex}; use boxed::Box; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::str::{FromStr, Utf8Error}; +#[allow(deprecated)] +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::str::{Lines, LinesAny}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::str::{Split, RSplit}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::str::{SplitN, RSplitN}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::str::{SplitTerminator, RSplitTerminator}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::str::{Matches, RMatches}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::str::{MatchIndices, RMatchIndices}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::str::{from_utf8, from_utf8_mut, Chars, CharIndices, Bytes}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::str::{from_utf8_unchecked, from_utf8_unchecked_mut, ParseBoolError}; +#[stable(feature = "rust1", since = "1.0.0")] +pub use std_unicode::str::SplitWhitespace; +#[stable(feature = "rust1", since = "1.0.0")] +pub use core::str::pattern; + + +#[unstable(feature = "slice_concat_ext", + reason = "trait should not have to exist", + issue = "27747")] +impl<S: Borrow<str>> SliceConcatExt<str> for [S] { + type Output = String; + + fn concat(&self) -> String { + if self.is_empty() { + return String::new(); + } + + // `len` calculation may overflow but push_str will check boundaries + let len = self.iter().map(|s| s.borrow().len()).sum(); + let mut result = String::with_capacity(len); + + for s in self { + result.push_str(s.borrow()) + } + + result + } + + fn join(&self, sep: &str) -> String { + if self.is_empty() { + return String::new(); + } + + // concat is faster + if sep.is_empty() { + return self.concat(); + } + + // this is wrong without the guarantee that `self` is non-empty + // `len` calculation may overflow but push_str but will check boundaries + let len = sep.len() * (self.len() - 1) + + self.iter().map(|s| s.borrow().len()).sum::<usize>(); + let mut result = String::with_capacity(len); + let mut first = true; + + for s in self { + if first { + first = false; + } else { + result.push_str(sep); + } + result.push_str(s.borrow()); + } + result + } + + fn connect(&self, sep: &str) -> String { + self.join(sep) + } +} + +/// An iterator of [`u16`] over the string encoded as UTF-16. +/// +/// [`u16`]: ../../std/primitive.u16.html +/// +/// This struct is created by the [`encode_utf16`] method on [`str`]. +/// See its documentation for more. +/// +/// [`encode_utf16`]: ../../std/primitive.str.html#method.encode_utf16 +/// [`str`]: ../../std/primitive.str.html +#[derive(Clone)] +#[stable(feature = "encode_utf16", since = "1.8.0")] +pub struct EncodeUtf16<'a> { + encoder: Utf16Encoder<Chars<'a>>, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a> fmt::Debug for EncodeUtf16<'a> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.pad("EncodeUtf16 { .. }") + } +} + +#[stable(feature = "encode_utf16", since = "1.8.0")] +impl<'a> Iterator for EncodeUtf16<'a> { + type Item = u16; + + #[inline] + fn next(&mut self) -> Option<u16> { + self.encoder.next() + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + self.encoder.size_hint() + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a> FusedIterator for EncodeUtf16<'a> {} + +#[stable(feature = "rust1", since = "1.0.0")] +impl Borrow<str> for String { + #[inline] + fn borrow(&self) -> &str { + &self[..] + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl ToOwned for str { + type Owned = String; + fn to_owned(&self) -> String { + unsafe { String::from_utf8_unchecked(self.as_bytes().to_owned()) } + } + + fn clone_into(&self, target: &mut String) { + let mut b = mem::replace(target, String::new()).into_bytes(); + self.as_bytes().clone_into(&mut b); + *target = unsafe { String::from_utf8_unchecked(b) } + } +} + +/// Methods for string slices. +#[lang = "str"] +#[cfg(not(test))] +impl str { + /// Returns the length of `self`. + /// + /// This length is in bytes, not [`char`]s or graphemes. In other words, + /// it may not be what a human considers the length of the string. + /// + /// [`char`]: primitive.char.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let len = "foo".len(); + /// assert_eq!(3, len); + /// + /// let len = "ƒoo".len(); // fancy f! + /// assert_eq!(4, len); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn len(&self) -> usize { + core_str::StrExt::len(self) + } + + /// Returns `true` if `self` has a length of zero bytes. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = ""; + /// assert!(s.is_empty()); + /// + /// let s = "not empty"; + /// assert!(!s.is_empty()); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn is_empty(&self) -> bool { + core_str::StrExt::is_empty(self) + } + + /// Checks that `index`-th byte lies at the start and/or end of a + /// UTF-8 code point sequence. + /// + /// The start and end of the string (when `index == self.len()`) are + /// considered to be + /// boundaries. + /// + /// Returns `false` if `index` is greater than `self.len()`. + /// + /// # Examples + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// assert!(s.is_char_boundary(0)); + /// // start of `老` + /// assert!(s.is_char_boundary(6)); + /// assert!(s.is_char_boundary(s.len())); + /// + /// // second byte of `ö` + /// assert!(!s.is_char_boundary(2)); + /// + /// // third byte of `老` + /// assert!(!s.is_char_boundary(8)); + /// ``` + #[stable(feature = "is_char_boundary", since = "1.9.0")] + #[inline] + pub fn is_char_boundary(&self, index: usize) -> bool { + core_str::StrExt::is_char_boundary(self, index) + } + + /// Converts a string slice to a byte slice. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let bytes = "bors".as_bytes(); + /// assert_eq!(b"bors", bytes); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline(always)] + pub fn as_bytes(&self) -> &[u8] { + core_str::StrExt::as_bytes(self) + } + + /// Converts a mutable string slice to a mutable byte slice. + #[unstable(feature = "str_mut_extras", issue = "41119")] + #[inline(always)] + pub unsafe fn as_bytes_mut(&mut self) -> &mut [u8] { + core_str::StrExt::as_bytes_mut(self) + } + + /// Converts a string slice to a raw pointer. + /// + /// As string slices are a slice of bytes, the raw pointer points to a + /// [`u8`]. This pointer will be pointing to the first byte of the string + /// slice. + /// + /// [`u8`]: primitive.u8.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = "Hello"; + /// let ptr = s.as_ptr(); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn as_ptr(&self) -> *const u8 { + core_str::StrExt::as_ptr(self) + } + + /// Returns a subslice of `str`. + /// + /// This is the non-panicking alternative to indexing the `str`. Returns + /// [`None`] whenever equivalent indexing operation would panic. + /// + /// [`None`]: option/enum.Option.html#variant.None + /// + /// # Examples + /// + /// ``` + /// # #![feature(str_checked_slicing)] + /// let v = "🗻∈🌏"; + /// assert_eq!(Some("🗻"), v.get(0..4)); + /// assert!(v.get(1..).is_none()); + /// assert!(v.get(..8).is_none()); + /// assert!(v.get(..42).is_none()); + /// ``` + #[unstable(feature = "str_checked_slicing", issue = "39932")] + #[inline] + pub fn get<I: SliceIndex<str>>(&self, i: I) -> Option<&I::Output> { + core_str::StrExt::get(self, i) + } + + /// Returns a mutable subslice of `str`. + /// + /// This is the non-panicking alternative to indexing the `str`. Returns + /// [`None`] whenever equivalent indexing operation would panic. + /// + /// [`None`]: option/enum.Option.html#variant.None + /// + /// # Examples + /// + /// ``` + /// # #![feature(str_checked_slicing)] + /// let mut v = String::from("🗻∈🌏"); + /// assert_eq!(Some("🗻"), v.get_mut(0..4).map(|v| &*v)); + /// assert!(v.get_mut(1..).is_none()); + /// assert!(v.get_mut(..8).is_none()); + /// assert!(v.get_mut(..42).is_none()); + /// ``` + #[unstable(feature = "str_checked_slicing", issue = "39932")] + #[inline] + pub fn get_mut<I: SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> { + core_str::StrExt::get_mut(self, i) + } + + /// Returns a unchecked subslice of `str`. + /// + /// This is the unchecked alternative to indexing the `str`. + /// + /// # Safety + /// + /// Callers of this function are responsible that these preconditions are + /// satisfied: + /// + /// * The starting index must come before the ending index; + /// * Indexes must be within bounds of the original slice; + /// * Indexes must lie on UTF-8 sequence boundaries. + /// + /// Failing that, the returned string slice may reference invalid memory or + /// violate the invariants communicated by the `str` type. + /// + /// # Examples + /// + /// ``` + /// # #![feature(str_checked_slicing)] + /// let v = "🗻∈🌏"; + /// unsafe { + /// assert_eq!("🗻", v.get_unchecked(0..4)); + /// assert_eq!("∈", v.get_unchecked(4..7)); + /// assert_eq!("🌏", v.get_unchecked(7..11)); + /// } + /// ``` + #[unstable(feature = "str_checked_slicing", issue = "39932")] + #[inline] + pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output { + core_str::StrExt::get_unchecked(self, i) + } + + /// Returns a mutable, unchecked subslice of `str`. + /// + /// This is the unchecked alternative to indexing the `str`. + /// + /// # Safety + /// + /// Callers of this function are responsible that these preconditions are + /// satisfied: + /// + /// * The starting index must come before the ending index; + /// * Indexes must be within bounds of the original slice; + /// * Indexes must lie on UTF-8 sequence boundaries. + /// + /// Failing that, the returned string slice may reference invalid memory or + /// violate the invariants communicated by the `str` type. + /// + /// # Examples + /// + /// ``` + /// # #![feature(str_checked_slicing)] + /// let mut v = String::from("🗻∈🌏"); + /// unsafe { + /// assert_eq!("🗻", v.get_unchecked_mut(0..4)); + /// assert_eq!("∈", v.get_unchecked_mut(4..7)); + /// assert_eq!("🌏", v.get_unchecked_mut(7..11)); + /// } + /// ``` + #[unstable(feature = "str_checked_slicing", issue = "39932")] + #[inline] + pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output { + core_str::StrExt::get_unchecked_mut(self, i) + } + + /// Creates a string slice from another string slice, bypassing safety + /// checks. + /// + /// This is generally not recommended, use with caution! For a safe + /// alternative see [`str`] and [`Index`]. + /// + /// [`str`]: primitive.str.html + /// [`Index`]: ops/trait.Index.html + /// + /// This new slice goes from `begin` to `end`, including `begin` but + /// excluding `end`. + /// + /// To get a mutable string slice instead, see the + /// [`slice_mut_unchecked`] method. + /// + /// [`slice_mut_unchecked`]: #method.slice_mut_unchecked + /// + /// # Safety + /// + /// Callers of this function are responsible that three preconditions are + /// satisfied: + /// + /// * `begin` must come before `end`. + /// * `begin` and `end` must be byte positions within the string slice. + /// * `begin` and `end` must lie on UTF-8 sequence boundaries. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// + /// unsafe { + /// assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21)); + /// } + /// + /// let s = "Hello, world!"; + /// + /// unsafe { + /// assert_eq!("world", s.slice_unchecked(7, 12)); + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str { + core_str::StrExt::slice_unchecked(self, begin, end) + } + + /// Creates a string slice from another string slice, bypassing safety + /// checks. + /// This is generally not recommended, use with caution! For a safe + /// alternative see [`str`] and [`IndexMut`]. + /// + /// [`str`]: primitive.str.html + /// [`IndexMut`]: ops/trait.IndexMut.html + /// + /// This new slice goes from `begin` to `end`, including `begin` but + /// excluding `end`. + /// + /// To get an immutable string slice instead, see the + /// [`slice_unchecked`] method. + /// + /// [`slice_unchecked`]: #method.slice_unchecked + /// + /// # Safety + /// + /// Callers of this function are responsible that three preconditions are + /// satisfied: + /// + /// * `begin` must come before `end`. + /// * `begin` and `end` must be byte positions within the string slice. + /// * `begin` and `end` must lie on UTF-8 sequence boundaries. + #[stable(feature = "str_slice_mut", since = "1.5.0")] + #[inline] + pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str { + core_str::StrExt::slice_mut_unchecked(self, begin, end) + } + + /// Divide one string slice into two at an index. + /// + /// The argument, `mid`, should be a byte offset from the start of the + /// string. It must also be on the boundary of a UTF-8 code point. + /// + /// The two slices returned go from the start of the string slice to `mid`, + /// and from `mid` to the end of the string slice. + /// + /// To get mutable string slices instead, see the [`split_at_mut`] + /// method. + /// + /// [`split_at_mut`]: #method.split_at_mut + /// + /// # Panics + /// + /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is + /// beyond the last code point of the string slice. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = "Per Martin-Löf"; + /// + /// let (first, last) = s.split_at(3); + /// + /// assert_eq!("Per", first); + /// assert_eq!(" Martin-Löf", last); + /// ``` + #[inline] + #[stable(feature = "str_split_at", since = "1.4.0")] + pub fn split_at(&self, mid: usize) -> (&str, &str) { + core_str::StrExt::split_at(self, mid) + } + + /// Divide one mutable string slice into two at an index. + /// + /// The argument, `mid`, should be a byte offset from the start of the + /// string. It must also be on the boundary of a UTF-8 code point. + /// + /// The two slices returned go from the start of the string slice to `mid`, + /// and from `mid` to the end of the string slice. + /// + /// To get immutable string slices instead, see the [`split_at`] method. + /// + /// [`split_at`]: #method.split_at + /// + /// # Panics + /// + /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is + /// beyond the last code point of the string slice. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut s = "Per Martin-Löf".to_string(); + /// + /// let (first, last) = s.split_at_mut(3); + /// + /// assert_eq!("Per", first); + /// assert_eq!(" Martin-Löf", last); + /// ``` + #[inline] + #[stable(feature = "str_split_at", since = "1.4.0")] + pub fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) { + core_str::StrExt::split_at_mut(self, mid) + } + + /// Returns an iterator over the [`char`]s of a string slice. + /// + /// As a string slice consists of valid UTF-8, we can iterate through a + /// string slice by [`char`]. This method returns such an iterator. + /// + /// It's important to remember that [`char`] represents a Unicode Scalar + /// Value, and may not match your idea of what a 'character' is. Iteration + /// over grapheme clusters may be what you actually want. + /// + /// [`char`]: primitive.char.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let word = "goodbye"; + /// + /// let count = word.chars().count(); + /// assert_eq!(7, count); + /// + /// let mut chars = word.chars(); + /// + /// assert_eq!(Some('g'), chars.next()); + /// assert_eq!(Some('o'), chars.next()); + /// assert_eq!(Some('o'), chars.next()); + /// assert_eq!(Some('d'), chars.next()); + /// assert_eq!(Some('b'), chars.next()); + /// assert_eq!(Some('y'), chars.next()); + /// assert_eq!(Some('e'), chars.next()); + /// + /// assert_eq!(None, chars.next()); + /// ``` + /// + /// Remember, [`char`]s may not match your human intuition about characters: + /// + /// ``` + /// let y = "y̆"; + /// + /// let mut chars = y.chars(); + /// + /// assert_eq!(Some('y'), chars.next()); // not 'y̆' + /// assert_eq!(Some('\u{0306}'), chars.next()); + /// + /// assert_eq!(None, chars.next()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn chars(&self) -> Chars { + core_str::StrExt::chars(self) + } + /// Returns an iterator over the [`char`]s of a string slice, and their + /// positions. + /// + /// As a string slice consists of valid UTF-8, we can iterate through a + /// string slice by [`char`]. This method returns an iterator of both + /// these [`char`]s, as well as their byte positions. + /// + /// The iterator yields tuples. The position is first, the [`char`] is + /// second. + /// + /// [`char`]: primitive.char.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let word = "goodbye"; + /// + /// let count = word.char_indices().count(); + /// assert_eq!(7, count); + /// + /// let mut char_indices = word.char_indices(); + /// + /// assert_eq!(Some((0, 'g')), char_indices.next()); + /// assert_eq!(Some((1, 'o')), char_indices.next()); + /// assert_eq!(Some((2, 'o')), char_indices.next()); + /// assert_eq!(Some((3, 'd')), char_indices.next()); + /// assert_eq!(Some((4, 'b')), char_indices.next()); + /// assert_eq!(Some((5, 'y')), char_indices.next()); + /// assert_eq!(Some((6, 'e')), char_indices.next()); + /// + /// assert_eq!(None, char_indices.next()); + /// ``` + /// + /// Remember, [`char`]s may not match your human intuition about characters: + /// + /// ``` + /// let y = "y̆"; + /// + /// let mut char_indices = y.char_indices(); + /// + /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆') + /// assert_eq!(Some((1, '\u{0306}')), char_indices.next()); + /// + /// assert_eq!(None, char_indices.next()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn char_indices(&self) -> CharIndices { + core_str::StrExt::char_indices(self) + } + + /// An iterator over the bytes of a string slice. + /// + /// As a string slice consists of a sequence of bytes, we can iterate + /// through a string slice by byte. This method returns such an iterator. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut bytes = "bors".bytes(); + /// + /// assert_eq!(Some(b'b'), bytes.next()); + /// assert_eq!(Some(b'o'), bytes.next()); + /// assert_eq!(Some(b'r'), bytes.next()); + /// assert_eq!(Some(b's'), bytes.next()); + /// + /// assert_eq!(None, bytes.next()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn bytes(&self) -> Bytes { + core_str::StrExt::bytes(self) + } + + /// Split a string slice by whitespace. + /// + /// The iterator returned will return string slices that are sub-slices of + /// the original string slice, separated by any amount of whitespace. + /// + /// 'Whitespace' is defined according to the terms of the Unicode Derived + /// Core Property `White_Space`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut iter = "A few words".split_whitespace(); + /// + /// assert_eq!(Some("A"), iter.next()); + /// assert_eq!(Some("few"), iter.next()); + /// assert_eq!(Some("words"), iter.next()); + /// + /// assert_eq!(None, iter.next()); + /// ``` + /// + /// All kinds of whitespace are considered: + /// + /// ``` + /// let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace(); + /// assert_eq!(Some("Mary"), iter.next()); + /// assert_eq!(Some("had"), iter.next()); + /// assert_eq!(Some("a"), iter.next()); + /// assert_eq!(Some("little"), iter.next()); + /// assert_eq!(Some("lamb"), iter.next()); + /// + /// assert_eq!(None, iter.next()); + /// ``` + #[stable(feature = "split_whitespace", since = "1.1.0")] + #[inline] + pub fn split_whitespace(&self) -> SplitWhitespace { + UnicodeStr::split_whitespace(self) + } + + /// An iterator over the lines of a string, as string slices. + /// + /// Lines are ended with either a newline (`\n`) or a carriage return with + /// a line feed (`\r\n`). + /// + /// The final line ending is optional. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let text = "foo\r\nbar\n\nbaz\n"; + /// let mut lines = text.lines(); + /// + /// assert_eq!(Some("foo"), lines.next()); + /// assert_eq!(Some("bar"), lines.next()); + /// assert_eq!(Some(""), lines.next()); + /// assert_eq!(Some("baz"), lines.next()); + /// + /// assert_eq!(None, lines.next()); + /// ``` + /// + /// The final line ending isn't required: + /// + /// ``` + /// let text = "foo\nbar\n\r\nbaz"; + /// let mut lines = text.lines(); + /// + /// assert_eq!(Some("foo"), lines.next()); + /// assert_eq!(Some("bar"), lines.next()); + /// assert_eq!(Some(""), lines.next()); + /// assert_eq!(Some("baz"), lines.next()); + /// + /// assert_eq!(None, lines.next()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn lines(&self) -> Lines { + core_str::StrExt::lines(self) + } + + /// An iterator over the lines of a string. + #[stable(feature = "rust1", since = "1.0.0")] + #[rustc_deprecated(since = "1.4.0", reason = "use lines() instead now")] + #[inline] + #[allow(deprecated)] + pub fn lines_any(&self) -> LinesAny { + core_str::StrExt::lines_any(self) + } + + /// Returns an iterator of `u16` over the string encoded as UTF-16. + #[stable(feature = "encode_utf16", since = "1.8.0")] + pub fn encode_utf16(&self) -> EncodeUtf16 { + EncodeUtf16 { encoder: Utf16Encoder::new(self[..].chars()) } + } + + /// Returns `true` if the given pattern matches a sub-slice of + /// this string slice. + /// + /// Returns `false` if it does not. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let bananas = "bananas"; + /// + /// assert!(bananas.contains("nana")); + /// assert!(!bananas.contains("apples")); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn contains<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool { + core_str::StrExt::contains(self, pat) + } + + /// Returns `true` if the given pattern matches a prefix of this + /// string slice. + /// + /// Returns `false` if it does not. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let bananas = "bananas"; + /// + /// assert!(bananas.starts_with("bana")); + /// assert!(!bananas.starts_with("nana")); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn starts_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool { + core_str::StrExt::starts_with(self, pat) + } + + /// Returns `true` if the given pattern matches a suffix of this + /// string slice. + /// + /// Returns `false` if it does not. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let bananas = "bananas"; + /// + /// assert!(bananas.ends_with("anas")); + /// assert!(!bananas.ends_with("nana")); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn ends_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool + where P::Searcher: ReverseSearcher<'a> + { + core_str::StrExt::ends_with(self, pat) + } + + /// Returns the byte index of the first character of this string slice that + /// matches the pattern. + /// + /// Returns [`None`] if the pattern doesn't match. + /// + /// The pattern can be a `&str`, [`char`], or a closure that determines if + /// a character matches. + /// + /// [`char`]: primitive.char.html + /// [`None`]: option/enum.Option.html#variant.None + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// + /// assert_eq!(s.find('L'), Some(0)); + /// assert_eq!(s.find('é'), Some(14)); + /// assert_eq!(s.find("Léopard"), Some(13)); + /// ``` + /// + /// More complex patterns with closures: + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// + /// assert_eq!(s.find(char::is_whitespace), Some(5)); + /// assert_eq!(s.find(char::is_lowercase), Some(1)); + /// ``` + /// + /// Not finding the pattern: + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// let x: &[_] = &['1', '2']; + /// + /// assert_eq!(s.find(x), None); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn find<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option<usize> { + core_str::StrExt::find(self, pat) + } + + /// Returns the byte index of the last character of this string slice that + /// matches the pattern. + /// + /// Returns [`None`] if the pattern doesn't match. + /// + /// The pattern can be a `&str`, [`char`], or a closure that determines if + /// a character matches. + /// + /// [`char`]: primitive.char.html + /// [`None`]: option/enum.Option.html#variant.None + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// + /// assert_eq!(s.rfind('L'), Some(13)); + /// assert_eq!(s.rfind('é'), Some(14)); + /// ``` + /// + /// More complex patterns with closures: + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// + /// assert_eq!(s.rfind(char::is_whitespace), Some(12)); + /// assert_eq!(s.rfind(char::is_lowercase), Some(20)); + /// ``` + /// + /// Not finding the pattern: + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// let x: &[_] = &['1', '2']; + /// + /// assert_eq!(s.rfind(x), None); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn rfind<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option<usize> + where P::Searcher: ReverseSearcher<'a> + { + core_str::StrExt::rfind(self, pat) + } + + /// An iterator over substrings of this string slice, separated by + /// characters matched by a pattern. + /// + /// The pattern can be a `&str`, [`char`], or a closure that determines the + /// split. + /// + /// # Iterator behavior + /// + /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern + /// allows a reverse search and forward/reverse search yields the same + /// elements. This is true for, eg, [`char`] but not for `&str`. + /// + /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html + /// + /// If the pattern allows a reverse search but its results might differ + /// from a forward search, the [`rsplit`] method can be used. + /// + /// [`char`]: primitive.char.html + /// [`rsplit`]: #method.rsplit + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect(); + /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]); + /// + /// let v: Vec<&str> = "".split('X').collect(); + /// assert_eq!(v, [""]); + /// + /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect(); + /// assert_eq!(v, ["lion", "", "tiger", "leopard"]); + /// + /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect(); + /// assert_eq!(v, ["lion", "tiger", "leopard"]); + /// + /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect(); + /// assert_eq!(v, ["abc", "def", "ghi"]); + /// + /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect(); + /// assert_eq!(v, ["lion", "tiger", "leopard"]); + /// ``` + /// + /// A more complex pattern, using a closure: + /// + /// ``` + /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect(); + /// assert_eq!(v, ["abc", "def", "ghi"]); + /// ``` + /// + /// If a string contains multiple contiguous separators, you will end up + /// with empty strings in the output: + /// + /// ``` + /// let x = "||||a||b|c".to_string(); + /// let d: Vec<_> = x.split('|').collect(); + /// + /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]); + /// ``` + /// + /// Contiguous separators are separated by the empty string. + /// + /// ``` + /// let x = "(///)".to_string(); + /// let d: Vec<_> = x.split('/').collect(); + /// + /// assert_eq!(d, &["(", "", "", ")"]); + /// ``` + /// + /// Separators at the start or end of a string are neighbored + /// by empty strings. + /// + /// ``` + /// let d: Vec<_> = "010".split("0").collect(); + /// assert_eq!(d, &["", "1", ""]); + /// ``` + /// + /// When the empty string is used as a separator, it separates + /// every character in the string, along with the beginning + /// and end of the string. + /// + /// ``` + /// let f: Vec<_> = "rust".split("").collect(); + /// assert_eq!(f, &["", "r", "u", "s", "t", ""]); + /// ``` + /// + /// Contiguous separators can lead to possibly surprising behavior + /// when whitespace is used as the separator. This code is correct: + /// + /// ``` + /// let x = " a b c".to_string(); + /// let d: Vec<_> = x.split(' ').collect(); + /// + /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]); + /// ``` + /// + /// It does _not_ give you: + /// + /// ```,ignore + /// assert_eq!(d, &["a", "b", "c"]); + /// ``` + /// + /// Use [`split_whitespace`] for this behavior. + /// + /// [`split_whitespace`]: #method.split_whitespace + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn split<'a, P: Pattern<'a>>(&'a self, pat: P) -> Split<'a, P> { + core_str::StrExt::split(self, pat) + } + + /// An iterator over substrings of the given string slice, separated by + /// characters matched by a pattern and yielded in reverse order. + /// + /// The pattern can be a `&str`, [`char`], or a closure that determines the + /// split. + /// + /// [`char`]: primitive.char.html + /// + /// # Iterator behavior + /// + /// The returned iterator requires that the pattern supports a reverse + /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse + /// search yields the same elements. + /// + /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html + /// + /// For iterating from the front, the [`split`] method can be used. + /// + /// [`split`]: #method.split + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect(); + /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]); + /// + /// let v: Vec<&str> = "".rsplit('X').collect(); + /// assert_eq!(v, [""]); + /// + /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect(); + /// assert_eq!(v, ["leopard", "tiger", "", "lion"]); + /// + /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect(); + /// assert_eq!(v, ["leopard", "tiger", "lion"]); + /// ``` + /// + /// A more complex pattern, using a closure: + /// + /// ``` + /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect(); + /// assert_eq!(v, ["ghi", "def", "abc"]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn rsplit<'a, P: Pattern<'a>>(&'a self, pat: P) -> RSplit<'a, P> + where P::Searcher: ReverseSearcher<'a> + { + core_str::StrExt::rsplit(self, pat) + } + + /// An iterator over substrings of the given string slice, separated by + /// characters matched by a pattern. + /// + /// The pattern can be a `&str`, [`char`], or a closure that determines the + /// split. + /// + /// Equivalent to [`split`], except that the trailing substring + /// is skipped if empty. + /// + /// [`split`]: #method.split + /// + /// This method can be used for string data that is _terminated_, + /// rather than _separated_ by a pattern. + /// + /// # Iterator behavior + /// + /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern + /// allows a reverse search and forward/reverse search yields the same + /// elements. This is true for, eg, [`char`] but not for `&str`. + /// + /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html + /// [`char`]: primitive.char.html + /// + /// If the pattern allows a reverse search but its results might differ + /// from a forward search, the [`rsplit_terminator`] method can be used. + /// + /// [`rsplit_terminator`]: #method.rsplit_terminator + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let v: Vec<&str> = "A.B.".split_terminator('.').collect(); + /// assert_eq!(v, ["A", "B"]); + /// + /// let v: Vec<&str> = "A..B..".split_terminator(".").collect(); + /// assert_eq!(v, ["A", "", "B", ""]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn split_terminator<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitTerminator<'a, P> { + core_str::StrExt::split_terminator(self, pat) + } + + /// An iterator over substrings of `self`, separated by characters + /// matched by a pattern and yielded in reverse order. + /// + /// The pattern can be a simple `&str`, [`char`], or a closure that + /// determines the split. + /// Additional libraries might provide more complex patterns like + /// regular expressions. + /// + /// [`char`]: primitive.char.html + /// + /// Equivalent to [`split`], except that the trailing substring is + /// skipped if empty. + /// + /// [`split`]: #method.split + /// + /// This method can be used for string data that is _terminated_, + /// rather than _separated_ by a pattern. + /// + /// # Iterator behavior + /// + /// The returned iterator requires that the pattern supports a + /// reverse search, and it will be double ended if a forward/reverse + /// search yields the same elements. + /// + /// For iterating from the front, the [`split_terminator`] method can be + /// used. + /// + /// [`split_terminator`]: #method.split_terminator + /// + /// # Examples + /// + /// ``` + /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect(); + /// assert_eq!(v, ["B", "A"]); + /// + /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect(); + /// assert_eq!(v, ["", "B", "", "A"]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn rsplit_terminator<'a, P: Pattern<'a>>(&'a self, pat: P) -> RSplitTerminator<'a, P> + where P::Searcher: ReverseSearcher<'a> + { + core_str::StrExt::rsplit_terminator(self, pat) + } + + /// An iterator over substrings of the given string slice, separated by a + /// pattern, restricted to returning at most `n` items. + /// + /// If `n` substrings are returned, the last substring (the `n`th substring) + /// will contain the remainder of the string. + /// + /// The pattern can be a `&str`, [`char`], or a closure that determines the + /// split. + /// + /// [`char`]: primitive.char.html + /// + /// # Iterator behavior + /// + /// The returned iterator will not be double ended, because it is + /// not efficient to support. + /// + /// If the pattern allows a reverse search, the [`rsplitn`] method can be + /// used. + /// + /// [`rsplitn`]: #method.rsplitn + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect(); + /// assert_eq!(v, ["Mary", "had", "a little lambda"]); + /// + /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect(); + /// assert_eq!(v, ["lion", "", "tigerXleopard"]); + /// + /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect(); + /// assert_eq!(v, ["abcXdef"]); + /// + /// let v: Vec<&str> = "".splitn(1, 'X').collect(); + /// assert_eq!(v, [""]); + /// ``` + /// + /// A more complex pattern, using a closure: + /// + /// ``` + /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect(); + /// assert_eq!(v, ["abc", "defXghi"]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn splitn<'a, P: Pattern<'a>>(&'a self, n: usize, pat: P) -> SplitN<'a, P> { + core_str::StrExt::splitn(self, n, pat) + } + + /// An iterator over substrings of this string slice, separated by a + /// pattern, starting from the end of the string, restricted to returning + /// at most `n` items. + /// + /// If `n` substrings are returned, the last substring (the `n`th substring) + /// will contain the remainder of the string. + /// + /// The pattern can be a `&str`, [`char`], or a closure that + /// determines the split. + /// + /// [`char`]: primitive.char.html + /// + /// # Iterator behavior + /// + /// The returned iterator will not be double ended, because it is not + /// efficient to support. + /// + /// For splitting from the front, the [`splitn`] method can be used. + /// + /// [`splitn`]: #method.splitn + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect(); + /// assert_eq!(v, ["lamb", "little", "Mary had a"]); + /// + /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect(); + /// assert_eq!(v, ["leopard", "tiger", "lionX"]); + /// + /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect(); + /// assert_eq!(v, ["leopard", "lion::tiger"]); + /// ``` + /// + /// A more complex pattern, using a closure: + /// + /// ``` + /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect(); + /// assert_eq!(v, ["ghi", "abc1def"]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn rsplitn<'a, P: Pattern<'a>>(&'a self, n: usize, pat: P) -> RSplitN<'a, P> + where P::Searcher: ReverseSearcher<'a> + { + core_str::StrExt::rsplitn(self, n, pat) + } + + /// An iterator over the disjoint matches of a pattern within the given string + /// slice. + /// + /// The pattern can be a `&str`, [`char`], or a closure that + /// determines if a character matches. + /// + /// [`char`]: primitive.char.html + /// + /// # Iterator behavior + /// + /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern + /// allows a reverse search and forward/reverse search yields the same + /// elements. This is true for, eg, [`char`] but not for `&str`. + /// + /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html + /// [`char`]: primitive.char.html + /// + /// If the pattern allows a reverse search but its results might differ + /// from a forward search, the [`rmatches`] method can be used. + /// + /// [`rmatches`]: #method.rmatches + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect(); + /// assert_eq!(v, ["abc", "abc", "abc"]); + /// + /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect(); + /// assert_eq!(v, ["1", "2", "3"]); + /// ``` + #[stable(feature = "str_matches", since = "1.2.0")] + #[inline] + pub fn matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> Matches<'a, P> { + core_str::StrExt::matches(self, pat) + } + + /// An iterator over the disjoint matches of a pattern within this string slice, + /// yielded in reverse order. + /// + /// The pattern can be a `&str`, [`char`], or a closure that determines if + /// a character matches. + /// + /// [`char`]: primitive.char.html + /// + /// # Iterator behavior + /// + /// The returned iterator requires that the pattern supports a reverse + /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse + /// search yields the same elements. + /// + /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html + /// + /// For iterating from the front, the [`matches`] method can be used. + /// + /// [`matches`]: #method.matches + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect(); + /// assert_eq!(v, ["abc", "abc", "abc"]); + /// + /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect(); + /// assert_eq!(v, ["3", "2", "1"]); + /// ``` + #[stable(feature = "str_matches", since = "1.2.0")] + #[inline] + pub fn rmatches<'a, P: Pattern<'a>>(&'a self, pat: P) -> RMatches<'a, P> + where P::Searcher: ReverseSearcher<'a> + { + core_str::StrExt::rmatches(self, pat) + } + + /// An iterator over the disjoint matches of a pattern within this string + /// slice as well as the index that the match starts at. + /// + /// For matches of `pat` within `self` that overlap, only the indices + /// corresponding to the first match are returned. + /// + /// The pattern can be a `&str`, [`char`], or a closure that determines + /// if a character matches. + /// + /// [`char`]: primitive.char.html + /// + /// # Iterator behavior + /// + /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern + /// allows a reverse search and forward/reverse search yields the same + /// elements. This is true for, eg, [`char`] but not for `&str`. + /// + /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html + /// + /// If the pattern allows a reverse search but its results might differ + /// from a forward search, the [`rmatch_indices`] method can be used. + /// + /// [`rmatch_indices`]: #method.rmatch_indices + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect(); + /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]); + /// + /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect(); + /// assert_eq!(v, [(1, "abc"), (4, "abc")]); + /// + /// let v: Vec<_> = "ababa".match_indices("aba").collect(); + /// assert_eq!(v, [(0, "aba")]); // only the first `aba` + /// ``` + #[stable(feature = "str_match_indices", since = "1.5.0")] + #[inline] + pub fn match_indices<'a, P: Pattern<'a>>(&'a self, pat: P) -> MatchIndices<'a, P> { + core_str::StrExt::match_indices(self, pat) + } + + /// An iterator over the disjoint matches of a pattern within `self`, + /// yielded in reverse order along with the index of the match. + /// + /// For matches of `pat` within `self` that overlap, only the indices + /// corresponding to the last match are returned. + /// + /// The pattern can be a `&str`, [`char`], or a closure that determines if a + /// character matches. + /// + /// [`char`]: primitive.char.html + /// + /// # Iterator behavior + /// + /// The returned iterator requires that the pattern supports a reverse + /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse + /// search yields the same elements. + /// + /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html + /// + /// For iterating from the front, the [`match_indices`] method can be used. + /// + /// [`match_indices`]: #method.match_indices + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect(); + /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]); + /// + /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect(); + /// assert_eq!(v, [(4, "abc"), (1, "abc")]); + /// + /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect(); + /// assert_eq!(v, [(2, "aba")]); // only the last `aba` + /// ``` + #[stable(feature = "str_match_indices", since = "1.5.0")] + #[inline] + pub fn rmatch_indices<'a, P: Pattern<'a>>(&'a self, pat: P) -> RMatchIndices<'a, P> + where P::Searcher: ReverseSearcher<'a> + { + core_str::StrExt::rmatch_indices(self, pat) + } + + /// Returns a string slice with leading and trailing whitespace removed. + /// + /// 'Whitespace' is defined according to the terms of the Unicode Derived + /// Core Property `White_Space`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = " Hello\tworld\t"; + /// + /// assert_eq!("Hello\tworld", s.trim()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn trim(&self) -> &str { + UnicodeStr::trim(self) + } + + /// Returns a string slice with leading whitespace removed. + /// + /// 'Whitespace' is defined according to the terms of the Unicode Derived + /// Core Property `White_Space`. + /// + /// # Text directionality + /// + /// A string is a sequence of bytes. 'Left' in this context means the first + /// position of that byte string; for a language like Arabic or Hebrew + /// which are 'right to left' rather than 'left to right', this will be + /// the _right_ side, not the left. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = " Hello\tworld\t"; + /// + /// assert_eq!("Hello\tworld\t", s.trim_left()); + /// ``` + /// + /// Directionality: + /// + /// ``` + /// let s = " English"; + /// assert!(Some('E') == s.trim_left().chars().next()); + /// + /// let s = " עברית"; + /// assert!(Some('ע') == s.trim_left().chars().next()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn trim_left(&self) -> &str { + UnicodeStr::trim_left(self) + } + + /// Returns a string slice with trailing whitespace removed. + /// + /// 'Whitespace' is defined according to the terms of the Unicode Derived + /// Core Property `White_Space`. + /// + /// # Text directionality + /// + /// A string is a sequence of bytes. 'Right' in this context means the last + /// position of that byte string; for a language like Arabic or Hebrew + /// which are 'right to left' rather than 'left to right', this will be + /// the _left_ side, not the right. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = " Hello\tworld\t"; + /// + /// assert_eq!(" Hello\tworld", s.trim_right()); + /// ``` + /// + /// Directionality: + /// + /// ``` + /// let s = "English "; + /// assert!(Some('h') == s.trim_right().chars().rev().next()); + /// + /// let s = "עברית "; + /// assert!(Some('ת') == s.trim_right().chars().rev().next()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn trim_right(&self) -> &str { + UnicodeStr::trim_right(self) + } + + /// Returns a string slice with all prefixes and suffixes that match a + /// pattern repeatedly removed. + /// + /// The pattern can be a [`char`] or a closure that determines if a + /// character matches. + /// + /// [`char`]: primitive.char.html + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar"); + /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar"); + /// + /// let x: &[_] = &['1', '2']; + /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar"); + /// ``` + /// + /// A more complex pattern, using a closure: + /// + /// ``` + /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar"); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn trim_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str + where P::Searcher: DoubleEndedSearcher<'a> + { + core_str::StrExt::trim_matches(self, pat) + } + + /// Returns a string slice with all prefixes that match a pattern + /// repeatedly removed. + /// + /// The pattern can be a `&str`, [`char`], or a closure that determines if + /// a character matches. + /// + /// [`char`]: primitive.char.html + /// + /// # Text directionality + /// + /// A string is a sequence of bytes. 'Left' in this context means the first + /// position of that byte string; for a language like Arabic or Hebrew + /// which are 'right to left' rather than 'left to right', this will be + /// the _right_ side, not the left. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11"); + /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123"); + /// + /// let x: &[_] = &['1', '2']; + /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12"); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn trim_left_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str { + core_str::StrExt::trim_left_matches(self, pat) + } + + /// Returns a string slice with all suffixes that match a pattern + /// repeatedly removed. + /// + /// The pattern can be a `&str`, [`char`], or a closure that + /// determines if a character matches. + /// + /// [`char`]: primitive.char.html + /// + /// # Text directionality + /// + /// A string is a sequence of bytes. 'Right' in this context means the last + /// position of that byte string; for a language like Arabic or Hebrew + /// which are 'right to left' rather than 'left to right', this will be + /// the _left_ side, not the right. + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar"); + /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar"); + /// + /// let x: &[_] = &['1', '2']; + /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar"); + /// ``` + /// + /// A more complex pattern, using a closure: + /// + /// ``` + /// assert_eq!("1fooX".trim_left_matches(|c| c == '1' || c == 'X'), "fooX"); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn trim_right_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str + where P::Searcher: ReverseSearcher<'a> + { + core_str::StrExt::trim_right_matches(self, pat) + } + + /// Parses this string slice into another type. + /// + /// Because `parse` is so general, it can cause problems with type + /// inference. As such, `parse` is one of the few times you'll see + /// the syntax affectionately known as the 'turbofish': `::<>`. This + /// helps the inference algorithm understand specifically which type + /// you're trying to parse into. + /// + /// `parse` can parse any type that implements the [`FromStr`] trait. + /// + /// [`FromStr`]: str/trait.FromStr.html + /// + /// # Errors + /// + /// Will return [`Err`] if it's not possible to parse this string slice into + /// the desired type. + /// + /// [`Err`]: str/trait.FromStr.html#associatedtype.Err + /// + /// # Example + /// + /// Basic usage + /// + /// ``` + /// let four: u32 = "4".parse().unwrap(); + /// + /// assert_eq!(4, four); + /// ``` + /// + /// Using the 'turbofish' instead of annotating `four`: + /// + /// ``` + /// let four = "4".parse::<u32>(); + /// + /// assert_eq!(Ok(4), four); + /// ``` + /// + /// Failing to parse: + /// + /// ``` + /// let nope = "j".parse::<u32>(); + /// + /// assert!(nope.is_err()); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> { + core_str::StrExt::parse(self) + } + + /// Converts a `Box<str>` into a `Box<[u8]>` without copying or allocating. + #[unstable(feature = "str_box_extras", issue = "41119")] + pub fn into_boxed_bytes(self: Box<str>) -> Box<[u8]> { + self.into() + } + + /// Replaces all matches of a pattern with another string. + /// + /// `replace` creates a new [`String`], and copies the data from this string slice into it. + /// While doing so, it attempts to find matches of a pattern. If it finds any, it + /// replaces them with the replacement string slice. + /// + /// [`String`]: string/struct.String.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = "this is old"; + /// + /// assert_eq!("this is new", s.replace("old", "new")); + /// ``` + /// + /// When the pattern doesn't match: + /// + /// ``` + /// let s = "this is old"; + /// assert_eq!(s, s.replace("cookie monster", "little lamb")); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn replace<'a, P: Pattern<'a>>(&'a self, from: P, to: &str) -> String { + let mut result = String::new(); + let mut last_end = 0; + for (start, part) in self.match_indices(from) { + result.push_str(unsafe { self.slice_unchecked(last_end, start) }); + result.push_str(to); + last_end = start + part.len(); + } + result.push_str(unsafe { self.slice_unchecked(last_end, self.len()) }); + result + } + + /// Replaces first N matches of a pattern with another string. + /// + /// `replacen` creates a new [`String`], and copies the data from this string slice into it. + /// While doing so, it attempts to find matches of a pattern. If it finds any, it + /// replaces them with the replacement string slice at most `count` times. + /// + /// [`String`]: string/struct.String.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = "foo foo 123 foo"; + /// assert_eq!("new new 123 foo", s.replacen("foo", "new", 2)); + /// assert_eq!("faa fao 123 foo", s.replacen('o', "a", 3)); + /// assert_eq!("foo foo new23 foo", s.replacen(char::is_numeric, "new", 1)); + /// ``` + /// + /// When the pattern doesn't match: + /// + /// ``` + /// let s = "this is old"; + /// assert_eq!(s, s.replacen("cookie monster", "little lamb", 10)); + /// ``` + #[stable(feature = "str_replacen", since = "1.16.0")] + pub fn replacen<'a, P: Pattern<'a>>(&'a self, pat: P, to: &str, count: usize) -> String { + // Hope to reduce the times of re-allocation + let mut result = String::with_capacity(32); + let mut last_end = 0; + for (start, part) in self.match_indices(pat).take(count) { + result.push_str(unsafe { self.slice_unchecked(last_end, start) }); + result.push_str(to); + last_end = start + part.len(); + } + result.push_str(unsafe { self.slice_unchecked(last_end, self.len()) }); + result + } + + /// Returns the lowercase equivalent of this string slice, as a new [`String`]. + /// + /// 'Lowercase' is defined according to the terms of the Unicode Derived Core Property + /// `Lowercase`. + /// + /// Since some characters can expand into multiple characters when changing + /// the case, this function returns a [`String`] instead of modifying the + /// parameter in-place. + /// + /// [`String`]: string/struct.String.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = "HELLO"; + /// + /// assert_eq!("hello", s.to_lowercase()); + /// ``` + /// + /// A tricky example, with sigma: + /// + /// ``` + /// let sigma = "Σ"; + /// + /// assert_eq!("σ", sigma.to_lowercase()); + /// + /// // but at the end of a word, it's ς, not σ: + /// let odysseus = "ὈΔΥΣΣΕΎΣ"; + /// + /// assert_eq!("ὀδυσσεύς", odysseus.to_lowercase()); + /// ``` + /// + /// Languages without case are not changed: + /// + /// ``` + /// let new_year = "农历新年"; + /// + /// assert_eq!(new_year, new_year.to_lowercase()); + /// ``` + #[stable(feature = "unicode_case_mapping", since = "1.2.0")] + pub fn to_lowercase(&self) -> String { + let mut s = String::with_capacity(self.len()); + for (i, c) in self[..].char_indices() { + if c == 'Σ' { + // Σ maps to σ, except at the end of a word where it maps to ς. + // This is the only conditional (contextual) but language-independent mapping + // in `SpecialCasing.txt`, + // so hard-code it rather than have a generic "condition" mechanism. + // See https://github.com/rust-lang/rust/issues/26035 + map_uppercase_sigma(self, i, &mut s) + } else { + s.extend(c.to_lowercase()); + } + } + return s; + + fn map_uppercase_sigma(from: &str, i: usize, to: &mut String) { + // See http://www.unicode.org/versions/Unicode7.0.0/ch03.pdf#G33992 + // for the definition of `Final_Sigma`. + debug_assert!('Σ'.len_utf8() == 2); + let is_word_final = case_ignoreable_then_cased(from[..i].chars().rev()) && + !case_ignoreable_then_cased(from[i + 2..].chars()); + to.push_str(if is_word_final { "ς" } else { "σ" }); + } + + fn case_ignoreable_then_cased<I: Iterator<Item = char>>(iter: I) -> bool { + use std_unicode::derived_property::{Cased, Case_Ignorable}; + match iter.skip_while(|&c| Case_Ignorable(c)).next() { + Some(c) => Cased(c), + None => false, + } + } + } + + /// Returns the uppercase equivalent of this string slice, as a new [`String`]. + /// + /// 'Uppercase' is defined according to the terms of the Unicode Derived Core Property + /// `Uppercase`. + /// + /// Since some characters can expand into multiple characters when changing + /// the case, this function returns a [`String`] instead of modifying the + /// parameter in-place. + /// + /// [`String`]: string/struct.String.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = "hello"; + /// + /// assert_eq!("HELLO", s.to_uppercase()); + /// ``` + /// + /// Scripts without case are not changed: + /// + /// ``` + /// let new_year = "农历新年"; + /// + /// assert_eq!(new_year, new_year.to_uppercase()); + /// ``` + #[stable(feature = "unicode_case_mapping", since = "1.2.0")] + pub fn to_uppercase(&self) -> String { + let mut s = String::with_capacity(self.len()); + s.extend(self.chars().flat_map(|c| c.to_uppercase())); + return s; + } + + /// Escapes each char in `s` with [`char::escape_debug`]. + /// + /// [`char::escape_debug`]: primitive.char.html#method.escape_debug + #[unstable(feature = "str_escape", + reason = "return type may change to be an iterator", + issue = "27791")] + pub fn escape_debug(&self) -> String { + self.chars().flat_map(|c| c.escape_debug()).collect() + } + + /// Escapes each char in `s` with [`char::escape_default`]. + /// + /// [`char::escape_default`]: primitive.char.html#method.escape_default + #[unstable(feature = "str_escape", + reason = "return type may change to be an iterator", + issue = "27791")] + pub fn escape_default(&self) -> String { + self.chars().flat_map(|c| c.escape_default()).collect() + } + + /// Escapes each char in `s` with [`char::escape_unicode`]. + /// + /// [`char::escape_unicode`]: primitive.char.html#method.escape_unicode + #[unstable(feature = "str_escape", + reason = "return type may change to be an iterator", + issue = "27791")] + pub fn escape_unicode(&self) -> String { + self.chars().flat_map(|c| c.escape_unicode()).collect() + } + + /// Converts a [`Box<str>`] into a [`String`] without copying or allocating. + /// + /// [`String`]: string/struct.String.html + /// [`Box<str>`]: boxed/struct.Box.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let string = String::from("birthday gift"); + /// let boxed_str = string.clone().into_boxed_str(); + /// + /// assert_eq!(boxed_str.into_string(), string); + /// ``` + #[stable(feature = "box_str", since = "1.4.0")] + pub fn into_string(self: Box<str>) -> String { + unsafe { + let slice = mem::transmute::<Box<str>, Box<[u8]>>(self); + String::from_utf8_unchecked(slice.into_vec()) + } + } + + /// Create a [`String`] by repeating a string `n` times. + /// + /// [`String`]: string/struct.String.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// assert_eq!("abc".repeat(4), String::from("abcabcabcabc")); + /// ``` + #[stable(feature = "repeat_str", since = "1.16.0")] + pub fn repeat(&self, n: usize) -> String { + let mut s = String::with_capacity(self.len() * n); + s.extend((0..n).map(|_| self)); + s + } +} + /// Converts a boxed slice of bytes to a boxed string slice without checking /// that the string contains valid UTF-8. #[unstable(feature = "str_box_extras", issue = "41119")] diff --git a/src/liballoc/string.rs b/src/liballoc/string.rs new file mode 100644 index 00000000000..1d98626e90b --- /dev/null +++ b/src/liballoc/string.rs @@ -0,0 +1,2287 @@ +// Copyright 2014 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! A UTF-8 encoded, growable string. +//! +//! This module contains the [`String`] type, a trait for converting +//! [`ToString`]s, and several error types that may result from working with +//! [`String`]s. +//! +//! [`ToString`]: trait.ToString.html +//! +//! # Examples +//! +//! There are multiple ways to create a new [`String`] from a string literal: +//! +//! ``` +//! let s = "Hello".to_string(); +//! +//! let s = String::from("world"); +//! let s: String = "also this".into(); +//! ``` +//! +//! You can create a new [`String`] from an existing one by concatenating with +//! `+`: +//! +//! [`String`]: struct.String.html +//! +//! ``` +//! let s = "Hello".to_string(); +//! +//! let message = s + " world!"; +//! ``` +//! +//! If you have a vector of valid UTF-8 bytes, you can make a `String` out of +//! it. You can do the reverse too. +//! +//! ``` +//! let sparkle_heart = vec![240, 159, 146, 150]; +//! +//! // We know these bytes are valid, so we'll use `unwrap()`. +//! let sparkle_heart = String::from_utf8(sparkle_heart).unwrap(); +//! +//! assert_eq!("💖", sparkle_heart); +//! +//! let bytes = sparkle_heart.into_bytes(); +//! +//! assert_eq!(bytes, [240, 159, 146, 150]); +//! ``` + +#![stable(feature = "rust1", since = "1.0.0")] + +use core::fmt; +use core::hash; +use core::iter::{FromIterator, FusedIterator}; +use core::ops::{self, Add, AddAssign, Index, IndexMut}; +use core::ptr; +use core::str as core_str; +use core::str::pattern::Pattern; +use std_unicode::char::{decode_utf16, REPLACEMENT_CHARACTER}; + +use borrow::{Cow, ToOwned}; +use range::RangeArgument; +use Bound::{Excluded, Included, Unbounded}; +use str::{self, from_boxed_utf8_unchecked, FromStr, Utf8Error, Chars}; +use vec::Vec; +use boxed::Box; + +/// A UTF-8 encoded, growable string. +/// +/// The `String` type is the most common string type that has ownership over the +/// contents of the string. It has a close relationship with its borrowed +/// counterpart, the primitive [`str`]. +/// +/// [`str`]: ../../std/primitive.str.html +/// +/// # Examples +/// +/// You can create a `String` from a literal string with `String::from`: +/// +/// ``` +/// let hello = String::from("Hello, world!"); +/// ``` +/// +/// You can append a [`char`] to a `String` with the [`push`] method, and +/// append a [`&str`] with the [`push_str`] method: +/// +/// ``` +/// let mut hello = String::from("Hello, "); +/// +/// hello.push('w'); +/// hello.push_str("orld!"); +/// ``` +/// +/// [`char`]: ../../std/primitive.char.html +/// [`push`]: #method.push +/// [`push_str`]: #method.push_str +/// +/// If you have a vector of UTF-8 bytes, you can create a `String` from it with +/// the [`from_utf8`] method: +/// +/// ``` +/// // some bytes, in a vector +/// let sparkle_heart = vec![240, 159, 146, 150]; +/// +/// // We know these bytes are valid, so we'll use `unwrap()`. +/// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap(); +/// +/// assert_eq!("💖", sparkle_heart); +/// ``` +/// +/// [`from_utf8`]: #method.from_utf8 +/// +/// # UTF-8 +/// +/// `String`s are always valid UTF-8. This has a few implications, the first of +/// which is that if you need a non-UTF-8 string, consider [`OsString`]. It is +/// similar, but without the UTF-8 constraint. The second implication is that +/// you cannot index into a `String`: +/// +/// ```ignore +/// let s = "hello"; +/// +/// println!("The first letter of s is {}", s[0]); // ERROR!!! +/// ``` +/// +/// [`OsString`]: ../../std/ffi/struct.OsString.html +/// +/// Indexing is intended to be a constant-time operation, but UTF-8 encoding +/// does not allow us to do this. Furthermore, it's not clear what sort of +/// thing the index should return: a byte, a codepoint, or a grapheme cluster. +/// The [`bytes`] and [`chars`] methods return iterators over the first +/// two, respectively. +/// +/// [`bytes`]: #method.bytes +/// [`chars`]: #method.chars +/// +/// # Deref +/// +/// `String`s implement [`Deref`]`<Target=str>`, and so inherit all of [`str`]'s +/// methods. In addition, this means that you can pass a `String` to any +/// function which takes a [`&str`] by using an ampersand (`&`): +/// +/// ``` +/// fn takes_str(s: &str) { } +/// +/// let s = String::from("Hello"); +/// +/// takes_str(&s); +/// ``` +/// +/// [`&str`]: ../../std/primitive.str.html +/// [`Deref`]: ../../std/ops/trait.Deref.html +/// +/// This will create a [`&str`] from the `String` and pass it in. This +/// conversion is very inexpensive, and so generally, functions will accept +/// [`&str`]s as arguments unless they need a `String` for some specific reason. +/// +/// +/// # Representation +/// +/// A `String` is made up of three components: a pointer to some bytes, a +/// length, and a capacity. The pointer points to an internal buffer `String` +/// uses to store its data. The length is the number of bytes currently stored +/// in the buffer, and the capacity is the size of the buffer in bytes. As such, +/// the length will always be less than or equal to the capacity. +/// +/// This buffer is always stored on the heap. +/// +/// You can look at these with the [`as_ptr`], [`len`], and [`capacity`] +/// methods: +/// +/// ``` +/// use std::mem; +/// +/// let story = String::from("Once upon a time..."); +/// +/// let ptr = story.as_ptr(); +/// let len = story.len(); +/// let capacity = story.capacity(); +/// +/// // story has nineteen bytes +/// assert_eq!(19, len); +/// +/// // Now that we have our parts, we throw the story away. +/// mem::forget(story); +/// +/// // We can re-build a String out of ptr, len, and capacity. This is all +/// // unsafe because we are responsible for making sure the components are +/// // valid: +/// let s = unsafe { String::from_raw_parts(ptr as *mut _, len, capacity) } ; +/// +/// assert_eq!(String::from("Once upon a time..."), s); +/// ``` +/// +/// [`as_ptr`]: #method.as_ptr +/// [`len`]: #method.len +/// [`capacity`]: #method.capacity +/// +/// If a `String` has enough capacity, adding elements to it will not +/// re-allocate. For example, consider this program: +/// +/// ``` +/// let mut s = String::new(); +/// +/// println!("{}", s.capacity()); +/// +/// for _ in 0..5 { +/// s.push_str("hello"); +/// println!("{}", s.capacity()); +/// } +/// ``` +/// +/// This will output the following: +/// +/// ```text +/// 0 +/// 5 +/// 10 +/// 20 +/// 20 +/// 40 +/// ``` +/// +/// At first, we have no memory allocated at all, but as we append to the +/// string, it increases its capacity appropriately. If we instead use the +/// [`with_capacity`] method to allocate the correct capacity initially: +/// +/// ``` +/// let mut s = String::with_capacity(25); +/// +/// println!("{}", s.capacity()); +/// +/// for _ in 0..5 { +/// s.push_str("hello"); +/// println!("{}", s.capacity()); +/// } +/// ``` +/// +/// [`with_capacity`]: #method.with_capacity +/// +/// We end up with a different output: +/// +/// ```text +/// 25 +/// 25 +/// 25 +/// 25 +/// 25 +/// 25 +/// ``` +/// +/// Here, there's no need to allocate more memory inside the loop. +#[derive(PartialOrd, Eq, Ord)] +#[stable(feature = "rust1", since = "1.0.0")] +pub struct String { + vec: Vec<u8>, +} + +/// A possible error value when converting a `String` from a UTF-8 byte vector. +/// +/// This type is the error type for the [`from_utf8`] method on [`String`]. It +/// is designed in such a way to carefully avoid reallocations: the +/// [`into_bytes`] method will give back the byte vector that was used in the +/// conversion attempt. +/// +/// [`from_utf8`]: struct.String.html#method.from_utf8 +/// [`String`]: struct.String.html +/// [`into_bytes`]: struct.FromUtf8Error.html#method.into_bytes +/// +/// The [`Utf8Error`] type provided by [`std::str`] represents an error that may +/// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's +/// an analogue to `FromUtf8Error`, and you can get one from a `FromUtf8Error` +/// through the [`utf8_error`] method. +/// +/// [`Utf8Error`]: ../../std/str/struct.Utf8Error.html +/// [`std::str`]: ../../std/str/index.html +/// [`u8`]: ../../std/primitive.u8.html +/// [`&str`]: ../../std/primitive.str.html +/// [`utf8_error`]: #method.utf8_error +/// +/// # Examples +/// +/// Basic usage: +/// +/// ``` +/// // some invalid bytes, in a vector +/// let bytes = vec![0, 159]; +/// +/// let value = String::from_utf8(bytes); +/// +/// assert!(value.is_err()); +/// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes()); +/// ``` +#[stable(feature = "rust1", since = "1.0.0")] +#[derive(Debug)] +pub struct FromUtf8Error { + bytes: Vec<u8>, + error: Utf8Error, +} + +/// A possible error value when converting a `String` from a UTF-16 byte slice. +/// +/// This type is the error type for the [`from_utf16`] method on [`String`]. +/// +/// [`from_utf16`]: struct.String.html#method.from_utf16 +/// [`String`]: struct.String.html +/// +/// # Examples +/// +/// Basic usage: +/// +/// ``` +/// // 𝄞mu<invalid>ic +/// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075, +/// 0xD800, 0x0069, 0x0063]; +/// +/// assert!(String::from_utf16(v).is_err()); +/// ``` +#[stable(feature = "rust1", since = "1.0.0")] +#[derive(Debug)] +pub struct FromUtf16Error(()); + +impl String { + /// Creates a new empty `String`. + /// + /// Given that the `String` is empty, this will not allocate any initial + /// buffer. While that means that this initial operation is very + /// inexpensive, but may cause excessive allocation later, when you add + /// data. If you have an idea of how much data the `String` will hold, + /// consider the [`with_capacity`] method to prevent excessive + /// re-allocation. + /// + /// [`with_capacity`]: #method.with_capacity + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = String::new(); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn new() -> String { + String { vec: Vec::new() } + } + + /// Creates a new empty `String` with a particular capacity. + /// + /// `String`s have an internal buffer to hold their data. The capacity is + /// the length of that buffer, and can be queried with the [`capacity`] + /// method. This method creates an empty `String`, but one with an initial + /// buffer that can hold `capacity` bytes. This is useful when you may be + /// appending a bunch of data to the `String`, reducing the number of + /// reallocations it needs to do. + /// + /// [`capacity`]: #method.capacity + /// + /// If the given capacity is `0`, no allocation will occur, and this method + /// is identical to the [`new`] method. + /// + /// [`new`]: #method.new + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut s = String::with_capacity(10); + /// + /// // The String contains no chars, even though it has capacity for more + /// assert_eq!(s.len(), 0); + /// + /// // These are all done without reallocating... + /// let cap = s.capacity(); + /// for i in 0..10 { + /// s.push('a'); + /// } + /// + /// assert_eq!(s.capacity(), cap); + /// + /// // ...but this may make the vector reallocate + /// s.push('a'); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn with_capacity(capacity: usize) -> String { + String { vec: Vec::with_capacity(capacity) } + } + + // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is + // required for this method definition, is not available. Since we don't + // require this method for testing purposes, I'll just stub it + // NB see the slice::hack module in slice.rs for more information + #[inline] + #[cfg(test)] + pub fn from_str(_: &str) -> String { + panic!("not available with cfg(test)"); + } + + /// Converts a vector of bytes to a `String`. + /// + /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a vector of bytes + /// ([`Vec<u8>`]) is made of bytes, so this function converts between the + /// two. Not all byte slices are valid `String`s, however: `String` + /// requires that it is valid UTF-8. `from_utf8()` checks to ensure that + /// the bytes are valid UTF-8, and then does the conversion. + /// + /// [`&str`]: ../../std/primitive.str.html + /// [`u8`]: ../../std/primitive.u8.html + /// [`Vec<u8>`]: ../../std/vec/struct.Vec.html + /// + /// If you are sure that the byte slice is valid UTF-8, and you don't want + /// to incur the overhead of the validity check, there is an unsafe version + /// of this function, [`from_utf8_unchecked`], which has the same behavior + /// but skips the check. + /// + /// [`from_utf8_unchecked`]: struct.String.html#method.from_utf8_unchecked + /// + /// This method will take care to not copy the vector, for efficiency's + /// sake. + /// + /// If you need a `&str` instead of a `String`, consider + /// [`str::from_utf8`]. + /// + /// [`str::from_utf8`]: ../../std/str/fn.from_utf8.html + /// + /// The inverse of this method is [`as_bytes`]. + /// + /// [`as_bytes`]: #method.as_bytes + /// + /// # Errors + /// + /// Returns `Err` if the slice is not UTF-8 with a description as to why the + /// provided bytes are not UTF-8. The vector you moved in is also included. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// // some bytes, in a vector + /// let sparkle_heart = vec![240, 159, 146, 150]; + /// + /// // We know these bytes are valid, so we'll use `unwrap()`. + /// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap(); + /// + /// assert_eq!("💖", sparkle_heart); + /// ``` + /// + /// Incorrect bytes: + /// + /// ``` + /// // some invalid bytes, in a vector + /// let sparkle_heart = vec![0, 159, 146, 150]; + /// + /// assert!(String::from_utf8(sparkle_heart).is_err()); + /// ``` + /// + /// See the docs for [`FromUtf8Error`] for more details on what you can do + /// with this error. + /// + /// [`FromUtf8Error`]: struct.FromUtf8Error.html + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn from_utf8(vec: Vec<u8>) -> Result<String, FromUtf8Error> { + match str::from_utf8(&vec) { + Ok(..) => Ok(String { vec: vec }), + Err(e) => { + Err(FromUtf8Error { + bytes: vec, + error: e, + }) + } + } + } + + /// Converts a slice of bytes to a string, including invalid characters. + /// + /// Strings are made of bytes ([`u8`]), and a slice of bytes + /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts + /// between the two. Not all byte slices are valid strings, however: strings + /// are required to be valid UTF-8. During this conversion, + /// `from_utf8_lossy()` will replace any invalid UTF-8 sequences with + /// `U+FFFD REPLACEMENT CHARACTER`, which looks like this: � + /// + /// [`u8`]: ../../std/primitive.u8.html + /// [byteslice]: ../../std/primitive.slice.html + /// + /// If you are sure that the byte slice is valid UTF-8, and you don't want + /// to incur the overhead of the conversion, there is an unsafe version + /// of this function, [`from_utf8_unchecked`], which has the same behavior + /// but skips the checks. + /// + /// [`from_utf8_unchecked`]: struct.String.html#method.from_utf8_unchecked + /// + /// This function returns a [`Cow<'a, str>`]. If our byte slice is invalid + /// UTF-8, then we need to insert the replacement characters, which will + /// change the size of the string, and hence, require a `String`. But if + /// it's already valid UTF-8, we don't need a new allocation. This return + /// type allows us to handle both cases. + /// + /// [`Cow<'a, str>`]: ../../std/borrow/enum.Cow.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// // some bytes, in a vector + /// let sparkle_heart = vec![240, 159, 146, 150]; + /// + /// let sparkle_heart = String::from_utf8_lossy(&sparkle_heart); + /// + /// assert_eq!("💖", sparkle_heart); + /// ``` + /// + /// Incorrect bytes: + /// + /// ``` + /// // some invalid bytes + /// let input = b"Hello \xF0\x90\x80World"; + /// let output = String::from_utf8_lossy(input); + /// + /// assert_eq!("Hello �World", output); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn from_utf8_lossy<'a>(v: &'a [u8]) -> Cow<'a, str> { + let mut i; + match str::from_utf8(v) { + Ok(s) => return Cow::Borrowed(s), + Err(e) => i = e.valid_up_to(), + } + + const TAG_CONT_U8: u8 = 128; + const REPLACEMENT: &'static [u8] = b"\xEF\xBF\xBD"; // U+FFFD in UTF-8 + let total = v.len(); + fn unsafe_get(xs: &[u8], i: usize) -> u8 { + unsafe { *xs.get_unchecked(i) } + } + fn safe_get(xs: &[u8], i: usize, total: usize) -> u8 { + if i >= total { 0 } else { unsafe_get(xs, i) } + } + + let mut res = String::with_capacity(total); + + if i > 0 { + unsafe { res.as_mut_vec().extend_from_slice(&v[..i]) }; + } + + // subseqidx is the index of the first byte of the subsequence we're + // looking at. It's used to copy a bunch of contiguous good codepoints + // at once instead of copying them one by one. + let mut subseqidx = i; + + while i < total { + let i_ = i; + let byte = unsafe_get(v, i); + i += 1; + + macro_rules! error { () => ({ + unsafe { + if subseqidx != i_ { + res.as_mut_vec().extend_from_slice(&v[subseqidx..i_]); + } + subseqidx = i; + res.as_mut_vec().extend_from_slice(REPLACEMENT); + } + })} + + if byte < 128 { + // subseqidx handles this + } else { + let w = core_str::utf8_char_width(byte); + + match w { + 2 => { + if safe_get(v, i, total) & 192 != TAG_CONT_U8 { + error!(); + continue; + } + i += 1; + } + 3 => { + match (byte, safe_get(v, i, total)) { + (0xE0, 0xA0...0xBF) => (), + (0xE1...0xEC, 0x80...0xBF) => (), + (0xED, 0x80...0x9F) => (), + (0xEE...0xEF, 0x80...0xBF) => (), + _ => { + error!(); + continue; + } + } + i += 1; + if safe_get(v, i, total) & 192 != TAG_CONT_U8 { + error!(); + continue; + } + i += 1; + } + 4 => { + match (byte, safe_get(v, i, total)) { + (0xF0, 0x90...0xBF) => (), + (0xF1...0xF3, 0x80...0xBF) => (), + (0xF4, 0x80...0x8F) => (), + _ => { + error!(); + continue; + } + } + i += 1; + if safe_get(v, i, total) & 192 != TAG_CONT_U8 { + error!(); + continue; + } + i += 1; + if safe_get(v, i, total) & 192 != TAG_CONT_U8 { + error!(); + continue; + } + i += 1; + } + _ => { + error!(); + continue; + } + } + } + } + if subseqidx < total { + unsafe { res.as_mut_vec().extend_from_slice(&v[subseqidx..total]) }; + } + Cow::Owned(res) + } + + /// Decode a UTF-16 encoded vector `v` into a `String`, returning `Err` + /// if `v` contains any invalid data. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// // 𝄞music + /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075, + /// 0x0073, 0x0069, 0x0063]; + /// assert_eq!(String::from("𝄞music"), + /// String::from_utf16(v).unwrap()); + /// + /// // 𝄞mu<invalid>ic + /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075, + /// 0xD800, 0x0069, 0x0063]; + /// assert!(String::from_utf16(v).is_err()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn from_utf16(v: &[u16]) -> Result<String, FromUtf16Error> { + decode_utf16(v.iter().cloned()).collect::<Result<_, _>>().map_err(|_| FromUtf16Error(())) + } + + /// Decode a UTF-16 encoded vector `v` into a string, replacing + /// invalid data with the replacement character (U+FFFD). + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// // 𝄞mus<invalid>ic<invalid> + /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075, + /// 0x0073, 0xDD1E, 0x0069, 0x0063, + /// 0xD834]; + /// + /// assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"), + /// String::from_utf16_lossy(v)); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn from_utf16_lossy(v: &[u16]) -> String { + decode_utf16(v.iter().cloned()).map(|r| r.unwrap_or(REPLACEMENT_CHARACTER)).collect() + } + + /// Creates a new `String` from a length, capacity, and pointer. + /// + /// # Safety + /// + /// This is highly unsafe, due to the number of invariants that aren't + /// checked: + /// + /// * The memory at `ptr` needs to have been previously allocated by the + /// same allocator the standard library uses. + /// * `length` needs to be less than or equal to `capacity`. + /// * `capacity` needs to be the correct value. + /// + /// Violating these may cause problems like corrupting the allocator's + /// internal datastructures. + /// + /// The ownership of `ptr` is effectively transferred to the + /// `String` which may then deallocate, reallocate or change the + /// contents of memory pointed to by the pointer at will. Ensure + /// that nothing else uses the pointer after calling this + /// function. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::mem; + /// + /// unsafe { + /// let s = String::from("hello"); + /// let ptr = s.as_ptr(); + /// let len = s.len(); + /// let capacity = s.capacity(); + /// + /// mem::forget(s); + /// + /// let s = String::from_raw_parts(ptr as *mut _, len, capacity); + /// + /// assert_eq!(String::from("hello"), s); + /// } + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub unsafe fn from_raw_parts(buf: *mut u8, length: usize, capacity: usize) -> String { + String { vec: Vec::from_raw_parts(buf, length, capacity) } + } + + /// Converts a vector of bytes to a `String` without checking that the + /// string contains valid UTF-8. + /// + /// See the safe version, [`from_utf8`], for more details. + /// + /// [`from_utf8`]: struct.String.html#method.from_utf8 + /// + /// # Safety + /// + /// This function is unsafe because it does not check that the bytes passed + /// to it are valid UTF-8. If this constraint is violated, it may cause + /// memory unsafety issues with future users of the `String`, as the rest of + /// the standard library assumes that `String`s are valid UTF-8. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// // some bytes, in a vector + /// let sparkle_heart = vec![240, 159, 146, 150]; + /// + /// let sparkle_heart = unsafe { + /// String::from_utf8_unchecked(sparkle_heart) + /// }; + /// + /// assert_eq!("💖", sparkle_heart); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub unsafe fn from_utf8_unchecked(bytes: Vec<u8>) -> String { + String { vec: bytes } + } + + /// Converts a `String` into a byte vector. + /// + /// This consumes the `String`, so we do not need to copy its contents. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = String::from("hello"); + /// let bytes = s.into_bytes(); + /// + /// assert_eq!(&[104, 101, 108, 108, 111][..], &bytes[..]); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn into_bytes(self) -> Vec<u8> { + self.vec + } + + /// Extracts a string slice containing the entire string. + #[inline] + #[stable(feature = "string_as_str", since = "1.7.0")] + pub fn as_str(&self) -> &str { + self + } + + /// Extracts a string slice containing the entire string. + #[inline] + #[stable(feature = "string_as_str", since = "1.7.0")] + pub fn as_mut_str(&mut self) -> &mut str { + self + } + + /// Appends a given string slice onto the end of this `String`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut s = String::from("foo"); + /// + /// s.push_str("bar"); + /// + /// assert_eq!("foobar", s); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn push_str(&mut self, string: &str) { + self.vec.extend_from_slice(string.as_bytes()) + } + + /// Returns this `String`'s capacity, in bytes. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = String::with_capacity(10); + /// + /// assert!(s.capacity() >= 10); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn capacity(&self) -> usize { + self.vec.capacity() + } + + /// Ensures that this `String`'s capacity is at least `additional` bytes + /// larger than its length. + /// + /// The capacity may be increased by more than `additional` bytes if it + /// chooses, to prevent frequent reallocations. + /// + /// If you do not want this "at least" behavior, see the [`reserve_exact`] + /// method. + /// + /// [`reserve_exact`]: #method.reserve_exact + /// + /// # Panics + /// + /// Panics if the new capacity overflows `usize`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut s = String::new(); + /// + /// s.reserve(10); + /// + /// assert!(s.capacity() >= 10); + /// ``` + /// + /// This may not actually increase the capacity: + /// + /// ``` + /// let mut s = String::with_capacity(10); + /// s.push('a'); + /// s.push('b'); + /// + /// // s now has a length of 2 and a capacity of 10 + /// assert_eq!(2, s.len()); + /// assert_eq!(10, s.capacity()); + /// + /// // Since we already have an extra 8 capacity, calling this... + /// s.reserve(8); + /// + /// // ... doesn't actually increase. + /// assert_eq!(10, s.capacity()); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn reserve(&mut self, additional: usize) { + self.vec.reserve(additional) + } + + /// Ensures that this `String`'s capacity is `additional` bytes + /// larger than its length. + /// + /// Consider using the [`reserve`] method unless you absolutely know + /// better than the allocator. + /// + /// [`reserve`]: #method.reserve + /// + /// # Panics + /// + /// Panics if the new capacity overflows `usize`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut s = String::new(); + /// + /// s.reserve_exact(10); + /// + /// assert!(s.capacity() >= 10); + /// ``` + /// + /// This may not actually increase the capacity: + /// + /// ``` + /// let mut s = String::with_capacity(10); + /// s.push('a'); + /// s.push('b'); + /// + /// // s now has a length of 2 and a capacity of 10 + /// assert_eq!(2, s.len()); + /// assert_eq!(10, s.capacity()); + /// + /// // Since we already have an extra 8 capacity, calling this... + /// s.reserve_exact(8); + /// + /// // ... doesn't actually increase. + /// assert_eq!(10, s.capacity()); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn reserve_exact(&mut self, additional: usize) { + self.vec.reserve_exact(additional) + } + + /// Shrinks the capacity of this `String` to match its length. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut s = String::from("foo"); + /// + /// s.reserve(100); + /// assert!(s.capacity() >= 100); + /// + /// s.shrink_to_fit(); + /// assert_eq!(3, s.capacity()); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn shrink_to_fit(&mut self) { + self.vec.shrink_to_fit() + } + + /// Appends the given `char` to the end of this `String`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut s = String::from("abc"); + /// + /// s.push('1'); + /// s.push('2'); + /// s.push('3'); + /// + /// assert_eq!("abc123", s); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn push(&mut self, ch: char) { + match ch.len_utf8() { + 1 => self.vec.push(ch as u8), + _ => self.vec.extend_from_slice(ch.encode_utf8(&mut [0; 4]).as_bytes()), + } + } + + /// Returns a byte slice of this `String`'s contents. + /// + /// The inverse of this method is [`from_utf8`]. + /// + /// [`from_utf8`]: #method.from_utf8 + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = String::from("hello"); + /// + /// assert_eq!(&[104, 101, 108, 108, 111], s.as_bytes()); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn as_bytes(&self) -> &[u8] { + &self.vec + } + + /// Shortens this `String` to the specified length. + /// + /// If `new_len` is greater than the string's current length, this has no + /// effect. + /// + /// Note that this method has no effect on the allocated capacity + /// of the string + /// + /// # Panics + /// + /// Panics if `new_len` does not lie on a [`char`] boundary. + /// + /// [`char`]: ../../std/primitive.char.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut s = String::from("hello"); + /// + /// s.truncate(2); + /// + /// assert_eq!("he", s); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn truncate(&mut self, new_len: usize) { + if new_len <= self.len() { + assert!(self.is_char_boundary(new_len)); + self.vec.truncate(new_len) + } + } + + /// Removes the last character from the string buffer and returns it. + /// + /// Returns `None` if this `String` is empty. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut s = String::from("foo"); + /// + /// assert_eq!(s.pop(), Some('o')); + /// assert_eq!(s.pop(), Some('o')); + /// assert_eq!(s.pop(), Some('f')); + /// + /// assert_eq!(s.pop(), None); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn pop(&mut self) -> Option<char> { + let ch = match self.chars().rev().next() { + Some(ch) => ch, + None => return None, + }; + let newlen = self.len() - ch.len_utf8(); + unsafe { + self.vec.set_len(newlen); + } + Some(ch) + } + + /// Removes a `char` from this `String` at a byte position and returns it. + /// + /// This is an `O(n)` operation, as it requires copying every element in the + /// buffer. + /// + /// # Panics + /// + /// Panics if `idx` is larger than or equal to the `String`'s length, + /// or if it does not lie on a [`char`] boundary. + /// + /// [`char`]: ../../std/primitive.char.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut s = String::from("foo"); + /// + /// assert_eq!(s.remove(0), 'f'); + /// assert_eq!(s.remove(1), 'o'); + /// assert_eq!(s.remove(0), 'o'); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn remove(&mut self, idx: usize) -> char { + let ch = match self[idx..].chars().next() { + Some(ch) => ch, + None => panic!("cannot remove a char from the end of a string"), + }; + + let next = idx + ch.len_utf8(); + let len = self.len(); + unsafe { + ptr::copy(self.vec.as_ptr().offset(next as isize), + self.vec.as_mut_ptr().offset(idx as isize), + len - next); + self.vec.set_len(len - (next - idx)); + } + ch + } + + /// Inserts a character into this `String` at a byte position. + /// + /// This is an `O(n)` operation as it requires copying every element in the + /// buffer. + /// + /// # Panics + /// + /// Panics if `idx` is larger than the `String`'s length, or if it does not + /// lie on a [`char`] boundary. + /// + /// [`char`]: ../../std/primitive.char.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut s = String::with_capacity(3); + /// + /// s.insert(0, 'f'); + /// s.insert(1, 'o'); + /// s.insert(2, 'o'); + /// + /// assert_eq!("foo", s); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn insert(&mut self, idx: usize, ch: char) { + assert!(self.is_char_boundary(idx)); + let mut bits = [0; 4]; + let bits = ch.encode_utf8(&mut bits).as_bytes(); + + unsafe { + self.insert_bytes(idx, bits); + } + } + + unsafe fn insert_bytes(&mut self, idx: usize, bytes: &[u8]) { + let len = self.len(); + let amt = bytes.len(); + self.vec.reserve(amt); + + ptr::copy(self.vec.as_ptr().offset(idx as isize), + self.vec.as_mut_ptr().offset((idx + amt) as isize), + len - idx); + ptr::copy(bytes.as_ptr(), + self.vec.as_mut_ptr().offset(idx as isize), + amt); + self.vec.set_len(len + amt); + } + + /// Inserts a string slice into this `String` at a byte position. + /// + /// This is an `O(n)` operation as it requires copying every element in the + /// buffer. + /// + /// # Panics + /// + /// Panics if `idx` is larger than the `String`'s length, or if it does not + /// lie on a [`char`] boundary. + /// + /// [`char`]: ../../std/primitive.char.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut s = String::from("bar"); + /// + /// s.insert_str(0, "foo"); + /// + /// assert_eq!("foobar", s); + /// ``` + #[inline] + #[stable(feature = "insert_str", since = "1.16.0")] + pub fn insert_str(&mut self, idx: usize, string: &str) { + assert!(self.is_char_boundary(idx)); + + unsafe { + self.insert_bytes(idx, string.as_bytes()); + } + } + + /// Returns a mutable reference to the contents of this `String`. + /// + /// # Safety + /// + /// This function is unsafe because it does not check that the bytes passed + /// to it are valid UTF-8. If this constraint is violated, it may cause + /// memory unsafety issues with future users of the `String`, as the rest of + /// the standard library assumes that `String`s are valid UTF-8. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut s = String::from("hello"); + /// + /// unsafe { + /// let vec = s.as_mut_vec(); + /// assert_eq!(&[104, 101, 108, 108, 111][..], &vec[..]); + /// + /// vec.reverse(); + /// } + /// assert_eq!(s, "olleh"); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub unsafe fn as_mut_vec(&mut self) -> &mut Vec<u8> { + &mut self.vec + } + + /// Returns the length of this `String`, in bytes. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let a = String::from("foo"); + /// + /// assert_eq!(a.len(), 3); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn len(&self) -> usize { + self.vec.len() + } + + /// Returns `true` if this `String` has a length of zero. + /// + /// Returns `false` otherwise. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut v = String::new(); + /// assert!(v.is_empty()); + /// + /// v.push('a'); + /// assert!(!v.is_empty()); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn is_empty(&self) -> bool { + self.len() == 0 + } + + /// Splits the string into two at the given index. + /// + /// Returns a newly allocated `String`. `self` contains bytes `[0, at)`, and + /// the returned `String` contains bytes `[at, len)`. `at` must be on the + /// boundary of a UTF-8 code point. + /// + /// Note that the capacity of `self` does not change. + /// + /// # Panics + /// + /// Panics if `at` is not on a `UTF-8` code point boundary, or if it is beyond the last + /// code point of the string. + /// + /// # Examples + /// + /// ``` + /// # fn main() { + /// let mut hello = String::from("Hello, World!"); + /// let world = hello.split_off(7); + /// assert_eq!(hello, "Hello, "); + /// assert_eq!(world, "World!"); + /// # } + /// ``` + #[inline] + #[stable(feature = "string_split_off", since = "1.16.0")] + pub fn split_off(&mut self, at: usize) -> String { + assert!(self.is_char_boundary(at)); + let other = self.vec.split_off(at); + unsafe { String::from_utf8_unchecked(other) } + } + + /// Truncates this `String`, removing all contents. + /// + /// While this means the `String` will have a length of zero, it does not + /// touch its capacity. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut s = String::from("foo"); + /// + /// s.clear(); + /// + /// assert!(s.is_empty()); + /// assert_eq!(0, s.len()); + /// assert_eq!(3, s.capacity()); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn clear(&mut self) { + self.vec.clear() + } + + /// Creates a draining iterator that removes the specified range in the string + /// and yields the removed chars. + /// + /// Note: The element range is removed even if the iterator is not + /// consumed until the end. + /// + /// # Panics + /// + /// Panics if the starting point or end point do not lie on a [`char`] + /// boundary, or if they're out of bounds. + /// + /// [`char`]: ../../std/primitive.char.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut s = String::from("α is alpha, β is beta"); + /// let beta_offset = s.find('β').unwrap_or(s.len()); + /// + /// // Remove the range up until the β from the string + /// let t: String = s.drain(..beta_offset).collect(); + /// assert_eq!(t, "α is alpha, "); + /// assert_eq!(s, "β is beta"); + /// + /// // A full range clears the string + /// s.drain(..); + /// assert_eq!(s, ""); + /// ``` + #[stable(feature = "drain", since = "1.6.0")] + pub fn drain<R>(&mut self, range: R) -> Drain + where R: RangeArgument<usize> + { + // Memory safety + // + // The String version of Drain does not have the memory safety issues + // of the vector version. The data is just plain bytes. + // Because the range removal happens in Drop, if the Drain iterator is leaked, + // the removal will not happen. + let len = self.len(); + let start = match range.start() { + Included(&n) => n, + Excluded(&n) => n + 1, + Unbounded => 0, + }; + let end = match range.end() { + Included(&n) => n + 1, + Excluded(&n) => n, + Unbounded => len, + }; + + // Take out two simultaneous borrows. The &mut String won't be accessed + // until iteration is over, in Drop. + let self_ptr = self as *mut _; + // slicing does the appropriate bounds checks + let chars_iter = self[start..end].chars(); + + Drain { + start: start, + end: end, + iter: chars_iter, + string: self_ptr, + } + } + + /// Creates a splicing iterator that removes the specified range in the string, + /// replaces with the given string, and yields the removed chars. + /// The given string doesn’t need to be the same length as the range. + /// + /// Note: The element range is removed when the `Splice` is dropped, + /// even if the iterator is not consumed until the end. + /// + /// # Panics + /// + /// Panics if the starting point or end point do not lie on a [`char`] + /// boundary, or if they're out of bounds. + /// + /// [`char`]: ../../std/primitive.char.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// #![feature(splice)] + /// let mut s = String::from("α is alpha, β is beta"); + /// let beta_offset = s.find('β').unwrap_or(s.len()); + /// + /// // Replace the range up until the β from the string + /// let t: String = s.splice(..beta_offset, "Α is capital alpha; ").collect(); + /// assert_eq!(t, "α is alpha, "); + /// assert_eq!(s, "Α is capital alpha; β is beta"); + /// ``` + #[unstable(feature = "splice", reason = "recently added", issue = "32310")] + pub fn splice<'a, 'b, R>(&'a mut self, range: R, replace_with: &'b str) -> Splice<'a, 'b> + where R: RangeArgument<usize> + { + // Memory safety + // + // The String version of Splice does not have the memory safety issues + // of the vector version. The data is just plain bytes. + // Because the range removal happens in Drop, if the Splice iterator is leaked, + // the removal will not happen. + let len = self.len(); + let start = match range.start() { + Included(&n) => n, + Excluded(&n) => n + 1, + Unbounded => 0, + }; + let end = match range.end() { + Included(&n) => n + 1, + Excluded(&n) => n, + Unbounded => len, + }; + + // Take out two simultaneous borrows. The &mut String won't be accessed + // until iteration is over, in Drop. + let self_ptr = self as *mut _; + // slicing does the appropriate bounds checks + let chars_iter = self[start..end].chars(); + + Splice { + start: start, + end: end, + iter: chars_iter, + string: self_ptr, + replace_with: replace_with + } + } + + /// Converts this `String` into a `Box<str>`. + /// + /// This will drop any excess capacity. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = String::from("hello"); + /// + /// let b = s.into_boxed_str(); + /// ``` + #[stable(feature = "box_str", since = "1.4.0")] + pub fn into_boxed_str(self) -> Box<str> { + let slice = self.vec.into_boxed_slice(); + unsafe { from_boxed_utf8_unchecked(slice) } + } +} + +impl FromUtf8Error { + /// Returns a slice of [`u8`]s bytes that were attempted to convert to a `String`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// #![feature(from_utf8_error_as_bytes)] + /// // some invalid bytes, in a vector + /// let bytes = vec![0, 159]; + /// + /// let value = String::from_utf8(bytes); + /// + /// assert_eq!(&[0, 159], value.unwrap_err().as_bytes()); + /// ``` + #[unstable(feature = "from_utf8_error_as_bytes", reason = "recently added", issue = "40895")] + pub fn as_bytes(&self) -> &[u8] { + &self.bytes[..] + } + + /// Returns the bytes that were attempted to convert to a `String`. + /// + /// This method is carefully constructed to avoid allocation. It will + /// consume the error, moving out the bytes, so that a copy of the bytes + /// does not need to be made. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// // some invalid bytes, in a vector + /// let bytes = vec![0, 159]; + /// + /// let value = String::from_utf8(bytes); + /// + /// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn into_bytes(self) -> Vec<u8> { + self.bytes + } + + /// Fetch a `Utf8Error` to get more details about the conversion failure. + /// + /// The [`Utf8Error`] type provided by [`std::str`] represents an error that may + /// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's + /// an analogue to `FromUtf8Error`. See its documentation for more details + /// on using it. + /// + /// [`Utf8Error`]: ../../std/str/struct.Utf8Error.html + /// [`std::str`]: ../../std/str/index.html + /// [`u8`]: ../../std/primitive.u8.html + /// [`&str`]: ../../std/primitive.str.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// // some invalid bytes, in a vector + /// let bytes = vec![0, 159]; + /// + /// let error = String::from_utf8(bytes).unwrap_err().utf8_error(); + /// + /// // the first byte is invalid here + /// assert_eq!(1, error.valid_up_to()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn utf8_error(&self) -> Utf8Error { + self.error + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl fmt::Display for FromUtf8Error { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Display::fmt(&self.error, f) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl fmt::Display for FromUtf16Error { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Display::fmt("invalid utf-16: lone surrogate found", f) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl Clone for String { + fn clone(&self) -> Self { + String { vec: self.vec.clone() } + } + + fn clone_from(&mut self, source: &Self) { + self.vec.clone_from(&source.vec); + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl FromIterator<char> for String { + fn from_iter<I: IntoIterator<Item = char>>(iter: I) -> String { + let mut buf = String::new(); + buf.extend(iter); + buf + } +} + +#[stable(feature = "string_from_iter_by_ref", since = "1.17.0")] +impl<'a> FromIterator<&'a char> for String { + fn from_iter<I: IntoIterator<Item = &'a char>>(iter: I) -> String { + let mut buf = String::new(); + buf.extend(iter); + buf + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a> FromIterator<&'a str> for String { + fn from_iter<I: IntoIterator<Item = &'a str>>(iter: I) -> String { + let mut buf = String::new(); + buf.extend(iter); + buf + } +} + +#[stable(feature = "extend_string", since = "1.4.0")] +impl FromIterator<String> for String { + fn from_iter<I: IntoIterator<Item = String>>(iter: I) -> String { + let mut buf = String::new(); + buf.extend(iter); + buf + } +} + +#[stable(feature = "herd_cows", since = "1.19.0")] +impl<'a> FromIterator<Cow<'a, str>> for String { + fn from_iter<I: IntoIterator<Item = Cow<'a, str>>>(iter: I) -> String { + let mut buf = String::new(); + buf.extend(iter); + buf + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl Extend<char> for String { + fn extend<I: IntoIterator<Item = char>>(&mut self, iter: I) { + let iterator = iter.into_iter(); + let (lower_bound, _) = iterator.size_hint(); + self.reserve(lower_bound); + for ch in iterator { + self.push(ch) + } + } +} + +#[stable(feature = "extend_ref", since = "1.2.0")] +impl<'a> Extend<&'a char> for String { + fn extend<I: IntoIterator<Item = &'a char>>(&mut self, iter: I) { + self.extend(iter.into_iter().cloned()); + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a> Extend<&'a str> for String { + fn extend<I: IntoIterator<Item = &'a str>>(&mut self, iter: I) { + for s in iter { + self.push_str(s) + } + } +} + +#[stable(feature = "extend_string", since = "1.4.0")] +impl Extend<String> for String { + fn extend<I: IntoIterator<Item = String>>(&mut self, iter: I) { + for s in iter { + self.push_str(&s) + } + } +} + +#[stable(feature = "herd_cows", since = "1.19.0")] +impl<'a> Extend<Cow<'a, str>> for String { + fn extend<I: IntoIterator<Item = Cow<'a, str>>>(&mut self, iter: I) { + for s in iter { + self.push_str(&s) + } + } +} + +/// A convenience impl that delegates to the impl for `&str` +#[unstable(feature = "pattern", + reason = "API not fully fleshed out and ready to be stabilized", + issue = "27721")] +impl<'a, 'b> Pattern<'a> for &'b String { + type Searcher = <&'b str as Pattern<'a>>::Searcher; + + fn into_searcher(self, haystack: &'a str) -> <&'b str as Pattern<'a>>::Searcher { + self[..].into_searcher(haystack) + } + + #[inline] + fn is_contained_in(self, haystack: &'a str) -> bool { + self[..].is_contained_in(haystack) + } + + #[inline] + fn is_prefix_of(self, haystack: &'a str) -> bool { + self[..].is_prefix_of(haystack) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl PartialEq for String { + #[inline] + fn eq(&self, other: &String) -> bool { + PartialEq::eq(&self[..], &other[..]) + } + #[inline] + fn ne(&self, other: &String) -> bool { + PartialEq::ne(&self[..], &other[..]) + } +} + +macro_rules! impl_eq { + ($lhs:ty, $rhs: ty) => { + #[stable(feature = "rust1", since = "1.0.0")] + impl<'a, 'b> PartialEq<$rhs> for $lhs { + #[inline] + fn eq(&self, other: &$rhs) -> bool { PartialEq::eq(&self[..], &other[..]) } + #[inline] + fn ne(&self, other: &$rhs) -> bool { PartialEq::ne(&self[..], &other[..]) } + } + + #[stable(feature = "rust1", since = "1.0.0")] + impl<'a, 'b> PartialEq<$lhs> for $rhs { + #[inline] + fn eq(&self, other: &$lhs) -> bool { PartialEq::eq(&self[..], &other[..]) } + #[inline] + fn ne(&self, other: &$lhs) -> bool { PartialEq::ne(&self[..], &other[..]) } + } + + } +} + +impl_eq! { String, str } +impl_eq! { String, &'a str } +impl_eq! { Cow<'a, str>, str } +impl_eq! { Cow<'a, str>, &'b str } +impl_eq! { Cow<'a, str>, String } + +#[stable(feature = "rust1", since = "1.0.0")] +impl Default for String { + /// Creates an empty `String`. + #[inline] + fn default() -> String { + String::new() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl fmt::Display for String { + #[inline] + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Display::fmt(&**self, f) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl fmt::Debug for String { + #[inline] + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Debug::fmt(&**self, f) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl hash::Hash for String { + #[inline] + fn hash<H: hash::Hasher>(&self, hasher: &mut H) { + (**self).hash(hasher) + } +} + +/// Implements the `+` operator for concatenating two strings. +/// +/// This consumes the `String` on the left-hand side and re-uses its buffer (growing it if +/// necessary). This is done to avoid allocating a new `String` and copying the entire contents on +/// every operation, which would lead to `O(n^2)` running time when building an `n`-byte string by +/// repeated concatenation. +/// +/// The string on the right-hand side is only borrowed; its contents are copied into the returned +/// `String`. +/// +/// # Examples +/// +/// Concatenating two `String`s takes the first by value and borrows the second: +/// +/// ``` +/// let a = String::from("hello"); +/// let b = String::from(" world"); +/// let c = a + &b; +/// // `a` is moved and can no longer be used here. +/// ``` +/// +/// If you want to keep using the first `String`, you can clone it and append to the clone instead: +/// +/// ``` +/// let a = String::from("hello"); +/// let b = String::from(" world"); +/// let c = a.clone() + &b; +/// // `a` is still valid here. +/// ``` +/// +/// Concatenating `&str` slices can be done by converting the first to a `String`: +/// +/// ``` +/// let a = "hello"; +/// let b = " world"; +/// let c = a.to_string() + b; +/// ``` +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a> Add<&'a str> for String { + type Output = String; + + #[inline] + fn add(mut self, other: &str) -> String { + self.push_str(other); + self + } +} + +/// Implements the `+=` operator for appending to a `String`. +/// +/// This has the same behavior as the [`push_str`] method. +/// +/// [`push_str`]: struct.String.html#method.push_str +#[stable(feature = "stringaddassign", since = "1.12.0")] +impl<'a> AddAssign<&'a str> for String { + #[inline] + fn add_assign(&mut self, other: &str) { + self.push_str(other); + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl ops::Index<ops::Range<usize>> for String { + type Output = str; + + #[inline] + fn index(&self, index: ops::Range<usize>) -> &str { + &self[..][index] + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl ops::Index<ops::RangeTo<usize>> for String { + type Output = str; + + #[inline] + fn index(&self, index: ops::RangeTo<usize>) -> &str { + &self[..][index] + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl ops::Index<ops::RangeFrom<usize>> for String { + type Output = str; + + #[inline] + fn index(&self, index: ops::RangeFrom<usize>) -> &str { + &self[..][index] + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl ops::Index<ops::RangeFull> for String { + type Output = str; + + #[inline] + fn index(&self, _index: ops::RangeFull) -> &str { + unsafe { str::from_utf8_unchecked(&self.vec) } + } +} +#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")] +impl ops::Index<ops::RangeInclusive<usize>> for String { + type Output = str; + + #[inline] + fn index(&self, index: ops::RangeInclusive<usize>) -> &str { + Index::index(&**self, index) + } +} +#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")] +impl ops::Index<ops::RangeToInclusive<usize>> for String { + type Output = str; + + #[inline] + fn index(&self, index: ops::RangeToInclusive<usize>) -> &str { + Index::index(&**self, index) + } +} + +#[stable(feature = "derefmut_for_string", since = "1.3.0")] +impl ops::IndexMut<ops::Range<usize>> for String { + #[inline] + fn index_mut(&mut self, index: ops::Range<usize>) -> &mut str { + &mut self[..][index] + } +} +#[stable(feature = "derefmut_for_string", since = "1.3.0")] +impl ops::IndexMut<ops::RangeTo<usize>> for String { + #[inline] + fn index_mut(&mut self, index: ops::RangeTo<usize>) -> &mut str { + &mut self[..][index] + } +} +#[stable(feature = "derefmut_for_string", since = "1.3.0")] +impl ops::IndexMut<ops::RangeFrom<usize>> for String { + #[inline] + fn index_mut(&mut self, index: ops::RangeFrom<usize>) -> &mut str { + &mut self[..][index] + } +} +#[stable(feature = "derefmut_for_string", since = "1.3.0")] +impl ops::IndexMut<ops::RangeFull> for String { + #[inline] + fn index_mut(&mut self, _index: ops::RangeFull) -> &mut str { + unsafe { str::from_utf8_unchecked_mut(&mut *self.vec) } + } +} +#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")] +impl ops::IndexMut<ops::RangeInclusive<usize>> for String { + #[inline] + fn index_mut(&mut self, index: ops::RangeInclusive<usize>) -> &mut str { + IndexMut::index_mut(&mut **self, index) + } +} +#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")] +impl ops::IndexMut<ops::RangeToInclusive<usize>> for String { + #[inline] + fn index_mut(&mut self, index: ops::RangeToInclusive<usize>) -> &mut str { + IndexMut::index_mut(&mut **self, index) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl ops::Deref for String { + type Target = str; + + #[inline] + fn deref(&self) -> &str { + unsafe { str::from_utf8_unchecked(&self.vec) } + } +} + +#[stable(feature = "derefmut_for_string", since = "1.3.0")] +impl ops::DerefMut for String { + #[inline] + fn deref_mut(&mut self) -> &mut str { + unsafe { str::from_utf8_unchecked_mut(&mut *self.vec) } + } +} + +/// An error when parsing a `String`. +/// +/// This `enum` is slightly awkward: it will never actually exist. This error is +/// part of the type signature of the implementation of [`FromStr`] on +/// [`String`]. The return type of [`from_str`], requires that an error be +/// defined, but, given that a [`String`] can always be made into a new +/// [`String`] without error, this type will never actually be returned. As +/// such, it is only here to satisfy said signature, and is useless otherwise. +/// +/// [`FromStr`]: ../../std/str/trait.FromStr.html +/// [`String`]: struct.String.html +/// [`from_str`]: ../../std/str/trait.FromStr.html#tymethod.from_str +#[stable(feature = "str_parse_error", since = "1.5.0")] +#[derive(Copy)] +pub enum ParseError {} + +#[stable(feature = "rust1", since = "1.0.0")] +impl FromStr for String { + type Err = ParseError; + #[inline] + fn from_str(s: &str) -> Result<String, ParseError> { + Ok(String::from(s)) + } +} + +#[stable(feature = "str_parse_error", since = "1.5.0")] +impl Clone for ParseError { + fn clone(&self) -> ParseError { + match *self {} + } +} + +#[stable(feature = "str_parse_error", since = "1.5.0")] +impl fmt::Debug for ParseError { + fn fmt(&self, _: &mut fmt::Formatter) -> fmt::Result { + match *self {} + } +} + +#[stable(feature = "str_parse_error2", since = "1.8.0")] +impl fmt::Display for ParseError { + fn fmt(&self, _: &mut fmt::Formatter) -> fmt::Result { + match *self {} + } +} + +#[stable(feature = "str_parse_error", since = "1.5.0")] +impl PartialEq for ParseError { + fn eq(&self, _: &ParseError) -> bool { + match *self {} + } +} + +#[stable(feature = "str_parse_error", since = "1.5.0")] +impl Eq for ParseError {} + +/// A trait for converting a value to a `String`. +/// +/// This trait is automatically implemented for any type which implements the +/// [`Display`] trait. As such, `ToString` shouldn't be implemented directly: +/// [`Display`] should be implemented instead, and you get the `ToString` +/// implementation for free. +/// +/// [`Display`]: ../../std/fmt/trait.Display.html +#[stable(feature = "rust1", since = "1.0.0")] +pub trait ToString { + /// Converts the given value to a `String`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let i = 5; + /// let five = String::from("5"); + /// + /// assert_eq!(five, i.to_string()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + fn to_string(&self) -> String; +} + +/// # Panics +/// +/// In this implementation, the `to_string` method panics +/// if the `Display` implementation returns an error. +/// This indicates an incorrect `Display` implementation +/// since `fmt::Write for String` never returns an error itself. +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: fmt::Display + ?Sized> ToString for T { + #[inline] + default fn to_string(&self) -> String { + use core::fmt::Write; + let mut buf = String::new(); + buf.write_fmt(format_args!("{}", self)) + .expect("a Display implementation return an error unexpectedly"); + buf.shrink_to_fit(); + buf + } +} + +#[stable(feature = "str_to_string_specialization", since = "1.9.0")] +impl ToString for str { + #[inline] + fn to_string(&self) -> String { + String::from(self) + } +} + +#[stable(feature = "cow_str_to_string_specialization", since = "1.17.0")] +impl<'a> ToString for Cow<'a, str> { + #[inline] + fn to_string(&self) -> String { + self[..].to_owned() + } +} + +#[stable(feature = "string_to_string_specialization", since = "1.17.0")] +impl ToString for String { + #[inline] + fn to_string(&self) -> String { + self.to_owned() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl AsRef<str> for String { + #[inline] + fn as_ref(&self) -> &str { + self + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl AsRef<[u8]> for String { + #[inline] + fn as_ref(&self) -> &[u8] { + self.as_bytes() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a> From<&'a str> for String { + fn from(s: &'a str) -> String { + s.to_owned() + } +} + +// note: test pulls in libstd, which causes errors here +#[cfg(not(test))] +#[stable(feature = "string_from_box", since = "1.18.0")] +impl From<Box<str>> for String { + fn from(s: Box<str>) -> String { + s.into_string() + } +} + +#[stable(feature = "box_from_str", since = "1.18.0")] +impl Into<Box<str>> for String { + fn into(self) -> Box<str> { + self.into_boxed_str() + } +} + +#[stable(feature = "string_from_cow_str", since = "1.14.0")] +impl<'a> From<Cow<'a, str>> for String { + fn from(s: Cow<'a, str>) -> String { + s.into_owned() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a> From<&'a str> for Cow<'a, str> { + #[inline] + fn from(s: &'a str) -> Cow<'a, str> { + Cow::Borrowed(s) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a> From<String> for Cow<'a, str> { + #[inline] + fn from(s: String) -> Cow<'a, str> { + Cow::Owned(s) + } +} + +#[stable(feature = "cow_str_from_iter", since = "1.12.0")] +impl<'a> FromIterator<char> for Cow<'a, str> { + fn from_iter<I: IntoIterator<Item = char>>(it: I) -> Cow<'a, str> { + Cow::Owned(FromIterator::from_iter(it)) + } +} + +#[stable(feature = "cow_str_from_iter", since = "1.12.0")] +impl<'a, 'b> FromIterator<&'b str> for Cow<'a, str> { + fn from_iter<I: IntoIterator<Item = &'b str>>(it: I) -> Cow<'a, str> { + Cow::Owned(FromIterator::from_iter(it)) + } +} + +#[stable(feature = "cow_str_from_iter", since = "1.12.0")] +impl<'a> FromIterator<String> for Cow<'a, str> { + fn from_iter<I: IntoIterator<Item = String>>(it: I) -> Cow<'a, str> { + Cow::Owned(FromIterator::from_iter(it)) + } +} + +#[stable(feature = "from_string_for_vec_u8", since = "1.14.0")] +impl From<String> for Vec<u8> { + fn from(string: String) -> Vec<u8> { + string.into_bytes() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl fmt::Write for String { + #[inline] + fn write_str(&mut self, s: &str) -> fmt::Result { + self.push_str(s); + Ok(()) + } + + #[inline] + fn write_char(&mut self, c: char) -> fmt::Result { + self.push(c); + Ok(()) + } +} + +/// A draining iterator for `String`. +/// +/// This struct is created by the [`drain`] method on [`String`]. See its +/// documentation for more. +/// +/// [`drain`]: struct.String.html#method.drain +/// [`String`]: struct.String.html +#[stable(feature = "drain", since = "1.6.0")] +pub struct Drain<'a> { + /// Will be used as &'a mut String in the destructor + string: *mut String, + /// Start of part to remove + start: usize, + /// End of part to remove + end: usize, + /// Current remaining range to remove + iter: Chars<'a>, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a> fmt::Debug for Drain<'a> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.pad("Drain { .. }") + } +} + +#[stable(feature = "drain", since = "1.6.0")] +unsafe impl<'a> Sync for Drain<'a> {} +#[stable(feature = "drain", since = "1.6.0")] +unsafe impl<'a> Send for Drain<'a> {} + +#[stable(feature = "drain", since = "1.6.0")] +impl<'a> Drop for Drain<'a> { + fn drop(&mut self) { + unsafe { + // Use Vec::drain. "Reaffirm" the bounds checks to avoid + // panic code being inserted again. + let self_vec = (*self.string).as_mut_vec(); + if self.start <= self.end && self.end <= self_vec.len() { + self_vec.drain(self.start..self.end); + } + } + } +} + +#[stable(feature = "drain", since = "1.6.0")] +impl<'a> Iterator for Drain<'a> { + type Item = char; + + #[inline] + fn next(&mut self) -> Option<char> { + self.iter.next() + } + + fn size_hint(&self) -> (usize, Option<usize>) { + self.iter.size_hint() + } +} + +#[stable(feature = "drain", since = "1.6.0")] +impl<'a> DoubleEndedIterator for Drain<'a> { + #[inline] + fn next_back(&mut self) -> Option<char> { + self.iter.next_back() + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a> FusedIterator for Drain<'a> {} + +/// A splicing iterator for `String`. +/// +/// This struct is created by the [`splice()`] method on [`String`]. See its +/// documentation for more. +/// +/// [`splice()`]: struct.String.html#method.splice +/// [`String`]: struct.String.html +#[derive(Debug)] +#[unstable(feature = "splice", reason = "recently added", issue = "32310")] +pub struct Splice<'a, 'b> { + /// Will be used as &'a mut String in the destructor + string: *mut String, + /// Start of part to remove + start: usize, + /// End of part to remove + end: usize, + /// Current remaining range to remove + iter: Chars<'a>, + replace_with: &'b str, +} + +#[unstable(feature = "splice", reason = "recently added", issue = "32310")] +unsafe impl<'a, 'b> Sync for Splice<'a, 'b> {} +#[unstable(feature = "splice", reason = "recently added", issue = "32310")] +unsafe impl<'a, 'b> Send for Splice<'a, 'b> {} + +#[unstable(feature = "splice", reason = "recently added", issue = "32310")] +impl<'a, 'b> Drop for Splice<'a, 'b> { + fn drop(&mut self) { + unsafe { + let vec = (*self.string).as_mut_vec(); + vec.splice(self.start..self.end, self.replace_with.bytes()); + } + } +} + +#[unstable(feature = "splice", reason = "recently added", issue = "32310")] +impl<'a, 'b> Iterator for Splice<'a, 'b> { + type Item = char; + + #[inline] + fn next(&mut self) -> Option<char> { + self.iter.next() + } + + fn size_hint(&self) -> (usize, Option<usize>) { + self.iter.size_hint() + } +} + +#[unstable(feature = "splice", reason = "recently added", issue = "32310")] +impl<'a, 'b> DoubleEndedIterator for Splice<'a, 'b> { + #[inline] + fn next_back(&mut self) -> Option<char> { + self.iter.next_back() + } +} diff --git a/src/liballoc/tests/binary_heap.rs b/src/liballoc/tests/binary_heap.rs new file mode 100644 index 00000000000..06d585f8ea8 --- /dev/null +++ b/src/liballoc/tests/binary_heap.rs @@ -0,0 +1,302 @@ +// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use std::panic; +use std::collections::BinaryHeap; +use std::collections::binary_heap::{Drain, PeekMut}; + +#[test] +fn test_iterator() { + let data = vec![5, 9, 3]; + let iterout = [9, 5, 3]; + let heap = BinaryHeap::from(data); + let mut i = 0; + for el in &heap { + assert_eq!(*el, iterout[i]); + i += 1; + } +} + +#[test] +fn test_iterator_reverse() { + let data = vec![5, 9, 3]; + let iterout = vec![3, 5, 9]; + let pq = BinaryHeap::from(data); + + let v: Vec<_> = pq.iter().rev().cloned().collect(); + assert_eq!(v, iterout); +} + +#[test] +fn test_move_iter() { + let data = vec![5, 9, 3]; + let iterout = vec![9, 5, 3]; + let pq = BinaryHeap::from(data); + + let v: Vec<_> = pq.into_iter().collect(); + assert_eq!(v, iterout); +} + +#[test] +fn test_move_iter_size_hint() { + let data = vec![5, 9]; + let pq = BinaryHeap::from(data); + + let mut it = pq.into_iter(); + + assert_eq!(it.size_hint(), (2, Some(2))); + assert_eq!(it.next(), Some(9)); + + assert_eq!(it.size_hint(), (1, Some(1))); + assert_eq!(it.next(), Some(5)); + + assert_eq!(it.size_hint(), (0, Some(0))); + assert_eq!(it.next(), None); +} + +#[test] +fn test_move_iter_reverse() { + let data = vec![5, 9, 3]; + let iterout = vec![3, 5, 9]; + let pq = BinaryHeap::from(data); + + let v: Vec<_> = pq.into_iter().rev().collect(); + assert_eq!(v, iterout); +} + +#[test] +fn test_peek_and_pop() { + let data = vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1]; + let mut sorted = data.clone(); + sorted.sort(); + let mut heap = BinaryHeap::from(data); + while !heap.is_empty() { + assert_eq!(heap.peek().unwrap(), sorted.last().unwrap()); + assert_eq!(heap.pop().unwrap(), sorted.pop().unwrap()); + } +} + +#[test] +fn test_peek_mut() { + let data = vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1]; + let mut heap = BinaryHeap::from(data); + assert_eq!(heap.peek(), Some(&10)); + { + let mut top = heap.peek_mut().unwrap(); + *top -= 2; + } + assert_eq!(heap.peek(), Some(&9)); +} + +#[test] +fn test_peek_mut_pop() { + let data = vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1]; + let mut heap = BinaryHeap::from(data); + assert_eq!(heap.peek(), Some(&10)); + { + let mut top = heap.peek_mut().unwrap(); + *top -= 2; + assert_eq!(PeekMut::pop(top), 8); + } + assert_eq!(heap.peek(), Some(&9)); +} + +#[test] +fn test_push() { + let mut heap = BinaryHeap::from(vec![2, 4, 9]); + assert_eq!(heap.len(), 3); + assert!(*heap.peek().unwrap() == 9); + heap.push(11); + assert_eq!(heap.len(), 4); + assert!(*heap.peek().unwrap() == 11); + heap.push(5); + assert_eq!(heap.len(), 5); + assert!(*heap.peek().unwrap() == 11); + heap.push(27); + assert_eq!(heap.len(), 6); + assert!(*heap.peek().unwrap() == 27); + heap.push(3); + assert_eq!(heap.len(), 7); + assert!(*heap.peek().unwrap() == 27); + heap.push(103); + assert_eq!(heap.len(), 8); + assert!(*heap.peek().unwrap() == 103); +} + +#[test] +fn test_push_unique() { + let mut heap = BinaryHeap::<Box<_>>::from(vec![box 2, box 4, box 9]); + assert_eq!(heap.len(), 3); + assert!(**heap.peek().unwrap() == 9); + heap.push(box 11); + assert_eq!(heap.len(), 4); + assert!(**heap.peek().unwrap() == 11); + heap.push(box 5); + assert_eq!(heap.len(), 5); + assert!(**heap.peek().unwrap() == 11); + heap.push(box 27); + assert_eq!(heap.len(), 6); + assert!(**heap.peek().unwrap() == 27); + heap.push(box 3); + assert_eq!(heap.len(), 7); + assert!(**heap.peek().unwrap() == 27); + heap.push(box 103); + assert_eq!(heap.len(), 8); + assert!(**heap.peek().unwrap() == 103); +} + +fn check_to_vec(mut data: Vec<i32>) { + let heap = BinaryHeap::from(data.clone()); + let mut v = heap.clone().into_vec(); + v.sort(); + data.sort(); + + assert_eq!(v, data); + assert_eq!(heap.into_sorted_vec(), data); +} + +#[test] +fn test_to_vec() { + check_to_vec(vec![]); + check_to_vec(vec![5]); + check_to_vec(vec![3, 2]); + check_to_vec(vec![2, 3]); + check_to_vec(vec![5, 1, 2]); + check_to_vec(vec![1, 100, 2, 3]); + check_to_vec(vec![1, 3, 5, 7, 9, 2, 4, 6, 8, 0]); + check_to_vec(vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1]); + check_to_vec(vec![9, 11, 9, 9, 9, 9, 11, 2, 3, 4, 11, 9, 0, 0, 0, 0]); + check_to_vec(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]); + check_to_vec(vec![10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]); + check_to_vec(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 1, 2]); + check_to_vec(vec![5, 4, 3, 2, 1, 5, 4, 3, 2, 1, 5, 4, 3, 2, 1]); +} + +#[test] +fn test_empty_pop() { + let mut heap = BinaryHeap::<i32>::new(); + assert!(heap.pop().is_none()); +} + +#[test] +fn test_empty_peek() { + let empty = BinaryHeap::<i32>::new(); + assert!(empty.peek().is_none()); +} + +#[test] +fn test_empty_peek_mut() { + let mut empty = BinaryHeap::<i32>::new(); + assert!(empty.peek_mut().is_none()); +} + +#[test] +fn test_from_iter() { + let xs = vec![9, 8, 7, 6, 5, 4, 3, 2, 1]; + + let mut q: BinaryHeap<_> = xs.iter().rev().cloned().collect(); + + for &x in &xs { + assert_eq!(q.pop().unwrap(), x); + } +} + +#[test] +fn test_drain() { + let mut q: BinaryHeap<_> = [9, 8, 7, 6, 5, 4, 3, 2, 1].iter().cloned().collect(); + + assert_eq!(q.drain().take(5).count(), 5); + + assert!(q.is_empty()); +} + +#[test] +fn test_extend_ref() { + let mut a = BinaryHeap::new(); + a.push(1); + a.push(2); + + a.extend(&[3, 4, 5]); + + assert_eq!(a.len(), 5); + assert_eq!(a.into_sorted_vec(), [1, 2, 3, 4, 5]); + + let mut a = BinaryHeap::new(); + a.push(1); + a.push(2); + let mut b = BinaryHeap::new(); + b.push(3); + b.push(4); + b.push(5); + + a.extend(&b); + + assert_eq!(a.len(), 5); + assert_eq!(a.into_sorted_vec(), [1, 2, 3, 4, 5]); +} + +#[test] +fn test_append() { + let mut a = BinaryHeap::from(vec![-10, 1, 2, 3, 3]); + let mut b = BinaryHeap::from(vec![-20, 5, 43]); + + a.append(&mut b); + + assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]); + assert!(b.is_empty()); +} + +#[test] +fn test_append_to_empty() { + let mut a = BinaryHeap::new(); + let mut b = BinaryHeap::from(vec![-20, 5, 43]); + + a.append(&mut b); + + assert_eq!(a.into_sorted_vec(), [-20, 5, 43]); + assert!(b.is_empty()); +} + +#[test] +fn test_extend_specialization() { + let mut a = BinaryHeap::from(vec![-10, 1, 2, 3, 3]); + let b = BinaryHeap::from(vec![-20, 5, 43]); + + a.extend(b); + + assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]); +} + +#[test] +fn test_placement() { + let mut a = BinaryHeap::new(); + &mut a <- 2; + &mut a <- 4; + &mut a <- 3; + assert_eq!(a.peek(), Some(&4)); + assert_eq!(a.len(), 3); + &mut a <- 1; + assert_eq!(a.into_sorted_vec(), vec![1, 2, 3, 4]); +} + +#[test] +fn test_placement_panic() { + let mut heap = BinaryHeap::from(vec![1, 2, 3]); + fn mkpanic() -> usize { panic!() } + let _ = panic::catch_unwind(panic::AssertUnwindSafe(|| { &mut heap <- mkpanic(); })); + assert_eq!(heap.len(), 3); +} + +#[allow(dead_code)] +fn assert_covariance() { + fn drain<'new>(d: Drain<'static, &'static str>) -> Drain<'new, &'new str> { + d + } +} diff --git a/src/liballoc/tests/btree/map.rs b/src/liballoc/tests/btree/map.rs new file mode 100644 index 00000000000..2c899d96940 --- /dev/null +++ b/src/liballoc/tests/btree/map.rs @@ -0,0 +1,687 @@ +// Copyright 2014 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use std::collections::BTreeMap; +use std::collections::Bound::{self, Excluded, Included, Unbounded}; +use std::collections::btree_map::Entry::{Occupied, Vacant}; +use std::rc::Rc; + +use std::iter::FromIterator; +use super::DeterministicRng; + +#[test] +fn test_basic_large() { + let mut map = BTreeMap::new(); + let size = 10000; + assert_eq!(map.len(), 0); + + for i in 0..size { + assert_eq!(map.insert(i, 10 * i), None); + assert_eq!(map.len(), i + 1); + } + + for i in 0..size { + assert_eq!(map.get(&i).unwrap(), &(i * 10)); + } + + for i in size..size * 2 { + assert_eq!(map.get(&i), None); + } + + for i in 0..size { + assert_eq!(map.insert(i, 100 * i), Some(10 * i)); + assert_eq!(map.len(), size); + } + + for i in 0..size { + assert_eq!(map.get(&i).unwrap(), &(i * 100)); + } + + for i in 0..size / 2 { + assert_eq!(map.remove(&(i * 2)), Some(i * 200)); + assert_eq!(map.len(), size - i - 1); + } + + for i in 0..size / 2 { + assert_eq!(map.get(&(2 * i)), None); + assert_eq!(map.get(&(2 * i + 1)).unwrap(), &(i * 200 + 100)); + } + + for i in 0..size / 2 { + assert_eq!(map.remove(&(2 * i)), None); + assert_eq!(map.remove(&(2 * i + 1)), Some(i * 200 + 100)); + assert_eq!(map.len(), size / 2 - i - 1); + } +} + +#[test] +fn test_basic_small() { + let mut map = BTreeMap::new(); + assert_eq!(map.remove(&1), None); + assert_eq!(map.get(&1), None); + assert_eq!(map.insert(1, 1), None); + assert_eq!(map.get(&1), Some(&1)); + assert_eq!(map.insert(1, 2), Some(1)); + assert_eq!(map.get(&1), Some(&2)); + assert_eq!(map.insert(2, 4), None); + assert_eq!(map.get(&2), Some(&4)); + assert_eq!(map.remove(&1), Some(2)); + assert_eq!(map.remove(&2), Some(4)); + assert_eq!(map.remove(&1), None); +} + +#[test] +fn test_iter() { + let size = 10000; + + // Forwards + let mut map: BTreeMap<_, _> = (0..size).map(|i| (i, i)).collect(); + + fn test<T>(size: usize, mut iter: T) + where T: Iterator<Item = (usize, usize)> + { + for i in 0..size { + assert_eq!(iter.size_hint(), (size - i, Some(size - i))); + assert_eq!(iter.next().unwrap(), (i, i)); + } + assert_eq!(iter.size_hint(), (0, Some(0))); + assert_eq!(iter.next(), None); + } + test(size, map.iter().map(|(&k, &v)| (k, v))); + test(size, map.iter_mut().map(|(&k, &mut v)| (k, v))); + test(size, map.into_iter()); +} + +#[test] +fn test_iter_rev() { + let size = 10000; + + // Forwards + let mut map: BTreeMap<_, _> = (0..size).map(|i| (i, i)).collect(); + + fn test<T>(size: usize, mut iter: T) + where T: Iterator<Item = (usize, usize)> + { + for i in 0..size { + assert_eq!(iter.size_hint(), (size - i, Some(size - i))); + assert_eq!(iter.next().unwrap(), (size - i - 1, size - i - 1)); + } + assert_eq!(iter.size_hint(), (0, Some(0))); + assert_eq!(iter.next(), None); + } + test(size, map.iter().rev().map(|(&k, &v)| (k, v))); + test(size, map.iter_mut().rev().map(|(&k, &mut v)| (k, v))); + test(size, map.into_iter().rev()); +} + +#[test] +fn test_values_mut() { + let mut a = BTreeMap::new(); + a.insert(1, String::from("hello")); + a.insert(2, String::from("goodbye")); + + for value in a.values_mut() { + value.push_str("!"); + } + + let values: Vec<String> = a.values().cloned().collect(); + assert_eq!(values, [String::from("hello!"), String::from("goodbye!")]); +} + +#[test] +fn test_iter_mixed() { + let size = 10000; + + // Forwards + let mut map: BTreeMap<_, _> = (0..size).map(|i| (i, i)).collect(); + + fn test<T>(size: usize, mut iter: T) + where T: Iterator<Item = (usize, usize)> + DoubleEndedIterator + { + for i in 0..size / 4 { + assert_eq!(iter.size_hint(), (size - i * 2, Some(size - i * 2))); + assert_eq!(iter.next().unwrap(), (i, i)); + assert_eq!(iter.next_back().unwrap(), (size - i - 1, size - i - 1)); + } + for i in size / 4..size * 3 / 4 { + assert_eq!(iter.size_hint(), (size * 3 / 4 - i, Some(size * 3 / 4 - i))); + assert_eq!(iter.next().unwrap(), (i, i)); + } + assert_eq!(iter.size_hint(), (0, Some(0))); + assert_eq!(iter.next(), None); + } + test(size, map.iter().map(|(&k, &v)| (k, v))); + test(size, map.iter_mut().map(|(&k, &mut v)| (k, v))); + test(size, map.into_iter()); +} + +#[test] +fn test_range_small() { + let size = 5; + + // Forwards + let map: BTreeMap<_, _> = (0..size).map(|i| (i, i)).collect(); + + let mut j = 0; + for ((&k, &v), i) in map.range(2..).zip(2..size) { + assert_eq!(k, i); + assert_eq!(v, i); + j += 1; + } + assert_eq!(j, size - 2); +} + +#[test] +fn test_range_inclusive() { + let size = 500; + + let map: BTreeMap<_, _> = (0...size).map(|i| (i, i)).collect(); + + fn check<'a, L, R>(lhs: L, rhs: R) + where L: IntoIterator<Item=(&'a i32, &'a i32)>, + R: IntoIterator<Item=(&'a i32, &'a i32)>, + { + let lhs: Vec<_> = lhs.into_iter().collect(); + let rhs: Vec<_> = rhs.into_iter().collect(); + assert_eq!(lhs, rhs); + } + + check(map.range(size + 1...size + 1), vec![]); + check(map.range(size...size), vec![(&size, &size)]); + check(map.range(size...size + 1), vec![(&size, &size)]); + check(map.range(0...0), vec![(&0, &0)]); + check(map.range(0...size - 1), map.range(..size)); + check(map.range(-1...-1), vec![]); + check(map.range(-1...size), map.range(..)); + check(map.range(...size), map.range(..)); + check(map.range(...200), map.range(..201)); + check(map.range(5...8), vec![(&5, &5), (&6, &6), (&7, &7), (&8, &8)]); + check(map.range(-1...0), vec![(&0, &0)]); + check(map.range(-1...2), vec![(&0, &0), (&1, &1), (&2, &2)]); +} + +#[test] +fn test_range_inclusive_max_value() { + let max = ::std::usize::MAX; + let map: BTreeMap<_, _> = vec![(max, 0)].into_iter().collect(); + + assert_eq!(map.range(max...max).collect::<Vec<_>>(), &[(&max, &0)]); +} + +#[test] +fn test_range_equal_empty_cases() { + let map: BTreeMap<_, _> = (0..5).map(|i| (i, i)).collect(); + assert_eq!(map.range((Included(2), Excluded(2))).next(), None); + assert_eq!(map.range((Excluded(2), Included(2))).next(), None); +} + +#[test] +#[should_panic] +fn test_range_equal_excluded() { + let map: BTreeMap<_, _> = (0..5).map(|i| (i, i)).collect(); + map.range((Excluded(2), Excluded(2))); +} + +#[test] +#[should_panic] +fn test_range_backwards_1() { + let map: BTreeMap<_, _> = (0..5).map(|i| (i, i)).collect(); + map.range((Included(3), Included(2))); +} + +#[test] +#[should_panic] +fn test_range_backwards_2() { + let map: BTreeMap<_, _> = (0..5).map(|i| (i, i)).collect(); + map.range((Included(3), Excluded(2))); +} + +#[test] +#[should_panic] +fn test_range_backwards_3() { + let map: BTreeMap<_, _> = (0..5).map(|i| (i, i)).collect(); + map.range((Excluded(3), Included(2))); +} + +#[test] +#[should_panic] +fn test_range_backwards_4() { + let map: BTreeMap<_, _> = (0..5).map(|i| (i, i)).collect(); + map.range((Excluded(3), Excluded(2))); +} + +#[test] +fn test_range_1000() { + let size = 1000; + let map: BTreeMap<_, _> = (0..size).map(|i| (i, i)).collect(); + + fn test(map: &BTreeMap<u32, u32>, size: u32, min: Bound<&u32>, max: Bound<&u32>) { + let mut kvs = map.range((min, max)).map(|(&k, &v)| (k, v)); + let mut pairs = (0..size).map(|i| (i, i)); + + for (kv, pair) in kvs.by_ref().zip(pairs.by_ref()) { + assert_eq!(kv, pair); + } + assert_eq!(kvs.next(), None); + assert_eq!(pairs.next(), None); + } + test(&map, size, Included(&0), Excluded(&size)); + test(&map, size, Unbounded, Excluded(&size)); + test(&map, size, Included(&0), Included(&(size - 1))); + test(&map, size, Unbounded, Included(&(size - 1))); + test(&map, size, Included(&0), Unbounded); + test(&map, size, Unbounded, Unbounded); +} + +#[test] +fn test_range_borrowed_key() { + let mut map = BTreeMap::new(); + map.insert("aardvark".to_string(), 1); + map.insert("baboon".to_string(), 2); + map.insert("coyote".to_string(), 3); + map.insert("dingo".to_string(), 4); + // NOTE: would like to use simply "b".."d" here... + let mut iter = map.range::<str, _>((Included("b"),Excluded("d"))); + assert_eq!(iter.next(), Some((&"baboon".to_string(), &2))); + assert_eq!(iter.next(), Some((&"coyote".to_string(), &3))); + assert_eq!(iter.next(), None); +} + +#[test] +fn test_range() { + let size = 200; + let map: BTreeMap<_, _> = (0..size).map(|i| (i, i)).collect(); + + for i in 0..size { + for j in i..size { + let mut kvs = map.range((Included(&i), Included(&j))).map(|(&k, &v)| (k, v)); + let mut pairs = (i..j + 1).map(|i| (i, i)); + + for (kv, pair) in kvs.by_ref().zip(pairs.by_ref()) { + assert_eq!(kv, pair); + } + assert_eq!(kvs.next(), None); + assert_eq!(pairs.next(), None); + } + } +} + +#[test] +fn test_range_mut() { + let size = 200; + let mut map: BTreeMap<_, _> = (0..size).map(|i| (i, i)).collect(); + + for i in 0..size { + for j in i..size { + let mut kvs = map.range_mut((Included(&i), Included(&j))).map(|(&k, &mut v)| (k, v)); + let mut pairs = (i..j + 1).map(|i| (i, i)); + + for (kv, pair) in kvs.by_ref().zip(pairs.by_ref()) { + assert_eq!(kv, pair); + } + assert_eq!(kvs.next(), None); + assert_eq!(pairs.next(), None); + } + } +} + +#[test] +fn test_borrow() { + // make sure these compile -- using the Borrow trait + { + let mut map = BTreeMap::new(); + map.insert("0".to_string(), 1); + assert_eq!(map["0"], 1); + } + + { + let mut map = BTreeMap::new(); + map.insert(Box::new(0), 1); + assert_eq!(map[&0], 1); + } + + { + let mut map = BTreeMap::new(); + map.insert(Box::new([0, 1]) as Box<[i32]>, 1); + assert_eq!(map[&[0, 1][..]], 1); + } + + { + let mut map = BTreeMap::new(); + map.insert(Rc::new(0), 1); + assert_eq!(map[&0], 1); + } +} + +#[test] +fn test_entry() { + let xs = [(1, 10), (2, 20), (3, 30), (4, 40), (5, 50), (6, 60)]; + + let mut map: BTreeMap<_, _> = xs.iter().cloned().collect(); + + // Existing key (insert) + match map.entry(1) { + Vacant(_) => unreachable!(), + Occupied(mut view) => { + assert_eq!(view.get(), &10); + assert_eq!(view.insert(100), 10); + } + } + assert_eq!(map.get(&1).unwrap(), &100); + assert_eq!(map.len(), 6); + + + // Existing key (update) + match map.entry(2) { + Vacant(_) => unreachable!(), + Occupied(mut view) => { + let v = view.get_mut(); + *v *= 10; + } + } + assert_eq!(map.get(&2).unwrap(), &200); + assert_eq!(map.len(), 6); + + // Existing key (take) + match map.entry(3) { + Vacant(_) => unreachable!(), + Occupied(view) => { + assert_eq!(view.remove(), 30); + } + } + assert_eq!(map.get(&3), None); + assert_eq!(map.len(), 5); + + + // Inexistent key (insert) + match map.entry(10) { + Occupied(_) => unreachable!(), + Vacant(view) => { + assert_eq!(*view.insert(1000), 1000); + } + } + assert_eq!(map.get(&10).unwrap(), &1000); + assert_eq!(map.len(), 6); +} + +#[test] +fn test_extend_ref() { + let mut a = BTreeMap::new(); + a.insert(1, "one"); + let mut b = BTreeMap::new(); + b.insert(2, "two"); + b.insert(3, "three"); + + a.extend(&b); + + assert_eq!(a.len(), 3); + assert_eq!(a[&1], "one"); + assert_eq!(a[&2], "two"); + assert_eq!(a[&3], "three"); +} + +#[test] +fn test_zst() { + let mut m = BTreeMap::new(); + assert_eq!(m.len(), 0); + + assert_eq!(m.insert((), ()), None); + assert_eq!(m.len(), 1); + + assert_eq!(m.insert((), ()), Some(())); + assert_eq!(m.len(), 1); + assert_eq!(m.iter().count(), 1); + + m.clear(); + assert_eq!(m.len(), 0); + + for _ in 0..100 { + m.insert((), ()); + } + + assert_eq!(m.len(), 1); + assert_eq!(m.iter().count(), 1); +} + +// This test's only purpose is to ensure that zero-sized keys with nonsensical orderings +// do not cause segfaults when used with zero-sized values. All other map behavior is +// undefined. +#[test] +fn test_bad_zst() { + use std::cmp::Ordering; + + struct Bad; + + impl PartialEq for Bad { + fn eq(&self, _: &Self) -> bool { + false + } + } + + impl Eq for Bad {} + + impl PartialOrd for Bad { + fn partial_cmp(&self, _: &Self) -> Option<Ordering> { + Some(Ordering::Less) + } + } + + impl Ord for Bad { + fn cmp(&self, _: &Self) -> Ordering { + Ordering::Less + } + } + + let mut m = BTreeMap::new(); + + for _ in 0..100 { + m.insert(Bad, Bad); + } +} + +#[test] +fn test_clone() { + let mut map = BTreeMap::new(); + let size = 100; + assert_eq!(map.len(), 0); + + for i in 0..size { + assert_eq!(map.insert(i, 10 * i), None); + assert_eq!(map.len(), i + 1); + assert_eq!(map, map.clone()); + } + + for i in 0..size { + assert_eq!(map.insert(i, 100 * i), Some(10 * i)); + assert_eq!(map.len(), size); + assert_eq!(map, map.clone()); + } + + for i in 0..size / 2 { + assert_eq!(map.remove(&(i * 2)), Some(i * 200)); + assert_eq!(map.len(), size - i - 1); + assert_eq!(map, map.clone()); + } + + for i in 0..size / 2 { + assert_eq!(map.remove(&(2 * i)), None); + assert_eq!(map.remove(&(2 * i + 1)), Some(i * 200 + 100)); + assert_eq!(map.len(), size / 2 - i - 1); + assert_eq!(map, map.clone()); + } +} + +#[test] +#[allow(dead_code)] +fn test_variance() { + use std::collections::btree_map::{Iter, IntoIter, Range, Keys, Values}; + + fn map_key<'new>(v: BTreeMap<&'static str, ()>) -> BTreeMap<&'new str, ()> { + v + } + fn map_val<'new>(v: BTreeMap<(), &'static str>) -> BTreeMap<(), &'new str> { + v + } + fn iter_key<'a, 'new>(v: Iter<'a, &'static str, ()>) -> Iter<'a, &'new str, ()> { + v + } + fn iter_val<'a, 'new>(v: Iter<'a, (), &'static str>) -> Iter<'a, (), &'new str> { + v + } + fn into_iter_key<'new>(v: IntoIter<&'static str, ()>) -> IntoIter<&'new str, ()> { + v + } + fn into_iter_val<'new>(v: IntoIter<(), &'static str>) -> IntoIter<(), &'new str> { + v + } + fn range_key<'a, 'new>(v: Range<'a, &'static str, ()>) -> Range<'a, &'new str, ()> { + v + } + fn range_val<'a, 'new>(v: Range<'a, (), &'static str>) -> Range<'a, (), &'new str> { + v + } + fn keys<'a, 'new>(v: Keys<'a, &'static str, ()>) -> Keys<'a, &'new str, ()> { + v + } + fn vals<'a, 'new>(v: Values<'a, (), &'static str>) -> Values<'a, (), &'new str> { + v + } +} + +#[test] +fn test_occupied_entry_key() { + let mut a = BTreeMap::new(); + let key = "hello there"; + let value = "value goes here"; + assert!(a.is_empty()); + a.insert(key.clone(), value.clone()); + assert_eq!(a.len(), 1); + assert_eq!(a[key], value); + + match a.entry(key.clone()) { + Vacant(_) => panic!(), + Occupied(e) => assert_eq!(key, *e.key()), + } + assert_eq!(a.len(), 1); + assert_eq!(a[key], value); +} + +#[test] +fn test_vacant_entry_key() { + let mut a = BTreeMap::new(); + let key = "hello there"; + let value = "value goes here"; + + assert!(a.is_empty()); + match a.entry(key.clone()) { + Occupied(_) => panic!(), + Vacant(e) => { + assert_eq!(key, *e.key()); + e.insert(value.clone()); + } + } + assert_eq!(a.len(), 1); + assert_eq!(a[key], value); +} + +macro_rules! create_append_test { + ($name:ident, $len:expr) => { + #[test] + fn $name() { + let mut a = BTreeMap::new(); + for i in 0..8 { + a.insert(i, i); + } + + let mut b = BTreeMap::new(); + for i in 5..$len { + b.insert(i, 2*i); + } + + a.append(&mut b); + + assert_eq!(a.len(), $len); + assert_eq!(b.len(), 0); + + for i in 0..$len { + if i < 5 { + assert_eq!(a[&i], i); + } else { + assert_eq!(a[&i], 2*i); + } + } + + assert_eq!(a.remove(&($len-1)), Some(2*($len-1))); + assert_eq!(a.insert($len-1, 20), None); + } + }; +} + +// These are mostly for testing the algorithm that "fixes" the right edge after insertion. +// Single node. +create_append_test!(test_append_9, 9); +// Two leafs that don't need fixing. +create_append_test!(test_append_17, 17); +// Two leafs where the second one ends up underfull and needs stealing at the end. +create_append_test!(test_append_14, 14); +// Two leafs where the second one ends up empty because the insertion finished at the root. +create_append_test!(test_append_12, 12); +// Three levels; insertion finished at the root. +create_append_test!(test_append_144, 144); +// Three levels; insertion finished at leaf while there is an empty node on the second level. +create_append_test!(test_append_145, 145); +// Tests for several randomly chosen sizes. +create_append_test!(test_append_170, 170); +create_append_test!(test_append_181, 181); +create_append_test!(test_append_239, 239); +create_append_test!(test_append_1700, 1700); + +fn rand_data(len: usize) -> Vec<(u32, u32)> { + let mut rng = DeterministicRng::new(); + Vec::from_iter((0..len).map(|_| (rng.next(), rng.next()))) +} + +#[test] +fn test_split_off_empty_right() { + let mut data = rand_data(173); + + let mut map = BTreeMap::from_iter(data.clone()); + let right = map.split_off(&(data.iter().max().unwrap().0 + 1)); + + data.sort(); + assert!(map.into_iter().eq(data)); + assert!(right.into_iter().eq(None)); +} + +#[test] +fn test_split_off_empty_left() { + let mut data = rand_data(314); + + let mut map = BTreeMap::from_iter(data.clone()); + let right = map.split_off(&data.iter().min().unwrap().0); + + data.sort(); + assert!(map.into_iter().eq(None)); + assert!(right.into_iter().eq(data)); +} + +#[test] +fn test_split_off_large_random_sorted() { + let mut data = rand_data(1529); + // special case with maximum height. + data.sort(); + + let mut map = BTreeMap::from_iter(data.clone()); + let key = data[data.len() / 2].0; + let right = map.split_off(&key); + + assert!(map.into_iter().eq(data.clone().into_iter().filter(|x| x.0 < key))); + assert!(right.into_iter().eq(data.into_iter().filter(|x| x.0 >= key))); +} diff --git a/src/liballoc/tests/btree/mod.rs b/src/liballoc/tests/btree/mod.rs new file mode 100644 index 00000000000..ae8b18d0c9f --- /dev/null +++ b/src/liballoc/tests/btree/mod.rs @@ -0,0 +1,42 @@ +// Copyright 2014 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +mod map; +mod set; + +/// XorShiftRng +struct DeterministicRng { + x: u32, + y: u32, + z: u32, + w: u32, +} + +impl DeterministicRng { + fn new() -> Self { + DeterministicRng { + x: 0x193a6754, + y: 0xa8a7d469, + z: 0x97830e05, + w: 0x113ba7bb, + } + } + + fn next(&mut self) -> u32 { + let x = self.x; + let t = x ^ (x << 11); + self.x = self.y; + self.y = self.z; + self.z = self.w; + let w_ = self.w; + self.w = w_ ^ (w_ >> 19) ^ (t ^ (t >> 8)); + self.w + } +} diff --git a/src/liballoc/tests/btree/set.rs b/src/liballoc/tests/btree/set.rs new file mode 100644 index 00000000000..6171b8ba624 --- /dev/null +++ b/src/liballoc/tests/btree/set.rs @@ -0,0 +1,331 @@ +// Copyright 2014 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use std::collections::BTreeSet; + +use std::iter::FromIterator; +use super::DeterministicRng; + +#[test] +fn test_clone_eq() { + let mut m = BTreeSet::new(); + + m.insert(1); + m.insert(2); + + assert!(m.clone() == m); +} + +#[test] +fn test_hash() { + let mut x = BTreeSet::new(); + let mut y = BTreeSet::new(); + + x.insert(1); + x.insert(2); + x.insert(3); + + y.insert(3); + y.insert(2); + y.insert(1); + + assert!(::hash(&x) == ::hash(&y)); +} + +fn check<F>(a: &[i32], b: &[i32], expected: &[i32], f: F) + where F: FnOnce(&BTreeSet<i32>, &BTreeSet<i32>, &mut FnMut(&i32) -> bool) -> bool +{ + let mut set_a = BTreeSet::new(); + let mut set_b = BTreeSet::new(); + + for x in a { + assert!(set_a.insert(*x)) + } + for y in b { + assert!(set_b.insert(*y)) + } + + let mut i = 0; + f(&set_a, + &set_b, + &mut |&x| { + assert_eq!(x, expected[i]); + i += 1; + true + }); + assert_eq!(i, expected.len()); +} + +#[test] +fn test_intersection() { + fn check_intersection(a: &[i32], b: &[i32], expected: &[i32]) { + check(a, b, expected, |x, y, f| x.intersection(y).all(f)) + } + + check_intersection(&[], &[], &[]); + check_intersection(&[1, 2, 3], &[], &[]); + check_intersection(&[], &[1, 2, 3], &[]); + check_intersection(&[2], &[1, 2, 3], &[2]); + check_intersection(&[1, 2, 3], &[2], &[2]); + check_intersection(&[11, 1, 3, 77, 103, 5, -5], + &[2, 11, 77, -9, -42, 5, 3], + &[3, 5, 11, 77]); +} + +#[test] +fn test_difference() { + fn check_difference(a: &[i32], b: &[i32], expected: &[i32]) { + check(a, b, expected, |x, y, f| x.difference(y).all(f)) + } + + check_difference(&[], &[], &[]); + check_difference(&[1, 12], &[], &[1, 12]); + check_difference(&[], &[1, 2, 3, 9], &[]); + check_difference(&[1, 3, 5, 9, 11], &[3, 9], &[1, 5, 11]); + check_difference(&[-5, 11, 22, 33, 40, 42], + &[-12, -5, 14, 23, 34, 38, 39, 50], + &[11, 22, 33, 40, 42]); +} + +#[test] +fn test_symmetric_difference() { + fn check_symmetric_difference(a: &[i32], b: &[i32], expected: &[i32]) { + check(a, b, expected, |x, y, f| x.symmetric_difference(y).all(f)) + } + + check_symmetric_difference(&[], &[], &[]); + check_symmetric_difference(&[1, 2, 3], &[2], &[1, 3]); + check_symmetric_difference(&[2], &[1, 2, 3], &[1, 3]); + check_symmetric_difference(&[1, 3, 5, 9, 11], + &[-2, 3, 9, 14, 22], + &[-2, 1, 5, 11, 14, 22]); +} + +#[test] +fn test_union() { + fn check_union(a: &[i32], b: &[i32], expected: &[i32]) { + check(a, b, expected, |x, y, f| x.union(y).all(f)) + } + + check_union(&[], &[], &[]); + check_union(&[1, 2, 3], &[2], &[1, 2, 3]); + check_union(&[2], &[1, 2, 3], &[1, 2, 3]); + check_union(&[1, 3, 5, 9, 11, 16, 19, 24], + &[-2, 1, 5, 9, 13, 19], + &[-2, 1, 3, 5, 9, 11, 13, 16, 19, 24]); +} + +#[test] +fn test_zip() { + let mut x = BTreeSet::new(); + x.insert(5); + x.insert(12); + x.insert(11); + + let mut y = BTreeSet::new(); + y.insert("foo"); + y.insert("bar"); + + let x = x; + let y = y; + let mut z = x.iter().zip(&y); + + assert_eq!(z.next().unwrap(), (&5, &("bar"))); + assert_eq!(z.next().unwrap(), (&11, &("foo"))); + assert!(z.next().is_none()); +} + +#[test] +fn test_from_iter() { + let xs = [1, 2, 3, 4, 5, 6, 7, 8, 9]; + + let set: BTreeSet<_> = xs.iter().cloned().collect(); + + for x in &xs { + assert!(set.contains(x)); + } +} + +#[test] +fn test_show() { + let mut set = BTreeSet::new(); + let empty = BTreeSet::<i32>::new(); + + set.insert(1); + set.insert(2); + + let set_str = format!("{:?}", set); + + assert_eq!(set_str, "{1, 2}"); + assert_eq!(format!("{:?}", empty), "{}"); +} + +#[test] +fn test_extend_ref() { + let mut a = BTreeSet::new(); + a.insert(1); + + a.extend(&[2, 3, 4]); + + assert_eq!(a.len(), 4); + assert!(a.contains(&1)); + assert!(a.contains(&2)); + assert!(a.contains(&3)); + assert!(a.contains(&4)); + + let mut b = BTreeSet::new(); + b.insert(5); + b.insert(6); + + a.extend(&b); + + assert_eq!(a.len(), 6); + assert!(a.contains(&1)); + assert!(a.contains(&2)); + assert!(a.contains(&3)); + assert!(a.contains(&4)); + assert!(a.contains(&5)); + assert!(a.contains(&6)); +} + +#[test] +fn test_recovery() { + use std::cmp::Ordering; + + #[derive(Debug)] + struct Foo(&'static str, i32); + + impl PartialEq for Foo { + fn eq(&self, other: &Self) -> bool { + self.0 == other.0 + } + } + + impl Eq for Foo {} + + impl PartialOrd for Foo { + fn partial_cmp(&self, other: &Self) -> Option<Ordering> { + self.0.partial_cmp(&other.0) + } + } + + impl Ord for Foo { + fn cmp(&self, other: &Self) -> Ordering { + self.0.cmp(&other.0) + } + } + + let mut s = BTreeSet::new(); + assert_eq!(s.replace(Foo("a", 1)), None); + assert_eq!(s.len(), 1); + assert_eq!(s.replace(Foo("a", 2)), Some(Foo("a", 1))); + assert_eq!(s.len(), 1); + + { + let mut it = s.iter(); + assert_eq!(it.next(), Some(&Foo("a", 2))); + assert_eq!(it.next(), None); + } + + assert_eq!(s.get(&Foo("a", 1)), Some(&Foo("a", 2))); + assert_eq!(s.take(&Foo("a", 1)), Some(Foo("a", 2))); + assert_eq!(s.len(), 0); + + assert_eq!(s.get(&Foo("a", 1)), None); + assert_eq!(s.take(&Foo("a", 1)), None); + + assert_eq!(s.iter().next(), None); +} + +#[test] +#[allow(dead_code)] +fn test_variance() { + use std::collections::btree_set::{IntoIter, Iter, Range}; + + fn set<'new>(v: BTreeSet<&'static str>) -> BTreeSet<&'new str> { + v + } + fn iter<'a, 'new>(v: Iter<'a, &'static str>) -> Iter<'a, &'new str> { + v + } + fn into_iter<'new>(v: IntoIter<&'static str>) -> IntoIter<&'new str> { + v + } + fn range<'a, 'new>(v: Range<'a, &'static str>) -> Range<'a, &'new str> { + v + } +} + +#[test] +fn test_append() { + let mut a = BTreeSet::new(); + a.insert(1); + a.insert(2); + a.insert(3); + + let mut b = BTreeSet::new(); + b.insert(3); + b.insert(4); + b.insert(5); + + a.append(&mut b); + + assert_eq!(a.len(), 5); + assert_eq!(b.len(), 0); + + assert_eq!(a.contains(&1), true); + assert_eq!(a.contains(&2), true); + assert_eq!(a.contains(&3), true); + assert_eq!(a.contains(&4), true); + assert_eq!(a.contains(&5), true); +} + +fn rand_data(len: usize) -> Vec<u32> { + let mut rng = DeterministicRng::new(); + Vec::from_iter((0..len).map(|_| rng.next())) +} + +#[test] +fn test_split_off_empty_right() { + let mut data = rand_data(173); + + let mut set = BTreeSet::from_iter(data.clone()); + let right = set.split_off(&(data.iter().max().unwrap() + 1)); + + data.sort(); + assert!(set.into_iter().eq(data)); + assert!(right.into_iter().eq(None)); +} + +#[test] +fn test_split_off_empty_left() { + let mut data = rand_data(314); + + let mut set = BTreeSet::from_iter(data.clone()); + let right = set.split_off(data.iter().min().unwrap()); + + data.sort(); + assert!(set.into_iter().eq(None)); + assert!(right.into_iter().eq(data)); +} + +#[test] +fn test_split_off_large_random_sorted() { + let mut data = rand_data(1529); + // special case with maximum height. + data.sort(); + + let mut set = BTreeSet::from_iter(data.clone()); + let key = data[data.len() / 2]; + let right = set.split_off(&key); + + assert!(set.into_iter().eq(data.clone().into_iter().filter(|x| *x < key))); + assert!(right.into_iter().eq(data.into_iter().filter(|x| *x >= key))); +} diff --git a/src/liballoc/tests/cow_str.rs b/src/liballoc/tests/cow_str.rs new file mode 100644 index 00000000000..aa87ee84b3e --- /dev/null +++ b/src/liballoc/tests/cow_str.rs @@ -0,0 +1,151 @@ +// Copyright 2016 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use std::borrow::Cow; + +// check that Cow<'a, str> implements addition +#[test] +fn check_cow_add_cow() { + let borrowed1 = Cow::Borrowed("Hello, "); + let borrowed2 = Cow::Borrowed("World!"); + let borrow_empty = Cow::Borrowed(""); + + let owned1: Cow<str> = Cow::Owned(String::from("Hi, ")); + let owned2: Cow<str> = Cow::Owned(String::from("Rustaceans!")); + let owned_empty: Cow<str> = Cow::Owned(String::new()); + + assert_eq!("Hello, World!", borrowed1.clone() + borrowed2.clone()); + assert_eq!("Hello, Rustaceans!", borrowed1.clone() + owned2.clone()); + + assert_eq!("Hi, World!", owned1.clone() + borrowed2.clone()); + assert_eq!("Hi, Rustaceans!", owned1.clone() + owned2.clone()); + + if let Cow::Owned(_) = borrowed1.clone() + borrow_empty.clone() { + panic!("Adding empty strings to a borrow should note allocate"); + } + if let Cow::Owned(_) = borrow_empty.clone() + borrowed1.clone() { + panic!("Adding empty strings to a borrow should note allocate"); + } + if let Cow::Owned(_) = borrowed1.clone() + owned_empty.clone() { + panic!("Adding empty strings to a borrow should note allocate"); + } + if let Cow::Owned(_) = owned_empty.clone() + borrowed1.clone() { + panic!("Adding empty strings to a borrow should note allocate"); + } +} + +#[test] +fn check_cow_add_str() { + let borrowed = Cow::Borrowed("Hello, "); + let borrow_empty = Cow::Borrowed(""); + + let owned: Cow<str> = Cow::Owned(String::from("Hi, ")); + let owned_empty: Cow<str> = Cow::Owned(String::new()); + + assert_eq!("Hello, World!", borrowed.clone() + "World!"); + + assert_eq!("Hi, World!", owned.clone() + "World!"); + + if let Cow::Owned(_) = borrowed.clone() + "" { + panic!("Adding empty strings to a borrow should note allocate"); + } + if let Cow::Owned(_) = borrow_empty.clone() + "Hello, " { + panic!("Adding empty strings to a borrow should note allocate"); + } + if let Cow::Owned(_) = owned_empty.clone() + "Hello, " { + panic!("Adding empty strings to a borrow should note allocate"); + } +} + +#[test] +fn check_cow_add_assign_cow() { + let mut borrowed1 = Cow::Borrowed("Hello, "); + let borrowed2 = Cow::Borrowed("World!"); + let borrow_empty = Cow::Borrowed(""); + + let mut owned1: Cow<str> = Cow::Owned(String::from("Hi, ")); + let owned2: Cow<str> = Cow::Owned(String::from("Rustaceans!")); + let owned_empty: Cow<str> = Cow::Owned(String::new()); + + let mut s = borrowed1.clone(); + s += borrow_empty.clone(); + assert_eq!("Hello, ", s); + if let Cow::Owned(_) = s { + panic!("Adding empty strings to a borrow should note allocate"); + } + let mut s = borrow_empty.clone(); + s += borrowed1.clone(); + assert_eq!("Hello, ", s); + if let Cow::Owned(_) = s { + panic!("Adding empty strings to a borrow should note allocate"); + } + let mut s = borrowed1.clone(); + s += owned_empty.clone(); + assert_eq!("Hello, ", s); + if let Cow::Owned(_) = s { + panic!("Adding empty strings to a borrow should note allocate"); + } + let mut s = owned_empty.clone(); + s += borrowed1.clone(); + assert_eq!("Hello, ", s); + if let Cow::Owned(_) = s { + panic!("Adding empty strings to a borrow should note allocate"); + } + + owned1 += borrowed2; + borrowed1 += owned2; + + assert_eq!("Hi, World!", owned1); + assert_eq!("Hello, Rustaceans!", borrowed1); +} + +#[test] +fn check_cow_add_assign_str() { + let mut borrowed = Cow::Borrowed("Hello, "); + let borrow_empty = Cow::Borrowed(""); + + let mut owned: Cow<str> = Cow::Owned(String::from("Hi, ")); + let owned_empty: Cow<str> = Cow::Owned(String::new()); + + let mut s = borrowed.clone(); + s += ""; + assert_eq!("Hello, ", s); + if let Cow::Owned(_) = s { + panic!("Adding empty strings to a borrow should note allocate"); + } + let mut s = borrow_empty.clone(); + s += "World!"; + assert_eq!("World!", s); + if let Cow::Owned(_) = s { + panic!("Adding empty strings to a borrow should note allocate"); + } + let mut s = owned_empty.clone(); + s += "World!"; + assert_eq!("World!", s); + if let Cow::Owned(_) = s { + panic!("Adding empty strings to a borrow should note allocate"); + } + + owned += "World!"; + borrowed += "World!"; + + assert_eq!("Hi, World!", owned); + assert_eq!("Hello, World!", borrowed); +} + +#[test] +fn check_cow_clone_from() { + let mut c1: Cow<str> = Cow::Owned(String::with_capacity(25)); + let s: String = "hi".to_string(); + assert!(s.capacity() < 25); + let c2: Cow<str> = Cow::Owned(s); + c1.clone_from(&c2); + assert!(c1.into_owned().capacity() >= 25); +} \ No newline at end of file diff --git a/src/liballoc/tests/fmt.rs b/src/liballoc/tests/fmt.rs new file mode 100644 index 00000000000..70e21c65a18 --- /dev/null +++ b/src/liballoc/tests/fmt.rs @@ -0,0 +1,17 @@ +// Copyright 2013-2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use std::fmt; + +#[test] +fn test_format() { + let s = fmt::format(format_args!("Hello, {}!", "world")); + assert_eq!(s, "Hello, world!"); +} diff --git a/src/liballoc/tests/lib.rs b/src/liballoc/tests/lib.rs new file mode 100644 index 00000000000..c6d70ee7575 --- /dev/null +++ b/src/liballoc/tests/lib.rs @@ -0,0 +1,57 @@ +// Copyright 2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +#![deny(warnings)] + +#![feature(alloc)] +#![feature(attr_literals)] +#![feature(box_syntax)] +#![feature(inclusive_range_syntax)] +#![feature(collection_placement)] +#![feature(const_fn)] +#![feature(exact_size_is_empty)] +#![feature(iterator_step_by)] +#![feature(pattern)] +#![feature(placement_in_syntax)] +#![feature(rand)] +#![feature(repr_align)] +#![feature(slice_rotate)] +#![feature(splice)] +#![feature(str_checked_slicing)] +#![feature(str_escape)] +#![feature(test)] +#![feature(unboxed_closures)] +#![feature(unicode)] +#![feature(utf8_error_error_len)] + +extern crate alloc; +extern crate test; +extern crate std_unicode; +extern crate core; + +use std::hash::{Hash, Hasher}; +use std::collections::hash_map::DefaultHasher; + +mod binary_heap; +mod btree; +mod cow_str; +mod fmt; +mod linked_list; +mod slice; +mod str; +mod string; +mod vec_deque; +mod vec; + +fn hash<T: Hash>(t: &T) -> u64 { + let mut s = DefaultHasher::new(); + t.hash(&mut s); + s.finish() +} diff --git a/src/liballoc/tests/linked_list.rs b/src/liballoc/tests/linked_list.rs new file mode 100644 index 00000000000..a59724a017b --- /dev/null +++ b/src/liballoc/tests/linked_list.rs @@ -0,0 +1,368 @@ +// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use std::collections::LinkedList; + +#[test] +fn test_basic() { + let mut m = LinkedList::<Box<_>>::new(); + assert_eq!(m.pop_front(), None); + assert_eq!(m.pop_back(), None); + assert_eq!(m.pop_front(), None); + m.push_front(box 1); + assert_eq!(m.pop_front(), Some(box 1)); + m.push_back(box 2); + m.push_back(box 3); + assert_eq!(m.len(), 2); + assert_eq!(m.pop_front(), Some(box 2)); + assert_eq!(m.pop_front(), Some(box 3)); + assert_eq!(m.len(), 0); + assert_eq!(m.pop_front(), None); + m.push_back(box 1); + m.push_back(box 3); + m.push_back(box 5); + m.push_back(box 7); + assert_eq!(m.pop_front(), Some(box 1)); + + let mut n = LinkedList::new(); + n.push_front(2); + n.push_front(3); + { + assert_eq!(n.front().unwrap(), &3); + let x = n.front_mut().unwrap(); + assert_eq!(*x, 3); + *x = 0; + } + { + assert_eq!(n.back().unwrap(), &2); + let y = n.back_mut().unwrap(); + assert_eq!(*y, 2); + *y = 1; + } + assert_eq!(n.pop_front(), Some(0)); + assert_eq!(n.pop_front(), Some(1)); +} + +#[cfg(test)] +fn generate_test() -> LinkedList<i32> { + list_from(&[0, 1, 2, 3, 4, 5, 6]) +} + +#[cfg(test)] +fn list_from<T: Clone>(v: &[T]) -> LinkedList<T> { + v.iter().cloned().collect() +} + +#[test] +fn test_split_off() { + // singleton + { + let mut m = LinkedList::new(); + m.push_back(1); + + let p = m.split_off(0); + assert_eq!(m.len(), 0); + assert_eq!(p.len(), 1); + assert_eq!(p.back(), Some(&1)); + assert_eq!(p.front(), Some(&1)); + } + + // not singleton, forwards + { + let u = vec![1, 2, 3, 4, 5]; + let mut m = list_from(&u); + let mut n = m.split_off(2); + assert_eq!(m.len(), 2); + assert_eq!(n.len(), 3); + for elt in 1..3 { + assert_eq!(m.pop_front(), Some(elt)); + } + for elt in 3..6 { + assert_eq!(n.pop_front(), Some(elt)); + } + } + // not singleton, backwards + { + let u = vec![1, 2, 3, 4, 5]; + let mut m = list_from(&u); + let mut n = m.split_off(4); + assert_eq!(m.len(), 4); + assert_eq!(n.len(), 1); + for elt in 1..5 { + assert_eq!(m.pop_front(), Some(elt)); + } + for elt in 5..6 { + assert_eq!(n.pop_front(), Some(elt)); + } + } + + // no-op on the last index + { + let mut m = LinkedList::new(); + m.push_back(1); + + let p = m.split_off(1); + assert_eq!(m.len(), 1); + assert_eq!(p.len(), 0); + assert_eq!(m.back(), Some(&1)); + assert_eq!(m.front(), Some(&1)); + } + +} + +#[test] +fn test_iterator() { + let m = generate_test(); + for (i, elt) in m.iter().enumerate() { + assert_eq!(i as i32, *elt); + } + let mut n = LinkedList::new(); + assert_eq!(n.iter().next(), None); + n.push_front(4); + let mut it = n.iter(); + assert_eq!(it.size_hint(), (1, Some(1))); + assert_eq!(it.next().unwrap(), &4); + assert_eq!(it.size_hint(), (0, Some(0))); + assert_eq!(it.next(), None); +} + +#[test] +fn test_iterator_clone() { + let mut n = LinkedList::new(); + n.push_back(2); + n.push_back(3); + n.push_back(4); + let mut it = n.iter(); + it.next(); + let mut jt = it.clone(); + assert_eq!(it.next(), jt.next()); + assert_eq!(it.next_back(), jt.next_back()); + assert_eq!(it.next(), jt.next()); +} + +#[test] +fn test_iterator_double_end() { + let mut n = LinkedList::new(); + assert_eq!(n.iter().next(), None); + n.push_front(4); + n.push_front(5); + n.push_front(6); + let mut it = n.iter(); + assert_eq!(it.size_hint(), (3, Some(3))); + assert_eq!(it.next().unwrap(), &6); + assert_eq!(it.size_hint(), (2, Some(2))); + assert_eq!(it.next_back().unwrap(), &4); + assert_eq!(it.size_hint(), (1, Some(1))); + assert_eq!(it.next_back().unwrap(), &5); + assert_eq!(it.next_back(), None); + assert_eq!(it.next(), None); +} + +#[test] +fn test_rev_iter() { + let m = generate_test(); + for (i, elt) in m.iter().rev().enumerate() { + assert_eq!((6 - i) as i32, *elt); + } + let mut n = LinkedList::new(); + assert_eq!(n.iter().rev().next(), None); + n.push_front(4); + let mut it = n.iter().rev(); + assert_eq!(it.size_hint(), (1, Some(1))); + assert_eq!(it.next().unwrap(), &4); + assert_eq!(it.size_hint(), (0, Some(0))); + assert_eq!(it.next(), None); +} + +#[test] +fn test_mut_iter() { + let mut m = generate_test(); + let mut len = m.len(); + for (i, elt) in m.iter_mut().enumerate() { + assert_eq!(i as i32, *elt); + len -= 1; + } + assert_eq!(len, 0); + let mut n = LinkedList::new(); + assert!(n.iter_mut().next().is_none()); + n.push_front(4); + n.push_back(5); + let mut it = n.iter_mut(); + assert_eq!(it.size_hint(), (2, Some(2))); + assert!(it.next().is_some()); + assert!(it.next().is_some()); + assert_eq!(it.size_hint(), (0, Some(0))); + assert!(it.next().is_none()); +} + +#[test] +fn test_iterator_mut_double_end() { + let mut n = LinkedList::new(); + assert!(n.iter_mut().next_back().is_none()); + n.push_front(4); + n.push_front(5); + n.push_front(6); + let mut it = n.iter_mut(); + assert_eq!(it.size_hint(), (3, Some(3))); + assert_eq!(*it.next().unwrap(), 6); + assert_eq!(it.size_hint(), (2, Some(2))); + assert_eq!(*it.next_back().unwrap(), 4); + assert_eq!(it.size_hint(), (1, Some(1))); + assert_eq!(*it.next_back().unwrap(), 5); + assert!(it.next_back().is_none()); + assert!(it.next().is_none()); +} + +#[test] +fn test_mut_rev_iter() { + let mut m = generate_test(); + for (i, elt) in m.iter_mut().rev().enumerate() { + assert_eq!((6 - i) as i32, *elt); + } + let mut n = LinkedList::new(); + assert!(n.iter_mut().rev().next().is_none()); + n.push_front(4); + let mut it = n.iter_mut().rev(); + assert!(it.next().is_some()); + assert!(it.next().is_none()); +} + +#[test] +fn test_eq() { + let mut n = list_from(&[]); + let mut m = list_from(&[]); + assert!(n == m); + n.push_front(1); + assert!(n != m); + m.push_back(1); + assert!(n == m); + + let n = list_from(&[2, 3, 4]); + let m = list_from(&[1, 2, 3]); + assert!(n != m); +} + +#[test] +fn test_hash() { + let mut x = LinkedList::new(); + let mut y = LinkedList::new(); + + assert!(::hash(&x) == ::hash(&y)); + + x.push_back(1); + x.push_back(2); + x.push_back(3); + + y.push_front(3); + y.push_front(2); + y.push_front(1); + + assert!(::hash(&x) == ::hash(&y)); +} + +#[test] +fn test_ord() { + let n = list_from(&[]); + let m = list_from(&[1, 2, 3]); + assert!(n < m); + assert!(m > n); + assert!(n <= n); + assert!(n >= n); +} + +#[test] +fn test_ord_nan() { + let nan = 0.0f64 / 0.0; + let n = list_from(&[nan]); + let m = list_from(&[nan]); + assert!(!(n < m)); + assert!(!(n > m)); + assert!(!(n <= m)); + assert!(!(n >= m)); + + let n = list_from(&[nan]); + let one = list_from(&[1.0f64]); + assert!(!(n < one)); + assert!(!(n > one)); + assert!(!(n <= one)); + assert!(!(n >= one)); + + let u = list_from(&[1.0f64, 2.0, nan]); + let v = list_from(&[1.0f64, 2.0, 3.0]); + assert!(!(u < v)); + assert!(!(u > v)); + assert!(!(u <= v)); + assert!(!(u >= v)); + + let s = list_from(&[1.0f64, 2.0, 4.0, 2.0]); + let t = list_from(&[1.0f64, 2.0, 3.0, 2.0]); + assert!(!(s < t)); + assert!(s > one); + assert!(!(s <= one)); + assert!(s >= one); +} + +#[test] +fn test_show() { + let list: LinkedList<_> = (0..10).collect(); + assert_eq!(format!("{:?}", list), "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]"); + + let list: LinkedList<_> = vec!["just", "one", "test", "more"].iter().cloned().collect(); + assert_eq!(format!("{:?}", list), + "[\"just\", \"one\", \"test\", \"more\"]"); +} + +#[test] +fn test_extend_ref() { + let mut a = LinkedList::new(); + a.push_back(1); + + a.extend(&[2, 3, 4]); + + assert_eq!(a.len(), 4); + assert_eq!(a, list_from(&[1, 2, 3, 4])); + + let mut b = LinkedList::new(); + b.push_back(5); + b.push_back(6); + a.extend(&b); + + assert_eq!(a.len(), 6); + assert_eq!(a, list_from(&[1, 2, 3, 4, 5, 6])); +} + +#[test] +fn test_extend() { + let mut a = LinkedList::new(); + a.push_back(1); + a.extend(vec![2, 3, 4]); // uses iterator + + assert_eq!(a.len(), 4); + assert!(a.iter().eq(&[1, 2, 3, 4])); + + let b: LinkedList<_> = vec![5, 6, 7].into_iter().collect(); + a.extend(b); // specializes to `append` + + assert_eq!(a.len(), 7); + assert!(a.iter().eq(&[1, 2, 3, 4, 5, 6, 7])); +} + +#[test] +fn test_contains() { + let mut l = LinkedList::new(); + l.extend(&[2, 3, 4]); + + assert!(l.contains(&3)); + assert!(!l.contains(&1)); + + l.clear(); + + assert!(!l.contains(&3)); +} diff --git a/src/liballoc/tests/slice.rs b/src/liballoc/tests/slice.rs new file mode 100644 index 00000000000..7fa65a2144e --- /dev/null +++ b/src/liballoc/tests/slice.rs @@ -0,0 +1,1225 @@ +// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use std::cmp::Ordering::{Equal, Greater, Less}; +use std::mem; +use std::__rand::{Rng, thread_rng}; +use std::rc::Rc; + +fn square(n: usize) -> usize { + n * n +} + +fn is_odd(n: &usize) -> bool { + *n % 2 == 1 +} + +#[test] +fn test_from_fn() { + // Test on-stack from_fn. + let mut v: Vec<_> = (0..3).map(square).collect(); + { + let v = v; + assert_eq!(v.len(), 3); + assert_eq!(v[0], 0); + assert_eq!(v[1], 1); + assert_eq!(v[2], 4); + } + + // Test on-heap from_fn. + v = (0..5).map(square).collect(); + { + let v = v; + assert_eq!(v.len(), 5); + assert_eq!(v[0], 0); + assert_eq!(v[1], 1); + assert_eq!(v[2], 4); + assert_eq!(v[3], 9); + assert_eq!(v[4], 16); + } +} + +#[test] +fn test_from_elem() { + // Test on-stack from_elem. + let mut v = vec![10, 10]; + { + let v = v; + assert_eq!(v.len(), 2); + assert_eq!(v[0], 10); + assert_eq!(v[1], 10); + } + + // Test on-heap from_elem. + v = vec![20; 6]; + { + let v = &v[..]; + assert_eq!(v[0], 20); + assert_eq!(v[1], 20); + assert_eq!(v[2], 20); + assert_eq!(v[3], 20); + assert_eq!(v[4], 20); + assert_eq!(v[5], 20); + } +} + +#[test] +fn test_is_empty() { + let xs: [i32; 0] = []; + assert!(xs.is_empty()); + assert!(![0].is_empty()); +} + +#[test] +fn test_len_divzero() { + type Z = [i8; 0]; + let v0: &[Z] = &[]; + let v1: &[Z] = &[[]]; + let v2: &[Z] = &[[], []]; + assert_eq!(mem::size_of::<Z>(), 0); + assert_eq!(v0.len(), 0); + assert_eq!(v1.len(), 1); + assert_eq!(v2.len(), 2); +} + +#[test] +fn test_get() { + let mut a = vec![11]; + assert_eq!(a.get(1), None); + a = vec![11, 12]; + assert_eq!(a.get(1).unwrap(), &12); + a = vec![11, 12, 13]; + assert_eq!(a.get(1).unwrap(), &12); +} + +#[test] +fn test_first() { + let mut a = vec![]; + assert_eq!(a.first(), None); + a = vec![11]; + assert_eq!(a.first().unwrap(), &11); + a = vec![11, 12]; + assert_eq!(a.first().unwrap(), &11); +} + +#[test] +fn test_first_mut() { + let mut a = vec![]; + assert_eq!(a.first_mut(), None); + a = vec![11]; + assert_eq!(*a.first_mut().unwrap(), 11); + a = vec![11, 12]; + assert_eq!(*a.first_mut().unwrap(), 11); +} + +#[test] +fn test_split_first() { + let mut a = vec![11]; + let b: &[i32] = &[]; + assert!(b.split_first().is_none()); + assert_eq!(a.split_first(), Some((&11, b))); + a = vec![11, 12]; + let b: &[i32] = &[12]; + assert_eq!(a.split_first(), Some((&11, b))); +} + +#[test] +fn test_split_first_mut() { + let mut a = vec![11]; + let b: &mut [i32] = &mut []; + assert!(b.split_first_mut().is_none()); + assert!(a.split_first_mut() == Some((&mut 11, b))); + a = vec![11, 12]; + let b: &mut [_] = &mut [12]; + assert!(a.split_first_mut() == Some((&mut 11, b))); +} + +#[test] +fn test_split_last() { + let mut a = vec![11]; + let b: &[i32] = &[]; + assert!(b.split_last().is_none()); + assert_eq!(a.split_last(), Some((&11, b))); + a = vec![11, 12]; + let b: &[_] = &[11]; + assert_eq!(a.split_last(), Some((&12, b))); +} + +#[test] +fn test_split_last_mut() { + let mut a = vec![11]; + let b: &mut [i32] = &mut []; + assert!(b.split_last_mut().is_none()); + assert!(a.split_last_mut() == Some((&mut 11, b))); + + a = vec![11, 12]; + let b: &mut [_] = &mut [11]; + assert!(a.split_last_mut() == Some((&mut 12, b))); +} + +#[test] +fn test_last() { + let mut a = vec![]; + assert_eq!(a.last(), None); + a = vec![11]; + assert_eq!(a.last().unwrap(), &11); + a = vec![11, 12]; + assert_eq!(a.last().unwrap(), &12); +} + +#[test] +fn test_last_mut() { + let mut a = vec![]; + assert_eq!(a.last_mut(), None); + a = vec![11]; + assert_eq!(*a.last_mut().unwrap(), 11); + a = vec![11, 12]; + assert_eq!(*a.last_mut().unwrap(), 12); +} + +#[test] +fn test_slice() { + // Test fixed length vector. + let vec_fixed = [1, 2, 3, 4]; + let v_a = vec_fixed[1..vec_fixed.len()].to_vec(); + assert_eq!(v_a.len(), 3); + + assert_eq!(v_a[0], 2); + assert_eq!(v_a[1], 3); + assert_eq!(v_a[2], 4); + + // Test on stack. + let vec_stack: &[_] = &[1, 2, 3]; + let v_b = vec_stack[1..3].to_vec(); + assert_eq!(v_b.len(), 2); + + assert_eq!(v_b[0], 2); + assert_eq!(v_b[1], 3); + + // Test `Box<[T]>` + let vec_unique = vec![1, 2, 3, 4, 5, 6]; + let v_d = vec_unique[1..6].to_vec(); + assert_eq!(v_d.len(), 5); + + assert_eq!(v_d[0], 2); + assert_eq!(v_d[1], 3); + assert_eq!(v_d[2], 4); + assert_eq!(v_d[3], 5); + assert_eq!(v_d[4], 6); +} + +#[test] +fn test_slice_from() { + let vec: &[_] = &[1, 2, 3, 4]; + assert_eq!(&vec[..], vec); + let b: &[_] = &[3, 4]; + assert_eq!(&vec[2..], b); + let b: &[_] = &[]; + assert_eq!(&vec[4..], b); +} + +#[test] +fn test_slice_to() { + let vec: &[_] = &[1, 2, 3, 4]; + assert_eq!(&vec[..4], vec); + let b: &[_] = &[1, 2]; + assert_eq!(&vec[..2], b); + let b: &[_] = &[]; + assert_eq!(&vec[..0], b); +} + + +#[test] +fn test_pop() { + let mut v = vec![5]; + let e = v.pop(); + assert_eq!(v.len(), 0); + assert_eq!(e, Some(5)); + let f = v.pop(); + assert_eq!(f, None); + let g = v.pop(); + assert_eq!(g, None); +} + +#[test] +fn test_swap_remove() { + let mut v = vec![1, 2, 3, 4, 5]; + let mut e = v.swap_remove(0); + assert_eq!(e, 1); + assert_eq!(v, [5, 2, 3, 4]); + e = v.swap_remove(3); + assert_eq!(e, 4); + assert_eq!(v, [5, 2, 3]); +} + +#[test] +#[should_panic] +fn test_swap_remove_fail() { + let mut v = vec![1]; + let _ = v.swap_remove(0); + let _ = v.swap_remove(0); +} + +#[test] +fn test_swap_remove_noncopyable() { + // Tests that we don't accidentally run destructors twice. + let mut v: Vec<Box<_>> = Vec::new(); + v.push(box 0); + v.push(box 0); + v.push(box 0); + let mut _e = v.swap_remove(0); + assert_eq!(v.len(), 2); + _e = v.swap_remove(1); + assert_eq!(v.len(), 1); + _e = v.swap_remove(0); + assert_eq!(v.len(), 0); +} + +#[test] +fn test_push() { + // Test on-stack push(). + let mut v = vec![]; + v.push(1); + assert_eq!(v.len(), 1); + assert_eq!(v[0], 1); + + // Test on-heap push(). + v.push(2); + assert_eq!(v.len(), 2); + assert_eq!(v[0], 1); + assert_eq!(v[1], 2); +} + +#[test] +fn test_truncate() { + let mut v: Vec<Box<_>> = vec![box 6, box 5, box 4]; + v.truncate(1); + let v = v; + assert_eq!(v.len(), 1); + assert_eq!(*(v[0]), 6); + // If the unsafe block didn't drop things properly, we blow up here. +} + +#[test] +fn test_clear() { + let mut v: Vec<Box<_>> = vec![box 6, box 5, box 4]; + v.clear(); + assert_eq!(v.len(), 0); + // If the unsafe block didn't drop things properly, we blow up here. +} + +#[test] +fn test_retain() { + let mut v = vec![1, 2, 3, 4, 5]; + v.retain(is_odd); + assert_eq!(v, [1, 3, 5]); +} + +#[test] +fn test_binary_search() { + assert_eq!([1, 2, 3, 4, 5].binary_search(&5).ok(), Some(4)); + assert_eq!([1, 2, 3, 4, 5].binary_search(&4).ok(), Some(3)); + assert_eq!([1, 2, 3, 4, 5].binary_search(&3).ok(), Some(2)); + assert_eq!([1, 2, 3, 4, 5].binary_search(&2).ok(), Some(1)); + assert_eq!([1, 2, 3, 4, 5].binary_search(&1).ok(), Some(0)); + + assert_eq!([2, 4, 6, 8, 10].binary_search(&1).ok(), None); + assert_eq!([2, 4, 6, 8, 10].binary_search(&5).ok(), None); + assert_eq!([2, 4, 6, 8, 10].binary_search(&4).ok(), Some(1)); + assert_eq!([2, 4, 6, 8, 10].binary_search(&10).ok(), Some(4)); + + assert_eq!([2, 4, 6, 8].binary_search(&1).ok(), None); + assert_eq!([2, 4, 6, 8].binary_search(&5).ok(), None); + assert_eq!([2, 4, 6, 8].binary_search(&4).ok(), Some(1)); + assert_eq!([2, 4, 6, 8].binary_search(&8).ok(), Some(3)); + + assert_eq!([2, 4, 6].binary_search(&1).ok(), None); + assert_eq!([2, 4, 6].binary_search(&5).ok(), None); + assert_eq!([2, 4, 6].binary_search(&4).ok(), Some(1)); + assert_eq!([2, 4, 6].binary_search(&6).ok(), Some(2)); + + assert_eq!([2, 4].binary_search(&1).ok(), None); + assert_eq!([2, 4].binary_search(&5).ok(), None); + assert_eq!([2, 4].binary_search(&2).ok(), Some(0)); + assert_eq!([2, 4].binary_search(&4).ok(), Some(1)); + + assert_eq!([2].binary_search(&1).ok(), None); + assert_eq!([2].binary_search(&5).ok(), None); + assert_eq!([2].binary_search(&2).ok(), Some(0)); + + assert_eq!([].binary_search(&1).ok(), None); + assert_eq!([].binary_search(&5).ok(), None); + + assert!([1, 1, 1, 1, 1].binary_search(&1).ok() != None); + assert!([1, 1, 1, 1, 2].binary_search(&1).ok() != None); + assert!([1, 1, 1, 2, 2].binary_search(&1).ok() != None); + assert!([1, 1, 2, 2, 2].binary_search(&1).ok() != None); + assert_eq!([1, 2, 2, 2, 2].binary_search(&1).ok(), Some(0)); + + assert_eq!([1, 2, 3, 4, 5].binary_search(&6).ok(), None); + assert_eq!([1, 2, 3, 4, 5].binary_search(&0).ok(), None); +} + +#[test] +fn test_reverse() { + let mut v = vec![10, 20]; + assert_eq!(v[0], 10); + assert_eq!(v[1], 20); + v.reverse(); + assert_eq!(v[0], 20); + assert_eq!(v[1], 10); + + let mut v3 = Vec::<i32>::new(); + v3.reverse(); + assert!(v3.is_empty()); + + // check the 1-byte-types path + let mut v = (-50..51i8).collect::<Vec<_>>(); + v.reverse(); + assert_eq!(v, (-50..51i8).rev().collect::<Vec<_>>()); + + // check the 2-byte-types path + let mut v = (-50..51i16).collect::<Vec<_>>(); + v.reverse(); + assert_eq!(v, (-50..51i16).rev().collect::<Vec<_>>()); +} + +#[test] +fn test_sort() { + let mut rng = thread_rng(); + + for len in (2..25).chain(500..510) { + for _ in 0..100 { + let mut v: Vec<_> = rng.gen_iter::<i32>().take(len).collect(); + let mut v1 = v.clone(); + + v.sort(); + assert!(v.windows(2).all(|w| w[0] <= w[1])); + + v1.sort_by(|a, b| a.cmp(b)); + assert!(v1.windows(2).all(|w| w[0] <= w[1])); + + v1.sort_by(|a, b| b.cmp(a)); + assert!(v1.windows(2).all(|w| w[0] >= w[1])); + } + } + + // Sort using a completely random comparison function. + // This will reorder the elements *somehow*, but won't panic. + let mut v = [0; 500]; + for i in 0..v.len() { + v[i] = i as i32; + } + v.sort_by(|_, _| *rng.choose(&[Less, Equal, Greater]).unwrap()); + v.sort(); + for i in 0..v.len() { + assert_eq!(v[i], i as i32); + } + + // Should not panic. + [0i32; 0].sort(); + [(); 10].sort(); + [(); 100].sort(); + + let mut v = [0xDEADBEEFu64]; + v.sort(); + assert!(v == [0xDEADBEEF]); +} + +#[test] +fn test_sort_stability() { + for len in (2..25).chain(500..510) { + for _ in 0..10 { + let mut counts = [0; 10]; + + // create a vector like [(6, 1), (5, 1), (6, 2), ...], + // where the first item of each tuple is random, but + // the second item represents which occurrence of that + // number this element is, i.e. the second elements + // will occur in sorted order. + let mut v: Vec<_> = (0..len) + .map(|_| { + let n = thread_rng().gen::<usize>() % 10; + counts[n] += 1; + (n, counts[n]) + }) + .collect(); + + // only sort on the first element, so an unstable sort + // may mix up the counts. + v.sort_by(|&(a, _), &(b, _)| a.cmp(&b)); + + // this comparison includes the count (the second item + // of the tuple), so elements with equal first items + // will need to be ordered with increasing + // counts... i.e. exactly asserting that this sort is + // stable. + assert!(v.windows(2).all(|w| w[0] <= w[1])); + } + } +} + +#[test] +fn test_rotate() { + let expected: Vec<_> = (0..13).collect(); + let mut v = Vec::new(); + + // no-ops + v.clone_from(&expected); + v.rotate(0); + assert_eq!(v, expected); + v.rotate(expected.len()); + assert_eq!(v, expected); + let mut zst_array = [(), (), ()]; + zst_array.rotate(2); + + // happy path + v = (5..13).chain(0..5).collect(); + v.rotate(8); + assert_eq!(v, expected); + + let expected: Vec<_> = (0..1000).collect(); + + // small rotations in large slice, uses ptr::copy + v = (2..1000).chain(0..2).collect(); + v.rotate(998); + assert_eq!(v, expected); + v = (998..1000).chain(0..998).collect(); + v.rotate(2); + assert_eq!(v, expected); + + // non-small prime rotation, has a few rounds of swapping + v = (389..1000).chain(0..389).collect(); + v.rotate(1000-389); + assert_eq!(v, expected); +} + +#[test] +fn test_concat() { + let v: [Vec<i32>; 0] = []; + let c = v.concat(); + assert_eq!(c, []); + let d = [vec![1], vec![2, 3]].concat(); + assert_eq!(d, [1, 2, 3]); + + let v: &[&[_]] = &[&[1], &[2, 3]]; + assert_eq!(v.join(&0), [1, 0, 2, 3]); + let v: &[&[_]] = &[&[1], &[2], &[3]]; + assert_eq!(v.join(&0), [1, 0, 2, 0, 3]); +} + +#[test] +fn test_join() { + let v: [Vec<i32>; 0] = []; + assert_eq!(v.join(&0), []); + assert_eq!([vec![1], vec![2, 3]].join(&0), [1, 0, 2, 3]); + assert_eq!([vec![1], vec![2], vec![3]].join(&0), [1, 0, 2, 0, 3]); + + let v: [&[_]; 2] = [&[1], &[2, 3]]; + assert_eq!(v.join(&0), [1, 0, 2, 3]); + let v: [&[_]; 3] = [&[1], &[2], &[3]]; + assert_eq!(v.join(&0), [1, 0, 2, 0, 3]); +} + +#[test] +fn test_insert() { + let mut a = vec![1, 2, 4]; + a.insert(2, 3); + assert_eq!(a, [1, 2, 3, 4]); + + let mut a = vec![1, 2, 3]; + a.insert(0, 0); + assert_eq!(a, [0, 1, 2, 3]); + + let mut a = vec![1, 2, 3]; + a.insert(3, 4); + assert_eq!(a, [1, 2, 3, 4]); + + let mut a = vec![]; + a.insert(0, 1); + assert_eq!(a, [1]); +} + +#[test] +#[should_panic] +fn test_insert_oob() { + let mut a = vec![1, 2, 3]; + a.insert(4, 5); +} + +#[test] +fn test_remove() { + let mut a = vec![1, 2, 3, 4]; + + assert_eq!(a.remove(2), 3); + assert_eq!(a, [1, 2, 4]); + + assert_eq!(a.remove(2), 4); + assert_eq!(a, [1, 2]); + + assert_eq!(a.remove(0), 1); + assert_eq!(a, [2]); + + assert_eq!(a.remove(0), 2); + assert_eq!(a, []); +} + +#[test] +#[should_panic] +fn test_remove_fail() { + let mut a = vec![1]; + let _ = a.remove(0); + let _ = a.remove(0); +} + +#[test] +fn test_capacity() { + let mut v = vec![0]; + v.reserve_exact(10); + assert!(v.capacity() >= 11); +} + +#[test] +fn test_slice_2() { + let v = vec![1, 2, 3, 4, 5]; + let v = &v[1..3]; + assert_eq!(v.len(), 2); + assert_eq!(v[0], 2); + assert_eq!(v[1], 3); +} + +macro_rules! assert_order { + (Greater, $a:expr, $b:expr) => { + assert_eq!($a.cmp($b), Greater); + assert!($a > $b); + }; + (Less, $a:expr, $b:expr) => { + assert_eq!($a.cmp($b), Less); + assert!($a < $b); + }; + (Equal, $a:expr, $b:expr) => { + assert_eq!($a.cmp($b), Equal); + assert_eq!($a, $b); + } +} + +#[test] +fn test_total_ord_u8() { + let c = &[1u8, 2, 3]; + assert_order!(Greater, &[1u8, 2, 3, 4][..], &c[..]); + let c = &[1u8, 2, 3, 4]; + assert_order!(Less, &[1u8, 2, 3][..], &c[..]); + let c = &[1u8, 2, 3, 6]; + assert_order!(Equal, &[1u8, 2, 3, 6][..], &c[..]); + let c = &[1u8, 2, 3, 4, 5, 6]; + assert_order!(Less, &[1u8, 2, 3, 4, 5, 5, 5, 5][..], &c[..]); + let c = &[1u8, 2, 3, 4]; + assert_order!(Greater, &[2u8, 2][..], &c[..]); +} + + +#[test] +fn test_total_ord_i32() { + let c = &[1, 2, 3]; + assert_order!(Greater, &[1, 2, 3, 4][..], &c[..]); + let c = &[1, 2, 3, 4]; + assert_order!(Less, &[1, 2, 3][..], &c[..]); + let c = &[1, 2, 3, 6]; + assert_order!(Equal, &[1, 2, 3, 6][..], &c[..]); + let c = &[1, 2, 3, 4, 5, 6]; + assert_order!(Less, &[1, 2, 3, 4, 5, 5, 5, 5][..], &c[..]); + let c = &[1, 2, 3, 4]; + assert_order!(Greater, &[2, 2][..], &c[..]); +} + +#[test] +fn test_iterator() { + let xs = [1, 2, 5, 10, 11]; + let mut it = xs.iter(); + assert_eq!(it.size_hint(), (5, Some(5))); + assert_eq!(it.next().unwrap(), &1); + assert_eq!(it.size_hint(), (4, Some(4))); + assert_eq!(it.next().unwrap(), &2); + assert_eq!(it.size_hint(), (3, Some(3))); + assert_eq!(it.next().unwrap(), &5); + assert_eq!(it.size_hint(), (2, Some(2))); + assert_eq!(it.next().unwrap(), &10); + assert_eq!(it.size_hint(), (1, Some(1))); + assert_eq!(it.next().unwrap(), &11); + assert_eq!(it.size_hint(), (0, Some(0))); + assert!(it.next().is_none()); +} + +#[test] +fn test_iter_size_hints() { + let mut xs = [1, 2, 5, 10, 11]; + assert_eq!(xs.iter().size_hint(), (5, Some(5))); + assert_eq!(xs.iter_mut().size_hint(), (5, Some(5))); +} + +#[test] +fn test_iter_as_slice() { + let xs = [1, 2, 5, 10, 11]; + let mut iter = xs.iter(); + assert_eq!(iter.as_slice(), &[1, 2, 5, 10, 11]); + iter.next(); + assert_eq!(iter.as_slice(), &[2, 5, 10, 11]); +} + +#[test] +fn test_iter_as_ref() { + let xs = [1, 2, 5, 10, 11]; + let mut iter = xs.iter(); + assert_eq!(iter.as_ref(), &[1, 2, 5, 10, 11]); + iter.next(); + assert_eq!(iter.as_ref(), &[2, 5, 10, 11]); +} + +#[test] +fn test_iter_clone() { + let xs = [1, 2, 5]; + let mut it = xs.iter(); + it.next(); + let mut jt = it.clone(); + assert_eq!(it.next(), jt.next()); + assert_eq!(it.next(), jt.next()); + assert_eq!(it.next(), jt.next()); +} + +#[test] +fn test_iter_is_empty() { + let xs = [1, 2, 5, 10, 11]; + for i in 0..xs.len() { + for j in i..xs.len() { + assert_eq!(xs[i..j].iter().is_empty(), xs[i..j].is_empty()); + } + } +} + +#[test] +fn test_mut_iterator() { + let mut xs = [1, 2, 3, 4, 5]; + for x in &mut xs { + *x += 1; + } + assert!(xs == [2, 3, 4, 5, 6]) +} + +#[test] +fn test_rev_iterator() { + + let xs = [1, 2, 5, 10, 11]; + let ys = [11, 10, 5, 2, 1]; + let mut i = 0; + for &x in xs.iter().rev() { + assert_eq!(x, ys[i]); + i += 1; + } + assert_eq!(i, 5); +} + +#[test] +fn test_mut_rev_iterator() { + let mut xs = [1, 2, 3, 4, 5]; + for (i, x) in xs.iter_mut().rev().enumerate() { + *x += i; + } + assert!(xs == [5, 5, 5, 5, 5]) +} + +#[test] +fn test_move_iterator() { + let xs = vec![1, 2, 3, 4, 5]; + assert_eq!(xs.into_iter().fold(0, |a: usize, b: usize| 10 * a + b), + 12345); +} + +#[test] +fn test_move_rev_iterator() { + let xs = vec![1, 2, 3, 4, 5]; + assert_eq!(xs.into_iter().rev().fold(0, |a: usize, b: usize| 10 * a + b), + 54321); +} + +#[test] +fn test_splitator() { + let xs = &[1, 2, 3, 4, 5]; + + let splits: &[&[_]] = &[&[1], &[3], &[5]]; + assert_eq!(xs.split(|x| *x % 2 == 0).collect::<Vec<_>>(), splits); + let splits: &[&[_]] = &[&[], &[2, 3, 4, 5]]; + assert_eq!(xs.split(|x| *x == 1).collect::<Vec<_>>(), splits); + let splits: &[&[_]] = &[&[1, 2, 3, 4], &[]]; + assert_eq!(xs.split(|x| *x == 5).collect::<Vec<_>>(), splits); + let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]]; + assert_eq!(xs.split(|x| *x == 10).collect::<Vec<_>>(), splits); + let splits: &[&[_]] = &[&[], &[], &[], &[], &[], &[]]; + assert_eq!(xs.split(|_| true).collect::<Vec<&[i32]>>(), splits); + + let xs: &[i32] = &[]; + let splits: &[&[i32]] = &[&[]]; + assert_eq!(xs.split(|x| *x == 5).collect::<Vec<&[i32]>>(), splits); +} + +#[test] +fn test_splitnator() { + let xs = &[1, 2, 3, 4, 5]; + + let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]]; + assert_eq!(xs.splitn(1, |x| *x % 2 == 0).collect::<Vec<_>>(), splits); + let splits: &[&[_]] = &[&[1], &[3, 4, 5]]; + assert_eq!(xs.splitn(2, |x| *x % 2 == 0).collect::<Vec<_>>(), splits); + let splits: &[&[_]] = &[&[], &[], &[], &[4, 5]]; + assert_eq!(xs.splitn(4, |_| true).collect::<Vec<_>>(), splits); + + let xs: &[i32] = &[]; + let splits: &[&[i32]] = &[&[]]; + assert_eq!(xs.splitn(2, |x| *x == 5).collect::<Vec<_>>(), splits); +} + +#[test] +fn test_splitnator_mut() { + let xs = &mut [1, 2, 3, 4, 5]; + + let splits: &[&mut [_]] = &[&mut [1, 2, 3, 4, 5]]; + assert_eq!(xs.splitn_mut(1, |x| *x % 2 == 0).collect::<Vec<_>>(), + splits); + let splits: &[&mut [_]] = &[&mut [1], &mut [3, 4, 5]]; + assert_eq!(xs.splitn_mut(2, |x| *x % 2 == 0).collect::<Vec<_>>(), + splits); + let splits: &[&mut [_]] = &[&mut [], &mut [], &mut [], &mut [4, 5]]; + assert_eq!(xs.splitn_mut(4, |_| true).collect::<Vec<_>>(), splits); + + let xs: &mut [i32] = &mut []; + let splits: &[&mut [i32]] = &[&mut []]; + assert_eq!(xs.splitn_mut(2, |x| *x == 5).collect::<Vec<_>>(), splits); +} + +#[test] +fn test_rsplitator() { + let xs = &[1, 2, 3, 4, 5]; + + let splits: &[&[_]] = &[&[5], &[3], &[1]]; + assert_eq!(xs.split(|x| *x % 2 == 0).rev().collect::<Vec<_>>(), splits); + let splits: &[&[_]] = &[&[2, 3, 4, 5], &[]]; + assert_eq!(xs.split(|x| *x == 1).rev().collect::<Vec<_>>(), splits); + let splits: &[&[_]] = &[&[], &[1, 2, 3, 4]]; + assert_eq!(xs.split(|x| *x == 5).rev().collect::<Vec<_>>(), splits); + let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]]; + assert_eq!(xs.split(|x| *x == 10).rev().collect::<Vec<_>>(), splits); + + let xs: &[i32] = &[]; + let splits: &[&[i32]] = &[&[]]; + assert_eq!(xs.split(|x| *x == 5).rev().collect::<Vec<&[i32]>>(), splits); +} + +#[test] +fn test_rsplitnator() { + let xs = &[1, 2, 3, 4, 5]; + + let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]]; + assert_eq!(xs.rsplitn(1, |x| *x % 2 == 0).collect::<Vec<_>>(), splits); + let splits: &[&[_]] = &[&[5], &[1, 2, 3]]; + assert_eq!(xs.rsplitn(2, |x| *x % 2 == 0).collect::<Vec<_>>(), splits); + let splits: &[&[_]] = &[&[], &[], &[], &[1, 2]]; + assert_eq!(xs.rsplitn(4, |_| true).collect::<Vec<_>>(), splits); + + let xs: &[i32] = &[]; + let splits: &[&[i32]] = &[&[]]; + assert_eq!(xs.rsplitn(2, |x| *x == 5).collect::<Vec<&[i32]>>(), splits); + assert!(xs.rsplitn(0, |x| *x % 2 == 0).next().is_none()); +} + +#[test] +fn test_windowsator() { + let v = &[1, 2, 3, 4]; + + let wins: &[&[_]] = &[&[1, 2], &[2, 3], &[3, 4]]; + assert_eq!(v.windows(2).collect::<Vec<_>>(), wins); + + let wins: &[&[_]] = &[&[1, 2, 3], &[2, 3, 4]]; + assert_eq!(v.windows(3).collect::<Vec<_>>(), wins); + assert!(v.windows(6).next().is_none()); + + let wins: &[&[_]] = &[&[3, 4], &[2, 3], &[1, 2]]; + assert_eq!(v.windows(2).rev().collect::<Vec<&[_]>>(), wins); +} + +#[test] +#[should_panic] +fn test_windowsator_0() { + let v = &[1, 2, 3, 4]; + let _it = v.windows(0); +} + +#[test] +fn test_chunksator() { + let v = &[1, 2, 3, 4, 5]; + + assert_eq!(v.chunks(2).len(), 3); + + let chunks: &[&[_]] = &[&[1, 2], &[3, 4], &[5]]; + assert_eq!(v.chunks(2).collect::<Vec<_>>(), chunks); + let chunks: &[&[_]] = &[&[1, 2, 3], &[4, 5]]; + assert_eq!(v.chunks(3).collect::<Vec<_>>(), chunks); + let chunks: &[&[_]] = &[&[1, 2, 3, 4, 5]]; + assert_eq!(v.chunks(6).collect::<Vec<_>>(), chunks); + + let chunks: &[&[_]] = &[&[5], &[3, 4], &[1, 2]]; + assert_eq!(v.chunks(2).rev().collect::<Vec<_>>(), chunks); +} + +#[test] +#[should_panic] +fn test_chunksator_0() { + let v = &[1, 2, 3, 4]; + let _it = v.chunks(0); +} + +#[test] +fn test_reverse_part() { + let mut values = [1, 2, 3, 4, 5]; + values[1..4].reverse(); + assert!(values == [1, 4, 3, 2, 5]); +} + +#[test] +fn test_show() { + macro_rules! test_show_vec { + ($x:expr, $x_str:expr) => ({ + let (x, x_str) = ($x, $x_str); + assert_eq!(format!("{:?}", x), x_str); + assert_eq!(format!("{:?}", x), x_str); + }) + } + let empty = Vec::<i32>::new(); + test_show_vec!(empty, "[]"); + test_show_vec!(vec![1], "[1]"); + test_show_vec!(vec![1, 2, 3], "[1, 2, 3]"); + test_show_vec!(vec![vec![], vec![1], vec![1, 1]], "[[], [1], [1, 1]]"); + + let empty_mut: &mut [i32] = &mut []; + test_show_vec!(empty_mut, "[]"); + let v = &mut [1]; + test_show_vec!(v, "[1]"); + let v = &mut [1, 2, 3]; + test_show_vec!(v, "[1, 2, 3]"); + let v: &mut [&mut [_]] = &mut [&mut [], &mut [1], &mut [1, 1]]; + test_show_vec!(v, "[[], [1], [1, 1]]"); +} + +#[test] +fn test_vec_default() { + macro_rules! t { + ($ty:ty) => {{ + let v: $ty = Default::default(); + assert!(v.is_empty()); + }} + } + + t!(&[i32]); + t!(Vec<i32>); +} + +#[test] +#[should_panic] +fn test_overflow_does_not_cause_segfault() { + let mut v = vec![]; + v.reserve_exact(!0); + v.push(1); + v.push(2); +} + +#[test] +#[should_panic] +fn test_overflow_does_not_cause_segfault_managed() { + let mut v = vec![Rc::new(1)]; + v.reserve_exact(!0); + v.push(Rc::new(2)); +} + +#[test] +fn test_mut_split_at() { + let mut values = [1, 2, 3, 4, 5]; + { + let (left, right) = values.split_at_mut(2); + { + let left: &[_] = left; + assert!(left[..left.len()] == [1, 2]); + } + for p in left { + *p += 1; + } + + { + let right: &[_] = right; + assert!(right[..right.len()] == [3, 4, 5]); + } + for p in right { + *p += 2; + } + } + + assert!(values == [2, 3, 5, 6, 7]); +} + +#[derive(Clone, PartialEq)] +struct Foo; + +#[test] +fn test_iter_zero_sized() { + let mut v = vec![Foo, Foo, Foo]; + assert_eq!(v.len(), 3); + let mut cnt = 0; + + for f in &v { + assert!(*f == Foo); + cnt += 1; + } + assert_eq!(cnt, 3); + + for f in &v[1..3] { + assert!(*f == Foo); + cnt += 1; + } + assert_eq!(cnt, 5); + + for f in &mut v { + assert!(*f == Foo); + cnt += 1; + } + assert_eq!(cnt, 8); + + for f in v { + assert!(f == Foo); + cnt += 1; + } + assert_eq!(cnt, 11); + + let xs: [Foo; 3] = [Foo, Foo, Foo]; + cnt = 0; + for f in &xs { + assert!(*f == Foo); + cnt += 1; + } + assert!(cnt == 3); +} + +#[test] +fn test_shrink_to_fit() { + let mut xs = vec![0, 1, 2, 3]; + for i in 4..100 { + xs.push(i) + } + assert_eq!(xs.capacity(), 128); + xs.shrink_to_fit(); + assert_eq!(xs.capacity(), 100); + assert_eq!(xs, (0..100).collect::<Vec<_>>()); +} + +#[test] +fn test_starts_with() { + assert!(b"foobar".starts_with(b"foo")); + assert!(!b"foobar".starts_with(b"oob")); + assert!(!b"foobar".starts_with(b"bar")); + assert!(!b"foo".starts_with(b"foobar")); + assert!(!b"bar".starts_with(b"foobar")); + assert!(b"foobar".starts_with(b"foobar")); + let empty: &[u8] = &[]; + assert!(empty.starts_with(empty)); + assert!(!empty.starts_with(b"foo")); + assert!(b"foobar".starts_with(empty)); +} + +#[test] +fn test_ends_with() { + assert!(b"foobar".ends_with(b"bar")); + assert!(!b"foobar".ends_with(b"oba")); + assert!(!b"foobar".ends_with(b"foo")); + assert!(!b"foo".ends_with(b"foobar")); + assert!(!b"bar".ends_with(b"foobar")); + assert!(b"foobar".ends_with(b"foobar")); + let empty: &[u8] = &[]; + assert!(empty.ends_with(empty)); + assert!(!empty.ends_with(b"foo")); + assert!(b"foobar".ends_with(empty)); +} + +#[test] +fn test_mut_splitator() { + let mut xs = [0, 1, 0, 2, 3, 0, 0, 4, 5, 0]; + assert_eq!(xs.split_mut(|x| *x == 0).count(), 6); + for slice in xs.split_mut(|x| *x == 0) { + slice.reverse(); + } + assert!(xs == [0, 1, 0, 3, 2, 0, 0, 5, 4, 0]); + + let mut xs = [0, 1, 0, 2, 3, 0, 0, 4, 5, 0, 6, 7]; + for slice in xs.split_mut(|x| *x == 0).take(5) { + slice.reverse(); + } + assert!(xs == [0, 1, 0, 3, 2, 0, 0, 5, 4, 0, 6, 7]); +} + +#[test] +fn test_mut_splitator_rev() { + let mut xs = [1, 2, 0, 3, 4, 0, 0, 5, 6, 0]; + for slice in xs.split_mut(|x| *x == 0).rev().take(4) { + slice.reverse(); + } + assert!(xs == [1, 2, 0, 4, 3, 0, 0, 6, 5, 0]); +} + +#[test] +fn test_get_mut() { + let mut v = [0, 1, 2]; + assert_eq!(v.get_mut(3), None); + v.get_mut(1).map(|e| *e = 7); + assert_eq!(v[1], 7); + let mut x = 2; + assert_eq!(v.get_mut(2), Some(&mut x)); +} + +#[test] +fn test_mut_chunks() { + let mut v = [0, 1, 2, 3, 4, 5, 6]; + assert_eq!(v.chunks_mut(2).len(), 4); + for (i, chunk) in v.chunks_mut(3).enumerate() { + for x in chunk { + *x = i as u8; + } + } + let result = [0, 0, 0, 1, 1, 1, 2]; + assert!(v == result); +} + +#[test] +fn test_mut_chunks_rev() { + let mut v = [0, 1, 2, 3, 4, 5, 6]; + for (i, chunk) in v.chunks_mut(3).rev().enumerate() { + for x in chunk { + *x = i as u8; + } + } + let result = [2, 2, 2, 1, 1, 1, 0]; + assert!(v == result); +} + +#[test] +#[should_panic] +fn test_mut_chunks_0() { + let mut v = [1, 2, 3, 4]; + let _it = v.chunks_mut(0); +} + +#[test] +fn test_mut_last() { + let mut x = [1, 2, 3, 4, 5]; + let h = x.last_mut(); + assert_eq!(*h.unwrap(), 5); + + let y: &mut [i32] = &mut []; + assert!(y.last_mut().is_none()); +} + +#[test] +fn test_to_vec() { + let xs: Box<_> = box [1, 2, 3]; + let ys = xs.to_vec(); + assert_eq!(ys, [1, 2, 3]); +} + +#[test] +fn test_box_slice_clone() { + let data = vec![vec![0, 1], vec![0], vec![1]]; + let data2 = data.clone().into_boxed_slice().clone().to_vec(); + + assert_eq!(data, data2); +} + +#[test] +#[cfg_attr(target_os = "emscripten", ignore)] +fn test_box_slice_clone_panics() { + use std::sync::Arc; + use std::sync::atomic::{AtomicUsize, Ordering}; + use std::thread::spawn; + + struct Canary { + count: Arc<AtomicUsize>, + panics: bool, + } + + impl Drop for Canary { + fn drop(&mut self) { + self.count.fetch_add(1, Ordering::SeqCst); + } + } + + impl Clone for Canary { + fn clone(&self) -> Self { + if self.panics { + panic!() + } + + Canary { + count: self.count.clone(), + panics: self.panics, + } + } + } + + let drop_count = Arc::new(AtomicUsize::new(0)); + let canary = Canary { + count: drop_count.clone(), + panics: false, + }; + let panic = Canary { + count: drop_count.clone(), + panics: true, + }; + + spawn(move || { + // When xs is dropped, +5. + let xs = vec![canary.clone(), canary.clone(), canary.clone(), panic, canary] + .into_boxed_slice(); + + // When panic is cloned, +3. + xs.clone(); + }) + .join() + .unwrap_err(); + + // Total = 8 + assert_eq!(drop_count.load(Ordering::SeqCst), 8); +} + +#[test] +fn test_copy_from_slice() { + let src = [0, 1, 2, 3, 4, 5]; + let mut dst = [0; 6]; + dst.copy_from_slice(&src); + assert_eq!(src, dst) +} + +#[test] +#[should_panic(expected = "destination and source slices have different lengths")] +fn test_copy_from_slice_dst_longer() { + let src = [0, 1, 2, 3]; + let mut dst = [0; 5]; + dst.copy_from_slice(&src); +} + +#[test] +#[should_panic(expected = "destination and source slices have different lengths")] +fn test_copy_from_slice_dst_shorter() { + let src = [0, 1, 2, 3]; + let mut dst = [0; 3]; + dst.copy_from_slice(&src); +} diff --git a/src/liballoc/tests/str.rs b/src/liballoc/tests/str.rs new file mode 100644 index 00000000000..9d8ca38b20e --- /dev/null +++ b/src/liballoc/tests/str.rs @@ -0,0 +1,1573 @@ +// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use std::borrow::Cow; +use std::cmp::Ordering::{Equal, Greater, Less}; +use std::str::from_utf8; + +#[test] +fn test_le() { + assert!("" <= ""); + assert!("" <= "foo"); + assert!("foo" <= "foo"); + assert!("foo" != "bar"); +} + +#[test] +fn test_find() { + assert_eq!("hello".find('l'), Some(2)); + assert_eq!("hello".find(|c:char| c == 'o'), Some(4)); + assert!("hello".find('x').is_none()); + assert!("hello".find(|c:char| c == 'x').is_none()); + assert_eq!("ประเทศไทย中华Việt Nam".find('华'), Some(30)); + assert_eq!("ประเทศไทย中华Việt Nam".find(|c: char| c == '华'), Some(30)); +} + +#[test] +fn test_rfind() { + assert_eq!("hello".rfind('l'), Some(3)); + assert_eq!("hello".rfind(|c:char| c == 'o'), Some(4)); + assert!("hello".rfind('x').is_none()); + assert!("hello".rfind(|c:char| c == 'x').is_none()); + assert_eq!("ประเทศไทย中华Việt Nam".rfind('华'), Some(30)); + assert_eq!("ประเทศไทย中华Việt Nam".rfind(|c: char| c == '华'), Some(30)); +} + +#[test] +fn test_collect() { + let empty = ""; + let s: String = empty.chars().collect(); + assert_eq!(empty, s); + let data = "ประเทศไทย中"; + let s: String = data.chars().collect(); + assert_eq!(data, s); +} + +#[test] +fn test_into_bytes() { + let data = String::from("asdf"); + let buf = data.into_bytes(); + assert_eq!(buf, b"asdf"); +} + +#[test] +fn test_find_str() { + // byte positions + assert_eq!("".find(""), Some(0)); + assert!("banana".find("apple pie").is_none()); + + let data = "abcabc"; + assert_eq!(data[0..6].find("ab"), Some(0)); + assert_eq!(data[2..6].find("ab"), Some(3 - 2)); + assert!(data[2..4].find("ab").is_none()); + + let string = "ประเทศไทย中华Việt Nam"; + let mut data = String::from(string); + data.push_str(string); + assert!(data.find("ไท华").is_none()); + assert_eq!(data[0..43].find(""), Some(0)); + assert_eq!(data[6..43].find(""), Some(6 - 6)); + + assert_eq!(data[0..43].find("ประ"), Some( 0)); + assert_eq!(data[0..43].find("ทศไ"), Some(12)); + assert_eq!(data[0..43].find("ย中"), Some(24)); + assert_eq!(data[0..43].find("iệt"), Some(34)); + assert_eq!(data[0..43].find("Nam"), Some(40)); + + assert_eq!(data[43..86].find("ประ"), Some(43 - 43)); + assert_eq!(data[43..86].find("ทศไ"), Some(55 - 43)); + assert_eq!(data[43..86].find("ย中"), Some(67 - 43)); + assert_eq!(data[43..86].find("iệt"), Some(77 - 43)); + assert_eq!(data[43..86].find("Nam"), Some(83 - 43)); + + // find every substring -- assert that it finds it, or an earlier occurrence. + let string = "Việt Namacbaabcaabaaba"; + for (i, ci) in string.char_indices() { + let ip = i + ci.len_utf8(); + for j in string[ip..].char_indices() + .map(|(i, _)| i) + .chain(Some(string.len() - ip)) + { + let pat = &string[i..ip + j]; + assert!(match string.find(pat) { + None => false, + Some(x) => x <= i, + }); + assert!(match string.rfind(pat) { + None => false, + Some(x) => x >= i, + }); + } + } +} + +fn s(x: &str) -> String { x.to_string() } + +macro_rules! test_concat { + ($expected: expr, $string: expr) => { + { + let s: String = $string.concat(); + assert_eq!($expected, s); + } + } +} + +#[test] +fn test_concat_for_different_types() { + test_concat!("ab", vec![s("a"), s("b")]); + test_concat!("ab", vec!["a", "b"]); +} + +#[test] +fn test_concat_for_different_lengths() { + let empty: &[&str] = &[]; + test_concat!("", empty); + test_concat!("a", ["a"]); + test_concat!("ab", ["a", "b"]); + test_concat!("abc", ["", "a", "bc"]); +} + +macro_rules! test_join { + ($expected: expr, $string: expr, $delim: expr) => { + { + let s = $string.join($delim); + assert_eq!($expected, s); + } + } +} + +#[test] +fn test_join_for_different_types() { + test_join!("a-b", ["a", "b"], "-"); + let hyphen = "-".to_string(); + test_join!("a-b", [s("a"), s("b")], &*hyphen); + test_join!("a-b", vec!["a", "b"], &*hyphen); + test_join!("a-b", &*vec!["a", "b"], "-"); + test_join!("a-b", vec![s("a"), s("b")], "-"); +} + +#[test] +fn test_join_for_different_lengths() { + let empty: &[&str] = &[]; + test_join!("", empty, "-"); + test_join!("a", ["a"], "-"); + test_join!("a-b", ["a", "b"], "-"); + test_join!("-a-bc", ["", "a", "bc"], "-"); +} + +#[test] +fn test_unsafe_slice() { + assert_eq!("ab", unsafe {"abc".slice_unchecked(0, 2)}); + assert_eq!("bc", unsafe {"abc".slice_unchecked(1, 3)}); + assert_eq!("", unsafe {"abc".slice_unchecked(1, 1)}); + fn a_million_letter_a() -> String { + let mut i = 0; + let mut rs = String::new(); + while i < 100000 { + rs.push_str("aaaaaaaaaa"); + i += 1; + } + rs + } + fn half_a_million_letter_a() -> String { + let mut i = 0; + let mut rs = String::new(); + while i < 100000 { + rs.push_str("aaaaa"); + i += 1; + } + rs + } + let letters = a_million_letter_a(); + assert_eq!(half_a_million_letter_a(), + unsafe { letters.slice_unchecked(0, 500000)}); +} + +#[test] +fn test_starts_with() { + assert!("".starts_with("")); + assert!("abc".starts_with("")); + assert!("abc".starts_with("a")); + assert!(!"a".starts_with("abc")); + assert!(!"".starts_with("abc")); + assert!(!"ödd".starts_with("-")); + assert!("ödd".starts_with("öd")); +} + +#[test] +fn test_ends_with() { + assert!("".ends_with("")); + assert!("abc".ends_with("")); + assert!("abc".ends_with("c")); + assert!(!"a".ends_with("abc")); + assert!(!"".ends_with("abc")); + assert!(!"ddö".ends_with("-")); + assert!("ddö".ends_with("dö")); +} + +#[test] +fn test_is_empty() { + assert!("".is_empty()); + assert!(!"a".is_empty()); +} + +#[test] +fn test_replacen() { + assert_eq!("".replacen('a', "b", 5), ""); + assert_eq!("acaaa".replacen("a", "b", 3), "bcbba"); + assert_eq!("aaaa".replacen("a", "b", 0), "aaaa"); + + let test = "test"; + assert_eq!(" test test ".replacen(test, "toast", 3), " toast toast "); + assert_eq!(" test test ".replacen(test, "toast", 0), " test test "); + assert_eq!(" test test ".replacen(test, "", 5), " "); + + assert_eq!("qwer123zxc789".replacen(char::is_numeric, "", 3), "qwerzxc789"); +} + +#[test] +fn test_replace() { + let a = "a"; + assert_eq!("".replace(a, "b"), ""); + assert_eq!("a".replace(a, "b"), "b"); + assert_eq!("ab".replace(a, "b"), "bb"); + let test = "test"; + assert_eq!(" test test ".replace(test, "toast"), " toast toast "); + assert_eq!(" test test ".replace(test, ""), " "); +} + +#[test] +fn test_replace_2a() { + let data = "ประเทศไทย中华"; + let repl = "دولة الكويت"; + + let a = "ประเ"; + let a2 = "دولة الكويتทศไทย中华"; + assert_eq!(data.replace(a, repl), a2); +} + +#[test] +fn test_replace_2b() { + let data = "ประเทศไทย中华"; + let repl = "دولة الكويت"; + + let b = "ะเ"; + let b2 = "ปรدولة الكويتทศไทย中华"; + assert_eq!(data.replace(b, repl), b2); +} + +#[test] +fn test_replace_2c() { + let data = "ประเทศไทย中华"; + let repl = "دولة الكويت"; + + let c = "中华"; + let c2 = "ประเทศไทยدولة الكويت"; + assert_eq!(data.replace(c, repl), c2); +} + +#[test] +fn test_replace_2d() { + let data = "ประเทศไทย中华"; + let repl = "دولة الكويت"; + + let d = "ไท华"; + assert_eq!(data.replace(d, repl), data); +} + +#[test] +fn test_replace_pattern() { + let data = "abcdαβγδabcdαβγδ"; + assert_eq!(data.replace("dαβ", "😺😺😺"), "abc😺😺😺γδabc😺😺😺γδ"); + assert_eq!(data.replace('γ', "😺😺😺"), "abcdαβ😺😺😺δabcdαβ😺😺😺δ"); + assert_eq!(data.replace(&['a', 'γ'] as &[_], "😺😺😺"), "😺😺😺bcdαβ😺😺😺δ😺😺😺bcdαβ😺😺😺δ"); + assert_eq!(data.replace(|c| c == 'γ', "😺😺😺"), "abcdαβ😺😺😺δabcdαβ😺😺😺δ"); +} + +#[test] +fn test_slice() { + assert_eq!("ab", &"abc"[0..2]); + assert_eq!("bc", &"abc"[1..3]); + assert_eq!("", &"abc"[1..1]); + assert_eq!("\u{65e5}", &"\u{65e5}\u{672c}"[0..3]); + + let data = "ประเทศไทย中华"; + assert_eq!("ป", &data[0..3]); + assert_eq!("ร", &data[3..6]); + assert_eq!("", &data[3..3]); + assert_eq!("华", &data[30..33]); + + fn a_million_letter_x() -> String { + let mut i = 0; + let mut rs = String::new(); + while i < 100000 { + rs.push_str("华华华华华华华华华华"); + i += 1; + } + rs + } + fn half_a_million_letter_x() -> String { + let mut i = 0; + let mut rs = String::new(); + while i < 100000 { + rs.push_str("华华华华华"); + i += 1; + } + rs + } + let letters = a_million_letter_x(); + assert_eq!(half_a_million_letter_x(), &letters[0..3 * 500000]); +} + +#[test] +fn test_slice_2() { + let ss = "中华Việt Nam"; + + assert_eq!("华", &ss[3..6]); + assert_eq!("Việt Nam", &ss[6..16]); + + assert_eq!("ab", &"abc"[0..2]); + assert_eq!("bc", &"abc"[1..3]); + assert_eq!("", &"abc"[1..1]); + + assert_eq!("中", &ss[0..3]); + assert_eq!("华V", &ss[3..7]); + assert_eq!("", &ss[3..3]); + /*0: 中 + 3: 华 + 6: V + 7: i + 8: ệ + 11: t + 12: + 13: N + 14: a + 15: m */ +} + +#[test] +#[should_panic] +fn test_slice_fail() { + &"中华Việt Nam"[0..2]; +} + +#[test] +#[should_panic] +fn test_str_slice_rangetoinclusive_max_panics() { + &"hello"[...usize::max_value()]; +} + +#[test] +#[should_panic] +fn test_str_slice_rangeinclusive_max_panics() { + &"hello"[1...usize::max_value()]; +} + +#[test] +#[should_panic] +fn test_str_slicemut_rangetoinclusive_max_panics() { + let mut s = "hello".to_owned(); + let s: &mut str = &mut s; + &mut s[...usize::max_value()]; +} + +#[test] +#[should_panic] +fn test_str_slicemut_rangeinclusive_max_panics() { + let mut s = "hello".to_owned(); + let s: &mut str = &mut s; + &mut s[1...usize::max_value()]; +} + +#[test] +fn test_str_get_maxinclusive() { + let mut s = "hello".to_owned(); + { + let s: &str = &s; + assert_eq!(s.get(...usize::max_value()), None); + assert_eq!(s.get(1...usize::max_value()), None); + } + { + let s: &mut str = &mut s; + assert_eq!(s.get(...usize::max_value()), None); + assert_eq!(s.get(1...usize::max_value()), None); + } +} + +#[test] +fn test_is_char_boundary() { + let s = "ศไทย中华Việt Nam β-release 🐱123"; + assert!(s.is_char_boundary(0)); + assert!(s.is_char_boundary(s.len())); + assert!(!s.is_char_boundary(s.len() + 1)); + for (i, ch) in s.char_indices() { + // ensure character locations are boundaries and continuation bytes are not + assert!(s.is_char_boundary(i), "{} is a char boundary in {:?}", i, s); + for j in 1..ch.len_utf8() { + assert!(!s.is_char_boundary(i + j), + "{} should not be a char boundary in {:?}", i + j, s); + } + } +} +const LOREM_PARAGRAPH: &'static str = "\ +Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse quis lorem sit amet dolor \ +ultricies condimentum. Praesent iaculis purus elit, ac malesuada quam malesuada in. Duis sed orci \ +eros. Suspendisse sit amet magna mollis, mollis nunc luctus, imperdiet mi. Integer fringilla non \ +sem ut lacinia. Fusce varius tortor a risus porttitor hendrerit. Morbi mauris dui, ultricies nec \ +tempus vel, gravida nec quam."; + +// check the panic includes the prefix of the sliced string +#[test] +#[should_panic(expected="byte index 1024 is out of bounds of `Lorem ipsum dolor sit amet")] +fn test_slice_fail_truncated_1() { + &LOREM_PARAGRAPH[..1024]; +} +// check the truncation in the panic message +#[test] +#[should_panic(expected="luctus, im`[...]")] +fn test_slice_fail_truncated_2() { + &LOREM_PARAGRAPH[..1024]; +} + +#[test] +#[should_panic(expected="byte index 4 is not a char boundary; it is inside 'α' (bytes 3..5) of")] +fn test_slice_fail_boundary_1() { + &"abcαβγ"[4..]; +} + +#[test] +#[should_panic(expected="byte index 6 is not a char boundary; it is inside 'β' (bytes 5..7) of")] +fn test_slice_fail_boundary_2() { + &"abcαβγ"[2..6]; +} + +#[test] +fn test_slice_from() { + assert_eq!(&"abcd"[0..], "abcd"); + assert_eq!(&"abcd"[2..], "cd"); + assert_eq!(&"abcd"[4..], ""); +} +#[test] +fn test_slice_to() { + assert_eq!(&"abcd"[..0], ""); + assert_eq!(&"abcd"[..2], "ab"); + assert_eq!(&"abcd"[..4], "abcd"); +} + +#[test] +fn test_trim_left_matches() { + let v: &[char] = &[]; + assert_eq!(" *** foo *** ".trim_left_matches(v), " *** foo *** "); + let chars: &[char] = &['*', ' ']; + assert_eq!(" *** foo *** ".trim_left_matches(chars), "foo *** "); + assert_eq!(" *** *** ".trim_left_matches(chars), ""); + assert_eq!("foo *** ".trim_left_matches(chars), "foo *** "); + + assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11"); + let chars: &[char] = &['1', '2']; + assert_eq!("12foo1bar12".trim_left_matches(chars), "foo1bar12"); + assert_eq!("123foo1bar123".trim_left_matches(|c: char| c.is_numeric()), "foo1bar123"); +} + +#[test] +fn test_trim_right_matches() { + let v: &[char] = &[]; + assert_eq!(" *** foo *** ".trim_right_matches(v), " *** foo *** "); + let chars: &[char] = &['*', ' ']; + assert_eq!(" *** foo *** ".trim_right_matches(chars), " *** foo"); + assert_eq!(" *** *** ".trim_right_matches(chars), ""); + assert_eq!(" *** foo".trim_right_matches(chars), " *** foo"); + + assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar"); + let chars: &[char] = &['1', '2']; + assert_eq!("12foo1bar12".trim_right_matches(chars), "12foo1bar"); + assert_eq!("123foo1bar123".trim_right_matches(|c: char| c.is_numeric()), "123foo1bar"); +} + +#[test] +fn test_trim_matches() { + let v: &[char] = &[]; + assert_eq!(" *** foo *** ".trim_matches(v), " *** foo *** "); + let chars: &[char] = &['*', ' ']; + assert_eq!(" *** foo *** ".trim_matches(chars), "foo"); + assert_eq!(" *** *** ".trim_matches(chars), ""); + assert_eq!("foo".trim_matches(chars), "foo"); + + assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar"); + let chars: &[char] = &['1', '2']; + assert_eq!("12foo1bar12".trim_matches(chars), "foo1bar"); + assert_eq!("123foo1bar123".trim_matches(|c: char| c.is_numeric()), "foo1bar"); +} + +#[test] +fn test_trim_left() { + assert_eq!("".trim_left(), ""); + assert_eq!("a".trim_left(), "a"); + assert_eq!(" ".trim_left(), ""); + assert_eq!(" blah".trim_left(), "blah"); + assert_eq!(" \u{3000} wut".trim_left(), "wut"); + assert_eq!("hey ".trim_left(), "hey "); +} + +#[test] +fn test_trim_right() { + assert_eq!("".trim_right(), ""); + assert_eq!("a".trim_right(), "a"); + assert_eq!(" ".trim_right(), ""); + assert_eq!("blah ".trim_right(), "blah"); + assert_eq!("wut \u{3000} ".trim_right(), "wut"); + assert_eq!(" hey".trim_right(), " hey"); +} + +#[test] +fn test_trim() { + assert_eq!("".trim(), ""); + assert_eq!("a".trim(), "a"); + assert_eq!(" ".trim(), ""); + assert_eq!(" blah ".trim(), "blah"); + assert_eq!("\nwut \u{3000} ".trim(), "wut"); + assert_eq!(" hey dude ".trim(), "hey dude"); +} + +#[test] +fn test_is_whitespace() { + assert!("".chars().all(|c| c.is_whitespace())); + assert!(" ".chars().all(|c| c.is_whitespace())); + assert!("\u{2009}".chars().all(|c| c.is_whitespace())); // Thin space + assert!(" \n\t ".chars().all(|c| c.is_whitespace())); + assert!(!" _ ".chars().all(|c| c.is_whitespace())); +} + +#[test] +fn test_is_utf8() { + // deny overlong encodings + assert!(from_utf8(&[0xc0, 0x80]).is_err()); + assert!(from_utf8(&[0xc0, 0xae]).is_err()); + assert!(from_utf8(&[0xe0, 0x80, 0x80]).is_err()); + assert!(from_utf8(&[0xe0, 0x80, 0xaf]).is_err()); + assert!(from_utf8(&[0xe0, 0x81, 0x81]).is_err()); + assert!(from_utf8(&[0xf0, 0x82, 0x82, 0xac]).is_err()); + assert!(from_utf8(&[0xf4, 0x90, 0x80, 0x80]).is_err()); + + // deny surrogates + assert!(from_utf8(&[0xED, 0xA0, 0x80]).is_err()); + assert!(from_utf8(&[0xED, 0xBF, 0xBF]).is_err()); + + assert!(from_utf8(&[0xC2, 0x80]).is_ok()); + assert!(from_utf8(&[0xDF, 0xBF]).is_ok()); + assert!(from_utf8(&[0xE0, 0xA0, 0x80]).is_ok()); + assert!(from_utf8(&[0xED, 0x9F, 0xBF]).is_ok()); + assert!(from_utf8(&[0xEE, 0x80, 0x80]).is_ok()); + assert!(from_utf8(&[0xEF, 0xBF, 0xBF]).is_ok()); + assert!(from_utf8(&[0xF0, 0x90, 0x80, 0x80]).is_ok()); + assert!(from_utf8(&[0xF4, 0x8F, 0xBF, 0xBF]).is_ok()); +} + +#[test] +fn from_utf8_mostly_ascii() { + // deny invalid bytes embedded in long stretches of ascii + for i in 32..64 { + let mut data = [0; 128]; + data[i] = 0xC0; + assert!(from_utf8(&data).is_err()); + data[i] = 0xC2; + assert!(from_utf8(&data).is_err()); + } +} + +#[test] +fn from_utf8_error() { + macro_rules! test { + ($input: expr, $expected_valid_up_to: expr, $expected_error_len: expr) => { + let error = from_utf8($input).unwrap_err(); + assert_eq!(error.valid_up_to(), $expected_valid_up_to); + assert_eq!(error.error_len(), $expected_error_len); + } + } + test!(b"A\xC3\xA9 \xFF ", 4, Some(1)); + test!(b"A\xC3\xA9 \x80 ", 4, Some(1)); + test!(b"A\xC3\xA9 \xC1 ", 4, Some(1)); + test!(b"A\xC3\xA9 \xC1", 4, Some(1)); + test!(b"A\xC3\xA9 \xC2", 4, None); + test!(b"A\xC3\xA9 \xC2 ", 4, Some(1)); + test!(b"A\xC3\xA9 \xC2\xC0", 4, Some(1)); + test!(b"A\xC3\xA9 \xE0", 4, None); + test!(b"A\xC3\xA9 \xE0\x9F", 4, Some(1)); + test!(b"A\xC3\xA9 \xE0\xA0", 4, None); + test!(b"A\xC3\xA9 \xE0\xA0\xC0", 4, Some(2)); + test!(b"A\xC3\xA9 \xE0\xA0 ", 4, Some(2)); + test!(b"A\xC3\xA9 \xED\xA0\x80 ", 4, Some(1)); + test!(b"A\xC3\xA9 \xF1", 4, None); + test!(b"A\xC3\xA9 \xF1\x80", 4, None); + test!(b"A\xC3\xA9 \xF1\x80\x80", 4, None); + test!(b"A\xC3\xA9 \xF1 ", 4, Some(1)); + test!(b"A\xC3\xA9 \xF1\x80 ", 4, Some(2)); + test!(b"A\xC3\xA9 \xF1\x80\x80 ", 4, Some(3)); +} + +#[test] +fn test_as_bytes() { + // no null + let v = [ + 224, 184, 168, 224, 185, 132, 224, 184, 151, 224, 184, 162, 228, + 184, 173, 229, 141, 142, 86, 105, 225, 187, 135, 116, 32, 78, 97, + 109 + ]; + let b: &[u8] = &[]; + assert_eq!("".as_bytes(), b); + assert_eq!("abc".as_bytes(), b"abc"); + assert_eq!("ศไทย中华Việt Nam".as_bytes(), v); +} + +#[test] +#[should_panic] +fn test_as_bytes_fail() { + // Don't double free. (I'm not sure if this exercises the + // original problem code path anymore.) + let s = String::from(""); + let _bytes = s.as_bytes(); + panic!(); +} + +#[test] +fn test_as_ptr() { + let buf = "hello".as_ptr(); + unsafe { + assert_eq!(*buf.offset(0), b'h'); + assert_eq!(*buf.offset(1), b'e'); + assert_eq!(*buf.offset(2), b'l'); + assert_eq!(*buf.offset(3), b'l'); + assert_eq!(*buf.offset(4), b'o'); + } +} + +#[test] +fn vec_str_conversions() { + let s1: String = String::from("All mimsy were the borogoves"); + + let v: Vec<u8> = s1.as_bytes().to_vec(); + let s2: String = String::from(from_utf8(&v).unwrap()); + let mut i = 0; + let n1 = s1.len(); + let n2 = v.len(); + assert_eq!(n1, n2); + while i < n1 { + let a: u8 = s1.as_bytes()[i]; + let b: u8 = s2.as_bytes()[i]; + assert_eq!(a, b); + i += 1; + } +} + +#[test] +fn test_contains() { + assert!("abcde".contains("bcd")); + assert!("abcde".contains("abcd")); + assert!("abcde".contains("bcde")); + assert!("abcde".contains("")); + assert!("".contains("")); + assert!(!"abcde".contains("def")); + assert!(!"".contains("a")); + + let data = "ประเทศไทย中华Việt Nam"; + assert!(data.contains("ประเ")); + assert!(data.contains("ะเ")); + assert!(data.contains("中华")); + assert!(!data.contains("ไท华")); +} + +#[test] +fn test_contains_char() { + assert!("abc".contains('b')); + assert!("a".contains('a')); + assert!(!"abc".contains('d')); + assert!(!"".contains('a')); +} + +#[test] +fn test_split_at() { + let s = "ศไทย中华Việt Nam"; + for (index, _) in s.char_indices() { + let (a, b) = s.split_at(index); + assert_eq!(&s[..a.len()], a); + assert_eq!(&s[a.len()..], b); + } + let (a, b) = s.split_at(s.len()); + assert_eq!(a, s); + assert_eq!(b, ""); +} + +#[test] +fn test_split_at_mut() { + use std::ascii::AsciiExt; + let mut s = "Hello World".to_string(); + { + let (a, b) = s.split_at_mut(5); + a.make_ascii_uppercase(); + b.make_ascii_lowercase(); + } + assert_eq!(s, "HELLO world"); +} + +#[test] +#[should_panic] +fn test_split_at_boundscheck() { + let s = "ศไทย中华Việt Nam"; + s.split_at(1); +} + +#[test] +fn test_escape_unicode() { + assert_eq!("abc".escape_unicode(), "\\u{61}\\u{62}\\u{63}"); + assert_eq!("a c".escape_unicode(), "\\u{61}\\u{20}\\u{63}"); + assert_eq!("\r\n\t".escape_unicode(), "\\u{d}\\u{a}\\u{9}"); + assert_eq!("'\"\\".escape_unicode(), "\\u{27}\\u{22}\\u{5c}"); + assert_eq!("\x00\x01\u{fe}\u{ff}".escape_unicode(), "\\u{0}\\u{1}\\u{fe}\\u{ff}"); + assert_eq!("\u{100}\u{ffff}".escape_unicode(), "\\u{100}\\u{ffff}"); + assert_eq!("\u{10000}\u{10ffff}".escape_unicode(), "\\u{10000}\\u{10ffff}"); + assert_eq!("ab\u{fb00}".escape_unicode(), "\\u{61}\\u{62}\\u{fb00}"); + assert_eq!("\u{1d4ea}\r".escape_unicode(), "\\u{1d4ea}\\u{d}"); +} + +#[test] +fn test_escape_debug() { + assert_eq!("abc".escape_debug(), "abc"); + assert_eq!("a c".escape_debug(), "a c"); + assert_eq!("éèê".escape_debug(), "éèê"); + assert_eq!("\r\n\t".escape_debug(), "\\r\\n\\t"); + assert_eq!("'\"\\".escape_debug(), "\\'\\\"\\\\"); + assert_eq!("\u{7f}\u{ff}".escape_debug(), "\\u{7f}\u{ff}"); + assert_eq!("\u{100}\u{ffff}".escape_debug(), "\u{100}\\u{ffff}"); + assert_eq!("\u{10000}\u{10ffff}".escape_debug(), "\u{10000}\\u{10ffff}"); + assert_eq!("ab\u{200b}".escape_debug(), "ab\\u{200b}"); + assert_eq!("\u{10d4ea}\r".escape_debug(), "\\u{10d4ea}\\r"); +} + +#[test] +fn test_escape_default() { + assert_eq!("abc".escape_default(), "abc"); + assert_eq!("a c".escape_default(), "a c"); + assert_eq!("éèê".escape_default(), "\\u{e9}\\u{e8}\\u{ea}"); + assert_eq!("\r\n\t".escape_default(), "\\r\\n\\t"); + assert_eq!("'\"\\".escape_default(), "\\'\\\"\\\\"); + assert_eq!("\u{7f}\u{ff}".escape_default(), "\\u{7f}\\u{ff}"); + assert_eq!("\u{100}\u{ffff}".escape_default(), "\\u{100}\\u{ffff}"); + assert_eq!("\u{10000}\u{10ffff}".escape_default(), "\\u{10000}\\u{10ffff}"); + assert_eq!("ab\u{200b}".escape_default(), "ab\\u{200b}"); + assert_eq!("\u{10d4ea}\r".escape_default(), "\\u{10d4ea}\\r"); +} + +#[test] +fn test_total_ord() { + assert_eq!("1234".cmp("123"), Greater); + assert_eq!("123".cmp("1234"), Less); + assert_eq!("1234".cmp("1234"), Equal); + assert_eq!("12345555".cmp("123456"), Less); + assert_eq!("22".cmp("1234"), Greater); +} + +#[test] +fn test_iterator() { + let s = "ศไทย中华Việt Nam"; + let v = ['ศ','ไ','ท','ย','中','华','V','i','ệ','t',' ','N','a','m']; + + let mut pos = 0; + let it = s.chars(); + + for c in it { + assert_eq!(c, v[pos]); + pos += 1; + } + assert_eq!(pos, v.len()); + assert_eq!(s.chars().count(), v.len()); +} + +#[test] +fn test_rev_iterator() { + let s = "ศไทย中华Việt Nam"; + let v = ['m', 'a', 'N', ' ', 't', 'ệ','i','V','华','中','ย','ท','ไ','ศ']; + + let mut pos = 0; + let it = s.chars().rev(); + + for c in it { + assert_eq!(c, v[pos]); + pos += 1; + } + assert_eq!(pos, v.len()); +} + +#[test] +fn test_chars_decoding() { + let mut bytes = [0; 4]; + for c in (0..0x110000).filter_map(::std::char::from_u32) { + let s = c.encode_utf8(&mut bytes); + if Some(c) != s.chars().next() { + panic!("character {:x}={} does not decode correctly", c as u32, c); + } + } +} + +#[test] +fn test_chars_rev_decoding() { + let mut bytes = [0; 4]; + for c in (0..0x110000).filter_map(::std::char::from_u32) { + let s = c.encode_utf8(&mut bytes); + if Some(c) != s.chars().rev().next() { + panic!("character {:x}={} does not decode correctly", c as u32, c); + } + } +} + +#[test] +fn test_iterator_clone() { + let s = "ศไทย中华Việt Nam"; + let mut it = s.chars(); + it.next(); + assert!(it.clone().zip(it).all(|(x,y)| x == y)); +} + +#[test] +fn test_iterator_last() { + let s = "ศไทย中华Việt Nam"; + let mut it = s.chars(); + it.next(); + assert_eq!(it.last(), Some('m')); +} + +#[test] +fn test_bytesator() { + let s = "ศไทย中华Việt Nam"; + let v = [ + 224, 184, 168, 224, 185, 132, 224, 184, 151, 224, 184, 162, 228, + 184, 173, 229, 141, 142, 86, 105, 225, 187, 135, 116, 32, 78, 97, + 109 + ]; + let mut pos = 0; + + for b in s.bytes() { + assert_eq!(b, v[pos]); + pos += 1; + } +} + +#[test] +fn test_bytes_revator() { + let s = "ศไทย中华Việt Nam"; + let v = [ + 224, 184, 168, 224, 185, 132, 224, 184, 151, 224, 184, 162, 228, + 184, 173, 229, 141, 142, 86, 105, 225, 187, 135, 116, 32, 78, 97, + 109 + ]; + let mut pos = v.len(); + + for b in s.bytes().rev() { + pos -= 1; + assert_eq!(b, v[pos]); + } +} + +#[test] +fn test_bytesator_nth() { + let s = "ศไทย中华Việt Nam"; + let v = [ + 224, 184, 168, 224, 185, 132, 224, 184, 151, 224, 184, 162, 228, + 184, 173, 229, 141, 142, 86, 105, 225, 187, 135, 116, 32, 78, 97, + 109 + ]; + + let mut b = s.bytes(); + assert_eq!(b.nth(2).unwrap(), v[2]); + assert_eq!(b.nth(10).unwrap(), v[10]); + assert_eq!(b.nth(200), None); +} + +#[test] +fn test_bytesator_count() { + let s = "ศไทย中华Việt Nam"; + + let b = s.bytes(); + assert_eq!(b.count(), 28) +} + +#[test] +fn test_bytesator_last() { + let s = "ศไทย中华Việt Nam"; + + let b = s.bytes(); + assert_eq!(b.last().unwrap(), 109) +} + +#[test] +fn test_char_indicesator() { + let s = "ศไทย中华Việt Nam"; + let p = [0, 3, 6, 9, 12, 15, 18, 19, 20, 23, 24, 25, 26, 27]; + let v = ['ศ','ไ','ท','ย','中','华','V','i','ệ','t',' ','N','a','m']; + + let mut pos = 0; + let it = s.char_indices(); + + for c in it { + assert_eq!(c, (p[pos], v[pos])); + pos += 1; + } + assert_eq!(pos, v.len()); + assert_eq!(pos, p.len()); +} + +#[test] +fn test_char_indices_revator() { + let s = "ศไทย中华Việt Nam"; + let p = [27, 26, 25, 24, 23, 20, 19, 18, 15, 12, 9, 6, 3, 0]; + let v = ['m', 'a', 'N', ' ', 't', 'ệ','i','V','华','中','ย','ท','ไ','ศ']; + + let mut pos = 0; + let it = s.char_indices().rev(); + + for c in it { + assert_eq!(c, (p[pos], v[pos])); + pos += 1; + } + assert_eq!(pos, v.len()); + assert_eq!(pos, p.len()); +} + +#[test] +fn test_char_indices_last() { + let s = "ศไทย中华Việt Nam"; + let mut it = s.char_indices(); + it.next(); + assert_eq!(it.last(), Some((27, 'm'))); +} + +#[test] +fn test_splitn_char_iterator() { + let data = "\nMäry häd ä little lämb\nLittle lämb\n"; + + let split: Vec<&str> = data.splitn(4, ' ').collect(); + assert_eq!(split, ["\nMäry", "häd", "ä", "little lämb\nLittle lämb\n"]); + + let split: Vec<&str> = data.splitn(4, |c: char| c == ' ').collect(); + assert_eq!(split, ["\nMäry", "häd", "ä", "little lämb\nLittle lämb\n"]); + + // Unicode + let split: Vec<&str> = data.splitn(4, 'ä').collect(); + assert_eq!(split, ["\nM", "ry h", "d ", " little lämb\nLittle lämb\n"]); + + let split: Vec<&str> = data.splitn(4, |c: char| c == 'ä').collect(); + assert_eq!(split, ["\nM", "ry h", "d ", " little lämb\nLittle lämb\n"]); +} + +#[test] +fn test_split_char_iterator_no_trailing() { + let data = "\nMäry häd ä little lämb\nLittle lämb\n"; + + let split: Vec<&str> = data.split('\n').collect(); + assert_eq!(split, ["", "Märy häd ä little lämb", "Little lämb", ""]); + + let split: Vec<&str> = data.split_terminator('\n').collect(); + assert_eq!(split, ["", "Märy häd ä little lämb", "Little lämb"]); +} + +#[test] +fn test_rsplit() { + let data = "\nMäry häd ä little lämb\nLittle lämb\n"; + + let split: Vec<&str> = data.rsplit(' ').collect(); + assert_eq!(split, ["lämb\n", "lämb\nLittle", "little", "ä", "häd", "\nMäry"]); + + let split: Vec<&str> = data.rsplit("lämb").collect(); + assert_eq!(split, ["\n", "\nLittle ", "\nMäry häd ä little "]); + + let split: Vec<&str> = data.rsplit(|c: char| c == 'ä').collect(); + assert_eq!(split, ["mb\n", "mb\nLittle l", " little l", "d ", "ry h", "\nM"]); +} + +#[test] +fn test_rsplitn() { + let data = "\nMäry häd ä little lämb\nLittle lämb\n"; + + let split: Vec<&str> = data.rsplitn(2, ' ').collect(); + assert_eq!(split, ["lämb\n", "\nMäry häd ä little lämb\nLittle"]); + + let split: Vec<&str> = data.rsplitn(2, "lämb").collect(); + assert_eq!(split, ["\n", "\nMäry häd ä little lämb\nLittle "]); + + let split: Vec<&str> = data.rsplitn(2, |c: char| c == 'ä').collect(); + assert_eq!(split, ["mb\n", "\nMäry häd ä little lämb\nLittle l"]); +} + +#[test] +fn test_split_whitespace() { + let data = "\n \tMäry häd\tä little lämb\nLittle lämb\n"; + let words: Vec<&str> = data.split_whitespace().collect(); + assert_eq!(words, ["Märy", "häd", "ä", "little", "lämb", "Little", "lämb"]) +} + +#[test] +fn test_lines() { + let data = "\nMäry häd ä little lämb\n\r\nLittle lämb\n"; + let lines: Vec<&str> = data.lines().collect(); + assert_eq!(lines, ["", "Märy häd ä little lämb", "", "Little lämb"]); + + let data = "\r\nMäry häd ä little lämb\n\nLittle lämb"; // no trailing \n + let lines: Vec<&str> = data.lines().collect(); + assert_eq!(lines, ["", "Märy häd ä little lämb", "", "Little lämb"]); +} + +#[test] +fn test_splitator() { + fn t(s: &str, sep: &str, u: &[&str]) { + let v: Vec<&str> = s.split(sep).collect(); + assert_eq!(v, u); + } + t("--1233345--", "12345", &["--1233345--"]); + t("abc::hello::there", "::", &["abc", "hello", "there"]); + t("::hello::there", "::", &["", "hello", "there"]); + t("hello::there::", "::", &["hello", "there", ""]); + t("::hello::there::", "::", &["", "hello", "there", ""]); + t("ประเทศไทย中华Việt Nam", "中华", &["ประเทศไทย", "Việt Nam"]); + t("zzXXXzzYYYzz", "zz", &["", "XXX", "YYY", ""]); + t("zzXXXzYYYz", "XXX", &["zz", "zYYYz"]); + t(".XXX.YYY.", ".", &["", "XXX", "YYY", ""]); + t("", ".", &[""]); + t("zz", "zz", &["",""]); + t("ok", "z", &["ok"]); + t("zzz", "zz", &["","z"]); + t("zzzzz", "zz", &["","","z"]); +} + +#[test] +fn test_str_default() { + use std::default::Default; + + fn t<S: Default + AsRef<str>>() { + let s: S = Default::default(); + assert_eq!(s.as_ref(), ""); + } + + t::<&str>(); + t::<String>(); +} + +#[test] +fn test_str_container() { + fn sum_len(v: &[&str]) -> usize { + v.iter().map(|x| x.len()).sum() + } + + let s = "01234"; + assert_eq!(5, sum_len(&["012", "", "34"])); + assert_eq!(5, sum_len(&["01", "2", "34", ""])); + assert_eq!(5, sum_len(&[s])); +} + +#[test] +fn test_str_from_utf8() { + let xs = b"hello"; + assert_eq!(from_utf8(xs), Ok("hello")); + + let xs = "ศไทย中华Việt Nam".as_bytes(); + assert_eq!(from_utf8(xs), Ok("ศไทย中华Việt Nam")); + + let xs = b"hello\xFF"; + assert!(from_utf8(xs).is_err()); +} + +#[test] +fn test_pattern_deref_forward() { + let data = "aabcdaa"; + assert!(data.contains("bcd")); + assert!(data.contains(&"bcd")); + assert!(data.contains(&"bcd".to_string())); +} + +#[test] +fn test_empty_match_indices() { + let data = "aä中!"; + let vec: Vec<_> = data.match_indices("").collect(); + assert_eq!(vec, [(0, ""), (1, ""), (3, ""), (6, ""), (7, "")]); +} + +#[test] +fn test_bool_from_str() { + assert_eq!("true".parse().ok(), Some(true)); + assert_eq!("false".parse().ok(), Some(false)); + assert_eq!("not even a boolean".parse::<bool>().ok(), None); +} + +fn check_contains_all_substrings(s: &str) { + assert!(s.contains("")); + for i in 0..s.len() { + for j in i+1..s.len() + 1 { + assert!(s.contains(&s[i..j])); + } + } +} + +#[test] +fn strslice_issue_16589() { + assert!("bananas".contains("nana")); + + // prior to the fix for #16589, x.contains("abcdabcd") returned false + // test all substrings for good measure + check_contains_all_substrings("012345678901234567890123456789bcdabcdabcd"); +} + +#[test] +fn strslice_issue_16878() { + assert!(!"1234567ah012345678901ah".contains("hah")); + assert!(!"00abc01234567890123456789abc".contains("bcabc")); +} + + +#[test] +fn test_strslice_contains() { + let x = "There are moments, Jeeves, when one asks oneself, 'Do trousers matter?'"; + check_contains_all_substrings(x); +} + +#[test] +fn test_rsplitn_char_iterator() { + let data = "\nMäry häd ä little lämb\nLittle lämb\n"; + + let mut split: Vec<&str> = data.rsplitn(4, ' ').collect(); + split.reverse(); + assert_eq!(split, ["\nMäry häd ä", "little", "lämb\nLittle", "lämb\n"]); + + let mut split: Vec<&str> = data.rsplitn(4, |c: char| c == ' ').collect(); + split.reverse(); + assert_eq!(split, ["\nMäry häd ä", "little", "lämb\nLittle", "lämb\n"]); + + // Unicode + let mut split: Vec<&str> = data.rsplitn(4, 'ä').collect(); + split.reverse(); + assert_eq!(split, ["\nMäry häd ", " little l", "mb\nLittle l", "mb\n"]); + + let mut split: Vec<&str> = data.rsplitn(4, |c: char| c == 'ä').collect(); + split.reverse(); + assert_eq!(split, ["\nMäry häd ", " little l", "mb\nLittle l", "mb\n"]); +} + +#[test] +fn test_split_char_iterator() { + let data = "\nMäry häd ä little lämb\nLittle lämb\n"; + + let split: Vec<&str> = data.split(' ').collect(); + assert_eq!( split, ["\nMäry", "häd", "ä", "little", "lämb\nLittle", "lämb\n"]); + + let mut rsplit: Vec<&str> = data.split(' ').rev().collect(); + rsplit.reverse(); + assert_eq!(rsplit, ["\nMäry", "häd", "ä", "little", "lämb\nLittle", "lämb\n"]); + + let split: Vec<&str> = data.split(|c: char| c == ' ').collect(); + assert_eq!( split, ["\nMäry", "häd", "ä", "little", "lämb\nLittle", "lämb\n"]); + + let mut rsplit: Vec<&str> = data.split(|c: char| c == ' ').rev().collect(); + rsplit.reverse(); + assert_eq!(rsplit, ["\nMäry", "häd", "ä", "little", "lämb\nLittle", "lämb\n"]); + + // Unicode + let split: Vec<&str> = data.split('ä').collect(); + assert_eq!( split, ["\nM", "ry h", "d ", " little l", "mb\nLittle l", "mb\n"]); + + let mut rsplit: Vec<&str> = data.split('ä').rev().collect(); + rsplit.reverse(); + assert_eq!(rsplit, ["\nM", "ry h", "d ", " little l", "mb\nLittle l", "mb\n"]); + + let split: Vec<&str> = data.split(|c: char| c == 'ä').collect(); + assert_eq!( split, ["\nM", "ry h", "d ", " little l", "mb\nLittle l", "mb\n"]); + + let mut rsplit: Vec<&str> = data.split(|c: char| c == 'ä').rev().collect(); + rsplit.reverse(); + assert_eq!(rsplit, ["\nM", "ry h", "d ", " little l", "mb\nLittle l", "mb\n"]); +} + +#[test] +fn test_rev_split_char_iterator_no_trailing() { + let data = "\nMäry häd ä little lämb\nLittle lämb\n"; + + let mut split: Vec<&str> = data.split('\n').rev().collect(); + split.reverse(); + assert_eq!(split, ["", "Märy häd ä little lämb", "Little lämb", ""]); + + let mut split: Vec<&str> = data.split_terminator('\n').rev().collect(); + split.reverse(); + assert_eq!(split, ["", "Märy häd ä little lämb", "Little lämb"]); +} + +#[test] +fn test_utf16_code_units() { + use std_unicode::str::Utf16Encoder; + assert_eq!(Utf16Encoder::new(vec!['é', '\u{1F4A9}'].into_iter()).collect::<Vec<u16>>(), + [0xE9, 0xD83D, 0xDCA9]) +} + +#[test] +fn starts_with_in_unicode() { + assert!(!"├── Cargo.toml".starts_with("# ")); +} + +#[test] +fn starts_short_long() { + assert!(!"".starts_with("##")); + assert!(!"##".starts_with("####")); + assert!("####".starts_with("##")); + assert!(!"##ä".starts_with("####")); + assert!("####ä".starts_with("##")); + assert!(!"##".starts_with("####ä")); + assert!("##ä##".starts_with("##ä")); + + assert!("".starts_with("")); + assert!("ä".starts_with("")); + assert!("#ä".starts_with("")); + assert!("##ä".starts_with("")); + assert!("ä###".starts_with("")); + assert!("#ä##".starts_with("")); + assert!("##ä#".starts_with("")); +} + +#[test] +fn contains_weird_cases() { + assert!("* \t".contains(' ')); + assert!(!"* \t".contains('?')); + assert!(!"* \t".contains('\u{1F4A9}')); +} + +#[test] +fn trim_ws() { + assert_eq!(" \t a \t ".trim_left_matches(|c: char| c.is_whitespace()), + "a \t "); + assert_eq!(" \t a \t ".trim_right_matches(|c: char| c.is_whitespace()), + " \t a"); + assert_eq!(" \t a \t ".trim_matches(|c: char| c.is_whitespace()), + "a"); + assert_eq!(" \t \t ".trim_left_matches(|c: char| c.is_whitespace()), + ""); + assert_eq!(" \t \t ".trim_right_matches(|c: char| c.is_whitespace()), + ""); + assert_eq!(" \t \t ".trim_matches(|c: char| c.is_whitespace()), + ""); +} + +#[test] +fn to_lowercase() { + assert_eq!("".to_lowercase(), ""); + assert_eq!("AÉDžaé ".to_lowercase(), "aédžaé "); + + // https://github.com/rust-lang/rust/issues/26035 + assert_eq!("ΑΣ".to_lowercase(), "ας"); + assert_eq!("Α'Σ".to_lowercase(), "α'ς"); + assert_eq!("Α''Σ".to_lowercase(), "α''ς"); + + assert_eq!("ΑΣ Α".to_lowercase(), "ας α"); + assert_eq!("Α'Σ Α".to_lowercase(), "α'ς α"); + assert_eq!("Α''Σ Α".to_lowercase(), "α''ς α"); + + assert_eq!("ΑΣ' Α".to_lowercase(), "ας' α"); + assert_eq!("ΑΣ'' Α".to_lowercase(), "ας'' α"); + + assert_eq!("Α'Σ' Α".to_lowercase(), "α'ς' α"); + assert_eq!("Α''Σ'' Α".to_lowercase(), "α''ς'' α"); + + assert_eq!("Α Σ".to_lowercase(), "α σ"); + assert_eq!("Α 'Σ".to_lowercase(), "α 'σ"); + assert_eq!("Α ''Σ".to_lowercase(), "α ''σ"); + + assert_eq!("Σ".to_lowercase(), "σ"); + assert_eq!("'Σ".to_lowercase(), "'σ"); + assert_eq!("''Σ".to_lowercase(), "''σ"); + + assert_eq!("ΑΣΑ".to_lowercase(), "ασα"); + assert_eq!("ΑΣ'Α".to_lowercase(), "ασ'α"); + assert_eq!("ΑΣ''Α".to_lowercase(), "ασ''α"); +} + +#[test] +fn to_uppercase() { + assert_eq!("".to_uppercase(), ""); + assert_eq!("aéDžßfiᾀ".to_uppercase(), "AÉDŽSSFIἈΙ"); +} + +#[test] +fn test_into_string() { + // The only way to acquire a Box<str> in the first place is through a String, so just + // test that we can round-trip between Box<str> and String. + let string = String::from("Some text goes here"); + assert_eq!(string.clone().into_boxed_str().into_string(), string); +} + +#[test] +fn test_box_slice_clone() { + let data = String::from("hello HELLO hello HELLO yes YES 5 中ä华!!!"); + let data2 = data.clone().into_boxed_str().clone().into_string(); + + assert_eq!(data, data2); +} + +#[test] +fn test_cow_from() { + let borrowed = "borrowed"; + let owned = String::from("owned"); + match (Cow::from(owned.clone()), Cow::from(borrowed)) { + (Cow::Owned(o), Cow::Borrowed(b)) => assert!(o == owned && b == borrowed), + _ => panic!("invalid `Cow::from`"), + } +} + +#[test] +fn test_repeat() { + assert_eq!("".repeat(3), ""); + assert_eq!("abc".repeat(0), ""); + assert_eq!("α".repeat(3), "ααα"); +} + +mod pattern { + use std::str::pattern::Pattern; + use std::str::pattern::{Searcher, ReverseSearcher}; + use std::str::pattern::SearchStep::{self, Match, Reject, Done}; + + macro_rules! make_test { + ($name:ident, $p:expr, $h:expr, [$($e:expr,)*]) => { + #[allow(unused_imports)] + mod $name { + use std::str::pattern::SearchStep::{Match, Reject}; + use super::{cmp_search_to_vec}; + #[test] + fn fwd() { + cmp_search_to_vec(false, $p, $h, vec![$($e),*]); + } + #[test] + fn bwd() { + cmp_search_to_vec(true, $p, $h, vec![$($e),*]); + } + } + } + } + + fn cmp_search_to_vec<'a, P: Pattern<'a>>(rev: bool, pat: P, haystack: &'a str, + right: Vec<SearchStep>) + where P::Searcher: ReverseSearcher<'a> + { + let mut searcher = pat.into_searcher(haystack); + let mut v = vec![]; + loop { + match if !rev {searcher.next()} else {searcher.next_back()} { + Match(a, b) => v.push(Match(a, b)), + Reject(a, b) => v.push(Reject(a, b)), + Done => break, + } + } + if rev { + v.reverse(); + } + + let mut first_index = 0; + let mut err = None; + + for (i, e) in right.iter().enumerate() { + match *e { + Match(a, b) | Reject(a, b) + if a <= b && a == first_index => { + first_index = b; + } + _ => { + err = Some(i); + break; + } + } + } + + if let Some(err) = err { + panic!("Input skipped range at {}", err); + } + + if first_index != haystack.len() { + panic!("Did not cover whole input"); + } + + assert_eq!(v, right); + } + + make_test!(str_searcher_ascii_haystack, "bb", "abbcbbd", [ + Reject(0, 1), + Match (1, 3), + Reject(3, 4), + Match (4, 6), + Reject(6, 7), + ]); + make_test!(str_searcher_ascii_haystack_seq, "bb", "abbcbbbbd", [ + Reject(0, 1), + Match (1, 3), + Reject(3, 4), + Match (4, 6), + Match (6, 8), + Reject(8, 9), + ]); + make_test!(str_searcher_empty_needle_ascii_haystack, "", "abbcbbd", [ + Match (0, 0), + Reject(0, 1), + Match (1, 1), + Reject(1, 2), + Match (2, 2), + Reject(2, 3), + Match (3, 3), + Reject(3, 4), + Match (4, 4), + Reject(4, 5), + Match (5, 5), + Reject(5, 6), + Match (6, 6), + Reject(6, 7), + Match (7, 7), + ]); + make_test!(str_searcher_mulibyte_haystack, " ", "├──", [ + Reject(0, 3), + Reject(3, 6), + Reject(6, 9), + ]); + make_test!(str_searcher_empty_needle_mulibyte_haystack, "", "├──", [ + Match (0, 0), + Reject(0, 3), + Match (3, 3), + Reject(3, 6), + Match (6, 6), + Reject(6, 9), + Match (9, 9), + ]); + make_test!(str_searcher_empty_needle_empty_haystack, "", "", [ + Match(0, 0), + ]); + make_test!(str_searcher_nonempty_needle_empty_haystack, "├", "", [ + ]); + make_test!(char_searcher_ascii_haystack, 'b', "abbcbbd", [ + Reject(0, 1), + Match (1, 2), + Match (2, 3), + Reject(3, 4), + Match (4, 5), + Match (5, 6), + Reject(6, 7), + ]); + make_test!(char_searcher_mulibyte_haystack, ' ', "├──", [ + Reject(0, 3), + Reject(3, 6), + Reject(6, 9), + ]); + make_test!(char_searcher_short_haystack, '\u{1F4A9}', "* \t", [ + Reject(0, 1), + Reject(1, 2), + Reject(2, 3), + ]); + +} + +macro_rules! generate_iterator_test { + { + $name:ident { + $( + ($($arg:expr),*) -> [$($t:tt)*]; + )* + } + with $fwd:expr, $bwd:expr; + } => { + #[test] + fn $name() { + $( + { + let res = vec![$($t)*]; + + let fwd_vec: Vec<_> = ($fwd)($($arg),*).collect(); + assert_eq!(fwd_vec, res); + + let mut bwd_vec: Vec<_> = ($bwd)($($arg),*).collect(); + bwd_vec.reverse(); + assert_eq!(bwd_vec, res); + } + )* + } + }; + { + $name:ident { + $( + ($($arg:expr),*) -> [$($t:tt)*]; + )* + } + with $fwd:expr; + } => { + #[test] + fn $name() { + $( + { + let res = vec![$($t)*]; + + let fwd_vec: Vec<_> = ($fwd)($($arg),*).collect(); + assert_eq!(fwd_vec, res); + } + )* + } + } +} + +generate_iterator_test! { + double_ended_split { + ("foo.bar.baz", '.') -> ["foo", "bar", "baz"]; + ("foo::bar::baz", "::") -> ["foo", "bar", "baz"]; + } + with str::split, str::rsplit; +} + +generate_iterator_test! { + double_ended_split_terminator { + ("foo;bar;baz;", ';') -> ["foo", "bar", "baz"]; + } + with str::split_terminator, str::rsplit_terminator; +} + +generate_iterator_test! { + double_ended_matches { + ("a1b2c3", char::is_numeric) -> ["1", "2", "3"]; + } + with str::matches, str::rmatches; +} + +generate_iterator_test! { + double_ended_match_indices { + ("a1b2c3", char::is_numeric) -> [(1, "1"), (3, "2"), (5, "3")]; + } + with str::match_indices, str::rmatch_indices; +} + +generate_iterator_test! { + not_double_ended_splitn { + ("foo::bar::baz", 2, "::") -> ["foo", "bar::baz"]; + } + with str::splitn; +} + +generate_iterator_test! { + not_double_ended_rsplitn { + ("foo::bar::baz", 2, "::") -> ["baz", "foo::bar"]; + } + with str::rsplitn; +} + +#[test] +fn different_str_pattern_forwarding_lifetimes() { + use std::str::pattern::Pattern; + + fn foo<'a, P>(p: P) where for<'b> &'b P: Pattern<'a> { + for _ in 0..3 { + "asdf".find(&p); + } + } + + foo::<&str>("x"); +} diff --git a/src/liballoc/tests/string.rs b/src/liballoc/tests/string.rs new file mode 100644 index 00000000000..b1731b2a5dc --- /dev/null +++ b/src/liballoc/tests/string.rs @@ -0,0 +1,498 @@ +// Copyright 2014 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use std::borrow::Cow; + +pub trait IntoCow<'a, B: ?Sized> where B: ToOwned { + fn into_cow(self) -> Cow<'a, B>; +} + +impl<'a> IntoCow<'a, str> for String { + fn into_cow(self) -> Cow<'a, str> { + Cow::Owned(self) + } +} + +impl<'a> IntoCow<'a, str> for &'a str { + fn into_cow(self) -> Cow<'a, str> { + Cow::Borrowed(self) + } +} + +#[test] +fn test_from_str() { + let owned: Option<::std::string::String> = "string".parse().ok(); + assert_eq!(owned.as_ref().map(|s| &**s), Some("string")); +} + +#[test] +fn test_from_cow_str() { + assert_eq!(String::from(Cow::Borrowed("string")), "string"); + assert_eq!(String::from(Cow::Owned(String::from("string"))), "string"); +} + +#[test] +fn test_unsized_to_string() { + let s: &str = "abc"; + let _: String = (*s).to_string(); +} + +#[test] +fn test_from_utf8() { + let xs = b"hello".to_vec(); + assert_eq!(String::from_utf8(xs).unwrap(), String::from("hello")); + + let xs = "ศไทย中华Việt Nam".as_bytes().to_vec(); + assert_eq!(String::from_utf8(xs).unwrap(), + String::from("ศไทย中华Việt Nam")); + + let xs = b"hello\xFF".to_vec(); + let err = String::from_utf8(xs).unwrap_err(); + assert_eq!(err.into_bytes(), b"hello\xff".to_vec()); +} + +#[test] +fn test_from_utf8_lossy() { + let xs = b"hello"; + let ys: Cow<str> = "hello".into_cow(); + assert_eq!(String::from_utf8_lossy(xs), ys); + + let xs = "ศไทย中华Việt Nam".as_bytes(); + let ys: Cow<str> = "ศไทย中华Việt Nam".into_cow(); + assert_eq!(String::from_utf8_lossy(xs), ys); + + let xs = b"Hello\xC2 There\xFF Goodbye"; + assert_eq!(String::from_utf8_lossy(xs), + String::from("Hello\u{FFFD} There\u{FFFD} Goodbye").into_cow()); + + let xs = b"Hello\xC0\x80 There\xE6\x83 Goodbye"; + assert_eq!(String::from_utf8_lossy(xs), + String::from("Hello\u{FFFD}\u{FFFD} There\u{FFFD} Goodbye").into_cow()); + + let xs = b"\xF5foo\xF5\x80bar"; + assert_eq!(String::from_utf8_lossy(xs), + String::from("\u{FFFD}foo\u{FFFD}\u{FFFD}bar").into_cow()); + + let xs = b"\xF1foo\xF1\x80bar\xF1\x80\x80baz"; + assert_eq!(String::from_utf8_lossy(xs), + String::from("\u{FFFD}foo\u{FFFD}bar\u{FFFD}baz").into_cow()); + + let xs = b"\xF4foo\xF4\x80bar\xF4\xBFbaz"; + assert_eq!(String::from_utf8_lossy(xs), + String::from("\u{FFFD}foo\u{FFFD}bar\u{FFFD}\u{FFFD}baz").into_cow()); + + let xs = b"\xF0\x80\x80\x80foo\xF0\x90\x80\x80bar"; + assert_eq!(String::from_utf8_lossy(xs), + String::from("\u{FFFD}\u{FFFD}\u{FFFD}\u{FFFD}foo\u{10000}bar").into_cow()); + + // surrogates + let xs = b"\xED\xA0\x80foo\xED\xBF\xBFbar"; + assert_eq!(String::from_utf8_lossy(xs), + String::from("\u{FFFD}\u{FFFD}\u{FFFD}foo\u{FFFD}\u{FFFD}\u{FFFD}bar").into_cow()); +} + +#[test] +fn test_from_utf16() { + let pairs = [(String::from("𐍅𐌿𐌻𐍆𐌹𐌻𐌰\n"), + vec![0xd800, 0xdf45, 0xd800, 0xdf3f, 0xd800, 0xdf3b, 0xd800, 0xdf46, 0xd800, + 0xdf39, 0xd800, 0xdf3b, 0xd800, 0xdf30, 0x000a]), + + (String::from("𐐒𐑉𐐮𐑀𐐲𐑋 𐐏𐐲𐑍\n"), + vec![0xd801, 0xdc12, 0xd801, 0xdc49, 0xd801, 0xdc2e, 0xd801, 0xdc40, 0xd801, + 0xdc32, 0xd801, 0xdc4b, 0x0020, 0xd801, 0xdc0f, 0xd801, 0xdc32, 0xd801, + 0xdc4d, 0x000a]), + + (String::from("𐌀𐌖𐌋𐌄𐌑𐌉·𐌌𐌄𐌕𐌄𐌋𐌉𐌑\n"), + vec![0xd800, 0xdf00, 0xd800, 0xdf16, 0xd800, 0xdf0b, 0xd800, 0xdf04, 0xd800, + 0xdf11, 0xd800, 0xdf09, 0x00b7, 0xd800, 0xdf0c, 0xd800, 0xdf04, 0xd800, + 0xdf15, 0xd800, 0xdf04, 0xd800, 0xdf0b, 0xd800, 0xdf09, 0xd800, 0xdf11, + 0x000a]), + + (String::from("𐒋𐒘𐒈𐒑𐒛𐒒 𐒕𐒓 𐒈𐒚𐒍 𐒏𐒜𐒒𐒖𐒆 𐒕𐒆\n"), + vec![0xd801, 0xdc8b, 0xd801, 0xdc98, 0xd801, 0xdc88, 0xd801, 0xdc91, 0xd801, + 0xdc9b, 0xd801, 0xdc92, 0x0020, 0xd801, 0xdc95, 0xd801, 0xdc93, 0x0020, + 0xd801, 0xdc88, 0xd801, 0xdc9a, 0xd801, 0xdc8d, 0x0020, 0xd801, 0xdc8f, + 0xd801, 0xdc9c, 0xd801, 0xdc92, 0xd801, 0xdc96, 0xd801, 0xdc86, 0x0020, + 0xd801, 0xdc95, 0xd801, 0xdc86, 0x000a]), + // Issue #12318, even-numbered non-BMP planes + (String::from("\u{20000}"), vec![0xD840, 0xDC00])]; + + for p in &pairs { + let (s, u) = (*p).clone(); + let s_as_utf16 = s.encode_utf16().collect::<Vec<u16>>(); + let u_as_string = String::from_utf16(&u).unwrap(); + + assert!(::std_unicode::char::decode_utf16(u.iter().cloned()).all(|r| r.is_ok())); + assert_eq!(s_as_utf16, u); + + assert_eq!(u_as_string, s); + assert_eq!(String::from_utf16_lossy(&u), s); + + assert_eq!(String::from_utf16(&s_as_utf16).unwrap(), s); + assert_eq!(u_as_string.encode_utf16().collect::<Vec<u16>>(), u); + } +} + +#[test] +fn test_utf16_invalid() { + // completely positive cases tested above. + // lead + eof + assert!(String::from_utf16(&[0xD800]).is_err()); + // lead + lead + assert!(String::from_utf16(&[0xD800, 0xD800]).is_err()); + + // isolated trail + assert!(String::from_utf16(&[0x0061, 0xDC00]).is_err()); + + // general + assert!(String::from_utf16(&[0xD800, 0xd801, 0xdc8b, 0xD800]).is_err()); +} + +#[test] +fn test_from_utf16_lossy() { + // completely positive cases tested above. + // lead + eof + assert_eq!(String::from_utf16_lossy(&[0xD800]), + String::from("\u{FFFD}")); + // lead + lead + assert_eq!(String::from_utf16_lossy(&[0xD800, 0xD800]), + String::from("\u{FFFD}\u{FFFD}")); + + // isolated trail + assert_eq!(String::from_utf16_lossy(&[0x0061, 0xDC00]), + String::from("a\u{FFFD}")); + + // general + assert_eq!(String::from_utf16_lossy(&[0xD800, 0xd801, 0xdc8b, 0xD800]), + String::from("\u{FFFD}𐒋\u{FFFD}")); +} + +#[test] +fn test_push_bytes() { + let mut s = String::from("ABC"); + unsafe { + let mv = s.as_mut_vec(); + mv.extend_from_slice(&[b'D']); + } + assert_eq!(s, "ABCD"); +} + +#[test] +fn test_push_str() { + let mut s = String::new(); + s.push_str(""); + assert_eq!(&s[0..], ""); + s.push_str("abc"); + assert_eq!(&s[0..], "abc"); + s.push_str("ประเทศไทย中华Việt Nam"); + assert_eq!(&s[0..], "abcประเทศไทย中华Việt Nam"); +} + +#[test] +fn test_add_assign() { + let mut s = String::new(); + s += ""; + assert_eq!(s.as_str(), ""); + s += "abc"; + assert_eq!(s.as_str(), "abc"); + s += "ประเทศไทย中华Việt Nam"; + assert_eq!(s.as_str(), "abcประเทศไทย中华Việt Nam"); +} + +#[test] +fn test_push() { + let mut data = String::from("ประเทศไทย中"); + data.push('华'); + data.push('b'); // 1 byte + data.push('¢'); // 2 byte + data.push('€'); // 3 byte + data.push('𤭢'); // 4 byte + assert_eq!(data, "ประเทศไทย中华b¢€𤭢"); +} + +#[test] +fn test_pop() { + let mut data = String::from("ประเทศไทย中华b¢€𤭢"); + assert_eq!(data.pop().unwrap(), '𤭢'); // 4 bytes + assert_eq!(data.pop().unwrap(), '€'); // 3 bytes + assert_eq!(data.pop().unwrap(), '¢'); // 2 bytes + assert_eq!(data.pop().unwrap(), 'b'); // 1 bytes + assert_eq!(data.pop().unwrap(), '华'); + assert_eq!(data, "ประเทศไทย中"); +} + +#[test] +fn test_split_off_empty() { + let orig = "Hello, world!"; + let mut split = String::from(orig); + let empty: String = split.split_off(orig.len()); + assert!(empty.is_empty()); +} + +#[test] +#[should_panic] +fn test_split_off_past_end() { + let orig = "Hello, world!"; + let mut split = String::from(orig); + split.split_off(orig.len() + 1); +} + +#[test] +#[should_panic] +fn test_split_off_mid_char() { + let mut orig = String::from("山"); + orig.split_off(1); +} + +#[test] +fn test_split_off_ascii() { + let mut ab = String::from("ABCD"); + let cd = ab.split_off(2); + assert_eq!(ab, "AB"); + assert_eq!(cd, "CD"); +} + +#[test] +fn test_split_off_unicode() { + let mut nihon = String::from("日本語"); + let go = nihon.split_off("日本".len()); + assert_eq!(nihon, "日本"); + assert_eq!(go, "語"); +} + +#[test] +fn test_str_truncate() { + let mut s = String::from("12345"); + s.truncate(5); + assert_eq!(s, "12345"); + s.truncate(3); + assert_eq!(s, "123"); + s.truncate(0); + assert_eq!(s, ""); + + let mut s = String::from("12345"); + let p = s.as_ptr(); + s.truncate(3); + s.push_str("6"); + let p_ = s.as_ptr(); + assert_eq!(p_, p); +} + +#[test] +fn test_str_truncate_invalid_len() { + let mut s = String::from("12345"); + s.truncate(6); + assert_eq!(s, "12345"); +} + +#[test] +#[should_panic] +fn test_str_truncate_split_codepoint() { + let mut s = String::from("\u{FC}"); // ü + s.truncate(1); +} + +#[test] +fn test_str_clear() { + let mut s = String::from("12345"); + s.clear(); + assert_eq!(s.len(), 0); + assert_eq!(s, ""); +} + +#[test] +fn test_str_add() { + let a = String::from("12345"); + let b = a + "2"; + let b = b + "2"; + assert_eq!(b.len(), 7); + assert_eq!(b, "1234522"); +} + +#[test] +fn remove() { + let mut s = "ศไทย中华Việt Nam; foobar".to_string(); + assert_eq!(s.remove(0), 'ศ'); + assert_eq!(s.len(), 33); + assert_eq!(s, "ไทย中华Việt Nam; foobar"); + assert_eq!(s.remove(17), 'ệ'); + assert_eq!(s, "ไทย中华Vit Nam; foobar"); +} + +#[test] +#[should_panic] +fn remove_bad() { + "ศ".to_string().remove(1); +} + +#[test] +fn insert() { + let mut s = "foobar".to_string(); + s.insert(0, 'ệ'); + assert_eq!(s, "ệfoobar"); + s.insert(6, 'ย'); + assert_eq!(s, "ệfooยbar"); +} + +#[test] +#[should_panic] +fn insert_bad1() { + "".to_string().insert(1, 't'); +} +#[test] +#[should_panic] +fn insert_bad2() { + "ệ".to_string().insert(1, 't'); +} + +#[test] +fn test_slicing() { + let s = "foobar".to_string(); + assert_eq!("foobar", &s[..]); + assert_eq!("foo", &s[..3]); + assert_eq!("bar", &s[3..]); + assert_eq!("oob", &s[1..4]); +} + +#[test] +fn test_simple_types() { + assert_eq!(1.to_string(), "1"); + assert_eq!((-1).to_string(), "-1"); + assert_eq!(200.to_string(), "200"); + assert_eq!(2.to_string(), "2"); + assert_eq!(true.to_string(), "true"); + assert_eq!(false.to_string(), "false"); + assert_eq!(("hi".to_string()).to_string(), "hi"); +} + +#[test] +fn test_vectors() { + let x: Vec<i32> = vec![]; + assert_eq!(format!("{:?}", x), "[]"); + assert_eq!(format!("{:?}", vec![1]), "[1]"); + assert_eq!(format!("{:?}", vec![1, 2, 3]), "[1, 2, 3]"); + assert!(format!("{:?}", vec![vec![], vec![1], vec![1, 1]]) == "[[], [1], [1, 1]]"); +} + +#[test] +fn test_from_iterator() { + let s = "ศไทย中华Việt Nam".to_string(); + let t = "ศไทย中华"; + let u = "Việt Nam"; + + let a: String = s.chars().collect(); + assert_eq!(s, a); + + let mut b = t.to_string(); + b.extend(u.chars()); + assert_eq!(s, b); + + let c: String = vec![t, u].into_iter().collect(); + assert_eq!(s, c); + + let mut d = t.to_string(); + d.extend(vec![u]); + assert_eq!(s, d); +} + +#[test] +fn test_drain() { + let mut s = String::from("αβγ"); + assert_eq!(s.drain(2..4).collect::<String>(), "β"); + assert_eq!(s, "αγ"); + + let mut t = String::from("abcd"); + t.drain(..0); + assert_eq!(t, "abcd"); + t.drain(..1); + assert_eq!(t, "bcd"); + t.drain(3..); + assert_eq!(t, "bcd"); + t.drain(..); + assert_eq!(t, ""); +} + +#[test] +fn test_splice() { + let mut s = "Hello, world!".to_owned(); + let t: String = s.splice(7..12, "世界").collect(); + assert_eq!(s, "Hello, 世界!"); + assert_eq!(t, "world"); +} + +#[test] +#[should_panic] +fn test_splice_char_boundary() { + let mut s = "Hello, 世界!".to_owned(); + s.splice(..8, ""); +} + +#[test] +fn test_splice_inclusive_range() { + let mut v = String::from("12345"); + let t: String = v.splice(2...3, "789").collect(); + assert_eq!(v, "127895"); + assert_eq!(t, "34"); + let t2: String = v.splice(1...2, "A").collect(); + assert_eq!(v, "1A895"); + assert_eq!(t2, "27"); +} + +#[test] +#[should_panic] +fn test_splice_out_of_bounds() { + let mut s = String::from("12345"); + s.splice(5..6, "789"); +} + +#[test] +#[should_panic] +fn test_splice_inclusive_out_of_bounds() { + let mut s = String::from("12345"); + s.splice(5...5, "789"); +} + +#[test] +fn test_splice_empty() { + let mut s = String::from("12345"); + let t: String = s.splice(1..2, "").collect(); + assert_eq!(s, "1345"); + assert_eq!(t, "2"); +} + +#[test] +fn test_splice_unbounded() { + let mut s = String::from("12345"); + let t: String = s.splice(.., "").collect(); + assert_eq!(s, ""); + assert_eq!(t, "12345"); +} + +#[test] +fn test_splice_forget() { + let mut s = String::from("12345"); + ::std::mem::forget(s.splice(2..4, "789")); + assert_eq!(s, "12345"); +} + +#[test] +fn test_extend_ref() { + let mut a = "foo".to_string(); + a.extend(&['b', 'a', 'r']); + + assert_eq!(&a, "foobar"); +} + +#[test] +fn test_into_boxed_str() { + let xs = String::from("hello my name is bob"); + let ys = xs.into_boxed_str(); + assert_eq!(&*ys, "hello my name is bob"); +} diff --git a/src/liballoc/tests/vec.rs b/src/liballoc/tests/vec.rs new file mode 100644 index 00000000000..fdf453b39cf --- /dev/null +++ b/src/liballoc/tests/vec.rs @@ -0,0 +1,798 @@ +// Copyright 2014 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use std::ascii::AsciiExt; +use std::borrow::Cow; +use std::mem::size_of; +use std::panic; +use std::vec::{Drain, IntoIter}; + +struct DropCounter<'a> { + count: &'a mut u32, +} + +impl<'a> Drop for DropCounter<'a> { + fn drop(&mut self) { + *self.count += 1; + } +} + +#[test] +fn test_small_vec_struct() { + assert!(size_of::<Vec<u8>>() == size_of::<usize>() * 3); +} + +#[test] +fn test_double_drop() { + struct TwoVec<T> { + x: Vec<T>, + y: Vec<T>, + } + + let (mut count_x, mut count_y) = (0, 0); + { + let mut tv = TwoVec { + x: Vec::new(), + y: Vec::new(), + }; + tv.x.push(DropCounter { count: &mut count_x }); + tv.y.push(DropCounter { count: &mut count_y }); + + // If Vec had a drop flag, here is where it would be zeroed. + // Instead, it should rely on its internal state to prevent + // doing anything significant when dropped multiple times. + drop(tv.x); + + // Here tv goes out of scope, tv.y should be dropped, but not tv.x. + } + + assert_eq!(count_x, 1); + assert_eq!(count_y, 1); +} + +#[test] +fn test_reserve() { + let mut v = Vec::new(); + assert_eq!(v.capacity(), 0); + + v.reserve(2); + assert!(v.capacity() >= 2); + + for i in 0..16 { + v.push(i); + } + + assert!(v.capacity() >= 16); + v.reserve(16); + assert!(v.capacity() >= 32); + + v.push(16); + + v.reserve(16); + assert!(v.capacity() >= 33) +} + +#[test] +fn test_extend() { + let mut v = Vec::new(); + let mut w = Vec::new(); + + v.extend(w.clone()); + assert_eq!(v, &[]); + + v.extend(0..3); + for i in 0..3 { + w.push(i) + } + + assert_eq!(v, w); + + v.extend(3..10); + for i in 3..10 { + w.push(i) + } + + assert_eq!(v, w); + + v.extend(w.clone()); // specializes to `append` + assert!(v.iter().eq(w.iter().chain(w.iter()))); + + // Zero sized types + #[derive(PartialEq, Debug)] + struct Foo; + + let mut a = Vec::new(); + let b = vec![Foo, Foo]; + + a.extend(b); + assert_eq!(a, &[Foo, Foo]); + + // Double drop + let mut count_x = 0; + { + let mut x = Vec::new(); + let y = vec![DropCounter { count: &mut count_x }]; + x.extend(y); + } + assert_eq!(count_x, 1); +} + +#[test] +fn test_extend_ref() { + let mut v = vec![1, 2]; + v.extend(&[3, 4, 5]); + + assert_eq!(v.len(), 5); + assert_eq!(v, [1, 2, 3, 4, 5]); + + let w = vec![6, 7]; + v.extend(&w); + + assert_eq!(v.len(), 7); + assert_eq!(v, [1, 2, 3, 4, 5, 6, 7]); +} + +#[test] +fn test_slice_from_mut() { + let mut values = vec![1, 2, 3, 4, 5]; + { + let slice = &mut values[2..]; + assert!(slice == [3, 4, 5]); + for p in slice { + *p += 2; + } + } + + assert!(values == [1, 2, 5, 6, 7]); +} + +#[test] +fn test_slice_to_mut() { + let mut values = vec![1, 2, 3, 4, 5]; + { + let slice = &mut values[..2]; + assert!(slice == [1, 2]); + for p in slice { + *p += 1; + } + } + + assert!(values == [2, 3, 3, 4, 5]); +} + +#[test] +fn test_split_at_mut() { + let mut values = vec![1, 2, 3, 4, 5]; + { + let (left, right) = values.split_at_mut(2); + { + let left: &[_] = left; + assert!(&left[..left.len()] == &[1, 2]); + } + for p in left { + *p += 1; + } + + { + let right: &[_] = right; + assert!(&right[..right.len()] == &[3, 4, 5]); + } + for p in right { + *p += 2; + } + } + + assert_eq!(values, [2, 3, 5, 6, 7]); +} + +#[test] +fn test_clone() { + let v: Vec<i32> = vec![]; + let w = vec![1, 2, 3]; + + assert_eq!(v, v.clone()); + + let z = w.clone(); + assert_eq!(w, z); + // they should be disjoint in memory. + assert!(w.as_ptr() != z.as_ptr()) +} + +#[test] +fn test_clone_from() { + let mut v = vec![]; + let three: Vec<Box<_>> = vec![box 1, box 2, box 3]; + let two: Vec<Box<_>> = vec![box 4, box 5]; + // zero, long + v.clone_from(&three); + assert_eq!(v, three); + + // equal + v.clone_from(&three); + assert_eq!(v, three); + + // long, short + v.clone_from(&two); + assert_eq!(v, two); + + // short, long + v.clone_from(&three); + assert_eq!(v, three) +} + +#[test] +fn test_retain() { + let mut vec = vec![1, 2, 3, 4]; + vec.retain(|&x| x % 2 == 0); + assert_eq!(vec, [2, 4]); +} + +#[test] +fn test_dedup() { + fn case(a: Vec<i32>, b: Vec<i32>) { + let mut v = a; + v.dedup(); + assert_eq!(v, b); + } + case(vec![], vec![]); + case(vec![1], vec![1]); + case(vec![1, 1], vec![1]); + case(vec![1, 2, 3], vec![1, 2, 3]); + case(vec![1, 1, 2, 3], vec![1, 2, 3]); + case(vec![1, 2, 2, 3], vec![1, 2, 3]); + case(vec![1, 2, 3, 3], vec![1, 2, 3]); + case(vec![1, 1, 2, 2, 2, 3, 3], vec![1, 2, 3]); +} + +#[test] +fn test_dedup_by_key() { + fn case(a: Vec<i32>, b: Vec<i32>) { + let mut v = a; + v.dedup_by_key(|i| *i / 10); + assert_eq!(v, b); + } + case(vec![], vec![]); + case(vec![10], vec![10]); + case(vec![10, 11], vec![10]); + case(vec![10, 20, 30], vec![10, 20, 30]); + case(vec![10, 11, 20, 30], vec![10, 20, 30]); + case(vec![10, 20, 21, 30], vec![10, 20, 30]); + case(vec![10, 20, 30, 31], vec![10, 20, 30]); + case(vec![10, 11, 20, 21, 22, 30, 31], vec![10, 20, 30]); +} + +#[test] +fn test_dedup_by() { + let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"]; + vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b)); + + assert_eq!(vec, ["foo", "bar", "baz", "bar"]); +} + +#[test] +fn test_dedup_unique() { + let mut v0: Vec<Box<_>> = vec![box 1, box 1, box 2, box 3]; + v0.dedup(); + let mut v1: Vec<Box<_>> = vec![box 1, box 2, box 2, box 3]; + v1.dedup(); + let mut v2: Vec<Box<_>> = vec![box 1, box 2, box 3, box 3]; + v2.dedup(); + // If the boxed pointers were leaked or otherwise misused, valgrind + // and/or rt should raise errors. +} + +#[test] +fn zero_sized_values() { + let mut v = Vec::new(); + assert_eq!(v.len(), 0); + v.push(()); + assert_eq!(v.len(), 1); + v.push(()); + assert_eq!(v.len(), 2); + assert_eq!(v.pop(), Some(())); + assert_eq!(v.pop(), Some(())); + assert_eq!(v.pop(), None); + + assert_eq!(v.iter().count(), 0); + v.push(()); + assert_eq!(v.iter().count(), 1); + v.push(()); + assert_eq!(v.iter().count(), 2); + + for &() in &v {} + + assert_eq!(v.iter_mut().count(), 2); + v.push(()); + assert_eq!(v.iter_mut().count(), 3); + v.push(()); + assert_eq!(v.iter_mut().count(), 4); + + for &mut () in &mut v {} + unsafe { + v.set_len(0); + } + assert_eq!(v.iter_mut().count(), 0); +} + +#[test] +fn test_partition() { + assert_eq!(vec![].into_iter().partition(|x: &i32| *x < 3), + (vec![], vec![])); + assert_eq!(vec![1, 2, 3].into_iter().partition(|x| *x < 4), + (vec![1, 2, 3], vec![])); + assert_eq!(vec![1, 2, 3].into_iter().partition(|x| *x < 2), + (vec![1], vec![2, 3])); + assert_eq!(vec![1, 2, 3].into_iter().partition(|x| *x < 0), + (vec![], vec![1, 2, 3])); +} + +#[test] +fn test_zip_unzip() { + let z1 = vec![(1, 4), (2, 5), (3, 6)]; + + let (left, right): (Vec<_>, Vec<_>) = z1.iter().cloned().unzip(); + + assert_eq!((1, 4), (left[0], right[0])); + assert_eq!((2, 5), (left[1], right[1])); + assert_eq!((3, 6), (left[2], right[2])); +} + +#[test] +fn test_vec_truncate_drop() { + static mut DROPS: u32 = 0; + struct Elem(i32); + impl Drop for Elem { + fn drop(&mut self) { + unsafe { + DROPS += 1; + } + } + } + + let mut v = vec![Elem(1), Elem(2), Elem(3), Elem(4), Elem(5)]; + assert_eq!(unsafe { DROPS }, 0); + v.truncate(3); + assert_eq!(unsafe { DROPS }, 2); + v.truncate(0); + assert_eq!(unsafe { DROPS }, 5); +} + +#[test] +#[should_panic] +fn test_vec_truncate_fail() { + struct BadElem(i32); + impl Drop for BadElem { + fn drop(&mut self) { + let BadElem(ref mut x) = *self; + if *x == 0xbadbeef { + panic!("BadElem panic: 0xbadbeef") + } + } + } + + let mut v = vec![BadElem(1), BadElem(2), BadElem(0xbadbeef), BadElem(4)]; + v.truncate(0); +} + +#[test] +fn test_index() { + let vec = vec![1, 2, 3]; + assert!(vec[1] == 2); +} + +#[test] +#[should_panic] +fn test_index_out_of_bounds() { + let vec = vec![1, 2, 3]; + let _ = vec[3]; +} + +#[test] +#[should_panic] +fn test_slice_out_of_bounds_1() { + let x = vec![1, 2, 3, 4, 5]; + &x[!0..]; +} + +#[test] +#[should_panic] +fn test_slice_out_of_bounds_2() { + let x = vec![1, 2, 3, 4, 5]; + &x[..6]; +} + +#[test] +#[should_panic] +fn test_slice_out_of_bounds_3() { + let x = vec![1, 2, 3, 4, 5]; + &x[!0..4]; +} + +#[test] +#[should_panic] +fn test_slice_out_of_bounds_4() { + let x = vec![1, 2, 3, 4, 5]; + &x[1..6]; +} + +#[test] +#[should_panic] +fn test_slice_out_of_bounds_5() { + let x = vec![1, 2, 3, 4, 5]; + &x[3..2]; +} + +#[test] +#[should_panic] +fn test_swap_remove_empty() { + let mut vec = Vec::<i32>::new(); + vec.swap_remove(0); +} + +#[test] +fn test_move_items() { + let vec = vec![1, 2, 3]; + let mut vec2 = vec![]; + for i in vec { + vec2.push(i); + } + assert_eq!(vec2, [1, 2, 3]); +} + +#[test] +fn test_move_items_reverse() { + let vec = vec![1, 2, 3]; + let mut vec2 = vec![]; + for i in vec.into_iter().rev() { + vec2.push(i); + } + assert_eq!(vec2, [3, 2, 1]); +} + +#[test] +fn test_move_items_zero_sized() { + let vec = vec![(), (), ()]; + let mut vec2 = vec![]; + for i in vec { + vec2.push(i); + } + assert_eq!(vec2, [(), (), ()]); +} + +#[test] +fn test_drain_items() { + let mut vec = vec![1, 2, 3]; + let mut vec2 = vec![]; + for i in vec.drain(..) { + vec2.push(i); + } + assert_eq!(vec, []); + assert_eq!(vec2, [1, 2, 3]); +} + +#[test] +fn test_drain_items_reverse() { + let mut vec = vec![1, 2, 3]; + let mut vec2 = vec![]; + for i in vec.drain(..).rev() { + vec2.push(i); + } + assert_eq!(vec, []); + assert_eq!(vec2, [3, 2, 1]); +} + +#[test] +fn test_drain_items_zero_sized() { + let mut vec = vec![(), (), ()]; + let mut vec2 = vec![]; + for i in vec.drain(..) { + vec2.push(i); + } + assert_eq!(vec, []); + assert_eq!(vec2, [(), (), ()]); +} + +#[test] +#[should_panic] +fn test_drain_out_of_bounds() { + let mut v = vec![1, 2, 3, 4, 5]; + v.drain(5..6); +} + +#[test] +fn test_drain_range() { + let mut v = vec![1, 2, 3, 4, 5]; + for _ in v.drain(4..) { + } + assert_eq!(v, &[1, 2, 3, 4]); + + let mut v: Vec<_> = (1..6).map(|x| x.to_string()).collect(); + for _ in v.drain(1..4) { + } + assert_eq!(v, &[1.to_string(), 5.to_string()]); + + let mut v: Vec<_> = (1..6).map(|x| x.to_string()).collect(); + for _ in v.drain(1..4).rev() { + } + assert_eq!(v, &[1.to_string(), 5.to_string()]); + + let mut v: Vec<_> = vec![(); 5]; + for _ in v.drain(1..4).rev() { + } + assert_eq!(v, &[(), ()]); +} + +#[test] +fn test_drain_inclusive_range() { + let mut v = vec!['a', 'b', 'c', 'd', 'e']; + for _ in v.drain(1...3) { + } + assert_eq!(v, &['a', 'e']); + + let mut v: Vec<_> = (0...5).map(|x| x.to_string()).collect(); + for _ in v.drain(1...5) { + } + assert_eq!(v, &["0".to_string()]); + + let mut v: Vec<String> = (0...5).map(|x| x.to_string()).collect(); + for _ in v.drain(0...5) { + } + assert_eq!(v, Vec::<String>::new()); + + let mut v: Vec<_> = (0...5).map(|x| x.to_string()).collect(); + for _ in v.drain(0...3) { + } + assert_eq!(v, &["4".to_string(), "5".to_string()]); + + let mut v: Vec<_> = (0...1).map(|x| x.to_string()).collect(); + for _ in v.drain(...0) { + } + assert_eq!(v, &["1".to_string()]); +} + +#[test] +fn test_drain_max_vec_size() { + let mut v = Vec::<()>::with_capacity(usize::max_value()); + unsafe { v.set_len(usize::max_value()); } + for _ in v.drain(usize::max_value() - 1..) { + } + assert_eq!(v.len(), usize::max_value() - 1); + + let mut v = Vec::<()>::with_capacity(usize::max_value()); + unsafe { v.set_len(usize::max_value()); } + for _ in v.drain(usize::max_value() - 1...usize::max_value() - 1) { + } + assert_eq!(v.len(), usize::max_value() - 1); +} + +#[test] +#[should_panic] +fn test_drain_inclusive_out_of_bounds() { + let mut v = vec![1, 2, 3, 4, 5]; + v.drain(5...5); +} + +#[test] +fn test_splice() { + let mut v = vec![1, 2, 3, 4, 5]; + let a = [10, 11, 12]; + v.splice(2..4, a.iter().cloned()); + assert_eq!(v, &[1, 2, 10, 11, 12, 5]); + v.splice(1..3, Some(20)); + assert_eq!(v, &[1, 20, 11, 12, 5]); +} + +#[test] +fn test_splice_inclusive_range() { + let mut v = vec![1, 2, 3, 4, 5]; + let a = [10, 11, 12]; + let t1: Vec<_> = v.splice(2...3, a.iter().cloned()).collect(); + assert_eq!(v, &[1, 2, 10, 11, 12, 5]); + assert_eq!(t1, &[3, 4]); + let t2: Vec<_> = v.splice(1...2, Some(20)).collect(); + assert_eq!(v, &[1, 20, 11, 12, 5]); + assert_eq!(t2, &[2, 10]); +} + +#[test] +#[should_panic] +fn test_splice_out_of_bounds() { + let mut v = vec![1, 2, 3, 4, 5]; + let a = [10, 11, 12]; + v.splice(5..6, a.iter().cloned()); +} + +#[test] +#[should_panic] +fn test_splice_inclusive_out_of_bounds() { + let mut v = vec![1, 2, 3, 4, 5]; + let a = [10, 11, 12]; + v.splice(5...5, a.iter().cloned()); +} + +#[test] +fn test_splice_items_zero_sized() { + let mut vec = vec![(), (), ()]; + let vec2 = vec![]; + let t: Vec<_> = vec.splice(1..2, vec2.iter().cloned()).collect(); + assert_eq!(vec, &[(), ()]); + assert_eq!(t, &[()]); +} + +#[test] +fn test_splice_unbounded() { + let mut vec = vec![1, 2, 3, 4, 5]; + let t: Vec<_> = vec.splice(.., None).collect(); + assert_eq!(vec, &[]); + assert_eq!(t, &[1, 2, 3, 4, 5]); +} + +#[test] +fn test_splice_forget() { + let mut v = vec![1, 2, 3, 4, 5]; + let a = [10, 11, 12]; + ::std::mem::forget(v.splice(2..4, a.iter().cloned())); + assert_eq!(v, &[1, 2]); +} + +#[test] +fn test_into_boxed_slice() { + let xs = vec![1, 2, 3]; + let ys = xs.into_boxed_slice(); + assert_eq!(&*ys, [1, 2, 3]); +} + +#[test] +fn test_append() { + let mut vec = vec![1, 2, 3]; + let mut vec2 = vec![4, 5, 6]; + vec.append(&mut vec2); + assert_eq!(vec, [1, 2, 3, 4, 5, 6]); + assert_eq!(vec2, []); +} + +#[test] +fn test_split_off() { + let mut vec = vec![1, 2, 3, 4, 5, 6]; + let vec2 = vec.split_off(4); + assert_eq!(vec, [1, 2, 3, 4]); + assert_eq!(vec2, [5, 6]); +} + +#[test] +fn test_into_iter_as_slice() { + let vec = vec!['a', 'b', 'c']; + let mut into_iter = vec.into_iter(); + assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']); + let _ = into_iter.next().unwrap(); + assert_eq!(into_iter.as_slice(), &['b', 'c']); + let _ = into_iter.next().unwrap(); + let _ = into_iter.next().unwrap(); + assert_eq!(into_iter.as_slice(), &[]); +} + +#[test] +fn test_into_iter_as_mut_slice() { + let vec = vec!['a', 'b', 'c']; + let mut into_iter = vec.into_iter(); + assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']); + into_iter.as_mut_slice()[0] = 'x'; + into_iter.as_mut_slice()[1] = 'y'; + assert_eq!(into_iter.next().unwrap(), 'x'); + assert_eq!(into_iter.as_slice(), &['y', 'c']); +} + +#[test] +fn test_into_iter_debug() { + let vec = vec!['a', 'b', 'c']; + let into_iter = vec.into_iter(); + let debug = format!("{:?}", into_iter); + assert_eq!(debug, "IntoIter(['a', 'b', 'c'])"); +} + +#[test] +fn test_into_iter_count() { + assert_eq!(vec![1, 2, 3].into_iter().count(), 3); +} + +#[test] +fn test_into_iter_clone() { + fn iter_equal<I: Iterator<Item = i32>>(it: I, slice: &[i32]) { + let v: Vec<i32> = it.collect(); + assert_eq!(&v[..], slice); + } + let mut it = vec![1, 2, 3].into_iter(); + iter_equal(it.clone(), &[1, 2, 3]); + assert_eq!(it.next(), Some(1)); + let mut it = it.rev(); + iter_equal(it.clone(), &[3, 2]); + assert_eq!(it.next(), Some(3)); + iter_equal(it.clone(), &[2]); + assert_eq!(it.next(), Some(2)); + iter_equal(it.clone(), &[]); + assert_eq!(it.next(), None); +} + +#[test] +fn test_cow_from() { + let borrowed: &[_] = &["borrowed", "(slice)"]; + let owned = vec!["owned", "(vec)"]; + match (Cow::from(owned.clone()), Cow::from(borrowed)) { + (Cow::Owned(o), Cow::Borrowed(b)) => assert!(o == owned && b == borrowed), + _ => panic!("invalid `Cow::from`"), + } +} + +#[test] +fn test_from_cow() { + let borrowed: &[_] = &["borrowed", "(slice)"]; + let owned = vec!["owned", "(vec)"]; + assert_eq!(Vec::from(Cow::Borrowed(borrowed)), vec!["borrowed", "(slice)"]); + assert_eq!(Vec::from(Cow::Owned(owned)), vec!["owned", "(vec)"]); +} + +#[allow(dead_code)] +fn assert_covariance() { + fn drain<'new>(d: Drain<'static, &'static str>) -> Drain<'new, &'new str> { + d + } + fn into_iter<'new>(i: IntoIter<&'static str>) -> IntoIter<&'new str> { + i + } +} + +#[test] +fn test_placement() { + let mut vec = vec![1]; + assert_eq!(vec.place_back() <- 2, &2); + assert_eq!(vec.len(), 2); + assert_eq!(vec.place_back() <- 3, &3); + assert_eq!(vec.len(), 3); + assert_eq!(&vec, &[1, 2, 3]); +} + +#[test] +fn test_placement_panic() { + let mut vec = vec![1, 2, 3]; + fn mkpanic() -> usize { panic!() } + let _ = panic::catch_unwind(panic::AssertUnwindSafe(|| { vec.place_back() <- mkpanic(); })); + assert_eq!(vec.len(), 3); +} + +#[test] +fn from_into_inner() { + let vec = vec![1, 2, 3]; + let ptr = vec.as_ptr(); + let vec = vec.into_iter().collect::<Vec<_>>(); + assert_eq!(vec, [1, 2, 3]); + assert_eq!(vec.as_ptr(), ptr); + + let ptr = &vec[1] as *const _; + let mut it = vec.into_iter(); + it.next().unwrap(); + let vec = it.collect::<Vec<_>>(); + assert_eq!(vec, [2, 3]); + assert!(ptr != vec.as_ptr()); +} + +#[test] +fn overaligned_allocations() { + #[repr(align(256))] + struct Foo(usize); + let mut v = vec![Foo(273)]; + for i in 0..0x1000 { + v.reserve_exact(i); + assert!(v[0].0 == 273); + assert!(v.as_ptr() as usize & 0xff == 0); + v.shrink_to_fit(); + assert!(v[0].0 == 273); + assert!(v.as_ptr() as usize & 0xff == 0); + } +} diff --git a/src/liballoc/tests/vec_deque.rs b/src/liballoc/tests/vec_deque.rs new file mode 100644 index 00000000000..a992351653d --- /dev/null +++ b/src/liballoc/tests/vec_deque.rs @@ -0,0 +1,1025 @@ +// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use std::collections::VecDeque; +use std::fmt::Debug; +use std::collections::vec_deque::{Drain}; + +use self::Taggy::*; +use self::Taggypar::*; + +#[test] +fn test_simple() { + let mut d = VecDeque::new(); + assert_eq!(d.len(), 0); + d.push_front(17); + d.push_front(42); + d.push_back(137); + assert_eq!(d.len(), 3); + d.push_back(137); + assert_eq!(d.len(), 4); + assert_eq!(*d.front().unwrap(), 42); + assert_eq!(*d.back().unwrap(), 137); + let mut i = d.pop_front(); + assert_eq!(i, Some(42)); + i = d.pop_back(); + assert_eq!(i, Some(137)); + i = d.pop_back(); + assert_eq!(i, Some(137)); + i = d.pop_back(); + assert_eq!(i, Some(17)); + assert_eq!(d.len(), 0); + d.push_back(3); + assert_eq!(d.len(), 1); + d.push_front(2); + assert_eq!(d.len(), 2); + d.push_back(4); + assert_eq!(d.len(), 3); + d.push_front(1); + assert_eq!(d.len(), 4); + assert_eq!(d[0], 1); + assert_eq!(d[1], 2); + assert_eq!(d[2], 3); + assert_eq!(d[3], 4); +} + +#[cfg(test)] +fn test_parameterized<T: Clone + PartialEq + Debug>(a: T, b: T, c: T, d: T) { + let mut deq = VecDeque::new(); + assert_eq!(deq.len(), 0); + deq.push_front(a.clone()); + deq.push_front(b.clone()); + deq.push_back(c.clone()); + assert_eq!(deq.len(), 3); + deq.push_back(d.clone()); + assert_eq!(deq.len(), 4); + assert_eq!((*deq.front().unwrap()).clone(), b.clone()); + assert_eq!((*deq.back().unwrap()).clone(), d.clone()); + assert_eq!(deq.pop_front().unwrap(), b.clone()); + assert_eq!(deq.pop_back().unwrap(), d.clone()); + assert_eq!(deq.pop_back().unwrap(), c.clone()); + assert_eq!(deq.pop_back().unwrap(), a.clone()); + assert_eq!(deq.len(), 0); + deq.push_back(c.clone()); + assert_eq!(deq.len(), 1); + deq.push_front(b.clone()); + assert_eq!(deq.len(), 2); + deq.push_back(d.clone()); + assert_eq!(deq.len(), 3); + deq.push_front(a.clone()); + assert_eq!(deq.len(), 4); + assert_eq!(deq[0].clone(), a.clone()); + assert_eq!(deq[1].clone(), b.clone()); + assert_eq!(deq[2].clone(), c.clone()); + assert_eq!(deq[3].clone(), d.clone()); +} + +#[test] +fn test_push_front_grow() { + let mut deq = VecDeque::new(); + for i in 0..66 { + deq.push_front(i); + } + assert_eq!(deq.len(), 66); + + for i in 0..66 { + assert_eq!(deq[i], 65 - i); + } + + let mut deq = VecDeque::new(); + for i in 0..66 { + deq.push_back(i); + } + + for i in 0..66 { + assert_eq!(deq[i], i); + } +} + +#[test] +fn test_index() { + let mut deq = VecDeque::new(); + for i in 1..4 { + deq.push_front(i); + } + assert_eq!(deq[1], 2); +} + +#[test] +#[should_panic] +fn test_index_out_of_bounds() { + let mut deq = VecDeque::new(); + for i in 1..4 { + deq.push_front(i); + } + deq[3]; +} + +#[derive(Clone, PartialEq, Debug)] +enum Taggy { + One(i32), + Two(i32, i32), + Three(i32, i32, i32), +} + +#[derive(Clone, PartialEq, Debug)] +enum Taggypar<T> { + Onepar(T), + Twopar(T, T), + Threepar(T, T, T), +} + +#[derive(Clone, PartialEq, Debug)] +struct RecCy { + x: i32, + y: i32, + t: Taggy, +} + +#[test] +fn test_param_int() { + test_parameterized::<i32>(5, 72, 64, 175); +} + +#[test] +fn test_param_taggy() { + test_parameterized::<Taggy>(One(1), Two(1, 2), Three(1, 2, 3), Two(17, 42)); +} + +#[test] +fn test_param_taggypar() { + test_parameterized::<Taggypar<i32>>(Onepar::<i32>(1), + Twopar::<i32>(1, 2), + Threepar::<i32>(1, 2, 3), + Twopar::<i32>(17, 42)); +} + +#[test] +fn test_param_reccy() { + let reccy1 = RecCy { + x: 1, + y: 2, + t: One(1), + }; + let reccy2 = RecCy { + x: 345, + y: 2, + t: Two(1, 2), + }; + let reccy3 = RecCy { + x: 1, + y: 777, + t: Three(1, 2, 3), + }; + let reccy4 = RecCy { + x: 19, + y: 252, + t: Two(17, 42), + }; + test_parameterized::<RecCy>(reccy1, reccy2, reccy3, reccy4); +} + +#[test] +fn test_with_capacity() { + let mut d = VecDeque::with_capacity(0); + d.push_back(1); + assert_eq!(d.len(), 1); + let mut d = VecDeque::with_capacity(50); + d.push_back(1); + assert_eq!(d.len(), 1); +} + +#[test] +fn test_with_capacity_non_power_two() { + let mut d3 = VecDeque::with_capacity(3); + d3.push_back(1); + + // X = None, | = lo + // [|1, X, X] + assert_eq!(d3.pop_front(), Some(1)); + // [X, |X, X] + assert_eq!(d3.front(), None); + + // [X, |3, X] + d3.push_back(3); + // [X, |3, 6] + d3.push_back(6); + // [X, X, |6] + assert_eq!(d3.pop_front(), Some(3)); + + // Pushing the lo past half way point to trigger + // the 'B' scenario for growth + // [9, X, |6] + d3.push_back(9); + // [9, 12, |6] + d3.push_back(12); + + d3.push_back(15); + // There used to be a bug here about how the + // VecDeque made growth assumptions about the + // underlying Vec which didn't hold and lead + // to corruption. + // (Vec grows to next power of two) + // good- [9, 12, 15, X, X, X, X, |6] + // bug- [15, 12, X, X, X, |6, X, X] + assert_eq!(d3.pop_front(), Some(6)); + + // Which leads us to the following state which + // would be a failure case. + // bug- [15, 12, X, X, X, X, |X, X] + assert_eq!(d3.front(), Some(&9)); +} + +#[test] +fn test_reserve_exact() { + let mut d = VecDeque::new(); + d.push_back(0); + d.reserve_exact(50); + assert!(d.capacity() >= 51); +} + +#[test] +fn test_reserve() { + let mut d = VecDeque::new(); + d.push_back(0); + d.reserve(50); + assert!(d.capacity() >= 51); +} + +#[test] +fn test_swap() { + let mut d: VecDeque<_> = (0..5).collect(); + d.pop_front(); + d.swap(0, 3); + assert_eq!(d.iter().cloned().collect::<Vec<_>>(), [4, 2, 3, 1]); +} + +#[test] +fn test_iter() { + let mut d = VecDeque::new(); + assert_eq!(d.iter().next(), None); + assert_eq!(d.iter().size_hint(), (0, Some(0))); + + for i in 0..5 { + d.push_back(i); + } + { + let b: &[_] = &[&0, &1, &2, &3, &4]; + assert_eq!(d.iter().collect::<Vec<_>>(), b); + } + + for i in 6..9 { + d.push_front(i); + } + { + let b: &[_] = &[&8, &7, &6, &0, &1, &2, &3, &4]; + assert_eq!(d.iter().collect::<Vec<_>>(), b); + } + + let mut it = d.iter(); + let mut len = d.len(); + loop { + match it.next() { + None => break, + _ => { + len -= 1; + assert_eq!(it.size_hint(), (len, Some(len))) + } + } + } +} + +#[test] +fn test_rev_iter() { + let mut d = VecDeque::new(); + assert_eq!(d.iter().rev().next(), None); + + for i in 0..5 { + d.push_back(i); + } + { + let b: &[_] = &[&4, &3, &2, &1, &0]; + assert_eq!(d.iter().rev().collect::<Vec<_>>(), b); + } + + for i in 6..9 { + d.push_front(i); + } + let b: &[_] = &[&4, &3, &2, &1, &0, &6, &7, &8]; + assert_eq!(d.iter().rev().collect::<Vec<_>>(), b); +} + +#[test] +fn test_mut_rev_iter_wrap() { + let mut d = VecDeque::with_capacity(3); + assert!(d.iter_mut().rev().next().is_none()); + + d.push_back(1); + d.push_back(2); + d.push_back(3); + assert_eq!(d.pop_front(), Some(1)); + d.push_back(4); + + assert_eq!(d.iter_mut().rev().map(|x| *x).collect::<Vec<_>>(), + vec![4, 3, 2]); +} + +#[test] +fn test_mut_iter() { + let mut d = VecDeque::new(); + assert!(d.iter_mut().next().is_none()); + + for i in 0..3 { + d.push_front(i); + } + + for (i, elt) in d.iter_mut().enumerate() { + assert_eq!(*elt, 2 - i); + *elt = i; + } + + { + let mut it = d.iter_mut(); + assert_eq!(*it.next().unwrap(), 0); + assert_eq!(*it.next().unwrap(), 1); + assert_eq!(*it.next().unwrap(), 2); + assert!(it.next().is_none()); + } +} + +#[test] +fn test_mut_rev_iter() { + let mut d = VecDeque::new(); + assert!(d.iter_mut().rev().next().is_none()); + + for i in 0..3 { + d.push_front(i); + } + + for (i, elt) in d.iter_mut().rev().enumerate() { + assert_eq!(*elt, i); + *elt = i; + } + + { + let mut it = d.iter_mut().rev(); + assert_eq!(*it.next().unwrap(), 0); + assert_eq!(*it.next().unwrap(), 1); + assert_eq!(*it.next().unwrap(), 2); + assert!(it.next().is_none()); + } +} + +#[test] +fn test_into_iter() { + + // Empty iter + { + let d: VecDeque<i32> = VecDeque::new(); + let mut iter = d.into_iter(); + + assert_eq!(iter.size_hint(), (0, Some(0))); + assert_eq!(iter.next(), None); + assert_eq!(iter.size_hint(), (0, Some(0))); + } + + // simple iter + { + let mut d = VecDeque::new(); + for i in 0..5 { + d.push_back(i); + } + + let b = vec![0, 1, 2, 3, 4]; + assert_eq!(d.into_iter().collect::<Vec<_>>(), b); + } + + // wrapped iter + { + let mut d = VecDeque::new(); + for i in 0..5 { + d.push_back(i); + } + for i in 6..9 { + d.push_front(i); + } + + let b = vec![8, 7, 6, 0, 1, 2, 3, 4]; + assert_eq!(d.into_iter().collect::<Vec<_>>(), b); + } + + // partially used + { + let mut d = VecDeque::new(); + for i in 0..5 { + d.push_back(i); + } + for i in 6..9 { + d.push_front(i); + } + + let mut it = d.into_iter(); + assert_eq!(it.size_hint(), (8, Some(8))); + assert_eq!(it.next(), Some(8)); + assert_eq!(it.size_hint(), (7, Some(7))); + assert_eq!(it.next_back(), Some(4)); + assert_eq!(it.size_hint(), (6, Some(6))); + assert_eq!(it.next(), Some(7)); + assert_eq!(it.size_hint(), (5, Some(5))); + } +} + +#[test] +fn test_drain() { + + // Empty iter + { + let mut d: VecDeque<i32> = VecDeque::new(); + + { + let mut iter = d.drain(..); + + assert_eq!(iter.size_hint(), (0, Some(0))); + assert_eq!(iter.next(), None); + assert_eq!(iter.size_hint(), (0, Some(0))); + } + + assert!(d.is_empty()); + } + + // simple iter + { + let mut d = VecDeque::new(); + for i in 0..5 { + d.push_back(i); + } + + assert_eq!(d.drain(..).collect::<Vec<_>>(), [0, 1, 2, 3, 4]); + assert!(d.is_empty()); + } + + // wrapped iter + { + let mut d = VecDeque::new(); + for i in 0..5 { + d.push_back(i); + } + for i in 6..9 { + d.push_front(i); + } + + assert_eq!(d.drain(..).collect::<Vec<_>>(), [8, 7, 6, 0, 1, 2, 3, 4]); + assert!(d.is_empty()); + } + + // partially used + { + let mut d: VecDeque<_> = VecDeque::new(); + for i in 0..5 { + d.push_back(i); + } + for i in 6..9 { + d.push_front(i); + } + + { + let mut it = d.drain(..); + assert_eq!(it.size_hint(), (8, Some(8))); + assert_eq!(it.next(), Some(8)); + assert_eq!(it.size_hint(), (7, Some(7))); + assert_eq!(it.next_back(), Some(4)); + assert_eq!(it.size_hint(), (6, Some(6))); + assert_eq!(it.next(), Some(7)); + assert_eq!(it.size_hint(), (5, Some(5))); + } + assert!(d.is_empty()); + } +} + +#[test] +fn test_from_iter() { + let v = vec![1, 2, 3, 4, 5, 6, 7]; + let deq: VecDeque<_> = v.iter().cloned().collect(); + let u: Vec<_> = deq.iter().cloned().collect(); + assert_eq!(u, v); + + // FIXME #27741: Remove `.skip(0)` when Range::step_by is fully removed + let seq = (0..).skip(0).step_by(2).take(256); + let deq: VecDeque<_> = seq.collect(); + for (i, &x) in deq.iter().enumerate() { + assert_eq!(2 * i, x); + } + assert_eq!(deq.len(), 256); +} + +#[test] +fn test_clone() { + let mut d = VecDeque::new(); + d.push_front(17); + d.push_front(42); + d.push_back(137); + d.push_back(137); + assert_eq!(d.len(), 4); + let mut e = d.clone(); + assert_eq!(e.len(), 4); + while !d.is_empty() { + assert_eq!(d.pop_back(), e.pop_back()); + } + assert_eq!(d.len(), 0); + assert_eq!(e.len(), 0); +} + +#[test] +fn test_eq() { + let mut d = VecDeque::new(); + assert!(d == VecDeque::with_capacity(0)); + d.push_front(137); + d.push_front(17); + d.push_front(42); + d.push_back(137); + let mut e = VecDeque::with_capacity(0); + e.push_back(42); + e.push_back(17); + e.push_back(137); + e.push_back(137); + assert!(&e == &d); + e.pop_back(); + e.push_back(0); + assert!(e != d); + e.clear(); + assert!(e == VecDeque::new()); +} + +#[test] +fn test_partial_eq_array() { + let d = VecDeque::<char>::new(); + assert!(d == []); + + let mut d = VecDeque::new(); + d.push_front('a'); + assert!(d == ['a']); + + let mut d = VecDeque::new(); + d.push_back('a'); + assert!(d == ['a']); + + let mut d = VecDeque::new(); + d.push_back('a'); + d.push_back('b'); + assert!(d == ['a', 'b']); +} + +#[test] +fn test_hash() { + let mut x = VecDeque::new(); + let mut y = VecDeque::new(); + + x.push_back(1); + x.push_back(2); + x.push_back(3); + + y.push_back(0); + y.push_back(1); + y.pop_front(); + y.push_back(2); + y.push_back(3); + + assert!(::hash(&x) == ::hash(&y)); +} + +#[test] +fn test_hash_after_rotation() { + // test that two deques hash equal even if elements are laid out differently + let len = 28; + let mut ring: VecDeque<i32> = (0..len as i32).collect(); + let orig = ring.clone(); + for _ in 0..ring.capacity() { + // shift values 1 step to the right by pop, sub one, push + ring.pop_front(); + for elt in &mut ring { + *elt -= 1; + } + ring.push_back(len - 1); + assert_eq!(::hash(&orig), ::hash(&ring)); + assert_eq!(orig, ring); + assert_eq!(ring, orig); + } +} + +#[test] +fn test_eq_after_rotation() { + // test that two deques are equal even if elements are laid out differently + let len = 28; + let mut ring: VecDeque<i32> = (0..len as i32).collect(); + let mut shifted = ring.clone(); + for _ in 0..10 { + // shift values 1 step to the right by pop, sub one, push + ring.pop_front(); + for elt in &mut ring { + *elt -= 1; + } + ring.push_back(len - 1); + } + + // try every shift + for _ in 0..shifted.capacity() { + shifted.pop_front(); + for elt in &mut shifted { + *elt -= 1; + } + shifted.push_back(len - 1); + assert_eq!(shifted, ring); + assert_eq!(ring, shifted); + } +} + +#[test] +fn test_ord() { + let x = VecDeque::new(); + let mut y = VecDeque::new(); + y.push_back(1); + y.push_back(2); + y.push_back(3); + assert!(x < y); + assert!(y > x); + assert!(x <= x); + assert!(x >= x); +} + +#[test] +fn test_show() { + let ringbuf: VecDeque<_> = (0..10).collect(); + assert_eq!(format!("{:?}", ringbuf), "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]"); + + let ringbuf: VecDeque<_> = vec!["just", "one", "test", "more"] + .iter() + .cloned() + .collect(); + assert_eq!(format!("{:?}", ringbuf), + "[\"just\", \"one\", \"test\", \"more\"]"); +} + +#[test] +fn test_drop() { + static mut DROPS: i32 = 0; + struct Elem; + impl Drop for Elem { + fn drop(&mut self) { + unsafe { + DROPS += 1; + } + } + } + + let mut ring = VecDeque::new(); + ring.push_back(Elem); + ring.push_front(Elem); + ring.push_back(Elem); + ring.push_front(Elem); + drop(ring); + + assert_eq!(unsafe { DROPS }, 4); +} + +#[test] +fn test_drop_with_pop() { + static mut DROPS: i32 = 0; + struct Elem; + impl Drop for Elem { + fn drop(&mut self) { + unsafe { + DROPS += 1; + } + } + } + + let mut ring = VecDeque::new(); + ring.push_back(Elem); + ring.push_front(Elem); + ring.push_back(Elem); + ring.push_front(Elem); + + drop(ring.pop_back()); + drop(ring.pop_front()); + assert_eq!(unsafe { DROPS }, 2); + + drop(ring); + assert_eq!(unsafe { DROPS }, 4); +} + +#[test] +fn test_drop_clear() { + static mut DROPS: i32 = 0; + struct Elem; + impl Drop for Elem { + fn drop(&mut self) { + unsafe { + DROPS += 1; + } + } + } + + let mut ring = VecDeque::new(); + ring.push_back(Elem); + ring.push_front(Elem); + ring.push_back(Elem); + ring.push_front(Elem); + ring.clear(); + assert_eq!(unsafe { DROPS }, 4); + + drop(ring); + assert_eq!(unsafe { DROPS }, 4); +} + +#[test] +fn test_reserve_grow() { + // test growth path A + // [T o o H] -> [T o o H . . . . ] + let mut ring = VecDeque::with_capacity(4); + for i in 0..3 { + ring.push_back(i); + } + ring.reserve(7); + for i in 0..3 { + assert_eq!(ring.pop_front(), Some(i)); + } + + // test growth path B + // [H T o o] -> [. T o o H . . . ] + let mut ring = VecDeque::with_capacity(4); + for i in 0..1 { + ring.push_back(i); + assert_eq!(ring.pop_front(), Some(i)); + } + for i in 0..3 { + ring.push_back(i); + } + ring.reserve(7); + for i in 0..3 { + assert_eq!(ring.pop_front(), Some(i)); + } + + // test growth path C + // [o o H T] -> [o o H . . . . T ] + let mut ring = VecDeque::with_capacity(4); + for i in 0..3 { + ring.push_back(i); + assert_eq!(ring.pop_front(), Some(i)); + } + for i in 0..3 { + ring.push_back(i); + } + ring.reserve(7); + for i in 0..3 { + assert_eq!(ring.pop_front(), Some(i)); + } +} + +#[test] +fn test_get() { + let mut ring = VecDeque::new(); + ring.push_back(0); + assert_eq!(ring.get(0), Some(&0)); + assert_eq!(ring.get(1), None); + + ring.push_back(1); + assert_eq!(ring.get(0), Some(&0)); + assert_eq!(ring.get(1), Some(&1)); + assert_eq!(ring.get(2), None); + + ring.push_back(2); + assert_eq!(ring.get(0), Some(&0)); + assert_eq!(ring.get(1), Some(&1)); + assert_eq!(ring.get(2), Some(&2)); + assert_eq!(ring.get(3), None); + + assert_eq!(ring.pop_front(), Some(0)); + assert_eq!(ring.get(0), Some(&1)); + assert_eq!(ring.get(1), Some(&2)); + assert_eq!(ring.get(2), None); + + assert_eq!(ring.pop_front(), Some(1)); + assert_eq!(ring.get(0), Some(&2)); + assert_eq!(ring.get(1), None); + + assert_eq!(ring.pop_front(), Some(2)); + assert_eq!(ring.get(0), None); + assert_eq!(ring.get(1), None); +} + +#[test] +fn test_get_mut() { + let mut ring = VecDeque::new(); + for i in 0..3 { + ring.push_back(i); + } + + match ring.get_mut(1) { + Some(x) => *x = -1, + None => (), + }; + + assert_eq!(ring.get_mut(0), Some(&mut 0)); + assert_eq!(ring.get_mut(1), Some(&mut -1)); + assert_eq!(ring.get_mut(2), Some(&mut 2)); + assert_eq!(ring.get_mut(3), None); + + assert_eq!(ring.pop_front(), Some(0)); + assert_eq!(ring.get_mut(0), Some(&mut -1)); + assert_eq!(ring.get_mut(1), Some(&mut 2)); + assert_eq!(ring.get_mut(2), None); +} + +#[test] +fn test_front() { + let mut ring = VecDeque::new(); + ring.push_back(10); + ring.push_back(20); + assert_eq!(ring.front(), Some(&10)); + ring.pop_front(); + assert_eq!(ring.front(), Some(&20)); + ring.pop_front(); + assert_eq!(ring.front(), None); +} + +#[test] +fn test_as_slices() { + let mut ring: VecDeque<i32> = VecDeque::with_capacity(127); + let cap = ring.capacity() as i32; + let first = cap / 2; + let last = cap - first; + for i in 0..first { + ring.push_back(i); + + let (left, right) = ring.as_slices(); + let expected: Vec<_> = (0..i + 1).collect(); + assert_eq!(left, &expected[..]); + assert_eq!(right, []); + } + + for j in -last..0 { + ring.push_front(j); + let (left, right) = ring.as_slices(); + let expected_left: Vec<_> = (-last..j + 1).rev().collect(); + let expected_right: Vec<_> = (0..first).collect(); + assert_eq!(left, &expected_left[..]); + assert_eq!(right, &expected_right[..]); + } + + assert_eq!(ring.len() as i32, cap); + assert_eq!(ring.capacity() as i32, cap); +} + +#[test] +fn test_as_mut_slices() { + let mut ring: VecDeque<i32> = VecDeque::with_capacity(127); + let cap = ring.capacity() as i32; + let first = cap / 2; + let last = cap - first; + for i in 0..first { + ring.push_back(i); + + let (left, right) = ring.as_mut_slices(); + let expected: Vec<_> = (0..i + 1).collect(); + assert_eq!(left, &expected[..]); + assert_eq!(right, []); + } + + for j in -last..0 { + ring.push_front(j); + let (left, right) = ring.as_mut_slices(); + let expected_left: Vec<_> = (-last..j + 1).rev().collect(); + let expected_right: Vec<_> = (0..first).collect(); + assert_eq!(left, &expected_left[..]); + assert_eq!(right, &expected_right[..]); + } + + assert_eq!(ring.len() as i32, cap); + assert_eq!(ring.capacity() as i32, cap); +} + +#[test] +fn test_append() { + let mut a: VecDeque<_> = vec![1, 2, 3].into_iter().collect(); + let mut b: VecDeque<_> = vec![4, 5, 6].into_iter().collect(); + + // normal append + a.append(&mut b); + assert_eq!(a.iter().cloned().collect::<Vec<_>>(), [1, 2, 3, 4, 5, 6]); + assert_eq!(b.iter().cloned().collect::<Vec<_>>(), []); + + // append nothing to something + a.append(&mut b); + assert_eq!(a.iter().cloned().collect::<Vec<_>>(), [1, 2, 3, 4, 5, 6]); + assert_eq!(b.iter().cloned().collect::<Vec<_>>(), []); + + // append something to nothing + b.append(&mut a); + assert_eq!(b.iter().cloned().collect::<Vec<_>>(), [1, 2, 3, 4, 5, 6]); + assert_eq!(a.iter().cloned().collect::<Vec<_>>(), []); +} + +#[test] +fn test_retain() { + let mut buf = VecDeque::new(); + buf.extend(1..5); + buf.retain(|&x| x % 2 == 0); + let v: Vec<_> = buf.into_iter().collect(); + assert_eq!(&v[..], &[2, 4]); +} + +#[test] +fn test_extend_ref() { + let mut v = VecDeque::new(); + v.push_back(1); + v.extend(&[2, 3, 4]); + + assert_eq!(v.len(), 4); + assert_eq!(v[0], 1); + assert_eq!(v[1], 2); + assert_eq!(v[2], 3); + assert_eq!(v[3], 4); + + let mut w = VecDeque::new(); + w.push_back(5); + w.push_back(6); + v.extend(&w); + + assert_eq!(v.len(), 6); + assert_eq!(v[0], 1); + assert_eq!(v[1], 2); + assert_eq!(v[2], 3); + assert_eq!(v[3], 4); + assert_eq!(v[4], 5); + assert_eq!(v[5], 6); +} + +#[test] +fn test_contains() { + let mut v = VecDeque::new(); + v.extend(&[2, 3, 4]); + + assert!(v.contains(&3)); + assert!(!v.contains(&1)); + + v.clear(); + + assert!(!v.contains(&3)); +} + +#[allow(dead_code)] +fn assert_covariance() { + fn drain<'new>(d: Drain<'static, &'static str>) -> Drain<'new, &'new str> { + d + } +} + +#[test] +fn test_is_empty() { + let mut v = VecDeque::<i32>::new(); + assert!(v.is_empty()); + assert!(v.iter().is_empty()); + assert!(v.iter_mut().is_empty()); + v.extend(&[2, 3, 4]); + assert!(!v.is_empty()); + assert!(!v.iter().is_empty()); + assert!(!v.iter_mut().is_empty()); + while let Some(_) = v.pop_front() { + assert_eq!(v.is_empty(), v.len() == 0); + assert_eq!(v.iter().is_empty(), v.iter().len() == 0); + assert_eq!(v.iter_mut().is_empty(), v.iter_mut().len() == 0); + } + assert!(v.is_empty()); + assert!(v.iter().is_empty()); + assert!(v.iter_mut().is_empty()); + assert!(v.into_iter().is_empty()); +} + +#[test] +fn test_placement_in() { + let mut buf: VecDeque<isize> = VecDeque::new(); + buf.place_back() <- 1; + buf.place_back() <- 2; + assert_eq!(buf, [1,2]); + + buf.place_front() <- 3; + buf.place_front() <- 4; + assert_eq!(buf, [4,3,1,2]); + + { + let ptr_head = buf.place_front() <- 5; + assert_eq!(*ptr_head, 5); + } + { + let ptr_tail = buf.place_back() <- 6; + assert_eq!(*ptr_tail, 6); + } + assert_eq!(buf, [5,4,3,1,2,6]); +} diff --git a/src/liballoc/vec.rs b/src/liballoc/vec.rs new file mode 100644 index 00000000000..8bb16febb04 --- /dev/null +++ b/src/liballoc/vec.rs @@ -0,0 +1,2593 @@ +// Copyright 2014 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! A contiguous growable array type with heap-allocated contents, written +//! `Vec<T>`. +//! +//! Vectors have `O(1)` indexing, amortized `O(1)` push (to the end) and +//! `O(1)` pop (from the end). +//! +//! # Examples +//! +//! You can explicitly create a [`Vec<T>`] with [`new`]: +//! +//! ``` +//! let v: Vec<i32> = Vec::new(); +//! ``` +//! +//! ...or by using the [`vec!`] macro: +//! +//! ``` +//! let v: Vec<i32> = vec![]; +//! +//! let v = vec![1, 2, 3, 4, 5]; +//! +//! let v = vec![0; 10]; // ten zeroes +//! ``` +//! +//! You can [`push`] values onto the end of a vector (which will grow the vector +//! as needed): +//! +//! ``` +//! let mut v = vec![1, 2]; +//! +//! v.push(3); +//! ``` +//! +//! Popping values works in much the same way: +//! +//! ``` +//! let mut v = vec![1, 2]; +//! +//! let two = v.pop(); +//! ``` +//! +//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits): +//! +//! ``` +//! let mut v = vec![1, 2, 3]; +//! let three = v[2]; +//! v[1] = v[1] + 5; +//! ``` +//! +//! [`Vec<T>`]: ../../std/vec/struct.Vec.html +//! [`new`]: ../../std/vec/struct.Vec.html#method.new +//! [`push`]: ../../std/vec/struct.Vec.html#method.push +//! [`Index`]: ../../std/ops/trait.Index.html +//! [`IndexMut`]: ../../std/ops/trait.IndexMut.html +//! [`vec!`]: ../../std/macro.vec.html + +#![stable(feature = "rust1", since = "1.0.0")] + +use core::cmp::Ordering; +use core::fmt; +use core::hash::{self, Hash}; +use core::intrinsics::{arith_offset, assume}; +use core::iter::{FromIterator, FusedIterator, TrustedLen}; +use core::mem; +#[cfg(not(test))] +use core::num::Float; +use core::ops::{InPlace, Index, IndexMut, Place, Placer}; +use core::ops; +use core::ptr; +use core::ptr::Shared; +use core::slice; + +use borrow::ToOwned; +use borrow::Cow; +use boxed::Box; +use raw_vec::RawVec; +use super::range::RangeArgument; +use Bound::{Excluded, Included, Unbounded}; + +/// A contiguous growable array type, written `Vec<T>` but pronounced 'vector'. +/// +/// # Examples +/// +/// ``` +/// let mut vec = Vec::new(); +/// vec.push(1); +/// vec.push(2); +/// +/// assert_eq!(vec.len(), 2); +/// assert_eq!(vec[0], 1); +/// +/// assert_eq!(vec.pop(), Some(2)); +/// assert_eq!(vec.len(), 1); +/// +/// vec[0] = 7; +/// assert_eq!(vec[0], 7); +/// +/// vec.extend([1, 2, 3].iter().cloned()); +/// +/// for x in &vec { +/// println!("{}", x); +/// } +/// assert_eq!(vec, [7, 1, 2, 3]); +/// ``` +/// +/// The [`vec!`] macro is provided to make initialization more convenient: +/// +/// ``` +/// let mut vec = vec![1, 2, 3]; +/// vec.push(4); +/// assert_eq!(vec, [1, 2, 3, 4]); +/// ``` +/// +/// It can also initialize each element of a `Vec<T>` with a given value: +/// +/// ``` +/// let vec = vec![0; 5]; +/// assert_eq!(vec, [0, 0, 0, 0, 0]); +/// ``` +/// +/// Use a `Vec<T>` as an efficient stack: +/// +/// ``` +/// let mut stack = Vec::new(); +/// +/// stack.push(1); +/// stack.push(2); +/// stack.push(3); +/// +/// while let Some(top) = stack.pop() { +/// // Prints 3, 2, 1 +/// println!("{}", top); +/// } +/// ``` +/// +/// # Indexing +/// +/// The `Vec` type allows to access values by index, because it implements the +/// [`Index`] trait. An example will be more explicit: +/// +/// ``` +/// let v = vec![0, 2, 4, 6]; +/// println!("{}", v[1]); // it will display '2' +/// ``` +/// +/// However be careful: if you try to access an index which isn't in the `Vec`, +/// your software will panic! You cannot do this: +/// +/// ```ignore +/// let v = vec![0, 2, 4, 6]; +/// println!("{}", v[6]); // it will panic! +/// ``` +/// +/// In conclusion: always check if the index you want to get really exists +/// before doing it. +/// +/// # Slicing +/// +/// A `Vec` can be mutable. Slices, on the other hand, are read-only objects. +/// To get a slice, use `&`. Example: +/// +/// ``` +/// fn read_slice(slice: &[usize]) { +/// // ... +/// } +/// +/// let v = vec![0, 1]; +/// read_slice(&v); +/// +/// // ... and that's all! +/// // you can also do it like this: +/// let x : &[usize] = &v; +/// ``` +/// +/// In Rust, it's more common to pass slices as arguments rather than vectors +/// when you just want to provide a read access. The same goes for [`String`] and +/// [`&str`]. +/// +/// # Capacity and reallocation +/// +/// The capacity of a vector is the amount of space allocated for any future +/// elements that will be added onto the vector. This is not to be confused with +/// the *length* of a vector, which specifies the number of actual elements +/// within the vector. If a vector's length exceeds its capacity, its capacity +/// will automatically be increased, but its elements will have to be +/// reallocated. +/// +/// For example, a vector with capacity 10 and length 0 would be an empty vector +/// with space for 10 more elements. Pushing 10 or fewer elements onto the +/// vector will not change its capacity or cause reallocation to occur. However, +/// if the vector's length is increased to 11, it will have to reallocate, which +/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`] +/// whenever possible to specify how big the vector is expected to get. +/// +/// # Guarantees +/// +/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees +/// about its design. This ensures that it's as low-overhead as possible in +/// the general case, and can be correctly manipulated in primitive ways +/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`. +/// If additional type parameters are added (e.g. to support custom allocators), +/// overriding their defaults may change the behavior. +/// +/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length) +/// triplet. No more, no less. The order of these fields is completely +/// unspecified, and you should use the appropriate methods to modify these. +/// The pointer will never be null, so this type is null-pointer-optimized. +/// +/// However, the pointer may not actually point to allocated memory. In particular, +/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`], +/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`] +/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized +/// types inside a `Vec`, it will not allocate space for them. *Note that in this case +/// the `Vec` may not report a [`capacity`] of 0*. `Vec` will allocate if and only +/// if [`mem::size_of::<T>`]` * capacity() > 0`. In general, `Vec`'s allocation +/// details are subtle enough that it is strongly recommended that you only +/// free memory allocated by a `Vec` by creating a new `Vec` and dropping it. +/// +/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap +/// (as defined by the allocator Rust is configured to use by default), and its +/// pointer points to [`len`] initialized elements in order (what you would see +/// if you coerced it to a slice), followed by [`capacity`]` - `[`len`] +/// logically uninitialized elements. +/// +/// `Vec` will never perform a "small optimization" where elements are actually +/// stored on the stack for two reasons: +/// +/// * It would make it more difficult for unsafe code to correctly manipulate +/// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were +/// only moved, and it would be more difficult to determine if a `Vec` had +/// actually allocated memory. +/// +/// * It would penalize the general case, incurring an additional branch +/// on every access. +/// +/// `Vec` will never automatically shrink itself, even if completely empty. This +/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec` +/// and then filling it back up to the same [`len`] should incur no calls to +/// the allocator. If you wish to free up unused memory, use +/// [`shrink_to_fit`][`shrink_to_fit`]. +/// +/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is +/// sufficient. [`push`] and [`insert`] *will* (re)allocate if +/// [`len`]` == `[`capacity`]. That is, the reported capacity is completely +/// accurate, and can be relied on. It can even be used to manually free the memory +/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even +/// when not necessary. +/// +/// `Vec` does not guarantee any particular growth strategy when reallocating +/// when full, nor when [`reserve`] is called. The current strategy is basic +/// and it may prove desirable to use a non-constant growth factor. Whatever +/// strategy is used will of course guarantee `O(1)` amortized [`push`]. +/// +/// `vec![x; n]`, `vec![a, b, c, d]`, and +/// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec` +/// with exactly the requested capacity. If [`len`]` == `[`capacity`], +/// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to +/// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements. +/// +/// `Vec` will not specifically overwrite any data that is removed from it, +/// but also won't specifically preserve it. Its uninitialized memory is +/// scratch space that it may use however it wants. It will generally just do +/// whatever is most efficient or otherwise easy to implement. Do not rely on +/// removed data to be erased for security purposes. Even if you drop a `Vec`, its +/// buffer may simply be reused by another `Vec`. Even if you zero a `Vec`'s memory +/// first, that may not actually happen because the optimizer does not consider +/// this a side-effect that must be preserved. There is one case which we will +/// not break, however: using `unsafe` code to write to the excess capacity, +/// and then increasing the length to match, is always valid. +/// +/// `Vec` does not currently guarantee the order in which elements are dropped +/// (the order has changed in the past, and may change again). +/// +/// [`vec!`]: ../../std/macro.vec.html +/// [`Index`]: ../../std/ops/trait.Index.html +/// [`String`]: ../../std/string/struct.String.html +/// [`&str`]: ../../std/primitive.str.html +/// [`Vec::with_capacity`]: ../../std/vec/struct.Vec.html#method.with_capacity +/// [`Vec::new`]: ../../std/vec/struct.Vec.html#method.new +/// [`shrink_to_fit`]: ../../std/vec/struct.Vec.html#method.shrink_to_fit +/// [`capacity`]: ../../std/vec/struct.Vec.html#method.capacity +/// [`mem::size_of::<T>`]: ../../std/mem/fn.size_of.html +/// [`len`]: ../../std/vec/struct.Vec.html#method.len +/// [`push`]: ../../std/vec/struct.Vec.html#method.push +/// [`insert`]: ../../std/vec/struct.Vec.html#method.insert +/// [`reserve`]: ../../std/vec/struct.Vec.html#method.reserve +/// [owned slice]: ../../std/boxed/struct.Box.html +#[stable(feature = "rust1", since = "1.0.0")] +pub struct Vec<T> { + buf: RawVec<T>, + len: usize, +} + +//////////////////////////////////////////////////////////////////////////////// +// Inherent methods +//////////////////////////////////////////////////////////////////////////////// + +impl<T> Vec<T> { + /// Constructs a new, empty `Vec<T>`. + /// + /// The vector will not allocate until elements are pushed onto it. + /// + /// # Examples + /// + /// ``` + /// # #![allow(unused_mut)] + /// let mut vec: Vec<i32> = Vec::new(); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn new() -> Vec<T> { + Vec { + buf: RawVec::new(), + len: 0, + } + } + + /// Constructs a new, empty `Vec<T>` with the specified capacity. + /// + /// The vector will be able to hold exactly `capacity` elements without + /// reallocating. If `capacity` is 0, the vector will not allocate. + /// + /// It is important to note that this function does not specify the *length* + /// of the returned vector, but only the *capacity*. For an explanation of + /// the difference between length and capacity, see *[Capacity and reallocation]*. + /// + /// [Capacity and reallocation]: #capacity-and-reallocation + /// + /// # Examples + /// + /// ``` + /// let mut vec = Vec::with_capacity(10); + /// + /// // The vector contains no items, even though it has capacity for more + /// assert_eq!(vec.len(), 0); + /// + /// // These are all done without reallocating... + /// for i in 0..10 { + /// vec.push(i); + /// } + /// + /// // ...but this may make the vector reallocate + /// vec.push(11); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn with_capacity(capacity: usize) -> Vec<T> { + Vec { + buf: RawVec::with_capacity(capacity), + len: 0, + } + } + + /// Creates a `Vec<T>` directly from the raw components of another vector. + /// + /// # Safety + /// + /// This is highly unsafe, due to the number of invariants that aren't + /// checked: + /// + /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>` + /// (at least, it's highly likely to be incorrect if it wasn't). + /// * `length` needs to be less than or equal to `capacity`. + /// * `capacity` needs to be the capacity that the pointer was allocated with. + /// + /// Violating these may cause problems like corrupting the allocator's + /// internal datastructures. For example it is **not** safe + /// to build a `Vec<u8>` from a pointer to a C `char` array and a `size_t`. + /// + /// The ownership of `ptr` is effectively transferred to the + /// `Vec<T>` which may then deallocate, reallocate or change the + /// contents of memory pointed to by the pointer at will. Ensure + /// that nothing else uses the pointer after calling this + /// function. + /// + /// [`String`]: ../../std/string/struct.String.html + /// + /// # Examples + /// + /// ``` + /// use std::ptr; + /// use std::mem; + /// + /// fn main() { + /// let mut v = vec![1, 2, 3]; + /// + /// // Pull out the various important pieces of information about `v` + /// let p = v.as_mut_ptr(); + /// let len = v.len(); + /// let cap = v.capacity(); + /// + /// unsafe { + /// // Cast `v` into the void: no destructor run, so we are in + /// // complete control of the allocation to which `p` points. + /// mem::forget(v); + /// + /// // Overwrite memory with 4, 5, 6 + /// for i in 0..len as isize { + /// ptr::write(p.offset(i), 4 + i); + /// } + /// + /// // Put everything back together into a Vec + /// let rebuilt = Vec::from_raw_parts(p, len, cap); + /// assert_eq!(rebuilt, [4, 5, 6]); + /// } + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Vec<T> { + Vec { + buf: RawVec::from_raw_parts(ptr, capacity), + len: length, + } + } + + /// Returns the number of elements the vector can hold without + /// reallocating. + /// + /// # Examples + /// + /// ``` + /// let vec: Vec<i32> = Vec::with_capacity(10); + /// assert_eq!(vec.capacity(), 10); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn capacity(&self) -> usize { + self.buf.cap() + } + + /// Reserves capacity for at least `additional` more elements to be inserted + /// in the given `Vec<T>`. The collection may reserve more space to avoid + /// frequent reallocations. After calling `reserve`, capacity will be + /// greater than or equal to `self.len() + additional`. Does nothing if + /// capacity is already sufficient. + /// + /// # Panics + /// + /// Panics if the new capacity overflows `usize`. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1]; + /// vec.reserve(10); + /// assert!(vec.capacity() >= 11); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn reserve(&mut self, additional: usize) { + self.buf.reserve(self.len, additional); + } + + /// Reserves the minimum capacity for exactly `additional` more elements to + /// be inserted in the given `Vec<T>`. After calling `reserve_exact`, + /// capacity will be greater than or equal to `self.len() + additional`. + /// Does nothing if the capacity is already sufficient. + /// + /// Note that the allocator may give the collection more space than it + /// requests. Therefore capacity can not be relied upon to be precisely + /// minimal. Prefer `reserve` if future insertions are expected. + /// + /// # Panics + /// + /// Panics if the new capacity overflows `usize`. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1]; + /// vec.reserve_exact(10); + /// assert!(vec.capacity() >= 11); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn reserve_exact(&mut self, additional: usize) { + self.buf.reserve_exact(self.len, additional); + } + + /// Shrinks the capacity of the vector as much as possible. + /// + /// It will drop down as close as possible to the length but the allocator + /// may still inform the vector that there is space for a few more elements. + /// + /// # Examples + /// + /// ``` + /// let mut vec = Vec::with_capacity(10); + /// vec.extend([1, 2, 3].iter().cloned()); + /// assert_eq!(vec.capacity(), 10); + /// vec.shrink_to_fit(); + /// assert!(vec.capacity() >= 3); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn shrink_to_fit(&mut self) { + self.buf.shrink_to_fit(self.len); + } + + /// Converts the vector into [`Box<[T]>`][owned slice]. + /// + /// Note that this will drop any excess capacity. Calling this and + /// converting back to a vector with [`into_vec`] is equivalent to calling + /// [`shrink_to_fit`]. + /// + /// [owned slice]: ../../std/boxed/struct.Box.html + /// [`into_vec`]: ../../std/primitive.slice.html#method.into_vec + /// [`shrink_to_fit`]: #method.shrink_to_fit + /// + /// # Examples + /// + /// ``` + /// let v = vec![1, 2, 3]; + /// + /// let slice = v.into_boxed_slice(); + /// ``` + /// + /// Any excess capacity is removed: + /// + /// ``` + /// let mut vec = Vec::with_capacity(10); + /// vec.extend([1, 2, 3].iter().cloned()); + /// + /// assert_eq!(vec.capacity(), 10); + /// let slice = vec.into_boxed_slice(); + /// assert_eq!(slice.into_vec().capacity(), 3); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn into_boxed_slice(mut self) -> Box<[T]> { + unsafe { + self.shrink_to_fit(); + let buf = ptr::read(&self.buf); + mem::forget(self); + buf.into_box() + } + } + + /// Shortens the vector, keeping the first `len` elements and dropping + /// the rest. + /// + /// If `len` is greater than the vector's current length, this has no + /// effect. + /// + /// The [`drain`] method can emulate `truncate`, but causes the excess + /// elements to be returned instead of dropped. + /// + /// Note that this method has no effect on the allocated capacity + /// of the vector. + /// + /// # Examples + /// + /// Truncating a five element vector to two elements: + /// + /// ``` + /// let mut vec = vec![1, 2, 3, 4, 5]; + /// vec.truncate(2); + /// assert_eq!(vec, [1, 2]); + /// ``` + /// + /// No truncation occurs when `len` is greater than the vector's current + /// length: + /// + /// ``` + /// let mut vec = vec![1, 2, 3]; + /// vec.truncate(8); + /// assert_eq!(vec, [1, 2, 3]); + /// ``` + /// + /// Truncating when `len == 0` is equivalent to calling the [`clear`] + /// method. + /// + /// ``` + /// let mut vec = vec![1, 2, 3]; + /// vec.truncate(0); + /// assert_eq!(vec, []); + /// ``` + /// + /// [`clear`]: #method.clear + /// [`drain`]: #method.drain + #[stable(feature = "rust1", since = "1.0.0")] + pub fn truncate(&mut self, len: usize) { + unsafe { + // drop any extra elements + while len < self.len { + // decrement len before the drop_in_place(), so a panic on Drop + // doesn't re-drop the just-failed value. + self.len -= 1; + let len = self.len; + ptr::drop_in_place(self.get_unchecked_mut(len)); + } + } + } + + /// Extracts a slice containing the entire vector. + /// + /// Equivalent to `&s[..]`. + /// + /// # Examples + /// + /// ``` + /// use std::io::{self, Write}; + /// let buffer = vec![1, 2, 3, 5, 8]; + /// io::sink().write(buffer.as_slice()).unwrap(); + /// ``` + #[inline] + #[stable(feature = "vec_as_slice", since = "1.7.0")] + pub fn as_slice(&self) -> &[T] { + self + } + + /// Extracts a mutable slice of the entire vector. + /// + /// Equivalent to `&mut s[..]`. + /// + /// # Examples + /// + /// ``` + /// use std::io::{self, Read}; + /// let mut buffer = vec![0; 3]; + /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap(); + /// ``` + #[inline] + #[stable(feature = "vec_as_slice", since = "1.7.0")] + pub fn as_mut_slice(&mut self) -> &mut [T] { + self + } + + /// Sets the length of a vector. + /// + /// This will explicitly set the size of the vector, without actually + /// modifying its buffers, so it is up to the caller to ensure that the + /// vector is actually the specified size. + /// + /// # Examples + /// + /// ``` + /// use std::ptr; + /// + /// let mut vec = vec!['r', 'u', 's', 't']; + /// + /// unsafe { + /// ptr::drop_in_place(&mut vec[3]); + /// vec.set_len(3); + /// } + /// assert_eq!(vec, ['r', 'u', 's']); + /// ``` + /// + /// In this example, there is a memory leak since the memory locations + /// owned by the inner vectors were not freed prior to the `set_len` call: + /// + /// ``` + /// let mut vec = vec![vec![1, 0, 0], + /// vec![0, 1, 0], + /// vec![0, 0, 1]]; + /// unsafe { + /// vec.set_len(0); + /// } + /// ``` + /// + /// In this example, the vector gets expanded from zero to four items + /// without any memory allocations occurring, resulting in vector + /// values of unallocated memory: + /// + /// ``` + /// let mut vec: Vec<char> = Vec::new(); + /// + /// unsafe { + /// vec.set_len(4); + /// } + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub unsafe fn set_len(&mut self, len: usize) { + self.len = len; + } + + /// Removes an element from the vector and returns it. + /// + /// The removed element is replaced by the last element of the vector. + /// + /// This does not preserve ordering, but is O(1). + /// + /// # Panics + /// + /// Panics if `index` is out of bounds. + /// + /// # Examples + /// + /// ``` + /// let mut v = vec!["foo", "bar", "baz", "qux"]; + /// + /// assert_eq!(v.swap_remove(1), "bar"); + /// assert_eq!(v, ["foo", "qux", "baz"]); + /// + /// assert_eq!(v.swap_remove(0), "foo"); + /// assert_eq!(v, ["baz", "qux"]); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn swap_remove(&mut self, index: usize) -> T { + let length = self.len(); + self.swap(index, length - 1); + self.pop().unwrap() + } + + /// Inserts an element at position `index` within the vector, shifting all + /// elements after it to the right. + /// + /// # Panics + /// + /// Panics if `index` is out of bounds. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1, 2, 3]; + /// vec.insert(1, 4); + /// assert_eq!(vec, [1, 4, 2, 3]); + /// vec.insert(4, 5); + /// assert_eq!(vec, [1, 4, 2, 3, 5]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn insert(&mut self, index: usize, element: T) { + let len = self.len(); + assert!(index <= len); + + // space for the new element + if len == self.buf.cap() { + self.buf.double(); + } + + unsafe { + // infallible + // The spot to put the new value + { + let p = self.as_mut_ptr().offset(index as isize); + // Shift everything over to make space. (Duplicating the + // `index`th element into two consecutive places.) + ptr::copy(p, p.offset(1), len - index); + // Write it in, overwriting the first copy of the `index`th + // element. + ptr::write(p, element); + } + self.set_len(len + 1); + } + } + + /// Removes and returns the element at position `index` within the vector, + /// shifting all elements after it to the left. + /// + /// # Panics + /// + /// Panics if `index` is out of bounds. + /// + /// # Examples + /// + /// ``` + /// let mut v = vec![1, 2, 3]; + /// assert_eq!(v.remove(1), 2); + /// assert_eq!(v, [1, 3]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn remove(&mut self, index: usize) -> T { + let len = self.len(); + assert!(index < len); + unsafe { + // infallible + let ret; + { + // the place we are taking from. + let ptr = self.as_mut_ptr().offset(index as isize); + // copy it out, unsafely having a copy of the value on + // the stack and in the vector at the same time. + ret = ptr::read(ptr); + + // Shift everything down to fill in that spot. + ptr::copy(ptr.offset(1), ptr, len - index - 1); + } + self.set_len(len - 1); + ret + } + } + + /// Retains only the elements specified by the predicate. + /// + /// In other words, remove all elements `e` such that `f(&e)` returns `false`. + /// This method operates in place and preserves the order of the retained + /// elements. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1, 2, 3, 4]; + /// vec.retain(|&x| x%2 == 0); + /// assert_eq!(vec, [2, 4]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn retain<F>(&mut self, mut f: F) + where F: FnMut(&T) -> bool + { + let len = self.len(); + let mut del = 0; + { + let v = &mut **self; + + for i in 0..len { + if !f(&v[i]) { + del += 1; + } else if del > 0 { + v.swap(i - del, i); + } + } + } + if del > 0 { + self.truncate(len - del); + } + } + + /// Removes consecutive elements in the vector that resolve to the same key. + /// + /// If the vector is sorted, this removes all duplicates. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![10, 20, 21, 30, 20]; + /// + /// vec.dedup_by_key(|i| *i / 10); + /// + /// assert_eq!(vec, [10, 20, 30, 20]); + /// ``` + #[stable(feature = "dedup_by", since = "1.16.0")] + #[inline] + pub fn dedup_by_key<F, K>(&mut self, mut key: F) where F: FnMut(&mut T) -> K, K: PartialEq { + self.dedup_by(|a, b| key(a) == key(b)) + } + + /// Removes consecutive elements in the vector according to a predicate. + /// + /// The `same_bucket` function is passed references to two elements from the vector, and + /// returns `true` if the elements compare equal, or `false` if they do not. Only the first + /// of adjacent equal items is kept. + /// + /// If the vector is sorted, this removes all duplicates. + /// + /// # Examples + /// + /// ``` + /// use std::ascii::AsciiExt; + /// + /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"]; + /// + /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b)); + /// + /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]); + /// ``` + #[stable(feature = "dedup_by", since = "1.16.0")] + pub fn dedup_by<F>(&mut self, mut same_bucket: F) where F: FnMut(&mut T, &mut T) -> bool { + unsafe { + // Although we have a mutable reference to `self`, we cannot make + // *arbitrary* changes. The `same_bucket` calls could panic, so we + // must ensure that the vector is in a valid state at all time. + // + // The way that we handle this is by using swaps; we iterate + // over all the elements, swapping as we go so that at the end + // the elements we wish to keep are in the front, and those we + // wish to reject are at the back. We can then truncate the + // vector. This operation is still O(n). + // + // Example: We start in this state, where `r` represents "next + // read" and `w` represents "next_write`. + // + // r + // +---+---+---+---+---+---+ + // | 0 | 1 | 1 | 2 | 3 | 3 | + // +---+---+---+---+---+---+ + // w + // + // Comparing self[r] against self[w-1], this is not a duplicate, so + // we swap self[r] and self[w] (no effect as r==w) and then increment both + // r and w, leaving us with: + // + // r + // +---+---+---+---+---+---+ + // | 0 | 1 | 1 | 2 | 3 | 3 | + // +---+---+---+---+---+---+ + // w + // + // Comparing self[r] against self[w-1], this value is a duplicate, + // so we increment `r` but leave everything else unchanged: + // + // r + // +---+---+---+---+---+---+ + // | 0 | 1 | 1 | 2 | 3 | 3 | + // +---+---+---+---+---+---+ + // w + // + // Comparing self[r] against self[w-1], this is not a duplicate, + // so swap self[r] and self[w] and advance r and w: + // + // r + // +---+---+---+---+---+---+ + // | 0 | 1 | 2 | 1 | 3 | 3 | + // +---+---+---+---+---+---+ + // w + // + // Not a duplicate, repeat: + // + // r + // +---+---+---+---+---+---+ + // | 0 | 1 | 2 | 3 | 1 | 3 | + // +---+---+---+---+---+---+ + // w + // + // Duplicate, advance r. End of vec. Truncate to w. + + let ln = self.len(); + if ln <= 1 { + return; + } + + // Avoid bounds checks by using raw pointers. + let p = self.as_mut_ptr(); + let mut r: usize = 1; + let mut w: usize = 1; + + while r < ln { + let p_r = p.offset(r as isize); + let p_wm1 = p.offset((w - 1) as isize); + if !same_bucket(&mut *p_r, &mut *p_wm1) { + if r != w { + let p_w = p_wm1.offset(1); + mem::swap(&mut *p_r, &mut *p_w); + } + w += 1; + } + r += 1; + } + + self.truncate(w); + } + } + + /// Appends an element to the back of a collection. + /// + /// # Panics + /// + /// Panics if the number of elements in the vector overflows a `usize`. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1, 2]; + /// vec.push(3); + /// assert_eq!(vec, [1, 2, 3]); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn push(&mut self, value: T) { + // This will panic or abort if we would allocate > isize::MAX bytes + // or if the length increment would overflow for zero-sized types. + if self.len == self.buf.cap() { + self.buf.double(); + } + unsafe { + let end = self.as_mut_ptr().offset(self.len as isize); + ptr::write(end, value); + self.len += 1; + } + } + + /// Returns a place for insertion at the back of the `Vec`. + /// + /// Using this method with placement syntax is equivalent to [`push`](#method.push), + /// but may be more efficient. + /// + /// # Examples + /// + /// ``` + /// #![feature(collection_placement)] + /// #![feature(placement_in_syntax)] + /// + /// let mut vec = vec![1, 2]; + /// vec.place_back() <- 3; + /// vec.place_back() <- 4; + /// assert_eq!(&vec, &[1, 2, 3, 4]); + /// ``` + #[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] + pub fn place_back(&mut self) -> PlaceBack<T> { + PlaceBack { vec: self } + } + + /// Removes the last element from a vector and returns it, or [`None`] if it + /// is empty. + /// + /// [`None`]: ../../std/option/enum.Option.html#variant.None + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1, 2, 3]; + /// assert_eq!(vec.pop(), Some(3)); + /// assert_eq!(vec, [1, 2]); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn pop(&mut self) -> Option<T> { + if self.len == 0 { + None + } else { + unsafe { + self.len -= 1; + Some(ptr::read(self.get_unchecked(self.len()))) + } + } + } + + /// Moves all the elements of `other` into `Self`, leaving `other` empty. + /// + /// # Panics + /// + /// Panics if the number of elements in the vector overflows a `usize`. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1, 2, 3]; + /// let mut vec2 = vec![4, 5, 6]; + /// vec.append(&mut vec2); + /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]); + /// assert_eq!(vec2, []); + /// ``` + #[inline] + #[stable(feature = "append", since = "1.4.0")] + pub fn append(&mut self, other: &mut Self) { + unsafe { + self.append_elements(other.as_slice() as _); + other.set_len(0); + } + } + + /// Appends elements to `Self` from other buffer. + #[inline] + unsafe fn append_elements(&mut self, other: *const [T]) { + let count = (*other).len(); + self.reserve(count); + let len = self.len(); + ptr::copy_nonoverlapping(other as *const T, self.get_unchecked_mut(len), count); + self.len += count; + } + + /// Creates a draining iterator that removes the specified range in the vector + /// and yields the removed items. + /// + /// Note 1: The element range is removed even if the iterator is only + /// partially consumed or not consumed at all. + /// + /// Note 2: It is unspecified how many elements are removed from the vector + /// if the `Drain` value is leaked. + /// + /// # Panics + /// + /// Panics if the starting point is greater than the end point or if + /// the end point is greater than the length of the vector. + /// + /// # Examples + /// + /// ``` + /// let mut v = vec![1, 2, 3]; + /// let u: Vec<_> = v.drain(1..).collect(); + /// assert_eq!(v, &[1]); + /// assert_eq!(u, &[2, 3]); + /// + /// // A full range clears the vector + /// v.drain(..); + /// assert_eq!(v, &[]); + /// ``` + #[stable(feature = "drain", since = "1.6.0")] + pub fn drain<R>(&mut self, range: R) -> Drain<T> + where R: RangeArgument<usize> + { + // Memory safety + // + // When the Drain is first created, it shortens the length of + // the source vector to make sure no uninitalized or moved-from elements + // are accessible at all if the Drain's destructor never gets to run. + // + // Drain will ptr::read out the values to remove. + // When finished, remaining tail of the vec is copied back to cover + // the hole, and the vector length is restored to the new length. + // + let len = self.len(); + let start = match range.start() { + Included(&n) => n, + Excluded(&n) => n + 1, + Unbounded => 0, + }; + let end = match range.end() { + Included(&n) => n + 1, + Excluded(&n) => n, + Unbounded => len, + }; + assert!(start <= end); + assert!(end <= len); + + unsafe { + // set self.vec length's to start, to be safe in case Drain is leaked + self.set_len(start); + // Use the borrow in the IterMut to indicate borrowing behavior of the + // whole Drain iterator (like &mut T). + let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().offset(start as isize), + end - start); + Drain { + tail_start: end, + tail_len: len - end, + iter: range_slice.iter(), + vec: Shared::new(self as *mut _), + } + } + } + + /// Clears the vector, removing all values. + /// + /// Note that this method has no effect on the allocated capacity + /// of the vector. + /// + /// # Examples + /// + /// ``` + /// let mut v = vec![1, 2, 3]; + /// + /// v.clear(); + /// + /// assert!(v.is_empty()); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn clear(&mut self) { + self.truncate(0) + } + + /// Returns the number of elements in the vector, also referred to + /// as its 'length'. + /// + /// # Examples + /// + /// ``` + /// let a = vec![1, 2, 3]; + /// assert_eq!(a.len(), 3); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn len(&self) -> usize { + self.len + } + + /// Returns `true` if the vector contains no elements. + /// + /// # Examples + /// + /// ``` + /// let mut v = Vec::new(); + /// assert!(v.is_empty()); + /// + /// v.push(1); + /// assert!(!v.is_empty()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn is_empty(&self) -> bool { + self.len() == 0 + } + + /// Splits the collection into two at the given index. + /// + /// Returns a newly allocated `Self`. `self` contains elements `[0, at)`, + /// and the returned `Self` contains elements `[at, len)`. + /// + /// Note that the capacity of `self` does not change. + /// + /// # Panics + /// + /// Panics if `at > len`. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1,2,3]; + /// let vec2 = vec.split_off(1); + /// assert_eq!(vec, [1]); + /// assert_eq!(vec2, [2, 3]); + /// ``` + #[inline] + #[stable(feature = "split_off", since = "1.4.0")] + pub fn split_off(&mut self, at: usize) -> Self { + assert!(at <= self.len(), "`at` out of bounds"); + + let other_len = self.len - at; + let mut other = Vec::with_capacity(other_len); + + // Unsafely `set_len` and copy items to `other`. + unsafe { + self.set_len(at); + other.set_len(other_len); + + ptr::copy_nonoverlapping(self.as_ptr().offset(at as isize), + other.as_mut_ptr(), + other.len()); + } + other + } +} + +impl<T: Clone> Vec<T> { + /// Resizes the `Vec` in-place so that `len` is equal to `new_len`. + /// + /// If `new_len` is greater than `len`, the `Vec` is extended by the + /// difference, with each additional slot filled with `value`. + /// If `new_len` is less than `len`, the `Vec` is simply truncated. + /// + /// This method requires `Clone` to clone the passed value. If you'd + /// rather create a value with `Default` instead, see [`resize_default`]. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec!["hello"]; + /// vec.resize(3, "world"); + /// assert_eq!(vec, ["hello", "world", "world"]); + /// + /// let mut vec = vec![1, 2, 3, 4]; + /// vec.resize(2, 0); + /// assert_eq!(vec, [1, 2]); + /// ``` + /// + /// [`resize_default`]: #method.resize_default + #[stable(feature = "vec_resize", since = "1.5.0")] + pub fn resize(&mut self, new_len: usize, value: T) { + let len = self.len(); + + if new_len > len { + self.extend_with(new_len - len, ExtendElement(value)) + } else { + self.truncate(new_len); + } + } + + /// Clones and appends all elements in a slice to the `Vec`. + /// + /// Iterates over the slice `other`, clones each element, and then appends + /// it to this `Vec`. The `other` vector is traversed in-order. + /// + /// Note that this function is same as `extend` except that it is + /// specialized to work with slices instead. If and when Rust gets + /// specialization this function will likely be deprecated (but still + /// available). + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1]; + /// vec.extend_from_slice(&[2, 3, 4]); + /// assert_eq!(vec, [1, 2, 3, 4]); + /// ``` + #[stable(feature = "vec_extend_from_slice", since = "1.6.0")] + pub fn extend_from_slice(&mut self, other: &[T]) { + self.spec_extend(other.iter()) + } +} + +impl<T: Default> Vec<T> { + /// Resizes the `Vec` in-place so that `len` is equal to `new_len`. + /// + /// If `new_len` is greater than `len`, the `Vec` is extended by the + /// difference, with each additional slot filled with `Default::default()`. + /// If `new_len` is less than `len`, the `Vec` is simply truncated. + /// + /// This method uses `Default` to create new values on every push. If + /// you'd rather `Clone` a given value, use [`resize`]. + /// + /// + /// # Examples + /// + /// ``` + /// #![feature(vec_resize_default)] + /// + /// let mut vec = vec![1, 2, 3]; + /// vec.resize_default(5); + /// assert_eq!(vec, [1, 2, 3, 0, 0]); + /// + /// let mut vec = vec![1, 2, 3, 4]; + /// vec.resize_default(2); + /// assert_eq!(vec, [1, 2]); + /// ``` + /// + /// [`resize`]: #method.resize + #[unstable(feature = "vec_resize_default", issue = "41758")] + pub fn resize_default(&mut self, new_len: usize) { + let len = self.len(); + + if new_len > len { + self.extend_with(new_len - len, ExtendDefault); + } else { + self.truncate(new_len); + } + } +} + +// This code generalises `extend_with_{element,default}`. +trait ExtendWith<T> { + fn next(&self) -> T; + fn last(self) -> T; +} + +struct ExtendElement<T>(T); +impl<T: Clone> ExtendWith<T> for ExtendElement<T> { + fn next(&self) -> T { self.0.clone() } + fn last(self) -> T { self.0 } +} + +struct ExtendDefault; +impl<T: Default> ExtendWith<T> for ExtendDefault { + fn next(&self) -> T { Default::default() } + fn last(self) -> T { Default::default() } +} +impl<T> Vec<T> { + /// Extend the vector by `n` values, using the given generator. + fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, value: E) { + self.reserve(n); + + unsafe { + let mut ptr = self.as_mut_ptr().offset(self.len() as isize); + // Use SetLenOnDrop to work around bug where compiler + // may not realize the store through `ptr` through self.set_len() + // don't alias. + let mut local_len = SetLenOnDrop::new(&mut self.len); + + // Write all elements except the last one + for _ in 1..n { + ptr::write(ptr, value.next()); + ptr = ptr.offset(1); + // Increment the length in every step in case next() panics + local_len.increment_len(1); + } + + if n > 0 { + // We can write the last element directly without cloning needlessly + ptr::write(ptr, value.last()); + local_len.increment_len(1); + } + + // len set by scope guard + } + } +} + +// Set the length of the vec when the `SetLenOnDrop` value goes out of scope. +// +// The idea is: The length field in SetLenOnDrop is a local variable +// that the optimizer will see does not alias with any stores through the Vec's data +// pointer. This is a workaround for alias analysis issue #32155 +struct SetLenOnDrop<'a> { + len: &'a mut usize, + local_len: usize, +} + +impl<'a> SetLenOnDrop<'a> { + #[inline] + fn new(len: &'a mut usize) -> Self { + SetLenOnDrop { local_len: *len, len: len } + } + + #[inline] + fn increment_len(&mut self, increment: usize) { + self.local_len += increment; + } +} + +impl<'a> Drop for SetLenOnDrop<'a> { + #[inline] + fn drop(&mut self) { + *self.len = self.local_len; + } +} + +impl<T: PartialEq> Vec<T> { + /// Removes consecutive repeated elements in the vector. + /// + /// If the vector is sorted, this removes all duplicates. + /// + /// # Examples + /// + /// ``` + /// let mut vec = vec![1, 2, 2, 3, 2]; + /// + /// vec.dedup(); + /// + /// assert_eq!(vec, [1, 2, 3, 2]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn dedup(&mut self) { + self.dedup_by(|a, b| a == b) + } + + /// Removes the first instance of `item` from the vector if the item exists. + /// + /// # Examples + /// + /// ``` + /// # #![feature(vec_remove_item)] + /// let mut vec = vec![1, 2, 3, 1]; + /// + /// vec.remove_item(&1); + /// + /// assert_eq!(vec, vec![2, 3, 1]); + /// ``` + #[unstable(feature = "vec_remove_item", reason = "recently added", issue = "40062")] + pub fn remove_item(&mut self, item: &T) -> Option<T> { + let pos = match self.iter().position(|x| *x == *item) { + Some(x) => x, + None => return None, + }; + Some(self.remove(pos)) + } +} + +//////////////////////////////////////////////////////////////////////////////// +// Internal methods and functions +//////////////////////////////////////////////////////////////////////////////// + +#[doc(hidden)] +#[stable(feature = "rust1", since = "1.0.0")] +pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> { + <T as SpecFromElem>::from_elem(elem, n) +} + +// Specialization trait used for Vec::from_elem +trait SpecFromElem: Sized { + fn from_elem(elem: Self, n: usize) -> Vec<Self>; +} + +impl<T: Clone> SpecFromElem for T { + default fn from_elem(elem: Self, n: usize) -> Vec<Self> { + let mut v = Vec::with_capacity(n); + v.extend_with(n, ExtendElement(elem)); + v + } +} + +impl SpecFromElem for u8 { + #[inline] + fn from_elem(elem: u8, n: usize) -> Vec<u8> { + if elem == 0 { + return Vec { + buf: RawVec::with_capacity_zeroed(n), + len: n, + } + } + unsafe { + let mut v = Vec::with_capacity(n); + ptr::write_bytes(v.as_mut_ptr(), elem, n); + v.set_len(n); + v + } + } +} + +macro_rules! impl_spec_from_elem { + ($t: ty, $is_zero: expr) => { + impl SpecFromElem for $t { + #[inline] + fn from_elem(elem: $t, n: usize) -> Vec<$t> { + if $is_zero(elem) { + return Vec { + buf: RawVec::with_capacity_zeroed(n), + len: n, + } + } + let mut v = Vec::with_capacity(n); + v.extend_with(n, ExtendElement(elem)); + v + } + } + }; +} + +impl_spec_from_elem!(i8, |x| x == 0); +impl_spec_from_elem!(i16, |x| x == 0); +impl_spec_from_elem!(i32, |x| x == 0); +impl_spec_from_elem!(i64, |x| x == 0); +impl_spec_from_elem!(i128, |x| x == 0); +impl_spec_from_elem!(isize, |x| x == 0); + +impl_spec_from_elem!(u16, |x| x == 0); +impl_spec_from_elem!(u32, |x| x == 0); +impl_spec_from_elem!(u64, |x| x == 0); +impl_spec_from_elem!(u128, |x| x == 0); +impl_spec_from_elem!(usize, |x| x == 0); + +impl_spec_from_elem!(f32, |x: f32| x == 0. && x.is_sign_positive()); +impl_spec_from_elem!(f64, |x: f64| x == 0. && x.is_sign_positive()); + +//////////////////////////////////////////////////////////////////////////////// +// Common trait implementations for Vec +//////////////////////////////////////////////////////////////////////////////// + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Clone> Clone for Vec<T> { + #[cfg(not(test))] + fn clone(&self) -> Vec<T> { + <[T]>::to_vec(&**self) + } + + // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is + // required for this method definition, is not available. Instead use the + // `slice::to_vec` function which is only available with cfg(test) + // NB see the slice::hack module in slice.rs for more information + #[cfg(test)] + fn clone(&self) -> Vec<T> { + ::slice::to_vec(&**self) + } + + fn clone_from(&mut self, other: &Vec<T>) { + other.as_slice().clone_into(self); + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Hash> Hash for Vec<T> { + #[inline] + fn hash<H: hash::Hasher>(&self, state: &mut H) { + Hash::hash(&**self, state) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> Index<usize> for Vec<T> { + type Output = T; + + #[inline] + fn index(&self, index: usize) -> &T { + // NB built-in indexing via `&[T]` + &(**self)[index] + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> IndexMut<usize> for Vec<T> { + #[inline] + fn index_mut(&mut self, index: usize) -> &mut T { + // NB built-in indexing via `&mut [T]` + &mut (**self)[index] + } +} + + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> ops::Index<ops::Range<usize>> for Vec<T> { + type Output = [T]; + + #[inline] + fn index(&self, index: ops::Range<usize>) -> &[T] { + Index::index(&**self, index) + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> ops::Index<ops::RangeTo<usize>> for Vec<T> { + type Output = [T]; + + #[inline] + fn index(&self, index: ops::RangeTo<usize>) -> &[T] { + Index::index(&**self, index) + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> ops::Index<ops::RangeFrom<usize>> for Vec<T> { + type Output = [T]; + + #[inline] + fn index(&self, index: ops::RangeFrom<usize>) -> &[T] { + Index::index(&**self, index) + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> ops::Index<ops::RangeFull> for Vec<T> { + type Output = [T]; + + #[inline] + fn index(&self, _index: ops::RangeFull) -> &[T] { + self + } +} +#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")] +impl<T> ops::Index<ops::RangeInclusive<usize>> for Vec<T> { + type Output = [T]; + + #[inline] + fn index(&self, index: ops::RangeInclusive<usize>) -> &[T] { + Index::index(&**self, index) + } +} +#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")] +impl<T> ops::Index<ops::RangeToInclusive<usize>> for Vec<T> { + type Output = [T]; + + #[inline] + fn index(&self, index: ops::RangeToInclusive<usize>) -> &[T] { + Index::index(&**self, index) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> ops::IndexMut<ops::Range<usize>> for Vec<T> { + #[inline] + fn index_mut(&mut self, index: ops::Range<usize>) -> &mut [T] { + IndexMut::index_mut(&mut **self, index) + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> ops::IndexMut<ops::RangeTo<usize>> for Vec<T> { + #[inline] + fn index_mut(&mut self, index: ops::RangeTo<usize>) -> &mut [T] { + IndexMut::index_mut(&mut **self, index) + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> ops::IndexMut<ops::RangeFrom<usize>> for Vec<T> { + #[inline] + fn index_mut(&mut self, index: ops::RangeFrom<usize>) -> &mut [T] { + IndexMut::index_mut(&mut **self, index) + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> ops::IndexMut<ops::RangeFull> for Vec<T> { + #[inline] + fn index_mut(&mut self, _index: ops::RangeFull) -> &mut [T] { + self + } +} +#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")] +impl<T> ops::IndexMut<ops::RangeInclusive<usize>> for Vec<T> { + #[inline] + fn index_mut(&mut self, index: ops::RangeInclusive<usize>) -> &mut [T] { + IndexMut::index_mut(&mut **self, index) + } +} +#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")] +impl<T> ops::IndexMut<ops::RangeToInclusive<usize>> for Vec<T> { + #[inline] + fn index_mut(&mut self, index: ops::RangeToInclusive<usize>) -> &mut [T] { + IndexMut::index_mut(&mut **self, index) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> ops::Deref for Vec<T> { + type Target = [T]; + + fn deref(&self) -> &[T] { + unsafe { + let p = self.buf.ptr(); + assume(!p.is_null()); + slice::from_raw_parts(p, self.len) + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> ops::DerefMut for Vec<T> { + fn deref_mut(&mut self) -> &mut [T] { + unsafe { + let ptr = self.buf.ptr(); + assume(!ptr.is_null()); + slice::from_raw_parts_mut(ptr, self.len) + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> FromIterator<T> for Vec<T> { + #[inline] + fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> { + <Self as SpecExtend<T, I::IntoIter>>::from_iter(iter.into_iter()) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> IntoIterator for Vec<T> { + type Item = T; + type IntoIter = IntoIter<T>; + + /// Creates a consuming iterator, that is, one that moves each value out of + /// the vector (from start to end). The vector cannot be used after calling + /// this. + /// + /// # Examples + /// + /// ``` + /// let v = vec!["a".to_string(), "b".to_string()]; + /// for s in v.into_iter() { + /// // s has type String, not &String + /// println!("{}", s); + /// } + /// ``` + #[inline] + fn into_iter(mut self) -> IntoIter<T> { + unsafe { + let begin = self.as_mut_ptr(); + assume(!begin.is_null()); + let end = if mem::size_of::<T>() == 0 { + arith_offset(begin as *const i8, self.len() as isize) as *const T + } else { + begin.offset(self.len() as isize) as *const T + }; + let cap = self.buf.cap(); + mem::forget(self); + IntoIter { + buf: Shared::new(begin), + cap: cap, + ptr: begin, + end: end, + } + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> IntoIterator for &'a Vec<T> { + type Item = &'a T; + type IntoIter = slice::Iter<'a, T>; + + fn into_iter(self) -> slice::Iter<'a, T> { + self.iter() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> IntoIterator for &'a mut Vec<T> { + type Item = &'a mut T; + type IntoIter = slice::IterMut<'a, T>; + + fn into_iter(mut self) -> slice::IterMut<'a, T> { + self.iter_mut() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> Extend<T> for Vec<T> { + #[inline] + fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) { + <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter()) + } +} + +// Specialization trait used for Vec::from_iter and Vec::extend +trait SpecExtend<T, I> { + fn from_iter(iter: I) -> Self; + fn spec_extend(&mut self, iter: I); +} + +impl<T, I> SpecExtend<T, I> for Vec<T> + where I: Iterator<Item=T>, +{ + default fn from_iter(mut iterator: I) -> Self { + // Unroll the first iteration, as the vector is going to be + // expanded on this iteration in every case when the iterable is not + // empty, but the loop in extend_desugared() is not going to see the + // vector being full in the few subsequent loop iterations. + // So we get better branch prediction. + let mut vector = match iterator.next() { + None => return Vec::new(), + Some(element) => { + let (lower, _) = iterator.size_hint(); + let mut vector = Vec::with_capacity(lower.saturating_add(1)); + unsafe { + ptr::write(vector.get_unchecked_mut(0), element); + vector.set_len(1); + } + vector + } + }; + <Vec<T> as SpecExtend<T, I>>::spec_extend(&mut vector, iterator); + vector + } + + default fn spec_extend(&mut self, iter: I) { + self.extend_desugared(iter) + } +} + +impl<T, I> SpecExtend<T, I> for Vec<T> + where I: TrustedLen<Item=T>, +{ + default fn from_iter(iterator: I) -> Self { + let mut vector = Vec::new(); + vector.spec_extend(iterator); + vector + } + + default fn spec_extend(&mut self, iterator: I) { + // This is the case for a TrustedLen iterator. + let (low, high) = iterator.size_hint(); + if let Some(high_value) = high { + debug_assert_eq!(low, high_value, + "TrustedLen iterator's size hint is not exact: {:?}", + (low, high)); + } + if let Some(additional) = high { + self.reserve(additional); + unsafe { + let mut ptr = self.as_mut_ptr().offset(self.len() as isize); + let mut local_len = SetLenOnDrop::new(&mut self.len); + for element in iterator { + ptr::write(ptr, element); + ptr = ptr.offset(1); + // NB can't overflow since we would have had to alloc the address space + local_len.increment_len(1); + } + } + } else { + self.extend_desugared(iterator) + } + } +} + +impl<T> SpecExtend<T, IntoIter<T>> for Vec<T> { + fn from_iter(iterator: IntoIter<T>) -> Self { + // A common case is passing a vector into a function which immediately + // re-collects into a vector. We can short circuit this if the IntoIter + // has not been advanced at all. + if iterator.buf.as_ptr() as *const _ == iterator.ptr { + unsafe { + let vec = Vec::from_raw_parts(iterator.buf.as_ptr(), + iterator.len(), + iterator.cap); + mem::forget(iterator); + vec + } + } else { + let mut vector = Vec::new(); + vector.spec_extend(iterator); + vector + } + } + + fn spec_extend(&mut self, mut iterator: IntoIter<T>) { + unsafe { + self.append_elements(iterator.as_slice() as _); + } + iterator.ptr = iterator.end; + } +} + +impl<'a, T: 'a, I> SpecExtend<&'a T, I> for Vec<T> + where I: Iterator<Item=&'a T>, + T: Clone, +{ + default fn from_iter(iterator: I) -> Self { + SpecExtend::from_iter(iterator.cloned()) + } + + default fn spec_extend(&mut self, iterator: I) { + self.spec_extend(iterator.cloned()) + } +} + +impl<'a, T: 'a> SpecExtend<&'a T, slice::Iter<'a, T>> for Vec<T> + where T: Copy, +{ + fn spec_extend(&mut self, iterator: slice::Iter<'a, T>) { + let slice = iterator.as_slice(); + self.reserve(slice.len()); + unsafe { + let len = self.len(); + self.set_len(len + slice.len()); + self.get_unchecked_mut(len..).copy_from_slice(slice); + } + } +} + +impl<T> Vec<T> { + fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) { + // This is the case for a general iterator. + // + // This function should be the moral equivalent of: + // + // for item in iterator { + // self.push(item); + // } + while let Some(element) = iterator.next() { + let len = self.len(); + if len == self.capacity() { + let (lower, _) = iterator.size_hint(); + self.reserve(lower.saturating_add(1)); + } + unsafe { + ptr::write(self.get_unchecked_mut(len), element); + // NB can't overflow since we would have had to alloc the address space + self.set_len(len + 1); + } + } + } + + /// Creates a splicing iterator that replaces the specified range in the vector + /// with the given `replace_with` iterator and yields the removed items. + /// `replace_with` does not need to be the same length as `range`. + /// + /// Note 1: The element range is removed even if the iterator is not + /// consumed until the end. + /// + /// Note 2: It is unspecified how many elements are removed from the vector, + /// if the `Splice` value is leaked. + /// + /// Note 3: The input iterator `replace_with` is only consumed + /// when the `Splice` value is dropped. + /// + /// Note 4: This is optimal if: + /// + /// * The tail (elements in the vector after `range`) is empty, + /// * or `replace_with` yields fewer elements than `range`’s length + /// * or the lower bound of its `size_hint()` is exact. + /// + /// Otherwise, a temporary vector is allocated and the tail is moved twice. + /// + /// # Panics + /// + /// Panics if the starting point is greater than the end point or if + /// the end point is greater than the length of the vector. + /// + /// # Examples + /// + /// ``` + /// #![feature(splice)] + /// let mut v = vec![1, 2, 3]; + /// let new = [7, 8]; + /// let u: Vec<_> = v.splice(..2, new.iter().cloned()).collect(); + /// assert_eq!(v, &[7, 8, 3]); + /// assert_eq!(u, &[1, 2]); + /// ``` + #[inline] + #[unstable(feature = "splice", reason = "recently added", issue = "32310")] + pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<I::IntoIter> + where R: RangeArgument<usize>, I: IntoIterator<Item=T> + { + Splice { + drain: self.drain(range), + replace_with: replace_with.into_iter(), + } + } + +} + +#[stable(feature = "extend_ref", since = "1.2.0")] +impl<'a, T: 'a + Copy> Extend<&'a T> for Vec<T> { + fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) { + self.spec_extend(iter.into_iter()) + } +} + +macro_rules! __impl_slice_eq1 { + ($Lhs: ty, $Rhs: ty) => { + __impl_slice_eq1! { $Lhs, $Rhs, Sized } + }; + ($Lhs: ty, $Rhs: ty, $Bound: ident) => { + #[stable(feature = "rust1", since = "1.0.0")] + impl<'a, 'b, A: $Bound, B> PartialEq<$Rhs> for $Lhs where A: PartialEq<B> { + #[inline] + fn eq(&self, other: &$Rhs) -> bool { self[..] == other[..] } + #[inline] + fn ne(&self, other: &$Rhs) -> bool { self[..] != other[..] } + } + } +} + +__impl_slice_eq1! { Vec<A>, Vec<B> } +__impl_slice_eq1! { Vec<A>, &'b [B] } +__impl_slice_eq1! { Vec<A>, &'b mut [B] } +__impl_slice_eq1! { Cow<'a, [A]>, &'b [B], Clone } +__impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B], Clone } +__impl_slice_eq1! { Cow<'a, [A]>, Vec<B>, Clone } + +macro_rules! array_impls { + ($($N: expr)+) => { + $( + // NOTE: some less important impls are omitted to reduce code bloat + __impl_slice_eq1! { Vec<A>, [B; $N] } + __impl_slice_eq1! { Vec<A>, &'b [B; $N] } + // __impl_slice_eq1! { Vec<A>, &'b mut [B; $N] } + // __impl_slice_eq1! { Cow<'a, [A]>, [B; $N], Clone } + // __impl_slice_eq1! { Cow<'a, [A]>, &'b [B; $N], Clone } + // __impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B; $N], Clone } + )+ + } +} + +array_impls! { + 0 1 2 3 4 5 6 7 8 9 + 10 11 12 13 14 15 16 17 18 19 + 20 21 22 23 24 25 26 27 28 29 + 30 31 32 +} + +/// Implements comparison of vectors, lexicographically. +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: PartialOrd> PartialOrd for Vec<T> { + #[inline] + fn partial_cmp(&self, other: &Vec<T>) -> Option<Ordering> { + PartialOrd::partial_cmp(&**self, &**other) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Eq> Eq for Vec<T> {} + +/// Implements ordering of vectors, lexicographically. +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Ord> Ord for Vec<T> { + #[inline] + fn cmp(&self, other: &Vec<T>) -> Ordering { + Ord::cmp(&**self, &**other) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +unsafe impl<#[may_dangle] T> Drop for Vec<T> { + fn drop(&mut self) { + unsafe { + // use drop for [T] + ptr::drop_in_place(&mut self[..]); + } + // RawVec handles deallocation + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> Default for Vec<T> { + /// Creates an empty `Vec<T>`. + fn default() -> Vec<T> { + Vec::new() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: fmt::Debug> fmt::Debug for Vec<T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Debug::fmt(&**self, f) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> AsRef<Vec<T>> for Vec<T> { + fn as_ref(&self) -> &Vec<T> { + self + } +} + +#[stable(feature = "vec_as_mut", since = "1.5.0")] +impl<T> AsMut<Vec<T>> for Vec<T> { + fn as_mut(&mut self) -> &mut Vec<T> { + self + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> AsRef<[T]> for Vec<T> { + fn as_ref(&self) -> &[T] { + self + } +} + +#[stable(feature = "vec_as_mut", since = "1.5.0")] +impl<T> AsMut<[T]> for Vec<T> { + fn as_mut(&mut self) -> &mut [T] { + self + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T: Clone> From<&'a [T]> for Vec<T> { + #[cfg(not(test))] + fn from(s: &'a [T]) -> Vec<T> { + s.to_vec() + } + #[cfg(test)] + fn from(s: &'a [T]) -> Vec<T> { + ::slice::to_vec(s) + } +} + +#[stable(feature = "vec_from_mut", since = "1.19.0")] +impl<'a, T: Clone> From<&'a mut [T]> for Vec<T> { + #[cfg(not(test))] + fn from(s: &'a mut [T]) -> Vec<T> { + s.to_vec() + } + #[cfg(test)] + fn from(s: &'a mut [T]) -> Vec<T> { + ::slice::to_vec(s) + } +} + +#[stable(feature = "vec_from_cow_slice", since = "1.14.0")] +impl<'a, T> From<Cow<'a, [T]>> for Vec<T> where [T]: ToOwned<Owned=Vec<T>> { + fn from(s: Cow<'a, [T]>) -> Vec<T> { + s.into_owned() + } +} + +// note: test pulls in libstd, which causes errors here +#[cfg(not(test))] +#[stable(feature = "vec_from_box", since = "1.18.0")] +impl<T> From<Box<[T]>> for Vec<T> { + fn from(s: Box<[T]>) -> Vec<T> { + s.into_vec() + } +} + +#[stable(feature = "box_from_vec", since = "1.18.0")] +impl<T> Into<Box<[T]>> for Vec<T> { + fn into(self) -> Box<[T]> { + self.into_boxed_slice() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a> From<&'a str> for Vec<u8> { + fn from(s: &'a str) -> Vec<u8> { + From::from(s.as_bytes()) + } +} + +//////////////////////////////////////////////////////////////////////////////// +// Clone-on-write +//////////////////////////////////////////////////////////////////////////////// + +#[stable(feature = "cow_from_vec", since = "1.8.0")] +impl<'a, T: Clone> From<&'a [T]> for Cow<'a, [T]> { + fn from(s: &'a [T]) -> Cow<'a, [T]> { + Cow::Borrowed(s) + } +} + +#[stable(feature = "cow_from_vec", since = "1.8.0")] +impl<'a, T: Clone> From<Vec<T>> for Cow<'a, [T]> { + fn from(v: Vec<T>) -> Cow<'a, [T]> { + Cow::Owned(v) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> FromIterator<T> for Cow<'a, [T]> where T: Clone { + fn from_iter<I: IntoIterator<Item = T>>(it: I) -> Cow<'a, [T]> { + Cow::Owned(FromIterator::from_iter(it)) + } +} + +//////////////////////////////////////////////////////////////////////////////// +// Iterators +//////////////////////////////////////////////////////////////////////////////// + +/// An iterator that moves out of a vector. +/// +/// This `struct` is created by the `into_iter` method on [`Vec`][`Vec`] (provided +/// by the [`IntoIterator`] trait). +/// +/// [`Vec`]: struct.Vec.html +/// [`IntoIterator`]: ../../std/iter/trait.IntoIterator.html +#[stable(feature = "rust1", since = "1.0.0")] +pub struct IntoIter<T> { + buf: Shared<T>, + cap: usize, + ptr: *const T, + end: *const T, +} + +#[stable(feature = "vec_intoiter_debug", since = "1.13.0")] +impl<T: fmt::Debug> fmt::Debug for IntoIter<T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("IntoIter") + .field(&self.as_slice()) + .finish() + } +} + +impl<T> IntoIter<T> { + /// Returns the remaining items of this iterator as a slice. + /// + /// # Examples + /// + /// ``` + /// let vec = vec!['a', 'b', 'c']; + /// let mut into_iter = vec.into_iter(); + /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']); + /// let _ = into_iter.next().unwrap(); + /// assert_eq!(into_iter.as_slice(), &['b', 'c']); + /// ``` + #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")] + pub fn as_slice(&self) -> &[T] { + unsafe { + slice::from_raw_parts(self.ptr, self.len()) + } + } + + /// Returns the remaining items of this iterator as a mutable slice. + /// + /// # Examples + /// + /// ``` + /// let vec = vec!['a', 'b', 'c']; + /// let mut into_iter = vec.into_iter(); + /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']); + /// into_iter.as_mut_slice()[2] = 'z'; + /// assert_eq!(into_iter.next().unwrap(), 'a'); + /// assert_eq!(into_iter.next().unwrap(), 'b'); + /// assert_eq!(into_iter.next().unwrap(), 'z'); + /// ``` + #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")] + pub fn as_mut_slice(&mut self) -> &mut [T] { + unsafe { + slice::from_raw_parts_mut(self.ptr as *mut T, self.len()) + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +unsafe impl<T: Send> Send for IntoIter<T> {} +#[stable(feature = "rust1", since = "1.0.0")] +unsafe impl<T: Sync> Sync for IntoIter<T> {} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> Iterator for IntoIter<T> { + type Item = T; + + #[inline] + fn next(&mut self) -> Option<T> { + unsafe { + if self.ptr as *const _ == self.end { + None + } else { + if mem::size_of::<T>() == 0 { + // purposefully don't use 'ptr.offset' because for + // vectors with 0-size elements this would return the + // same pointer. + self.ptr = arith_offset(self.ptr as *const i8, 1) as *mut T; + + // Use a non-null pointer value + // (self.ptr might be null because of wrapping) + Some(ptr::read(1 as *mut T)) + } else { + let old = self.ptr; + self.ptr = self.ptr.offset(1); + + Some(ptr::read(old)) + } + } + } + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + let exact = match self.ptr.offset_to(self.end) { + Some(x) => x as usize, + None => (self.end as usize).wrapping_sub(self.ptr as usize), + }; + (exact, Some(exact)) + } + + #[inline] + fn count(self) -> usize { + self.len() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> DoubleEndedIterator for IntoIter<T> { + #[inline] + fn next_back(&mut self) -> Option<T> { + unsafe { + if self.end == self.ptr { + None + } else { + if mem::size_of::<T>() == 0 { + // See above for why 'ptr.offset' isn't used + self.end = arith_offset(self.end as *const i8, -1) as *mut T; + + // Use a non-null pointer value + // (self.end might be null because of wrapping) + Some(ptr::read(1 as *mut T)) + } else { + self.end = self.end.offset(-1); + + Some(ptr::read(self.end)) + } + } + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> ExactSizeIterator for IntoIter<T> { + fn is_empty(&self) -> bool { + self.ptr == self.end + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<T> FusedIterator for IntoIter<T> {} + +#[unstable(feature = "trusted_len", issue = "37572")] +unsafe impl<T> TrustedLen for IntoIter<T> {} + +#[stable(feature = "vec_into_iter_clone", since = "1.8.0")] +impl<T: Clone> Clone for IntoIter<T> { + fn clone(&self) -> IntoIter<T> { + self.as_slice().to_owned().into_iter() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +unsafe impl<#[may_dangle] T> Drop for IntoIter<T> { + fn drop(&mut self) { + // destroy the remaining elements + for _x in self.by_ref() {} + + // RawVec handles deallocation + let _ = unsafe { RawVec::from_raw_parts(self.buf.as_ptr(), self.cap) }; + } +} + +/// A draining iterator for `Vec<T>`. +/// +/// This `struct` is created by the [`drain`] method on [`Vec`]. +/// +/// [`drain`]: struct.Vec.html#method.drain +/// [`Vec`]: struct.Vec.html +#[stable(feature = "drain", since = "1.6.0")] +pub struct Drain<'a, T: 'a> { + /// Index of tail to preserve + tail_start: usize, + /// Length of tail + tail_len: usize, + /// Current remaining range to remove + iter: slice::Iter<'a, T>, + vec: Shared<Vec<T>>, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a, T: 'a + fmt::Debug> fmt::Debug for Drain<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("Drain") + .field(&self.iter.as_slice()) + .finish() + } +} + +#[stable(feature = "drain", since = "1.6.0")] +unsafe impl<'a, T: Sync> Sync for Drain<'a, T> {} +#[stable(feature = "drain", since = "1.6.0")] +unsafe impl<'a, T: Send> Send for Drain<'a, T> {} + +#[stable(feature = "drain", since = "1.6.0")] +impl<'a, T> Iterator for Drain<'a, T> { + type Item = T; + + #[inline] + fn next(&mut self) -> Option<T> { + self.iter.next().map(|elt| unsafe { ptr::read(elt as *const _) }) + } + + fn size_hint(&self) -> (usize, Option<usize>) { + self.iter.size_hint() + } +} + +#[stable(feature = "drain", since = "1.6.0")] +impl<'a, T> DoubleEndedIterator for Drain<'a, T> { + #[inline] + fn next_back(&mut self) -> Option<T> { + self.iter.next_back().map(|elt| unsafe { ptr::read(elt as *const _) }) + } +} + +#[stable(feature = "drain", since = "1.6.0")] +impl<'a, T> Drop for Drain<'a, T> { + fn drop(&mut self) { + // exhaust self first + while let Some(_) = self.next() {} + + if self.tail_len > 0 { + unsafe { + let source_vec = self.vec.as_mut(); + // memmove back untouched tail, update to new length + let start = source_vec.len(); + let tail = self.tail_start; + let src = source_vec.as_ptr().offset(tail as isize); + let dst = source_vec.as_mut_ptr().offset(start as isize); + ptr::copy(src, dst, self.tail_len); + source_vec.set_len(start + self.tail_len); + } + } + } +} + + +#[stable(feature = "drain", since = "1.6.0")] +impl<'a, T> ExactSizeIterator for Drain<'a, T> { + fn is_empty(&self) -> bool { + self.iter.is_empty() + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, T> FusedIterator for Drain<'a, T> {} + +/// A place for insertion at the back of a `Vec`. +/// +/// See [`Vec::place_back`](struct.Vec.html#method.place_back) for details. +#[must_use = "places do nothing unless written to with `<-` syntax"] +#[unstable(feature = "collection_placement", + reason = "struct name and placement protocol are subject to change", + issue = "30172")] +#[derive(Debug)] +pub struct PlaceBack<'a, T: 'a> { + vec: &'a mut Vec<T>, +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T> Placer<T> for PlaceBack<'a, T> { + type Place = PlaceBack<'a, T>; + + fn make_place(self) -> Self { + // This will panic or abort if we would allocate > isize::MAX bytes + // or if the length increment would overflow for zero-sized types. + if self.vec.len == self.vec.buf.cap() { + self.vec.buf.double(); + } + self + } +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T> Place<T> for PlaceBack<'a, T> { + fn pointer(&mut self) -> *mut T { + unsafe { self.vec.as_mut_ptr().offset(self.vec.len as isize) } + } +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T> InPlace<T> for PlaceBack<'a, T> { + type Owner = &'a mut T; + + unsafe fn finalize(mut self) -> &'a mut T { + let ptr = self.pointer(); + self.vec.len += 1; + &mut *ptr + } +} + + +/// A splicing iterator for `Vec`. +/// +/// This struct is created by the [`splice()`] method on [`Vec`]. See its +/// documentation for more. +/// +/// [`splice()`]: struct.Vec.html#method.splice +/// [`Vec`]: struct.Vec.html +#[derive(Debug)] +#[unstable(feature = "splice", reason = "recently added", issue = "32310")] +pub struct Splice<'a, I: Iterator + 'a> { + drain: Drain<'a, I::Item>, + replace_with: I, +} + +#[unstable(feature = "splice", reason = "recently added", issue = "32310")] +impl<'a, I: Iterator> Iterator for Splice<'a, I> { + type Item = I::Item; + + fn next(&mut self) -> Option<Self::Item> { + self.drain.next() + } + + fn size_hint(&self) -> (usize, Option<usize>) { + self.drain.size_hint() + } +} + +#[unstable(feature = "splice", reason = "recently added", issue = "32310")] +impl<'a, I: Iterator> DoubleEndedIterator for Splice<'a, I> { + fn next_back(&mut self) -> Option<Self::Item> { + self.drain.next_back() + } +} + +#[unstable(feature = "splice", reason = "recently added", issue = "32310")] +impl<'a, I: Iterator> ExactSizeIterator for Splice<'a, I> {} + + +#[unstable(feature = "splice", reason = "recently added", issue = "32310")] +impl<'a, I: Iterator> Drop for Splice<'a, I> { + fn drop(&mut self) { + // exhaust drain first + while let Some(_) = self.drain.next() {} + + + unsafe { + if self.drain.tail_len == 0 { + self.drain.vec.as_mut().extend(self.replace_with.by_ref()); + return + } + + // First fill the range left by drain(). + if !self.drain.fill(&mut self.replace_with) { + return + } + + // There may be more elements. Use the lower bound as an estimate. + // FIXME: Is the upper bound a better guess? Or something else? + let (lower_bound, _upper_bound) = self.replace_with.size_hint(); + if lower_bound > 0 { + self.drain.move_tail(lower_bound); + if !self.drain.fill(&mut self.replace_with) { + return + } + } + + // Collect any remaining elements. + // This is a zero-length vector which does not allocate if `lower_bound` was exact. + let mut collected = self.replace_with.by_ref().collect::<Vec<I::Item>>().into_iter(); + // Now we have an exact count. + if collected.len() > 0 { + self.drain.move_tail(collected.len()); + let filled = self.drain.fill(&mut collected); + debug_assert!(filled); + debug_assert_eq!(collected.len(), 0); + } + } + // Let `Drain::drop` move the tail back if necessary and restore `vec.len`. + } +} + +/// Private helper methods for `Splice::drop` +impl<'a, T> Drain<'a, T> { + /// The range from `self.vec.len` to `self.tail_start` contains elements + /// that have been moved out. + /// Fill that range as much as possible with new elements from the `replace_with` iterator. + /// Return whether we filled the entire range. (`replace_with.next()` didn’t return `None`.) + unsafe fn fill<I: Iterator<Item=T>>(&mut self, replace_with: &mut I) -> bool { + let vec = self.vec.as_mut(); + let range_start = vec.len; + let range_end = self.tail_start; + let range_slice = slice::from_raw_parts_mut( + vec.as_mut_ptr().offset(range_start as isize), + range_end - range_start); + + for place in range_slice { + if let Some(new_item) = replace_with.next() { + ptr::write(place, new_item); + vec.len += 1; + } else { + return false + } + } + true + } + + /// Make room for inserting more elements before the tail. + unsafe fn move_tail(&mut self, extra_capacity: usize) { + let vec = self.vec.as_mut(); + let used_capacity = self.tail_start + self.tail_len; + vec.buf.reserve(used_capacity, extra_capacity); + + let new_tail_start = self.tail_start + extra_capacity; + let src = vec.as_ptr().offset(self.tail_start as isize); + let dst = vec.as_mut_ptr().offset(new_tail_start as isize); + ptr::copy(src, dst, self.tail_len); + self.tail_start = new_tail_start; + } +} diff --git a/src/liballoc/vec_deque.rs b/src/liballoc/vec_deque.rs new file mode 100644 index 00000000000..18175a5d01b --- /dev/null +++ b/src/liballoc/vec_deque.rs @@ -0,0 +1,2970 @@ +// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! A double-ended queue implemented with a growable ring buffer. +//! +//! This queue has `O(1)` amortized inserts and removals from both ends of the +//! container. It also has `O(1)` indexing like a vector. The contained elements +//! are not required to be copyable, and the queue will be sendable if the +//! contained type is sendable. + +#![stable(feature = "rust1", since = "1.0.0")] + +use core::cmp::Ordering; +use core::fmt; +use core::iter::{repeat, FromIterator, FusedIterator}; +use core::mem; +use core::ops::{Index, IndexMut, Place, Placer, InPlace}; +use core::ptr; +use core::ptr::Shared; +use core::slice; + +use core::hash::{Hash, Hasher}; +use core::cmp; + +use raw_vec::RawVec; + +use super::range::RangeArgument; +use Bound::{Excluded, Included, Unbounded}; +use super::vec::Vec; + +const INITIAL_CAPACITY: usize = 7; // 2^3 - 1 +const MINIMUM_CAPACITY: usize = 1; // 2 - 1 +#[cfg(target_pointer_width = "32")] +const MAXIMUM_ZST_CAPACITY: usize = 1 << (32 - 1); // Largest possible power of two +#[cfg(target_pointer_width = "64")] +const MAXIMUM_ZST_CAPACITY: usize = 1 << (64 - 1); // Largest possible power of two + +/// A double-ended queue implemented with a growable ring buffer. +/// +/// The "default" usage of this type as a queue is to use [`push_back`] to add to +/// the queue, and [`pop_front`] to remove from the queue. [`extend`] and [`append`] +/// push onto the back in this manner, and iterating over `VecDeque` goes front +/// to back. +/// +/// [`push_back`]: #method.push_back +/// [`pop_front`]: #method.pop_front +/// [`extend`]: #method.extend +/// [`append`]: #method.append +#[stable(feature = "rust1", since = "1.0.0")] +pub struct VecDeque<T> { + // tail and head are pointers into the buffer. Tail always points + // to the first element that could be read, Head always points + // to where data should be written. + // If tail == head the buffer is empty. The length of the ringbuffer + // is defined as the distance between the two. + tail: usize, + head: usize, + buf: RawVec<T>, +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: Clone> Clone for VecDeque<T> { + fn clone(&self) -> VecDeque<T> { + self.iter().cloned().collect() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +unsafe impl<#[may_dangle] T> Drop for VecDeque<T> { + fn drop(&mut self) { + let (front, back) = self.as_mut_slices(); + unsafe { + // use drop for [T] + ptr::drop_in_place(front); + ptr::drop_in_place(back); + } + // RawVec handles deallocation + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> Default for VecDeque<T> { + /// Creates an empty `VecDeque<T>`. + #[inline] + fn default() -> VecDeque<T> { + VecDeque::new() + } +} + +impl<T> VecDeque<T> { + /// Marginally more convenient + #[inline] + fn ptr(&self) -> *mut T { + self.buf.ptr() + } + + /// Marginally more convenient + #[inline] + fn cap(&self) -> usize { + if mem::size_of::<T>() == 0 { + // For zero sized types, we are always at maximum capacity + MAXIMUM_ZST_CAPACITY + } else { + self.buf.cap() + } + } + + /// Turn ptr into a slice + #[inline] + unsafe fn buffer_as_slice(&self) -> &[T] { + slice::from_raw_parts(self.ptr(), self.cap()) + } + + /// Turn ptr into a mut slice + #[inline] + unsafe fn buffer_as_mut_slice(&mut self) -> &mut [T] { + slice::from_raw_parts_mut(self.ptr(), self.cap()) + } + + /// Moves an element out of the buffer + #[inline] + unsafe fn buffer_read(&mut self, off: usize) -> T { + ptr::read(self.ptr().offset(off as isize)) + } + + /// Writes an element into the buffer, moving it. + #[inline] + unsafe fn buffer_write(&mut self, off: usize, value: T) { + ptr::write(self.ptr().offset(off as isize), value); + } + + /// Returns `true` if and only if the buffer is at full capacity. + #[inline] + fn is_full(&self) -> bool { + self.cap() - self.len() == 1 + } + + /// Returns the index in the underlying buffer for a given logical element + /// index. + #[inline] + fn wrap_index(&self, idx: usize) -> usize { + wrap_index(idx, self.cap()) + } + + /// Returns the index in the underlying buffer for a given logical element + /// index + addend. + #[inline] + fn wrap_add(&self, idx: usize, addend: usize) -> usize { + wrap_index(idx.wrapping_add(addend), self.cap()) + } + + /// Returns the index in the underlying buffer for a given logical element + /// index - subtrahend. + #[inline] + fn wrap_sub(&self, idx: usize, subtrahend: usize) -> usize { + wrap_index(idx.wrapping_sub(subtrahend), self.cap()) + } + + /// Copies a contiguous block of memory len long from src to dst + #[inline] + unsafe fn copy(&self, dst: usize, src: usize, len: usize) { + debug_assert!(dst + len <= self.cap(), + "cpy dst={} src={} len={} cap={}", + dst, + src, + len, + self.cap()); + debug_assert!(src + len <= self.cap(), + "cpy dst={} src={} len={} cap={}", + dst, + src, + len, + self.cap()); + ptr::copy(self.ptr().offset(src as isize), + self.ptr().offset(dst as isize), + len); + } + + /// Copies a contiguous block of memory len long from src to dst + #[inline] + unsafe fn copy_nonoverlapping(&self, dst: usize, src: usize, len: usize) { + debug_assert!(dst + len <= self.cap(), + "cno dst={} src={} len={} cap={}", + dst, + src, + len, + self.cap()); + debug_assert!(src + len <= self.cap(), + "cno dst={} src={} len={} cap={}", + dst, + src, + len, + self.cap()); + ptr::copy_nonoverlapping(self.ptr().offset(src as isize), + self.ptr().offset(dst as isize), + len); + } + + /// Copies a potentially wrapping block of memory len long from src to dest. + /// (abs(dst - src) + len) must be no larger than cap() (There must be at + /// most one continuous overlapping region between src and dest). + unsafe fn wrap_copy(&self, dst: usize, src: usize, len: usize) { + #[allow(dead_code)] + fn diff(a: usize, b: usize) -> usize { + if a <= b { b - a } else { a - b } + } + debug_assert!(cmp::min(diff(dst, src), self.cap() - diff(dst, src)) + len <= self.cap(), + "wrc dst={} src={} len={} cap={}", + dst, + src, + len, + self.cap()); + + if src == dst || len == 0 { + return; + } + + let dst_after_src = self.wrap_sub(dst, src) < len; + + let src_pre_wrap_len = self.cap() - src; + let dst_pre_wrap_len = self.cap() - dst; + let src_wraps = src_pre_wrap_len < len; + let dst_wraps = dst_pre_wrap_len < len; + + match (dst_after_src, src_wraps, dst_wraps) { + (_, false, false) => { + // src doesn't wrap, dst doesn't wrap + // + // S . . . + // 1 [_ _ A A B B C C _] + // 2 [_ _ A A A A B B _] + // D . . . + // + self.copy(dst, src, len); + } + (false, false, true) => { + // dst before src, src doesn't wrap, dst wraps + // + // S . . . + // 1 [A A B B _ _ _ C C] + // 2 [A A B B _ _ _ A A] + // 3 [B B B B _ _ _ A A] + // . . D . + // + self.copy(dst, src, dst_pre_wrap_len); + self.copy(0, src + dst_pre_wrap_len, len - dst_pre_wrap_len); + } + (true, false, true) => { + // src before dst, src doesn't wrap, dst wraps + // + // S . . . + // 1 [C C _ _ _ A A B B] + // 2 [B B _ _ _ A A B B] + // 3 [B B _ _ _ A A A A] + // . . D . + // + self.copy(0, src + dst_pre_wrap_len, len - dst_pre_wrap_len); + self.copy(dst, src, dst_pre_wrap_len); + } + (false, true, false) => { + // dst before src, src wraps, dst doesn't wrap + // + // . . S . + // 1 [C C _ _ _ A A B B] + // 2 [C C _ _ _ B B B B] + // 3 [C C _ _ _ B B C C] + // D . . . + // + self.copy(dst, src, src_pre_wrap_len); + self.copy(dst + src_pre_wrap_len, 0, len - src_pre_wrap_len); + } + (true, true, false) => { + // src before dst, src wraps, dst doesn't wrap + // + // . . S . + // 1 [A A B B _ _ _ C C] + // 2 [A A A A _ _ _ C C] + // 3 [C C A A _ _ _ C C] + // D . . . + // + self.copy(dst + src_pre_wrap_len, 0, len - src_pre_wrap_len); + self.copy(dst, src, src_pre_wrap_len); + } + (false, true, true) => { + // dst before src, src wraps, dst wraps + // + // . . . S . + // 1 [A B C D _ E F G H] + // 2 [A B C D _ E G H H] + // 3 [A B C D _ E G H A] + // 4 [B C C D _ E G H A] + // . . D . . + // + debug_assert!(dst_pre_wrap_len > src_pre_wrap_len); + let delta = dst_pre_wrap_len - src_pre_wrap_len; + self.copy(dst, src, src_pre_wrap_len); + self.copy(dst + src_pre_wrap_len, 0, delta); + self.copy(0, delta, len - dst_pre_wrap_len); + } + (true, true, true) => { + // src before dst, src wraps, dst wraps + // + // . . S . . + // 1 [A B C D _ E F G H] + // 2 [A A B D _ E F G H] + // 3 [H A B D _ E F G H] + // 4 [H A B D _ E F F G] + // . . . D . + // + debug_assert!(src_pre_wrap_len > dst_pre_wrap_len); + let delta = src_pre_wrap_len - dst_pre_wrap_len; + self.copy(delta, 0, len - src_pre_wrap_len); + self.copy(0, self.cap() - delta, delta); + self.copy(dst, src, dst_pre_wrap_len); + } + } + } + + /// Frobs the head and tail sections around to handle the fact that we + /// just reallocated. Unsafe because it trusts old_cap. + #[inline] + unsafe fn handle_cap_increase(&mut self, old_cap: usize) { + let new_cap = self.cap(); + + // Move the shortest contiguous section of the ring buffer + // T H + // [o o o o o o o . ] + // T H + // A [o o o o o o o . . . . . . . . . ] + // H T + // [o o . o o o o o ] + // T H + // B [. . . o o o o o o o . . . . . . ] + // H T + // [o o o o o . o o ] + // H T + // C [o o o o o . . . . . . . . . o o ] + + if self.tail <= self.head { + // A + // Nop + } else if self.head < old_cap - self.tail { + // B + self.copy_nonoverlapping(old_cap, 0, self.head); + self.head += old_cap; + debug_assert!(self.head > self.tail); + } else { + // C + let new_tail = new_cap - (old_cap - self.tail); + self.copy_nonoverlapping(new_tail, self.tail, old_cap - self.tail); + self.tail = new_tail; + debug_assert!(self.head < self.tail); + } + debug_assert!(self.head < self.cap()); + debug_assert!(self.tail < self.cap()); + debug_assert!(self.cap().count_ones() == 1); + } +} + +impl<T> VecDeque<T> { + /// Creates an empty `VecDeque`. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let vector: VecDeque<u32> = VecDeque::new(); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn new() -> VecDeque<T> { + VecDeque::with_capacity(INITIAL_CAPACITY) + } + + /// Creates an empty `VecDeque` with space for at least `n` elements. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let vector: VecDeque<u32> = VecDeque::with_capacity(10); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn with_capacity(n: usize) -> VecDeque<T> { + // +1 since the ringbuffer always leaves one space empty + let cap = cmp::max(n + 1, MINIMUM_CAPACITY + 1).next_power_of_two(); + assert!(cap > n, "capacity overflow"); + + VecDeque { + tail: 0, + head: 0, + buf: RawVec::with_capacity(cap), + } + } + + /// Retrieves an element in the `VecDeque` by index. + /// + /// Element at index 0 is the front of the queue. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut buf = VecDeque::new(); + /// buf.push_back(3); + /// buf.push_back(4); + /// buf.push_back(5); + /// assert_eq!(buf.get(1), Some(&4)); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn get(&self, index: usize) -> Option<&T> { + if index < self.len() { + let idx = self.wrap_add(self.tail, index); + unsafe { Some(&*self.ptr().offset(idx as isize)) } + } else { + None + } + } + + /// Retrieves an element in the `VecDeque` mutably by index. + /// + /// Element at index 0 is the front of the queue. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut buf = VecDeque::new(); + /// buf.push_back(3); + /// buf.push_back(4); + /// buf.push_back(5); + /// if let Some(elem) = buf.get_mut(1) { + /// *elem = 7; + /// } + /// + /// assert_eq!(buf[1], 7); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn get_mut(&mut self, index: usize) -> Option<&mut T> { + if index < self.len() { + let idx = self.wrap_add(self.tail, index); + unsafe { Some(&mut *self.ptr().offset(idx as isize)) } + } else { + None + } + } + + /// Swaps elements at indices `i` and `j`. + /// + /// `i` and `j` may be equal. + /// + /// Fails if there is no element with either index. + /// + /// Element at index 0 is the front of the queue. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut buf = VecDeque::new(); + /// buf.push_back(3); + /// buf.push_back(4); + /// buf.push_back(5); + /// assert_eq!(buf, [3, 4, 5]); + /// buf.swap(0, 2); + /// assert_eq!(buf, [5, 4, 3]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn swap(&mut self, i: usize, j: usize) { + assert!(i < self.len()); + assert!(j < self.len()); + let ri = self.wrap_add(self.tail, i); + let rj = self.wrap_add(self.tail, j); + unsafe { + ptr::swap(self.ptr().offset(ri as isize), + self.ptr().offset(rj as isize)) + } + } + + /// Returns the number of elements the `VecDeque` can hold without + /// reallocating. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let buf: VecDeque<i32> = VecDeque::with_capacity(10); + /// assert!(buf.capacity() >= 10); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn capacity(&self) -> usize { + self.cap() - 1 + } + + /// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the + /// given `VecDeque`. Does nothing if the capacity is already sufficient. + /// + /// Note that the allocator may give the collection more space than it requests. Therefore + /// capacity can not be relied upon to be precisely minimal. Prefer [`reserve`] if future + /// insertions are expected. + /// + /// # Panics + /// + /// Panics if the new capacity overflows `usize`. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut buf: VecDeque<i32> = vec![1].into_iter().collect(); + /// buf.reserve_exact(10); + /// assert!(buf.capacity() >= 11); + /// ``` + /// + /// [`reserve`]: #method.reserve + #[stable(feature = "rust1", since = "1.0.0")] + pub fn reserve_exact(&mut self, additional: usize) { + self.reserve(additional); + } + + /// Reserves capacity for at least `additional` more elements to be inserted in the given + /// `VecDeque`. The collection may reserve more space to avoid frequent reallocations. + /// + /// # Panics + /// + /// Panics if the new capacity overflows `usize`. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut buf: VecDeque<i32> = vec![1].into_iter().collect(); + /// buf.reserve(10); + /// assert!(buf.capacity() >= 11); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn reserve(&mut self, additional: usize) { + let old_cap = self.cap(); + let used_cap = self.len() + 1; + let new_cap = used_cap.checked_add(additional) + .and_then(|needed_cap| needed_cap.checked_next_power_of_two()) + .expect("capacity overflow"); + + if new_cap > self.capacity() { + self.buf.reserve_exact(used_cap, new_cap - used_cap); + unsafe { + self.handle_cap_increase(old_cap); + } + } + } + + /// Shrinks the capacity of the `VecDeque` as much as possible. + /// + /// It will drop down as close as possible to the length but the allocator may still inform the + /// `VecDeque` that there is space for a few more elements. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut buf = VecDeque::with_capacity(15); + /// buf.extend(0..4); + /// assert_eq!(buf.capacity(), 15); + /// buf.shrink_to_fit(); + /// assert!(buf.capacity() >= 4); + /// ``` + #[stable(feature = "deque_extras_15", since = "1.5.0")] + pub fn shrink_to_fit(&mut self) { + // +1 since the ringbuffer always leaves one space empty + // len + 1 can't overflow for an existing, well-formed ringbuffer. + let target_cap = cmp::max(self.len() + 1, MINIMUM_CAPACITY + 1).next_power_of_two(); + if target_cap < self.cap() { + // There are three cases of interest: + // All elements are out of desired bounds + // Elements are contiguous, and head is out of desired bounds + // Elements are discontiguous, and tail is out of desired bounds + // + // At all other times, element positions are unaffected. + // + // Indicates that elements at the head should be moved. + let head_outside = self.head == 0 || self.head >= target_cap; + // Move elements from out of desired bounds (positions after target_cap) + if self.tail >= target_cap && head_outside { + // T H + // [. . . . . . . . o o o o o o o . ] + // T H + // [o o o o o o o . ] + unsafe { + self.copy_nonoverlapping(0, self.tail, self.len()); + } + self.head = self.len(); + self.tail = 0; + } else if self.tail != 0 && self.tail < target_cap && head_outside { + // T H + // [. . . o o o o o o o . . . . . . ] + // H T + // [o o . o o o o o ] + let len = self.wrap_sub(self.head, target_cap); + unsafe { + self.copy_nonoverlapping(0, target_cap, len); + } + self.head = len; + debug_assert!(self.head < self.tail); + } else if self.tail >= target_cap { + // H T + // [o o o o o . . . . . . . . . o o ] + // H T + // [o o o o o . o o ] + debug_assert!(self.wrap_sub(self.head, 1) < target_cap); + let len = self.cap() - self.tail; + let new_tail = target_cap - len; + unsafe { + self.copy_nonoverlapping(new_tail, self.tail, len); + } + self.tail = new_tail; + debug_assert!(self.head < self.tail); + } + + self.buf.shrink_to_fit(target_cap); + + debug_assert!(self.head < self.cap()); + debug_assert!(self.tail < self.cap()); + debug_assert!(self.cap().count_ones() == 1); + } + } + + /// Shortens the `VecDeque`, dropping excess elements from the back. + /// + /// If `len` is greater than the `VecDeque`'s current length, this has no + /// effect. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut buf = VecDeque::new(); + /// buf.push_back(5); + /// buf.push_back(10); + /// buf.push_back(15); + /// assert_eq!(buf, [5, 10, 15]); + /// buf.truncate(1); + /// assert_eq!(buf, [5]); + /// ``` + #[stable(feature = "deque_extras", since = "1.16.0")] + pub fn truncate(&mut self, len: usize) { + for _ in len..self.len() { + self.pop_back(); + } + } + + /// Returns a front-to-back iterator. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut buf = VecDeque::new(); + /// buf.push_back(5); + /// buf.push_back(3); + /// buf.push_back(4); + /// let b: &[_] = &[&5, &3, &4]; + /// let c: Vec<&i32> = buf.iter().collect(); + /// assert_eq!(&c[..], b); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn iter(&self) -> Iter<T> { + Iter { + tail: self.tail, + head: self.head, + ring: unsafe { self.buffer_as_slice() }, + } + } + + /// Returns a front-to-back iterator that returns mutable references. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut buf = VecDeque::new(); + /// buf.push_back(5); + /// buf.push_back(3); + /// buf.push_back(4); + /// for num in buf.iter_mut() { + /// *num = *num - 2; + /// } + /// let b: &[_] = &[&mut 3, &mut 1, &mut 2]; + /// assert_eq!(&buf.iter_mut().collect::<Vec<&mut i32>>()[..], b); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn iter_mut(&mut self) -> IterMut<T> { + IterMut { + tail: self.tail, + head: self.head, + ring: unsafe { self.buffer_as_mut_slice() }, + } + } + + /// Returns a pair of slices which contain, in order, the contents of the + /// `VecDeque`. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut vector = VecDeque::new(); + /// + /// vector.push_back(0); + /// vector.push_back(1); + /// vector.push_back(2); + /// + /// assert_eq!(vector.as_slices(), (&[0, 1, 2][..], &[][..])); + /// + /// vector.push_front(10); + /// vector.push_front(9); + /// + /// assert_eq!(vector.as_slices(), (&[9, 10][..], &[0, 1, 2][..])); + /// ``` + #[inline] + #[stable(feature = "deque_extras_15", since = "1.5.0")] + pub fn as_slices(&self) -> (&[T], &[T]) { + unsafe { + let buf = self.buffer_as_slice(); + RingSlices::ring_slices(buf, self.head, self.tail) + } + } + + /// Returns a pair of slices which contain, in order, the contents of the + /// `VecDeque`. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut vector = VecDeque::new(); + /// + /// vector.push_back(0); + /// vector.push_back(1); + /// + /// vector.push_front(10); + /// vector.push_front(9); + /// + /// vector.as_mut_slices().0[0] = 42; + /// vector.as_mut_slices().1[0] = 24; + /// assert_eq!(vector.as_slices(), (&[42, 10][..], &[24, 1][..])); + /// ``` + #[inline] + #[stable(feature = "deque_extras_15", since = "1.5.0")] + pub fn as_mut_slices(&mut self) -> (&mut [T], &mut [T]) { + unsafe { + let head = self.head; + let tail = self.tail; + let buf = self.buffer_as_mut_slice(); + RingSlices::ring_slices(buf, head, tail) + } + } + + /// Returns the number of elements in the `VecDeque`. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut v = VecDeque::new(); + /// assert_eq!(v.len(), 0); + /// v.push_back(1); + /// assert_eq!(v.len(), 1); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn len(&self) -> usize { + count(self.tail, self.head, self.cap()) + } + + /// Returns `true` if the `VecDeque` is empty. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut v = VecDeque::new(); + /// assert!(v.is_empty()); + /// v.push_front(1); + /// assert!(!v.is_empty()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn is_empty(&self) -> bool { + self.tail == self.head + } + + /// Create a draining iterator that removes the specified range in the + /// `VecDeque` and yields the removed items. + /// + /// Note 1: The element range is removed even if the iterator is not + /// consumed until the end. + /// + /// Note 2: It is unspecified how many elements are removed from the deque, + /// if the `Drain` value is not dropped, but the borrow it holds expires + /// (eg. due to mem::forget). + /// + /// # Panics + /// + /// Panics if the starting point is greater than the end point or if + /// the end point is greater than the length of the vector. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut v: VecDeque<_> = vec![1, 2, 3].into_iter().collect(); + /// let drained = v.drain(2..).collect::<VecDeque<_>>(); + /// assert_eq!(drained, [3]); + /// assert_eq!(v, [1, 2]); + /// + /// // A full range clears all contents + /// v.drain(..); + /// assert!(v.is_empty()); + /// ``` + #[inline] + #[stable(feature = "drain", since = "1.6.0")] + pub fn drain<R>(&mut self, range: R) -> Drain<T> + where R: RangeArgument<usize> + { + // Memory safety + // + // When the Drain is first created, the source deque is shortened to + // make sure no uninitialized or moved-from elements are accessible at + // all if the Drain's destructor never gets to run. + // + // Drain will ptr::read out the values to remove. + // When finished, the remaining data will be copied back to cover the hole, + // and the head/tail values will be restored correctly. + // + let len = self.len(); + let start = match range.start() { + Included(&n) => n, + Excluded(&n) => n + 1, + Unbounded => 0, + }; + let end = match range.end() { + Included(&n) => n + 1, + Excluded(&n) => n, + Unbounded => len, + }; + assert!(start <= end, "drain lower bound was too large"); + assert!(end <= len, "drain upper bound was too large"); + + // The deque's elements are parted into three segments: + // * self.tail -> drain_tail + // * drain_tail -> drain_head + // * drain_head -> self.head + // + // T = self.tail; H = self.head; t = drain_tail; h = drain_head + // + // We store drain_tail as self.head, and drain_head and self.head as + // after_tail and after_head respectively on the Drain. This also + // truncates the effective array such that if the Drain is leaked, we + // have forgotten about the potentially moved values after the start of + // the drain. + // + // T t h H + // [. . . o o x x o o . . .] + // + let drain_tail = self.wrap_add(self.tail, start); + let drain_head = self.wrap_add(self.tail, end); + let head = self.head; + + // "forget" about the values after the start of the drain until after + // the drain is complete and the Drain destructor is run. + self.head = drain_tail; + + Drain { + deque: unsafe { Shared::new(self as *mut _) }, + after_tail: drain_head, + after_head: head, + iter: Iter { + tail: drain_tail, + head: drain_head, + ring: unsafe { self.buffer_as_mut_slice() }, + }, + } + } + + /// Clears the buffer, removing all values. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut v = VecDeque::new(); + /// v.push_back(1); + /// v.clear(); + /// assert!(v.is_empty()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn clear(&mut self) { + self.drain(..); + } + + /// Returns `true` if the `VecDeque` contains an element equal to the + /// given value. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut vector: VecDeque<u32> = VecDeque::new(); + /// + /// vector.push_back(0); + /// vector.push_back(1); + /// + /// assert_eq!(vector.contains(&1), true); + /// assert_eq!(vector.contains(&10), false); + /// ``` + #[stable(feature = "vec_deque_contains", since = "1.12.0")] + pub fn contains(&self, x: &T) -> bool + where T: PartialEq<T> + { + let (a, b) = self.as_slices(); + a.contains(x) || b.contains(x) + } + + /// Provides a reference to the front element, or `None` if the `VecDeque` is + /// empty. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut d = VecDeque::new(); + /// assert_eq!(d.front(), None); + /// + /// d.push_back(1); + /// d.push_back(2); + /// assert_eq!(d.front(), Some(&1)); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn front(&self) -> Option<&T> { + if !self.is_empty() { + Some(&self[0]) + } else { + None + } + } + + /// Provides a mutable reference to the front element, or `None` if the + /// `VecDeque` is empty. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut d = VecDeque::new(); + /// assert_eq!(d.front_mut(), None); + /// + /// d.push_back(1); + /// d.push_back(2); + /// match d.front_mut() { + /// Some(x) => *x = 9, + /// None => (), + /// } + /// assert_eq!(d.front(), Some(&9)); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn front_mut(&mut self) -> Option<&mut T> { + if !self.is_empty() { + Some(&mut self[0]) + } else { + None + } + } + + /// Provides a reference to the back element, or `None` if the `VecDeque` is + /// empty. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut d = VecDeque::new(); + /// assert_eq!(d.back(), None); + /// + /// d.push_back(1); + /// d.push_back(2); + /// assert_eq!(d.back(), Some(&2)); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn back(&self) -> Option<&T> { + if !self.is_empty() { + Some(&self[self.len() - 1]) + } else { + None + } + } + + /// Provides a mutable reference to the back element, or `None` if the + /// `VecDeque` is empty. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut d = VecDeque::new(); + /// assert_eq!(d.back(), None); + /// + /// d.push_back(1); + /// d.push_back(2); + /// match d.back_mut() { + /// Some(x) => *x = 9, + /// None => (), + /// } + /// assert_eq!(d.back(), Some(&9)); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn back_mut(&mut self) -> Option<&mut T> { + let len = self.len(); + if !self.is_empty() { + Some(&mut self[len - 1]) + } else { + None + } + } + + /// Removes the first element and returns it, or `None` if the `VecDeque` is + /// empty. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut d = VecDeque::new(); + /// d.push_back(1); + /// d.push_back(2); + /// + /// assert_eq!(d.pop_front(), Some(1)); + /// assert_eq!(d.pop_front(), Some(2)); + /// assert_eq!(d.pop_front(), None); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn pop_front(&mut self) -> Option<T> { + if self.is_empty() { + None + } else { + let tail = self.tail; + self.tail = self.wrap_add(self.tail, 1); + unsafe { Some(self.buffer_read(tail)) } + } + } + + /// Prepends an element to the `VecDeque`. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut d = VecDeque::new(); + /// d.push_front(1); + /// d.push_front(2); + /// assert_eq!(d.front(), Some(&2)); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn push_front(&mut self, value: T) { + self.grow_if_necessary(); + + self.tail = self.wrap_sub(self.tail, 1); + let tail = self.tail; + unsafe { + self.buffer_write(tail, value); + } + } + + /// Appends an element to the back of the `VecDeque`. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut buf = VecDeque::new(); + /// buf.push_back(1); + /// buf.push_back(3); + /// assert_eq!(3, *buf.back().unwrap()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn push_back(&mut self, value: T) { + self.grow_if_necessary(); + + let head = self.head; + self.head = self.wrap_add(self.head, 1); + unsafe { self.buffer_write(head, value) } + } + + /// Removes the last element from the `VecDeque` and returns it, or `None` if + /// it is empty. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut buf = VecDeque::new(); + /// assert_eq!(buf.pop_back(), None); + /// buf.push_back(1); + /// buf.push_back(3); + /// assert_eq!(buf.pop_back(), Some(3)); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn pop_back(&mut self) -> Option<T> { + if self.is_empty() { + None + } else { + self.head = self.wrap_sub(self.head, 1); + let head = self.head; + unsafe { Some(self.buffer_read(head)) } + } + } + + #[inline] + fn is_contiguous(&self) -> bool { + self.tail <= self.head + } + + /// Removes an element from anywhere in the `VecDeque` and returns it, replacing it with the + /// last element. + /// + /// This does not preserve ordering, but is O(1). + /// + /// Returns `None` if `index` is out of bounds. + /// + /// Element at index 0 is the front of the queue. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut buf = VecDeque::new(); + /// assert_eq!(buf.swap_remove_back(0), None); + /// buf.push_back(1); + /// buf.push_back(2); + /// buf.push_back(3); + /// assert_eq!(buf, [1, 2, 3]); + /// + /// assert_eq!(buf.swap_remove_back(0), Some(1)); + /// assert_eq!(buf, [3, 2]); + /// ``` + #[stable(feature = "deque_extras_15", since = "1.5.0")] + pub fn swap_remove_back(&mut self, index: usize) -> Option<T> { + let length = self.len(); + if length > 0 && index < length - 1 { + self.swap(index, length - 1); + } else if index >= length { + return None; + } + self.pop_back() + } + + /// Removes an element from anywhere in the `VecDeque` and returns it, + /// replacing it with the first element. + /// + /// This does not preserve ordering, but is O(1). + /// + /// Returns `None` if `index` is out of bounds. + /// + /// Element at index 0 is the front of the queue. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut buf = VecDeque::new(); + /// assert_eq!(buf.swap_remove_front(0), None); + /// buf.push_back(1); + /// buf.push_back(2); + /// buf.push_back(3); + /// assert_eq!(buf, [1, 2, 3]); + /// + /// assert_eq!(buf.swap_remove_front(2), Some(3)); + /// assert_eq!(buf, [2, 1]); + /// ``` + #[stable(feature = "deque_extras_15", since = "1.5.0")] + pub fn swap_remove_front(&mut self, index: usize) -> Option<T> { + let length = self.len(); + if length > 0 && index < length && index != 0 { + self.swap(index, 0); + } else if index >= length { + return None; + } + self.pop_front() + } + + /// Inserts an element at `index` within the `VecDeque`, shifting all elements with indices + /// greater than or equal to `index` towards the back. + /// + /// Element at index 0 is the front of the queue. + /// + /// # Panics + /// + /// Panics if `index` is greater than `VecDeque`'s length + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut vec_deque = VecDeque::new(); + /// vec_deque.push_back('a'); + /// vec_deque.push_back('b'); + /// vec_deque.push_back('c'); + /// assert_eq!(vec_deque, &['a', 'b', 'c']); + /// + /// vec_deque.insert(1, 'd'); + /// assert_eq!(vec_deque, &['a', 'd', 'b', 'c']); + /// ``` + #[stable(feature = "deque_extras_15", since = "1.5.0")] + pub fn insert(&mut self, index: usize, value: T) { + assert!(index <= self.len(), "index out of bounds"); + self.grow_if_necessary(); + + // Move the least number of elements in the ring buffer and insert + // the given object + // + // At most len/2 - 1 elements will be moved. O(min(n, n-i)) + // + // There are three main cases: + // Elements are contiguous + // - special case when tail is 0 + // Elements are discontiguous and the insert is in the tail section + // Elements are discontiguous and the insert is in the head section + // + // For each of those there are two more cases: + // Insert is closer to tail + // Insert is closer to head + // + // Key: H - self.head + // T - self.tail + // o - Valid element + // I - Insertion element + // A - The element that should be after the insertion point + // M - Indicates element was moved + + let idx = self.wrap_add(self.tail, index); + + let distance_to_tail = index; + let distance_to_head = self.len() - index; + + let contiguous = self.is_contiguous(); + + match (contiguous, distance_to_tail <= distance_to_head, idx >= self.tail) { + (true, true, _) if index == 0 => { + // push_front + // + // T + // I H + // [A o o o o o o . . . . . . . . .] + // + // H T + // [A o o o o o o o . . . . . I] + // + + self.tail = self.wrap_sub(self.tail, 1); + } + (true, true, _) => { + unsafe { + // contiguous, insert closer to tail: + // + // T I H + // [. . . o o A o o o o . . . . . .] + // + // T H + // [. . o o I A o o o o . . . . . .] + // M M + // + // contiguous, insert closer to tail and tail is 0: + // + // + // T I H + // [o o A o o o o . . . . . . . . .] + // + // H T + // [o I A o o o o o . . . . . . . o] + // M M + + let new_tail = self.wrap_sub(self.tail, 1); + + self.copy(new_tail, self.tail, 1); + // Already moved the tail, so we only copy `index - 1` elements. + self.copy(self.tail, self.tail + 1, index - 1); + + self.tail = new_tail; + } + } + (true, false, _) => { + unsafe { + // contiguous, insert closer to head: + // + // T I H + // [. . . o o o o A o o . . . . . .] + // + // T H + // [. . . o o o o I A o o . . . . .] + // M M M + + self.copy(idx + 1, idx, self.head - idx); + self.head = self.wrap_add(self.head, 1); + } + } + (false, true, true) => { + unsafe { + // discontiguous, insert closer to tail, tail section: + // + // H T I + // [o o o o o o . . . . . o o A o o] + // + // H T + // [o o o o o o . . . . o o I A o o] + // M M + + self.copy(self.tail - 1, self.tail, index); + self.tail -= 1; + } + } + (false, false, true) => { + unsafe { + // discontiguous, insert closer to head, tail section: + // + // H T I + // [o o . . . . . . . o o o o o A o] + // + // H T + // [o o o . . . . . . o o o o o I A] + // M M M M + + // copy elements up to new head + self.copy(1, 0, self.head); + + // copy last element into empty spot at bottom of buffer + self.copy(0, self.cap() - 1, 1); + + // move elements from idx to end forward not including ^ element + self.copy(idx + 1, idx, self.cap() - 1 - idx); + + self.head += 1; + } + } + (false, true, false) if idx == 0 => { + unsafe { + // discontiguous, insert is closer to tail, head section, + // and is at index zero in the internal buffer: + // + // I H T + // [A o o o o o o o o o . . . o o o] + // + // H T + // [A o o o o o o o o o . . o o o I] + // M M M + + // copy elements up to new tail + self.copy(self.tail - 1, self.tail, self.cap() - self.tail); + + // copy last element into empty spot at bottom of buffer + self.copy(self.cap() - 1, 0, 1); + + self.tail -= 1; + } + } + (false, true, false) => { + unsafe { + // discontiguous, insert closer to tail, head section: + // + // I H T + // [o o o A o o o o o o . . . o o o] + // + // H T + // [o o I A o o o o o o . . o o o o] + // M M M M M M + + // copy elements up to new tail + self.copy(self.tail - 1, self.tail, self.cap() - self.tail); + + // copy last element into empty spot at bottom of buffer + self.copy(self.cap() - 1, 0, 1); + + // move elements from idx-1 to end forward not including ^ element + self.copy(0, 1, idx - 1); + + self.tail -= 1; + } + } + (false, false, false) => { + unsafe { + // discontiguous, insert closer to head, head section: + // + // I H T + // [o o o o A o o . . . . . . o o o] + // + // H T + // [o o o o I A o o . . . . . o o o] + // M M M + + self.copy(idx + 1, idx, self.head - idx); + self.head += 1; + } + } + } + + // tail might've been changed so we need to recalculate + let new_idx = self.wrap_add(self.tail, index); + unsafe { + self.buffer_write(new_idx, value); + } + } + + /// Removes and returns the element at `index` from the `VecDeque`. + /// Whichever end is closer to the removal point will be moved to make + /// room, and all the affected elements will be moved to new positions. + /// Returns `None` if `index` is out of bounds. + /// + /// Element at index 0 is the front of the queue. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut buf = VecDeque::new(); + /// buf.push_back(1); + /// buf.push_back(2); + /// buf.push_back(3); + /// assert_eq!(buf, [1, 2, 3]); + /// + /// assert_eq!(buf.remove(1), Some(2)); + /// assert_eq!(buf, [1, 3]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn remove(&mut self, index: usize) -> Option<T> { + if self.is_empty() || self.len() <= index { + return None; + } + + // There are three main cases: + // Elements are contiguous + // Elements are discontiguous and the removal is in the tail section + // Elements are discontiguous and the removal is in the head section + // - special case when elements are technically contiguous, + // but self.head = 0 + // + // For each of those there are two more cases: + // Insert is closer to tail + // Insert is closer to head + // + // Key: H - self.head + // T - self.tail + // o - Valid element + // x - Element marked for removal + // R - Indicates element that is being removed + // M - Indicates element was moved + + let idx = self.wrap_add(self.tail, index); + + let elem = unsafe { Some(self.buffer_read(idx)) }; + + let distance_to_tail = index; + let distance_to_head = self.len() - index; + + let contiguous = self.is_contiguous(); + + match (contiguous, distance_to_tail <= distance_to_head, idx >= self.tail) { + (true, true, _) => { + unsafe { + // contiguous, remove closer to tail: + // + // T R H + // [. . . o o x o o o o . . . . . .] + // + // T H + // [. . . . o o o o o o . . . . . .] + // M M + + self.copy(self.tail + 1, self.tail, index); + self.tail += 1; + } + } + (true, false, _) => { + unsafe { + // contiguous, remove closer to head: + // + // T R H + // [. . . o o o o x o o . . . . . .] + // + // T H + // [. . . o o o o o o . . . . . . .] + // M M + + self.copy(idx, idx + 1, self.head - idx - 1); + self.head -= 1; + } + } + (false, true, true) => { + unsafe { + // discontiguous, remove closer to tail, tail section: + // + // H T R + // [o o o o o o . . . . . o o x o o] + // + // H T + // [o o o o o o . . . . . . o o o o] + // M M + + self.copy(self.tail + 1, self.tail, index); + self.tail = self.wrap_add(self.tail, 1); + } + } + (false, false, false) => { + unsafe { + // discontiguous, remove closer to head, head section: + // + // R H T + // [o o o o x o o . . . . . . o o o] + // + // H T + // [o o o o o o . . . . . . . o o o] + // M M + + self.copy(idx, idx + 1, self.head - idx - 1); + self.head -= 1; + } + } + (false, false, true) => { + unsafe { + // discontiguous, remove closer to head, tail section: + // + // H T R + // [o o o . . . . . . o o o o o x o] + // + // H T + // [o o . . . . . . . o o o o o o o] + // M M M M + // + // or quasi-discontiguous, remove next to head, tail section: + // + // H T R + // [. . . . . . . . . o o o o o x o] + // + // T H + // [. . . . . . . . . o o o o o o .] + // M + + // draw in elements in the tail section + self.copy(idx, idx + 1, self.cap() - idx - 1); + + // Prevents underflow. + if self.head != 0 { + // copy first element into empty spot + self.copy(self.cap() - 1, 0, 1); + + // move elements in the head section backwards + self.copy(0, 1, self.head - 1); + } + + self.head = self.wrap_sub(self.head, 1); + } + } + (false, true, false) => { + unsafe { + // discontiguous, remove closer to tail, head section: + // + // R H T + // [o o x o o o o o o o . . . o o o] + // + // H T + // [o o o o o o o o o o . . . . o o] + // M M M M M + + // draw in elements up to idx + self.copy(1, 0, idx); + + // copy last element into empty spot + self.copy(0, self.cap() - 1, 1); + + // move elements from tail to end forward, excluding the last one + self.copy(self.tail + 1, self.tail, self.cap() - self.tail - 1); + + self.tail = self.wrap_add(self.tail, 1); + } + } + } + + return elem; + } + + /// Splits the collection into two at the given index. + /// + /// Returns a newly allocated `Self`. `self` contains elements `[0, at)`, + /// and the returned `Self` contains elements `[at, len)`. + /// + /// Note that the capacity of `self` does not change. + /// + /// Element at index 0 is the front of the queue. + /// + /// # Panics + /// + /// Panics if `at > len` + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut buf: VecDeque<_> = vec![1,2,3].into_iter().collect(); + /// let buf2 = buf.split_off(1); + /// assert_eq!(buf, [1]); + /// assert_eq!(buf2, [2, 3]); + /// ``` + #[inline] + #[stable(feature = "split_off", since = "1.4.0")] + pub fn split_off(&mut self, at: usize) -> Self { + let len = self.len(); + assert!(at <= len, "`at` out of bounds"); + + let other_len = len - at; + let mut other = VecDeque::with_capacity(other_len); + + unsafe { + let (first_half, second_half) = self.as_slices(); + + let first_len = first_half.len(); + let second_len = second_half.len(); + if at < first_len { + // `at` lies in the first half. + let amount_in_first = first_len - at; + + ptr::copy_nonoverlapping(first_half.as_ptr().offset(at as isize), + other.ptr(), + amount_in_first); + + // just take all of the second half. + ptr::copy_nonoverlapping(second_half.as_ptr(), + other.ptr().offset(amount_in_first as isize), + second_len); + } else { + // `at` lies in the second half, need to factor in the elements we skipped + // in the first half. + let offset = at - first_len; + let amount_in_second = second_len - offset; + ptr::copy_nonoverlapping(second_half.as_ptr().offset(offset as isize), + other.ptr(), + amount_in_second); + } + } + + // Cleanup where the ends of the buffers are + self.head = self.wrap_sub(self.head, other_len); + other.head = other.wrap_index(other_len); + + other + } + + /// Moves all the elements of `other` into `Self`, leaving `other` empty. + /// + /// # Panics + /// + /// Panics if the new number of elements in self overflows a `usize`. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut buf: VecDeque<_> = vec![1, 2].into_iter().collect(); + /// let mut buf2: VecDeque<_> = vec![3, 4].into_iter().collect(); + /// buf.append(&mut buf2); + /// assert_eq!(buf, [1, 2, 3, 4]); + /// assert_eq!(buf2, []); + /// ``` + #[inline] + #[stable(feature = "append", since = "1.4.0")] + pub fn append(&mut self, other: &mut Self) { + // naive impl + self.extend(other.drain(..)); + } + + /// Retains only the elements specified by the predicate. + /// + /// In other words, remove all elements `e` such that `f(&e)` returns false. + /// This method operates in place and preserves the order of the retained + /// elements. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut buf = VecDeque::new(); + /// buf.extend(1..5); + /// buf.retain(|&x| x%2 == 0); + /// assert_eq!(buf, [2, 4]); + /// ``` + #[stable(feature = "vec_deque_retain", since = "1.4.0")] + pub fn retain<F>(&mut self, mut f: F) + where F: FnMut(&T) -> bool + { + let len = self.len(); + let mut del = 0; + for i in 0..len { + if !f(&self[i]) { + del += 1; + } else if del > 0 { + self.swap(i - del, i); + } + } + if del > 0 { + self.truncate(len - del); + } + } + + // This may panic or abort + #[inline] + fn grow_if_necessary(&mut self) { + if self.is_full() { + let old_cap = self.cap(); + self.buf.double(); + unsafe { + self.handle_cap_increase(old_cap); + } + debug_assert!(!self.is_full()); + } + } + + /// Returns a place for insertion at the back of the `VecDeque`. + /// + /// Using this method with placement syntax is equivalent to [`push_back`](#method.push_back), + /// but may be more efficient. + /// + /// # Examples + /// + /// ``` + /// #![feature(collection_placement)] + /// #![feature(placement_in_syntax)] + /// + /// use std::collections::VecDeque; + /// + /// let mut buf = VecDeque::new(); + /// buf.place_back() <- 3; + /// buf.place_back() <- 4; + /// assert_eq!(&buf, &[3, 4]); + /// ``` + #[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] + pub fn place_back(&mut self) -> PlaceBack<T> { + PlaceBack { vec_deque: self } + } + + /// Returns a place for insertion at the front of the `VecDeque`. + /// + /// Using this method with placement syntax is equivalent to [`push_front`](#method.push_front), + /// but may be more efficient. + /// + /// # Examples + /// + /// ``` + /// #![feature(collection_placement)] + /// #![feature(placement_in_syntax)] + /// + /// use std::collections::VecDeque; + /// + /// let mut buf = VecDeque::new(); + /// buf.place_front() <- 3; + /// buf.place_front() <- 4; + /// assert_eq!(&buf, &[4, 3]); + /// ``` + #[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] + pub fn place_front(&mut self) -> PlaceFront<T> { + PlaceFront { vec_deque: self } + } +} + +impl<T: Clone> VecDeque<T> { + /// Modifies the `VecDeque` in-place so that `len()` is equal to new_len, + /// either by removing excess elements or by appending clones of `value` to the back. + /// + /// # Examples + /// + /// ``` + /// use std::collections::VecDeque; + /// + /// let mut buf = VecDeque::new(); + /// buf.push_back(5); + /// buf.push_back(10); + /// buf.push_back(15); + /// assert_eq!(buf, [5, 10, 15]); + /// + /// buf.resize(2, 0); + /// assert_eq!(buf, [5, 10]); + /// + /// buf.resize(5, 20); + /// assert_eq!(buf, [5, 10, 20, 20, 20]); + /// ``` + #[stable(feature = "deque_extras", since = "1.16.0")] + pub fn resize(&mut self, new_len: usize, value: T) { + let len = self.len(); + + if new_len > len { + self.extend(repeat(value).take(new_len - len)) + } else { + self.truncate(new_len); + } + } +} + +/// Returns the index in the underlying buffer for a given logical element index. +#[inline] +fn wrap_index(index: usize, size: usize) -> usize { + // size is always a power of 2 + debug_assert!(size.is_power_of_two()); + index & (size - 1) +} + +/// Returns the two slices that cover the `VecDeque`'s valid range +trait RingSlices: Sized { + fn slice(self, from: usize, to: usize) -> Self; + fn split_at(self, i: usize) -> (Self, Self); + + fn ring_slices(buf: Self, head: usize, tail: usize) -> (Self, Self) { + let contiguous = tail <= head; + if contiguous { + let (empty, buf) = buf.split_at(0); + (buf.slice(tail, head), empty) + } else { + let (mid, right) = buf.split_at(tail); + let (left, _) = mid.split_at(head); + (right, left) + } + } +} + +impl<'a, T> RingSlices for &'a [T] { + fn slice(self, from: usize, to: usize) -> Self { + &self[from..to] + } + fn split_at(self, i: usize) -> (Self, Self) { + (*self).split_at(i) + } +} + +impl<'a, T> RingSlices for &'a mut [T] { + fn slice(self, from: usize, to: usize) -> Self { + &mut self[from..to] + } + fn split_at(self, i: usize) -> (Self, Self) { + (*self).split_at_mut(i) + } +} + +/// Calculate the number of elements left to be read in the buffer +#[inline] +fn count(tail: usize, head: usize, size: usize) -> usize { + // size is always a power of 2 + (head.wrapping_sub(tail)) & (size - 1) +} + +/// An iterator over the elements of a `VecDeque`. +/// +/// This `struct` is created by the [`iter`] method on [`VecDeque`]. See its +/// documentation for more. +/// +/// [`iter`]: struct.VecDeque.html#method.iter +/// [`VecDeque`]: struct.VecDeque.html +#[stable(feature = "rust1", since = "1.0.0")] +pub struct Iter<'a, T: 'a> { + ring: &'a [T], + tail: usize, + head: usize, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a, T: 'a + fmt::Debug> fmt::Debug for Iter<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("Iter") + .field(&self.ring) + .field(&self.tail) + .field(&self.head) + .finish() + } +} + +// FIXME(#19839) Remove in favor of `#[derive(Clone)]` +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> Clone for Iter<'a, T> { + fn clone(&self) -> Iter<'a, T> { + Iter { + ring: self.ring, + tail: self.tail, + head: self.head, + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> Iterator for Iter<'a, T> { + type Item = &'a T; + + #[inline] + fn next(&mut self) -> Option<&'a T> { + if self.tail == self.head { + return None; + } + let tail = self.tail; + self.tail = wrap_index(self.tail.wrapping_add(1), self.ring.len()); + unsafe { Some(self.ring.get_unchecked(tail)) } + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + let len = count(self.tail, self.head, self.ring.len()); + (len, Some(len)) + } + + fn fold<Acc, F>(self, mut accum: Acc, mut f: F) -> Acc + where F: FnMut(Acc, Self::Item) -> Acc + { + let (front, back) = RingSlices::ring_slices(self.ring, self.head, self.tail); + accum = front.iter().fold(accum, &mut f); + back.iter().fold(accum, &mut f) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> DoubleEndedIterator for Iter<'a, T> { + #[inline] + fn next_back(&mut self) -> Option<&'a T> { + if self.tail == self.head { + return None; + } + self.head = wrap_index(self.head.wrapping_sub(1), self.ring.len()); + unsafe { Some(self.ring.get_unchecked(self.head)) } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> ExactSizeIterator for Iter<'a, T> { + fn is_empty(&self) -> bool { + self.head == self.tail + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, T> FusedIterator for Iter<'a, T> {} + + +/// A mutable iterator over the elements of a `VecDeque`. +/// +/// This `struct` is created by the [`iter_mut`] method on [`VecDeque`]. See its +/// documentation for more. +/// +/// [`iter_mut`]: struct.VecDeque.html#method.iter_mut +/// [`VecDeque`]: struct.VecDeque.html +#[stable(feature = "rust1", since = "1.0.0")] +pub struct IterMut<'a, T: 'a> { + ring: &'a mut [T], + tail: usize, + head: usize, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a, T: 'a + fmt::Debug> fmt::Debug for IterMut<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("IterMut") + .field(&self.ring) + .field(&self.tail) + .field(&self.head) + .finish() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> Iterator for IterMut<'a, T> { + type Item = &'a mut T; + + #[inline] + fn next(&mut self) -> Option<&'a mut T> { + if self.tail == self.head { + return None; + } + let tail = self.tail; + self.tail = wrap_index(self.tail.wrapping_add(1), self.ring.len()); + + unsafe { + let elem = self.ring.get_unchecked_mut(tail); + Some(&mut *(elem as *mut _)) + } + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + let len = count(self.tail, self.head, self.ring.len()); + (len, Some(len)) + } + + fn fold<Acc, F>(self, mut accum: Acc, mut f: F) -> Acc + where F: FnMut(Acc, Self::Item) -> Acc + { + let (front, back) = RingSlices::ring_slices(self.ring, self.head, self.tail); + accum = front.iter_mut().fold(accum, &mut f); + back.iter_mut().fold(accum, &mut f) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> DoubleEndedIterator for IterMut<'a, T> { + #[inline] + fn next_back(&mut self) -> Option<&'a mut T> { + if self.tail == self.head { + return None; + } + self.head = wrap_index(self.head.wrapping_sub(1), self.ring.len()); + + unsafe { + let elem = self.ring.get_unchecked_mut(self.head); + Some(&mut *(elem as *mut _)) + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> ExactSizeIterator for IterMut<'a, T> { + fn is_empty(&self) -> bool { + self.head == self.tail + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, T> FusedIterator for IterMut<'a, T> {} + +/// An owning iterator over the elements of a `VecDeque`. +/// +/// This `struct` is created by the [`into_iter`] method on [`VecDeque`][`VecDeque`] +/// (provided by the `IntoIterator` trait). See its documentation for more. +/// +/// [`into_iter`]: struct.VecDeque.html#method.into_iter +/// [`VecDeque`]: struct.VecDeque.html +#[derive(Clone)] +#[stable(feature = "rust1", since = "1.0.0")] +pub struct IntoIter<T> { + inner: VecDeque<T>, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<T: fmt::Debug> fmt::Debug for IntoIter<T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("IntoIter") + .field(&self.inner) + .finish() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> Iterator for IntoIter<T> { + type Item = T; + + #[inline] + fn next(&mut self) -> Option<T> { + self.inner.pop_front() + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + let len = self.inner.len(); + (len, Some(len)) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> DoubleEndedIterator for IntoIter<T> { + #[inline] + fn next_back(&mut self) -> Option<T> { + self.inner.pop_back() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> ExactSizeIterator for IntoIter<T> { + fn is_empty(&self) -> bool { + self.inner.is_empty() + } +} + +#[unstable(feature = "fused", issue = "35602")] +impl<T> FusedIterator for IntoIter<T> {} + +/// A draining iterator over the elements of a `VecDeque`. +/// +/// This `struct` is created by the [`drain`] method on [`VecDeque`]. See its +/// documentation for more. +/// +/// [`drain`]: struct.VecDeque.html#method.drain +/// [`VecDeque`]: struct.VecDeque.html +#[stable(feature = "drain", since = "1.6.0")] +pub struct Drain<'a, T: 'a> { + after_tail: usize, + after_head: usize, + iter: Iter<'a, T>, + deque: Shared<VecDeque<T>>, +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a, T: 'a + fmt::Debug> fmt::Debug for Drain<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_tuple("Drain") + .field(&self.after_tail) + .field(&self.after_head) + .field(&self.iter) + .finish() + } +} + +#[stable(feature = "drain", since = "1.6.0")] +unsafe impl<'a, T: Sync> Sync for Drain<'a, T> {} +#[stable(feature = "drain", since = "1.6.0")] +unsafe impl<'a, T: Send> Send for Drain<'a, T> {} + +#[stable(feature = "drain", since = "1.6.0")] +impl<'a, T: 'a> Drop for Drain<'a, T> { + fn drop(&mut self) { + for _ in self.by_ref() {} + + let source_deque = unsafe { self.deque.as_mut() }; + + // T = source_deque_tail; H = source_deque_head; t = drain_tail; h = drain_head + // + // T t h H + // [. . . o o x x o o . . .] + // + let orig_tail = source_deque.tail; + let drain_tail = source_deque.head; + let drain_head = self.after_tail; + let orig_head = self.after_head; + + let tail_len = count(orig_tail, drain_tail, source_deque.cap()); + let head_len = count(drain_head, orig_head, source_deque.cap()); + + // Restore the original head value + source_deque.head = orig_head; + + match (tail_len, head_len) { + (0, 0) => { + source_deque.head = 0; + source_deque.tail = 0; + } + (0, _) => { + source_deque.tail = drain_head; + } + (_, 0) => { + source_deque.head = drain_tail; + } + _ => unsafe { + if tail_len <= head_len { + source_deque.tail = source_deque.wrap_sub(drain_head, tail_len); + source_deque.wrap_copy(source_deque.tail, orig_tail, tail_len); + } else { + source_deque.head = source_deque.wrap_add(drain_tail, head_len); + source_deque.wrap_copy(drain_tail, drain_head, head_len); + } + }, + } + } +} + +#[stable(feature = "drain", since = "1.6.0")] +impl<'a, T: 'a> Iterator for Drain<'a, T> { + type Item = T; + + #[inline] + fn next(&mut self) -> Option<T> { + self.iter.next().map(|elt| unsafe { ptr::read(elt) }) + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + self.iter.size_hint() + } +} + +#[stable(feature = "drain", since = "1.6.0")] +impl<'a, T: 'a> DoubleEndedIterator for Drain<'a, T> { + #[inline] + fn next_back(&mut self) -> Option<T> { + self.iter.next_back().map(|elt| unsafe { ptr::read(elt) }) + } +} + +#[stable(feature = "drain", since = "1.6.0")] +impl<'a, T: 'a> ExactSizeIterator for Drain<'a, T> {} + +#[unstable(feature = "fused", issue = "35602")] +impl<'a, T: 'a> FusedIterator for Drain<'a, T> {} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<A: PartialEq> PartialEq for VecDeque<A> { + fn eq(&self, other: &VecDeque<A>) -> bool { + if self.len() != other.len() { + return false; + } + let (sa, sb) = self.as_slices(); + let (oa, ob) = other.as_slices(); + if sa.len() == oa.len() { + sa == oa && sb == ob + } else if sa.len() < oa.len() { + // Always divisible in three sections, for example: + // self: [a b c|d e f] + // other: [0 1 2 3|4 5] + // front = 3, mid = 1, + // [a b c] == [0 1 2] && [d] == [3] && [e f] == [4 5] + let front = sa.len(); + let mid = oa.len() - front; + + let (oa_front, oa_mid) = oa.split_at(front); + let (sb_mid, sb_back) = sb.split_at(mid); + debug_assert_eq!(sa.len(), oa_front.len()); + debug_assert_eq!(sb_mid.len(), oa_mid.len()); + debug_assert_eq!(sb_back.len(), ob.len()); + sa == oa_front && sb_mid == oa_mid && sb_back == ob + } else { + let front = oa.len(); + let mid = sa.len() - front; + + let (sa_front, sa_mid) = sa.split_at(front); + let (ob_mid, ob_back) = ob.split_at(mid); + debug_assert_eq!(sa_front.len(), oa.len()); + debug_assert_eq!(sa_mid.len(), ob_mid.len()); + debug_assert_eq!(sb.len(), ob_back.len()); + sa_front == oa && sa_mid == ob_mid && sb == ob_back + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<A: Eq> Eq for VecDeque<A> {} + +macro_rules! __impl_slice_eq1 { + ($Lhs: ty, $Rhs: ty) => { + __impl_slice_eq1! { $Lhs, $Rhs, Sized } + }; + ($Lhs: ty, $Rhs: ty, $Bound: ident) => { + #[stable(feature = "vec-deque-partial-eq-slice", since = "1.17.0")] + impl<'a, 'b, A: $Bound, B> PartialEq<$Rhs> for $Lhs where A: PartialEq<B> { + fn eq(&self, other: &$Rhs) -> bool { + if self.len() != other.len() { + return false; + } + let (sa, sb) = self.as_slices(); + let (oa, ob) = other[..].split_at(sa.len()); + sa == oa && sb == ob + } + } + } +} + +__impl_slice_eq1! { VecDeque<A>, Vec<B> } +__impl_slice_eq1! { VecDeque<A>, &'b [B] } +__impl_slice_eq1! { VecDeque<A>, &'b mut [B] } + +macro_rules! array_impls { + ($($N: expr)+) => { + $( + __impl_slice_eq1! { VecDeque<A>, [B; $N] } + __impl_slice_eq1! { VecDeque<A>, &'b [B; $N] } + __impl_slice_eq1! { VecDeque<A>, &'b mut [B; $N] } + )+ + } +} + +array_impls! { + 0 1 2 3 4 5 6 7 8 9 + 10 11 12 13 14 15 16 17 18 19 + 20 21 22 23 24 25 26 27 28 29 + 30 31 32 +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<A: PartialOrd> PartialOrd for VecDeque<A> { + fn partial_cmp(&self, other: &VecDeque<A>) -> Option<Ordering> { + self.iter().partial_cmp(other.iter()) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<A: Ord> Ord for VecDeque<A> { + #[inline] + fn cmp(&self, other: &VecDeque<A>) -> Ordering { + self.iter().cmp(other.iter()) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<A: Hash> Hash for VecDeque<A> { + fn hash<H: Hasher>(&self, state: &mut H) { + self.len().hash(state); + let (a, b) = self.as_slices(); + Hash::hash_slice(a, state); + Hash::hash_slice(b, state); + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<A> Index<usize> for VecDeque<A> { + type Output = A; + + #[inline] + fn index(&self, index: usize) -> &A { + self.get(index).expect("Out of bounds access") + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<A> IndexMut<usize> for VecDeque<A> { + #[inline] + fn index_mut(&mut self, index: usize) -> &mut A { + self.get_mut(index).expect("Out of bounds access") + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<A> FromIterator<A> for VecDeque<A> { + fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> VecDeque<A> { + let iterator = iter.into_iter(); + let (lower, _) = iterator.size_hint(); + let mut deq = VecDeque::with_capacity(lower); + deq.extend(iterator); + deq + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T> IntoIterator for VecDeque<T> { + type Item = T; + type IntoIter = IntoIter<T>; + + /// Consumes the list into a front-to-back iterator yielding elements by + /// value. + fn into_iter(self) -> IntoIter<T> { + IntoIter { inner: self } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> IntoIterator for &'a VecDeque<T> { + type Item = &'a T; + type IntoIter = Iter<'a, T>; + + fn into_iter(self) -> Iter<'a, T> { + self.iter() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<'a, T> IntoIterator for &'a mut VecDeque<T> { + type Item = &'a mut T; + type IntoIter = IterMut<'a, T>; + + fn into_iter(mut self) -> IterMut<'a, T> { + self.iter_mut() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<A> Extend<A> for VecDeque<A> { + fn extend<T: IntoIterator<Item = A>>(&mut self, iter: T) { + for elt in iter { + self.push_back(elt); + } + } +} + +#[stable(feature = "extend_ref", since = "1.2.0")] +impl<'a, T: 'a + Copy> Extend<&'a T> for VecDeque<T> { + fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) { + self.extend(iter.into_iter().cloned()); + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: fmt::Debug> fmt::Debug for VecDeque<T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_list().entries(self).finish() + } +} + +#[stable(feature = "vecdeque_vec_conversions", since = "1.10.0")] +impl<T> From<Vec<T>> for VecDeque<T> { + fn from(mut other: Vec<T>) -> Self { + unsafe { + let other_buf = other.as_mut_ptr(); + let mut buf = RawVec::from_raw_parts(other_buf, other.capacity()); + let len = other.len(); + mem::forget(other); + + // We need to extend the buf if it's not a power of two, too small + // or doesn't have at least one free space + if !buf.cap().is_power_of_two() || (buf.cap() < (MINIMUM_CAPACITY + 1)) || + (buf.cap() == len) { + let cap = cmp::max(buf.cap() + 1, MINIMUM_CAPACITY + 1).next_power_of_two(); + buf.reserve_exact(len, cap - len); + } + + VecDeque { + tail: 0, + head: len, + buf: buf, + } + } + } +} + +#[stable(feature = "vecdeque_vec_conversions", since = "1.10.0")] +impl<T> From<VecDeque<T>> for Vec<T> { + fn from(other: VecDeque<T>) -> Self { + unsafe { + let buf = other.buf.ptr(); + let len = other.len(); + let tail = other.tail; + let head = other.head; + let cap = other.cap(); + + // Need to move the ring to the front of the buffer, as vec will expect this. + if other.is_contiguous() { + ptr::copy(buf.offset(tail as isize), buf, len); + } else { + if (tail - head) >= cmp::min((cap - tail), head) { + // There is enough free space in the centre for the shortest block so we can + // do this in at most three copy moves. + if (cap - tail) > head { + // right hand block is the long one; move that enough for the left + ptr::copy(buf.offset(tail as isize), + buf.offset((tail - head) as isize), + cap - tail); + // copy left in the end + ptr::copy(buf, buf.offset((cap - head) as isize), head); + // shift the new thing to the start + ptr::copy(buf.offset((tail - head) as isize), buf, len); + } else { + // left hand block is the long one, we can do it in two! + ptr::copy(buf, buf.offset((cap - tail) as isize), head); + ptr::copy(buf.offset(tail as isize), buf, cap - tail); + } + } else { + // Need to use N swaps to move the ring + // We can use the space at the end of the ring as a temp store + + let mut left_edge: usize = 0; + let mut right_edge: usize = tail; + + // The general problem looks like this + // GHIJKLM...ABCDEF - before any swaps + // ABCDEFM...GHIJKL - after 1 pass of swaps + // ABCDEFGHIJM...KL - swap until the left edge reaches the temp store + // - then restart the algorithm with a new (smaller) store + // Sometimes the temp store is reached when the right edge is at the end + // of the buffer - this means we've hit the right order with fewer swaps! + // E.g + // EF..ABCD + // ABCDEF.. - after four only swaps we've finished + + while left_edge < len && right_edge != cap { + let mut right_offset = 0; + for i in left_edge..right_edge { + right_offset = (i - left_edge) % (cap - right_edge); + let src: isize = (right_edge + right_offset) as isize; + ptr::swap(buf.offset(i as isize), buf.offset(src)); + } + let n_ops = right_edge - left_edge; + left_edge += n_ops; + right_edge += right_offset + 1; + + } + } + + } + let out = Vec::from_raw_parts(buf, len, cap); + mem::forget(other); + out + } + } +} + +/// A place for insertion at the back of a `VecDeque`. +/// +/// See [`VecDeque::place_back`](struct.VecDeque.html#method.place_back) for details. +#[must_use = "places do nothing unless written to with `<-` syntax"] +#[unstable(feature = "collection_placement", + reason = "struct name and placement protocol are subject to change", + issue = "30172")] +#[derive(Debug)] +pub struct PlaceBack<'a, T: 'a> { + vec_deque: &'a mut VecDeque<T>, +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T> Placer<T> for PlaceBack<'a, T> { + type Place = PlaceBack<'a, T>; + + fn make_place(self) -> Self { + self.vec_deque.grow_if_necessary(); + self + } +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T> Place<T> for PlaceBack<'a, T> { + fn pointer(&mut self) -> *mut T { + unsafe { self.vec_deque.ptr().offset(self.vec_deque.head as isize) } + } +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T> InPlace<T> for PlaceBack<'a, T> { + type Owner = &'a mut T; + + unsafe fn finalize(mut self) -> &'a mut T { + let head = self.vec_deque.head; + self.vec_deque.head = self.vec_deque.wrap_add(head, 1); + &mut *(self.vec_deque.ptr().offset(head as isize)) + } +} + +/// A place for insertion at the front of a `VecDeque`. +/// +/// See [`VecDeque::place_front`](struct.VecDeque.html#method.place_front) for details. +#[must_use = "places do nothing unless written to with `<-` syntax"] +#[unstable(feature = "collection_placement", + reason = "struct name and placement protocol are subject to change", + issue = "30172")] +#[derive(Debug)] +pub struct PlaceFront<'a, T: 'a> { + vec_deque: &'a mut VecDeque<T>, +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T> Placer<T> for PlaceFront<'a, T> { + type Place = PlaceFront<'a, T>; + + fn make_place(self) -> Self { + self.vec_deque.grow_if_necessary(); + self + } +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T> Place<T> for PlaceFront<'a, T> { + fn pointer(&mut self) -> *mut T { + let tail = self.vec_deque.wrap_sub(self.vec_deque.tail, 1); + unsafe { self.vec_deque.ptr().offset(tail as isize) } + } +} + +#[unstable(feature = "collection_placement", + reason = "placement protocol is subject to change", + issue = "30172")] +impl<'a, T> InPlace<T> for PlaceFront<'a, T> { + type Owner = &'a mut T; + + unsafe fn finalize(mut self) -> &'a mut T { + self.vec_deque.tail = self.vec_deque.wrap_sub(self.vec_deque.tail, 1); + &mut *(self.vec_deque.ptr().offset(self.vec_deque.tail as isize)) + } +} + +#[cfg(test)] +mod tests { + use test; + + use super::VecDeque; + + #[bench] + fn bench_push_back_100(b: &mut test::Bencher) { + let mut deq = VecDeque::with_capacity(101); + b.iter(|| { + for i in 0..100 { + deq.push_back(i); + } + deq.head = 0; + deq.tail = 0; + }) + } + + #[bench] + fn bench_push_front_100(b: &mut test::Bencher) { + let mut deq = VecDeque::with_capacity(101); + b.iter(|| { + for i in 0..100 { + deq.push_front(i); + } + deq.head = 0; + deq.tail = 0; + }) + } + + #[bench] + fn bench_pop_back_100(b: &mut test::Bencher) { + let mut deq = VecDeque::<i32>::with_capacity(101); + + b.iter(|| { + deq.head = 100; + deq.tail = 0; + while !deq.is_empty() { + test::black_box(deq.pop_back()); + } + }) + } + + #[bench] + fn bench_pop_front_100(b: &mut test::Bencher) { + let mut deq = VecDeque::<i32>::with_capacity(101); + + b.iter(|| { + deq.head = 100; + deq.tail = 0; + while !deq.is_empty() { + test::black_box(deq.pop_front()); + } + }) + } + + #[test] + fn test_swap_front_back_remove() { + fn test(back: bool) { + // This test checks that every single combination of tail position and length is tested. + // Capacity 15 should be large enough to cover every case. + let mut tester = VecDeque::with_capacity(15); + let usable_cap = tester.capacity(); + let final_len = usable_cap / 2; + + for len in 0..final_len { + let expected: VecDeque<_> = if back { + (0..len).collect() + } else { + (0..len).rev().collect() + }; + for tail_pos in 0..usable_cap { + tester.tail = tail_pos; + tester.head = tail_pos; + if back { + for i in 0..len * 2 { + tester.push_front(i); + } + for i in 0..len { + assert_eq!(tester.swap_remove_back(i), Some(len * 2 - 1 - i)); + } + } else { + for i in 0..len * 2 { + tester.push_back(i); + } + for i in 0..len { + let idx = tester.len() - 1 - i; + assert_eq!(tester.swap_remove_front(idx), Some(len * 2 - 1 - i)); + } + } + assert!(tester.tail < tester.cap()); + assert!(tester.head < tester.cap()); + assert_eq!(tester, expected); + } + } + } + test(true); + test(false); + } + + #[test] + fn test_insert() { + // This test checks that every single combination of tail position, length, and + // insertion position is tested. Capacity 15 should be large enough to cover every case. + + let mut tester = VecDeque::with_capacity(15); + // can't guarantee we got 15, so have to get what we got. + // 15 would be great, but we will definitely get 2^k - 1, for k >= 4, or else + // this test isn't covering what it wants to + let cap = tester.capacity(); + + + // len is the length *after* insertion + for len in 1..cap { + // 0, 1, 2, .., len - 1 + let expected = (0..).take(len).collect::<VecDeque<_>>(); + for tail_pos in 0..cap { + for to_insert in 0..len { + tester.tail = tail_pos; + tester.head = tail_pos; + for i in 0..len { + if i != to_insert { + tester.push_back(i); + } + } + tester.insert(to_insert, to_insert); + assert!(tester.tail < tester.cap()); + assert!(tester.head < tester.cap()); + assert_eq!(tester, expected); + } + } + } + } + + #[test] + fn test_remove() { + // This test checks that every single combination of tail position, length, and + // removal position is tested. Capacity 15 should be large enough to cover every case. + + let mut tester = VecDeque::with_capacity(15); + // can't guarantee we got 15, so have to get what we got. + // 15 would be great, but we will definitely get 2^k - 1, for k >= 4, or else + // this test isn't covering what it wants to + let cap = tester.capacity(); + + // len is the length *after* removal + for len in 0..cap - 1 { + // 0, 1, 2, .., len - 1 + let expected = (0..).take(len).collect::<VecDeque<_>>(); + for tail_pos in 0..cap { + for to_remove in 0..len + 1 { + tester.tail = tail_pos; + tester.head = tail_pos; + for i in 0..len { + if i == to_remove { + tester.push_back(1234); + } + tester.push_back(i); + } + if to_remove == len { + tester.push_back(1234); + } + tester.remove(to_remove); + assert!(tester.tail < tester.cap()); + assert!(tester.head < tester.cap()); + assert_eq!(tester, expected); + } + } + } + } + + #[test] + fn test_drain() { + let mut tester: VecDeque<usize> = VecDeque::with_capacity(7); + + let cap = tester.capacity(); + for len in 0..cap + 1 { + for tail in 0..cap + 1 { + for drain_start in 0..len + 1 { + for drain_end in drain_start..len + 1 { + tester.tail = tail; + tester.head = tail; + for i in 0..len { + tester.push_back(i); + } + + // Check that we drain the correct values + let drained: VecDeque<_> = tester.drain(drain_start..drain_end).collect(); + let drained_expected: VecDeque<_> = (drain_start..drain_end).collect(); + assert_eq!(drained, drained_expected); + + // We shouldn't have changed the capacity or made the + // head or tail out of bounds + assert_eq!(tester.capacity(), cap); + assert!(tester.tail < tester.cap()); + assert!(tester.head < tester.cap()); + + // We should see the correct values in the VecDeque + let expected: VecDeque<_> = (0..drain_start) + .chain(drain_end..len) + .collect(); + assert_eq!(expected, tester); + } + } + } + } + } + + #[test] + fn test_shrink_to_fit() { + // This test checks that every single combination of head and tail position, + // is tested. Capacity 15 should be large enough to cover every case. + + let mut tester = VecDeque::with_capacity(15); + // can't guarantee we got 15, so have to get what we got. + // 15 would be great, but we will definitely get 2^k - 1, for k >= 4, or else + // this test isn't covering what it wants to + let cap = tester.capacity(); + tester.reserve(63); + let max_cap = tester.capacity(); + + for len in 0..cap + 1 { + // 0, 1, 2, .., len - 1 + let expected = (0..).take(len).collect::<VecDeque<_>>(); + for tail_pos in 0..max_cap + 1 { + tester.tail = tail_pos; + tester.head = tail_pos; + tester.reserve(63); + for i in 0..len { + tester.push_back(i); + } + tester.shrink_to_fit(); + assert!(tester.capacity() <= cap); + assert!(tester.tail < tester.cap()); + assert!(tester.head < tester.cap()); + assert_eq!(tester, expected); + } + } + } + + #[test] + fn test_split_off() { + // This test checks that every single combination of tail position, length, and + // split position is tested. Capacity 15 should be large enough to cover every case. + + let mut tester = VecDeque::with_capacity(15); + // can't guarantee we got 15, so have to get what we got. + // 15 would be great, but we will definitely get 2^k - 1, for k >= 4, or else + // this test isn't covering what it wants to + let cap = tester.capacity(); + + // len is the length *before* splitting + for len in 0..cap { + // index to split at + for at in 0..len + 1 { + // 0, 1, 2, .., at - 1 (may be empty) + let expected_self = (0..).take(at).collect::<VecDeque<_>>(); + // at, at + 1, .., len - 1 (may be empty) + let expected_other = (at..).take(len - at).collect::<VecDeque<_>>(); + + for tail_pos in 0..cap { + tester.tail = tail_pos; + tester.head = tail_pos; + for i in 0..len { + tester.push_back(i); + } + let result = tester.split_off(at); + assert!(tester.tail < tester.cap()); + assert!(tester.head < tester.cap()); + assert!(result.tail < result.cap()); + assert!(result.head < result.cap()); + assert_eq!(tester, expected_self); + assert_eq!(result, expected_other); + } + } + } + } + + #[test] + fn test_from_vec() { + use super::super::vec::Vec; + for cap in 0..35 { + for len in 0..cap + 1 { + let mut vec = Vec::with_capacity(cap); + vec.extend(0..len); + + let vd = VecDeque::from(vec.clone()); + assert!(vd.cap().is_power_of_two()); + assert_eq!(vd.len(), vec.len()); + assert!(vd.into_iter().eq(vec)); + } + } + } + + #[test] + fn test_vec_from_vecdeque() { + use super::super::vec::Vec; + + fn create_vec_and_test_convert(cap: usize, offset: usize, len: usize) { + let mut vd = VecDeque::with_capacity(cap); + for _ in 0..offset { + vd.push_back(0); + vd.pop_front(); + } + vd.extend(0..len); + + let vec: Vec<_> = Vec::from(vd.clone()); + assert_eq!(vec.len(), vd.len()); + assert!(vec.into_iter().eq(vd)); + } + + for cap_pwr in 0..7 { + // Make capacity as a (2^x)-1, so that the ring size is 2^x + let cap = (2i32.pow(cap_pwr) - 1) as usize; + + // In these cases there is enough free space to solve it with copies + for len in 0..((cap + 1) / 2) { + // Test contiguous cases + for offset in 0..(cap - len) { + create_vec_and_test_convert(cap, offset, len) + } + + // Test cases where block at end of buffer is bigger than block at start + for offset in (cap - len)..(cap - (len / 2)) { + create_vec_and_test_convert(cap, offset, len) + } + + // Test cases where block at start of buffer is bigger than block at end + for offset in (cap - (len / 2))..cap { + create_vec_and_test_convert(cap, offset, len) + } + } + + // Now there's not (necessarily) space to straighten the ring with simple copies, + // the ring will use swapping when: + // (cap + 1 - offset) > (cap + 1 - len) && (len - (cap + 1 - offset)) > (cap + 1 - len)) + // right block size > free space && left block size > free space + for len in ((cap + 1) / 2)..cap { + // Test contiguous cases + for offset in 0..(cap - len) { + create_vec_and_test_convert(cap, offset, len) + } + + // Test cases where block at end of buffer is bigger than block at start + for offset in (cap - len)..(cap - (len / 2)) { + create_vec_and_test_convert(cap, offset, len) + } + + // Test cases where block at start of buffer is bigger than block at end + for offset in (cap - (len / 2))..cap { + create_vec_and_test_convert(cap, offset, len) + } + } + } + } + +} |
