about summary refs log tree commit diff
diff options
context:
space:
mode:
-rw-r--r--library/std/build.rs37
-rw-r--r--library/std/src/f128.rs1300
-rw-r--r--library/std/src/f128/tests.rs450
-rw-r--r--library/std/src/f16.rs1296
-rw-r--r--library/std/src/f16/tests.rs444
-rw-r--r--library/std/src/macros.rs2
-rw-r--r--library/std/src/sys/cmath.rs15
7 files changed, 3452 insertions, 92 deletions
diff --git a/library/std/build.rs b/library/std/build.rs
index 9b58dd53ba2..18ca7b512a9 100644
--- a/library/std/build.rs
+++ b/library/std/build.rs
@@ -85,6 +85,11 @@ fn main() {
     println!("cargo:rustc-check-cfg=cfg(reliable_f16)");
     println!("cargo:rustc-check-cfg=cfg(reliable_f128)");
 
+    // This is a step beyond only having the types and basic functions available. Math functions
+    // aren't consistently available or correct.
+    println!("cargo:rustc-check-cfg=cfg(reliable_f16_math)");
+    println!("cargo:rustc-check-cfg=cfg(reliable_f128_math)");
+
     let has_reliable_f16 = match (target_arch.as_str(), target_os.as_str()) {
         // Selection failure until recent LLVM <https://github.com/llvm/llvm-project/issues/93894>
         // FIXME(llvm19): can probably be removed at the version bump
@@ -130,10 +135,42 @@ fn main() {
         _ => false,
     };
 
+    // These are currently empty, but will fill up as some platforms move from completely
+    // unreliable to reliable basics but unreliable math.
+
+    // LLVM is currenlty adding missing routines, <https://github.com/llvm/llvm-project/issues/93566>
+    let has_reliable_f16_math = has_reliable_f16
+        && match (target_arch.as_str(), target_os.as_str()) {
+            // Currently nothing special. Hooray!
+            // This will change as platforms gain better better support for standard ops but math
+            // lags behind.
+            _ => true,
+        };
+
+    let has_reliable_f128_math = has_reliable_f128
+        && match (target_arch.as_str(), target_os.as_str()) {
+            // LLVM lowers `fp128` math to `long double` symbols even on platforms where
+            // `long double` is not IEEE binary128. See
+            // <https://github.com/llvm/llvm-project/issues/44744>.
+            //
+            // This rules out anything that doesn't have `long double` = `binary128`; <= 32 bits
+            // (ld is `f64`), anything other than Linux (Windows and MacOS use `f64`), and `x86`
+            // (ld is 80-bit extended precision).
+            ("x86_64", _) => false,
+            (_, "linux") if target_pointer_width == 64 => true,
+            _ => false,
+        };
+
     if has_reliable_f16 {
         println!("cargo:rustc-cfg=reliable_f16");
     }
     if has_reliable_f128 {
         println!("cargo:rustc-cfg=reliable_f128");
     }
+    if has_reliable_f16_math {
+        println!("cargo:rustc-cfg=reliable_f16_math");
+    }
+    if has_reliable_f128_math {
+        println!("cargo:rustc-cfg=reliable_f128_math");
+    }
 }
diff --git a/library/std/src/f128.rs b/library/std/src/f128.rs
index a5b00d57cef..f6df6259137 100644
--- a/library/std/src/f128.rs
+++ b/library/std/src/f128.rs
@@ -12,25 +12,180 @@ pub use core::f128::consts;
 
 #[cfg(not(test))]
 use crate::intrinsics;
+#[cfg(not(test))]
+use crate::sys::cmath;
 
 #[cfg(not(test))]
 impl f128 {
-    /// Raises a number to an integer power.
+    /// Returns the largest integer less than or equal to `self`.
     ///
-    /// Using this function is generally faster than using `powf`.
-    /// It might have a different sequence of rounding operations than `powf`,
-    /// so the results are not guaranteed to agree.
+    /// This function always returns the precise result.
     ///
-    /// # Unspecified precision
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let f = 3.7_f128;
+    /// let g = 3.0_f128;
+    /// let h = -3.7_f128;
     ///
-    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
-    /// can even differ within the same execution from one invocation to the next.
+    /// assert_eq!(f.floor(), 3.0);
+    /// assert_eq!(g.floor(), 3.0);
+    /// assert_eq!(h.floor(), -4.0);
+    /// # }
+    /// ```
     #[inline]
     #[rustc_allow_incoherent_impl]
     #[unstable(feature = "f128", issue = "116909")]
     #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn powi(self, n: i32) -> f128 {
-        unsafe { intrinsics::powif128(self, n) }
+    pub fn floor(self) -> f128 {
+        unsafe { intrinsics::floorf128(self) }
+    }
+
+    /// Returns the smallest integer greater than or equal to `self`.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let f = 3.01_f128;
+    /// let g = 4.0_f128;
+    ///
+    /// assert_eq!(f.ceil(), 4.0);
+    /// assert_eq!(g.ceil(), 4.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "ceiling")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn ceil(self) -> f128 {
+        unsafe { intrinsics::ceilf128(self) }
+    }
+
+    /// Returns the nearest integer to `self`. If a value is half-way between two
+    /// integers, round away from `0.0`.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let f = 3.3_f128;
+    /// let g = -3.3_f128;
+    /// let h = -3.7_f128;
+    /// let i = 3.5_f128;
+    /// let j = 4.5_f128;
+    ///
+    /// assert_eq!(f.round(), 3.0);
+    /// assert_eq!(g.round(), -3.0);
+    /// assert_eq!(h.round(), -4.0);
+    /// assert_eq!(i.round(), 4.0);
+    /// assert_eq!(j.round(), 5.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn round(self) -> f128 {
+        unsafe { intrinsics::roundf128(self) }
+    }
+
+    /// Returns the nearest integer to a number. Rounds half-way cases to the number
+    /// with an even least significant digit.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let f = 3.3_f128;
+    /// let g = -3.3_f128;
+    /// let h = 3.5_f128;
+    /// let i = 4.5_f128;
+    ///
+    /// assert_eq!(f.round_ties_even(), 3.0);
+    /// assert_eq!(g.round_ties_even(), -3.0);
+    /// assert_eq!(h.round_ties_even(), 4.0);
+    /// assert_eq!(i.round_ties_even(), 4.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn round_ties_even(self) -> f128 {
+        unsafe { intrinsics::rintf128(self) }
+    }
+
+    /// Returns the integer part of `self`.
+    /// This means that non-integer numbers are always truncated towards zero.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let f = 3.7_f128;
+    /// let g = 3.0_f128;
+    /// let h = -3.7_f128;
+    ///
+    /// assert_eq!(f.trunc(), 3.0);
+    /// assert_eq!(g.trunc(), 3.0);
+    /// assert_eq!(h.trunc(), -3.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "truncate")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn trunc(self) -> f128 {
+        unsafe { intrinsics::truncf128(self) }
+    }
+
+    /// Returns the fractional part of `self`.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let x = 3.6_f128;
+    /// let y = -3.6_f128;
+    /// let abs_difference_x = (x.fract() - 0.6).abs();
+    /// let abs_difference_y = (y.fract() - (-0.6)).abs();
+    ///
+    /// assert!(abs_difference_x <= f128::EPSILON);
+    /// assert!(abs_difference_y <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn fract(self) -> f128 {
+        self - self.trunc()
     }
 
     /// Computes the absolute value of `self`.
@@ -41,7 +196,7 @@ impl f128 {
     ///
     /// ```
     /// #![feature(f128)]
-    /// # #[cfg(reliable_f128)] { // FIXME(f16_f128): reliable_f128
+    /// # #[cfg(reliable_f128)] {
     ///
     /// let x = 3.5_f128;
     /// let y = -3.5_f128;
@@ -61,4 +216,1129 @@ impl f128 {
         // We don't do this now because LLVM has lowering bugs for f128 math.
         Self::from_bits(self.to_bits() & !(1 << 127))
     }
+
+    /// Returns a number that represents the sign of `self`.
+    ///
+    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
+    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
+    /// - NaN if the number is NaN
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let f = 3.5_f128;
+    ///
+    /// assert_eq!(f.signum(), 1.0);
+    /// assert_eq!(f128::NEG_INFINITY.signum(), -1.0);
+    ///
+    /// assert!(f128::NAN.signum().is_nan());
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn signum(self) -> f128 {
+        if self.is_nan() { Self::NAN } else { 1.0_f128.copysign(self) }
+    }
+
+    /// Returns a number composed of the magnitude of `self` and the sign of
+    /// `sign`.
+    ///
+    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise
+    /// equal to `-self`. If `self` is a NaN, then a NaN with the sign bit of
+    /// `sign` is returned. Note, however, that conserving the sign bit on NaN
+    /// across arithmetical operations is not generally guaranteed.
+    /// See [explanation of NaN as a special value](primitive@f128) for more info.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let f = 3.5_f128;
+    ///
+    /// assert_eq!(f.copysign(0.42), 3.5_f128);
+    /// assert_eq!(f.copysign(-0.42), -3.5_f128);
+    /// assert_eq!((-f).copysign(0.42), 3.5_f128);
+    /// assert_eq!((-f).copysign(-0.42), -3.5_f128);
+    ///
+    /// assert!(f128::NAN.copysign(1.0).is_nan());
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn copysign(self, sign: f128) -> f128 {
+        unsafe { intrinsics::copysignf128(self, sign) }
+    }
+
+    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
+    /// error, yielding a more accurate result than an unfused multiply-add.
+    ///
+    /// Using `mul_add` *may* be more performant than an unfused multiply-add if
+    /// the target architecture has a dedicated `fma` CPU instruction. However,
+    /// this is not always true, and will be heavily dependant on designing
+    /// algorithms with specific target hardware in mind.
+    ///
+    /// # Precision
+    ///
+    /// The result of this operation is guaranteed to be the rounded
+    /// infinite-precision result. It is specified by IEEE 754 as
+    /// `fusedMultiplyAdd` and guaranteed not to change.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let m = 10.0_f128;
+    /// let x = 4.0_f128;
+    /// let b = 60.0_f128;
+    ///
+    /// assert_eq!(m.mul_add(x, b), 100.0);
+    /// assert_eq!(m * x + b, 100.0);
+    ///
+    /// let one_plus_eps = 1.0_f128 + f128::EPSILON;
+    /// let one_minus_eps = 1.0_f128 - f128::EPSILON;
+    /// let minus_one = -1.0_f128;
+    ///
+    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
+    /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f128::EPSILON * f128::EPSILON);
+    /// // Different rounding with the non-fused multiply and add.
+    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn mul_add(self, a: f128, b: f128) -> f128 {
+        unsafe { intrinsics::fmaf128(self, a, b) }
+    }
+
+    /// Calculates Euclidean division, the matching method for `rem_euclid`.
+    ///
+    /// This computes the integer `n` such that
+    /// `self = n * rhs + self.rem_euclid(rhs)`.
+    /// In other words, the result is `self / rhs` rounded to the integer `n`
+    /// such that `self >= n * rhs`.
+    ///
+    /// # Precision
+    ///
+    /// The result of this operation is guaranteed to be the rounded
+    /// infinite-precision result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let a: f128 = 7.0;
+    /// let b = 4.0;
+    /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
+    /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
+    /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
+    /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn div_euclid(self, rhs: f128) -> f128 {
+        let q = (self / rhs).trunc();
+        if self % rhs < 0.0 {
+            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
+        }
+        q
+    }
+
+    /// Calculates the least nonnegative remainder of `self (mod rhs)`.
+    ///
+    /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
+    /// most cases. However, due to a floating point round-off error it can
+    /// result in `r == rhs.abs()`, violating the mathematical definition, if
+    /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
+    /// This result is not an element of the function's codomain, but it is the
+    /// closest floating point number in the real numbers and thus fulfills the
+    /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
+    /// approximately.
+    ///
+    /// # Precision
+    ///
+    /// The result of this operation is guaranteed to be the rounded
+    /// infinite-precision result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let a: f128 = 7.0;
+    /// let b = 4.0;
+    /// assert_eq!(a.rem_euclid(b), 3.0);
+    /// assert_eq!((-a).rem_euclid(b), 1.0);
+    /// assert_eq!(a.rem_euclid(-b), 3.0);
+    /// assert_eq!((-a).rem_euclid(-b), 1.0);
+    /// // limitation due to round-off error
+    /// assert!((-f128::EPSILON).rem_euclid(3.0) != 0.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[doc(alias = "modulo", alias = "mod")]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn rem_euclid(self, rhs: f128) -> f128 {
+        let r = self % rhs;
+        if r < 0.0 { r + rhs.abs() } else { r }
+    }
+
+    /// Raises a number to an integer power.
+    ///
+    /// Using this function is generally faster than using `powf`.
+    /// It might have a different sequence of rounding operations than `powf`,
+    /// so the results are not guaranteed to agree.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn powi(self, n: i32) -> f128 {
+        unsafe { intrinsics::powif128(self, n) }
+    }
+
+    /// Raises a number to a floating point power.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let x = 2.0_f128;
+    /// let abs_difference = (x.powf(2.0) - (x * x)).abs();
+    ///
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn powf(self, n: f128) -> f128 {
+        unsafe { intrinsics::powf128(self, n) }
+    }
+
+    /// Returns the square root of a number.
+    ///
+    /// Returns NaN if `self` is a negative number other than `-0.0`.
+    ///
+    /// # Precision
+    ///
+    /// The result of this operation is guaranteed to be the rounded
+    /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
+    /// and guaranteed not to change.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let positive = 4.0_f128;
+    /// let negative = -4.0_f128;
+    /// let negative_zero = -0.0_f128;
+    ///
+    /// assert_eq!(positive.sqrt(), 2.0);
+    /// assert!(negative.sqrt().is_nan());
+    /// assert!(negative_zero.sqrt() == negative_zero);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn sqrt(self) -> f128 {
+        unsafe { intrinsics::sqrtf128(self) }
+    }
+
+    /// Returns `e^(self)`, (the exponential function).
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let one = 1.0f128;
+    /// // e^1
+    /// let e = one.exp();
+    ///
+    /// // ln(e) - 1 == 0
+    /// let abs_difference = (e.ln() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn exp(self) -> f128 {
+        unsafe { intrinsics::expf128(self) }
+    }
+
+    /// Returns `2^(self)`.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let f = 2.0f128;
+    ///
+    /// // 2^2 - 4 == 0
+    /// let abs_difference = (f.exp2() - 4.0).abs();
+    ///
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn exp2(self) -> f128 {
+        unsafe { intrinsics::exp2f128(self) }
+    }
+
+    /// Returns the natural logarithm of the number.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let one = 1.0f128;
+    /// // e^1
+    /// let e = one.exp();
+    ///
+    /// // ln(e) - 1 == 0
+    /// let abs_difference = (e.ln() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn ln(self) -> f128 {
+        unsafe { intrinsics::logf128(self) }
+    }
+
+    /// Returns the logarithm of the number with respect to an arbitrary base.
+    ///
+    /// The result might not be correctly rounded owing to implementation details;
+    /// `self.log2()` can produce more accurate results for base 2, and
+    /// `self.log10()` can produce more accurate results for base 10.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let five = 5.0f128;
+    ///
+    /// // log5(5) - 1 == 0
+    /// let abs_difference = (five.log(5.0) - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn log(self, base: f128) -> f128 {
+        self.ln() / base.ln()
+    }
+
+    /// Returns the base 2 logarithm of the number.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let two = 2.0f128;
+    ///
+    /// // log2(2) - 1 == 0
+    /// let abs_difference = (two.log2() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn log2(self) -> f128 {
+        unsafe { intrinsics::log2f128(self) }
+    }
+
+    /// Returns the base 10 logarithm of the number.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let ten = 10.0f128;
+    ///
+    /// // log10(10) - 1 == 0
+    /// let abs_difference = (ten.log10() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn log10(self) -> f128 {
+        unsafe { intrinsics::log10f128(self) }
+    }
+
+    /// Returns the cube root of a number.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    ///
+    /// This function currently corresponds to the `cbrtf128` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let x = 8.0f128;
+    ///
+    /// // x^(1/3) - 2 == 0
+    /// let abs_difference = (x.cbrt() - 2.0).abs();
+    ///
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn cbrt(self) -> f128 {
+        unsafe { cmath::cbrtf128(self) }
+    }
+
+    /// Compute the distance between the origin and a point (`x`, `y`) on the
+    /// Euclidean plane. Equivalently, compute the length of the hypotenuse of a
+    /// right-angle triangle with other sides having length `x.abs()` and
+    /// `y.abs()`.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    ///
+    /// This function currently corresponds to the `hypotf128` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let x = 2.0f128;
+    /// let y = 3.0f128;
+    ///
+    /// // sqrt(x^2 + y^2)
+    /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
+    ///
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn hypot(self, other: f128) -> f128 {
+        unsafe { cmath::hypotf128(self, other) }
+    }
+
+    /// Computes the sine of a number (in radians).
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let x = std::f128::consts::FRAC_PI_2;
+    ///
+    /// let abs_difference = (x.sin() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn sin(self) -> f128 {
+        unsafe { intrinsics::sinf128(self) }
+    }
+
+    /// Computes the cosine of a number (in radians).
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let x = 2.0 * std::f128::consts::PI;
+    ///
+    /// let abs_difference = (x.cos() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn cos(self) -> f128 {
+        unsafe { intrinsics::cosf128(self) }
+    }
+
+    /// Computes the tangent of a number (in radians).
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `tanf128` from libc on Unix and
+    /// Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let x = std::f128::consts::FRAC_PI_4;
+    /// let abs_difference = (x.tan() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn tan(self) -> f128 {
+        unsafe { cmath::tanf128(self) }
+    }
+
+    /// Computes the arcsine of a number. Return value is in radians in
+    /// the range [-pi/2, pi/2] or NaN if the number is outside the range
+    /// [-1, 1].
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `asinf128` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let f = std::f128::consts::FRAC_PI_2;
+    ///
+    /// // asin(sin(pi/2))
+    /// let abs_difference = (f.sin().asin() - std::f128::consts::FRAC_PI_2).abs();
+    ///
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "arcsin")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn asin(self) -> f128 {
+        unsafe { cmath::asinf128(self) }
+    }
+
+    /// Computes the arccosine of a number. Return value is in radians in
+    /// the range [0, pi] or NaN if the number is outside the range
+    /// [-1, 1].
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `acosf128` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let f = std::f128::consts::FRAC_PI_4;
+    ///
+    /// // acos(cos(pi/4))
+    /// let abs_difference = (f.cos().acos() - std::f128::consts::FRAC_PI_4).abs();
+    ///
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "arccos")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn acos(self) -> f128 {
+        unsafe { cmath::acosf128(self) }
+    }
+
+    /// Computes the arctangent of a number. Return value is in radians in the
+    /// range [-pi/2, pi/2];
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `atanf128` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let f = 1.0f128;
+    ///
+    /// // atan(tan(1))
+    /// let abs_difference = (f.tan().atan() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "arctan")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn atan(self) -> f128 {
+        unsafe { cmath::atanf128(self) }
+    }
+
+    /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
+    ///
+    /// * `x = 0`, `y = 0`: `0`
+    /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
+    /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
+    /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `atan2f128` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// // Positive angles measured counter-clockwise
+    /// // from positive x axis
+    /// // -pi/4 radians (45 deg clockwise)
+    /// let x1 = 3.0f128;
+    /// let y1 = -3.0f128;
+    ///
+    /// // 3pi/4 radians (135 deg counter-clockwise)
+    /// let x2 = -3.0f128;
+    /// let y2 = 3.0f128;
+    ///
+    /// let abs_difference_1 = (y1.atan2(x1) - (-std::f128::consts::FRAC_PI_4)).abs();
+    /// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f128::consts::FRAC_PI_4)).abs();
+    ///
+    /// assert!(abs_difference_1 <= f128::EPSILON);
+    /// assert!(abs_difference_2 <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn atan2(self, other: f128) -> f128 {
+        unsafe { cmath::atan2f128(self, other) }
+    }
+
+    /// Simultaneously computes the sine and cosine of the number, `x`. Returns
+    /// `(sin(x), cos(x))`.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `(f128::sin(x),
+    /// f128::cos(x))`. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let x = std::f128::consts::FRAC_PI_4;
+    /// let f = x.sin_cos();
+    ///
+    /// let abs_difference_0 = (f.0 - x.sin()).abs();
+    /// let abs_difference_1 = (f.1 - x.cos()).abs();
+    ///
+    /// assert!(abs_difference_0 <= f128::EPSILON);
+    /// assert!(abs_difference_1 <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "sincos")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    pub fn sin_cos(self) -> (f128, f128) {
+        (self.sin(), self.cos())
+    }
+
+    /// Returns `e^(self) - 1` in a way that is accurate even if the
+    /// number is close to zero.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `expm1f128` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let x = 1e-8_f128;
+    ///
+    /// // for very small x, e^x is approximately 1 + x + x^2 / 2
+    /// let approx = x + x * x / 2.0;
+    /// let abs_difference = (x.exp_m1() - approx).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn exp_m1(self) -> f128 {
+        unsafe { cmath::expm1f128(self) }
+    }
+
+    /// Returns `ln(1+n)` (natural logarithm) more accurately than if
+    /// the operations were performed separately.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `log1pf128` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let x = 1e-8_f128;
+    ///
+    /// // for very small x, ln(1 + x) is approximately x - x^2 / 2
+    /// let approx = x - x * x / 2.0;
+    /// let abs_difference = (x.ln_1p() - approx).abs();
+    ///
+    /// assert!(abs_difference < 1e-10);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "log1p")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    pub fn ln_1p(self) -> f128 {
+        unsafe { cmath::log1pf128(self) }
+    }
+
+    /// Hyperbolic sine function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `sinhf128` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let e = std::f128::consts::E;
+    /// let x = 1.0f128;
+    ///
+    /// let f = x.sinh();
+    /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
+    /// let g = ((e * e) - 1.0) / (2.0 * e);
+    /// let abs_difference = (f - g).abs();
+    ///
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn sinh(self) -> f128 {
+        unsafe { cmath::sinhf128(self) }
+    }
+
+    /// Hyperbolic cosine function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `coshf128` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let e = std::f128::consts::E;
+    /// let x = 1.0f128;
+    /// let f = x.cosh();
+    /// // Solving cosh() at 1 gives this result
+    /// let g = ((e * e) + 1.0) / (2.0 * e);
+    /// let abs_difference = (f - g).abs();
+    ///
+    /// // Same result
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn cosh(self) -> f128 {
+        unsafe { cmath::coshf128(self) }
+    }
+
+    /// Hyperbolic tangent function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `tanhf128` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let e = std::f128::consts::E;
+    /// let x = 1.0f128;
+    ///
+    /// let f = x.tanh();
+    /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
+    /// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2));
+    /// let abs_difference = (f - g).abs();
+    ///
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn tanh(self) -> f128 {
+        unsafe { cmath::tanhf128(self) }
+    }
+
+    /// Inverse hyperbolic sine function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let x = 1.0f128;
+    /// let f = x.sinh().asinh();
+    ///
+    /// let abs_difference = (f - x).abs();
+    ///
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "arcsinh")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn asinh(self) -> f128 {
+        let ax = self.abs();
+        let ix = 1.0 / ax;
+        (ax + (ax / (Self::hypot(1.0, ix) + ix))).ln_1p().copysign(self)
+    }
+
+    /// Inverse hyperbolic cosine function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let x = 1.0f128;
+    /// let f = x.cosh().acosh();
+    ///
+    /// let abs_difference = (f - x).abs();
+    ///
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "arccosh")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn acosh(self) -> f128 {
+        if self < 1.0 {
+            Self::NAN
+        } else {
+            (self + ((self - 1.0).sqrt() * (self + 1.0).sqrt())).ln()
+        }
+    }
+
+    /// Inverse hyperbolic tangent function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let e = std::f128::consts::E;
+    /// let f = e.tanh().atanh();
+    ///
+    /// let abs_difference = (f - e).abs();
+    ///
+    /// assert!(abs_difference <= 1e-5);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "arctanh")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn atanh(self) -> f128 {
+        0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
+    }
+
+    /// Gamma function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `tgammaf128` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// #![feature(float_gamma)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let x = 5.0f128;
+    ///
+    /// let abs_difference = (x.gamma() - 24.0).abs();
+    ///
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn gamma(self) -> f128 {
+        unsafe { cmath::tgammaf128(self) }
+    }
+
+    /// Natural logarithm of the absolute value of the gamma function
+    ///
+    /// The integer part of the tuple indicates the sign of the gamma function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `lgammaf128_r` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f128)]
+    /// #![feature(float_gamma)]
+    /// # #[cfg(reliable_f128_math)] {
+    ///
+    /// let x = 2.0f128;
+    ///
+    /// let abs_difference = (x.ln_gamma().0 - 0.0).abs();
+    ///
+    /// assert!(abs_difference <= f128::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f128", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn ln_gamma(self) -> (f128, i32) {
+        let mut signgamp: i32 = 0;
+        let x = unsafe { cmath::lgammaf128_r(self, &mut signgamp) };
+        (x, signgamp)
+    }
 }
diff --git a/library/std/src/f128/tests.rs b/library/std/src/f128/tests.rs
index 162c8dbad81..df806a639f6 100644
--- a/library/std/src/f128/tests.rs
+++ b/library/std/src/f128/tests.rs
@@ -4,6 +4,21 @@
 use crate::f128::consts;
 use crate::num::{FpCategory as Fp, *};
 
+// Note these tolerances make sense around zero, but not for more extreme exponents.
+
+/// For operations that are near exact, usually not involving math of different
+/// signs.
+const TOL_PRECISE: f128 = 1e-28;
+
+/// Default tolerances. Works for values that should be near precise but not exact. Roughly
+/// the precision carried by `100 * 100`.
+const TOL: f128 = 1e-12;
+
+/// Tolerances for math that is allowed to be imprecise, usually due to multiple chained
+/// operations.
+#[cfg(reliable_f128_math)]
+const TOL_IMPR: f128 = 1e-10;
+
 /// Smallest number
 const TINY_BITS: u128 = 0x1;
 
@@ -191,9 +206,100 @@ fn test_classify() {
     assert_eq!(1e-4932f128.classify(), Fp::Subnormal);
 }
 
-// FIXME(f16_f128): add missing math functions when available
+#[test]
+#[cfg(reliable_f128_math)]
+fn test_floor() {
+    assert_approx_eq!(1.0f128.floor(), 1.0f128, TOL_PRECISE);
+    assert_approx_eq!(1.3f128.floor(), 1.0f128, TOL_PRECISE);
+    assert_approx_eq!(1.5f128.floor(), 1.0f128, TOL_PRECISE);
+    assert_approx_eq!(1.7f128.floor(), 1.0f128, TOL_PRECISE);
+    assert_approx_eq!(0.0f128.floor(), 0.0f128, TOL_PRECISE);
+    assert_approx_eq!((-0.0f128).floor(), -0.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.0f128).floor(), -1.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.3f128).floor(), -2.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.5f128).floor(), -2.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.7f128).floor(), -2.0f128, TOL_PRECISE);
+}
+
+#[test]
+#[cfg(reliable_f128_math)]
+fn test_ceil() {
+    assert_approx_eq!(1.0f128.ceil(), 1.0f128, TOL_PRECISE);
+    assert_approx_eq!(1.3f128.ceil(), 2.0f128, TOL_PRECISE);
+    assert_approx_eq!(1.5f128.ceil(), 2.0f128, TOL_PRECISE);
+    assert_approx_eq!(1.7f128.ceil(), 2.0f128, TOL_PRECISE);
+    assert_approx_eq!(0.0f128.ceil(), 0.0f128, TOL_PRECISE);
+    assert_approx_eq!((-0.0f128).ceil(), -0.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.0f128).ceil(), -1.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.3f128).ceil(), -1.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.5f128).ceil(), -1.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.7f128).ceil(), -1.0f128, TOL_PRECISE);
+}
+
+#[test]
+#[cfg(reliable_f128_math)]
+fn test_round() {
+    assert_approx_eq!(2.5f128.round(), 3.0f128, TOL_PRECISE);
+    assert_approx_eq!(1.0f128.round(), 1.0f128, TOL_PRECISE);
+    assert_approx_eq!(1.3f128.round(), 1.0f128, TOL_PRECISE);
+    assert_approx_eq!(1.5f128.round(), 2.0f128, TOL_PRECISE);
+    assert_approx_eq!(1.7f128.round(), 2.0f128, TOL_PRECISE);
+    assert_approx_eq!(0.0f128.round(), 0.0f128, TOL_PRECISE);
+    assert_approx_eq!((-0.0f128).round(), -0.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.0f128).round(), -1.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.3f128).round(), -1.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.5f128).round(), -2.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.7f128).round(), -2.0f128, TOL_PRECISE);
+}
+
+#[test]
+#[cfg(reliable_f128_math)]
+fn test_round_ties_even() {
+    assert_approx_eq!(2.5f128.round_ties_even(), 2.0f128, TOL_PRECISE);
+    assert_approx_eq!(1.0f128.round_ties_even(), 1.0f128, TOL_PRECISE);
+    assert_approx_eq!(1.3f128.round_ties_even(), 1.0f128, TOL_PRECISE);
+    assert_approx_eq!(1.5f128.round_ties_even(), 2.0f128, TOL_PRECISE);
+    assert_approx_eq!(1.7f128.round_ties_even(), 2.0f128, TOL_PRECISE);
+    assert_approx_eq!(0.0f128.round_ties_even(), 0.0f128, TOL_PRECISE);
+    assert_approx_eq!((-0.0f128).round_ties_even(), -0.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.0f128).round_ties_even(), -1.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.3f128).round_ties_even(), -1.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.5f128).round_ties_even(), -2.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.7f128).round_ties_even(), -2.0f128, TOL_PRECISE);
+}
+
+#[test]
+#[cfg(reliable_f128_math)]
+fn test_trunc() {
+    assert_approx_eq!(1.0f128.trunc(), 1.0f128, TOL_PRECISE);
+    assert_approx_eq!(1.3f128.trunc(), 1.0f128, TOL_PRECISE);
+    assert_approx_eq!(1.5f128.trunc(), 1.0f128, TOL_PRECISE);
+    assert_approx_eq!(1.7f128.trunc(), 1.0f128, TOL_PRECISE);
+    assert_approx_eq!(0.0f128.trunc(), 0.0f128, TOL_PRECISE);
+    assert_approx_eq!((-0.0f128).trunc(), -0.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.0f128).trunc(), -1.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.3f128).trunc(), -1.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.5f128).trunc(), -1.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.7f128).trunc(), -1.0f128, TOL_PRECISE);
+}
+
+#[test]
+#[cfg(reliable_f128_math)]
+fn test_fract() {
+    assert_approx_eq!(1.0f128.fract(), 0.0f128, TOL_PRECISE);
+    assert_approx_eq!(1.3f128.fract(), 0.3f128, TOL_PRECISE);
+    assert_approx_eq!(1.5f128.fract(), 0.5f128, TOL_PRECISE);
+    assert_approx_eq!(1.7f128.fract(), 0.7f128, TOL_PRECISE);
+    assert_approx_eq!(0.0f128.fract(), 0.0f128, TOL_PRECISE);
+    assert_approx_eq!((-0.0f128).fract(), -0.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.0f128).fract(), -0.0f128, TOL_PRECISE);
+    assert_approx_eq!((-1.3f128).fract(), -0.3f128, TOL_PRECISE);
+    assert_approx_eq!((-1.5f128).fract(), -0.5f128, TOL_PRECISE);
+    assert_approx_eq!((-1.7f128).fract(), -0.7f128, TOL_PRECISE);
+}
 
 #[test]
+#[cfg(reliable_f128_math)]
 fn test_abs() {
     assert_eq!(f128::INFINITY.abs(), f128::INFINITY);
     assert_eq!(1f128.abs(), 1f128);
@@ -293,6 +399,24 @@ fn test_next_down() {
 }
 
 #[test]
+#[cfg(reliable_f128_math)]
+fn test_mul_add() {
+    let nan: f128 = f128::NAN;
+    let inf: f128 = f128::INFINITY;
+    let neg_inf: f128 = f128::NEG_INFINITY;
+    assert_approx_eq!(12.3f128.mul_add(4.5, 6.7), 62.05, TOL_PRECISE);
+    assert_approx_eq!((-12.3f128).mul_add(-4.5, -6.7), 48.65, TOL_PRECISE);
+    assert_approx_eq!(0.0f128.mul_add(8.9, 1.2), 1.2, TOL_PRECISE);
+    assert_approx_eq!(3.4f128.mul_add(-0.0, 5.6), 5.6, TOL_PRECISE);
+    assert!(nan.mul_add(7.8, 9.0).is_nan());
+    assert_eq!(inf.mul_add(7.8, 9.0), inf);
+    assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf);
+    assert_eq!(8.9f128.mul_add(inf, 3.2), inf);
+    assert_eq!((-3.2f128).mul_add(2.4, neg_inf), neg_inf);
+}
+
+#[test]
+#[cfg(reliable_f16_math)]
 fn test_recip() {
     let nan: f128 = f128::NAN;
     let inf: f128 = f128::INFINITY;
@@ -301,11 +425,161 @@ fn test_recip() {
     assert_eq!(2.0f128.recip(), 0.5);
     assert_eq!((-0.4f128).recip(), -2.5);
     assert_eq!(0.0f128.recip(), inf);
+    assert_approx_eq!(
+        f128::MAX.recip(),
+        8.40525785778023376565669454330438228902076605e-4933,
+        1e-4900
+    );
     assert!(nan.recip().is_nan());
     assert_eq!(inf.recip(), 0.0);
     assert_eq!(neg_inf.recip(), 0.0);
 }
 
+// Many math functions allow for less accurate results, so the next tolerance up is used
+
+#[test]
+#[cfg(reliable_f128_math)]
+fn test_powi() {
+    let nan: f128 = f128::NAN;
+    let inf: f128 = f128::INFINITY;
+    let neg_inf: f128 = f128::NEG_INFINITY;
+    assert_eq!(1.0f128.powi(1), 1.0);
+    assert_approx_eq!((-3.1f128).powi(2), 9.6100000000000005506706202140776519387, TOL);
+    assert_approx_eq!(5.9f128.powi(-2), 0.028727377190462507313100483690639638451, TOL);
+    assert_eq!(8.3f128.powi(0), 1.0);
+    assert!(nan.powi(2).is_nan());
+    assert_eq!(inf.powi(3), inf);
+    assert_eq!(neg_inf.powi(2), inf);
+}
+
+#[test]
+#[cfg(reliable_f128_math)]
+fn test_powf() {
+    let nan: f128 = f128::NAN;
+    let inf: f128 = f128::INFINITY;
+    let neg_inf: f128 = f128::NEG_INFINITY;
+    assert_eq!(1.0f128.powf(1.0), 1.0);
+    assert_approx_eq!(3.4f128.powf(4.5), 246.40818323761892815995637964326426756, TOL_IMPR);
+    assert_approx_eq!(2.7f128.powf(-3.2), 0.041652009108526178281070304373500889273, TOL_IMPR);
+    assert_approx_eq!((-3.1f128).powf(2.0), 9.6100000000000005506706202140776519387, TOL_IMPR);
+    assert_approx_eq!(5.9f128.powf(-2.0), 0.028727377190462507313100483690639638451, TOL_IMPR);
+    assert_eq!(8.3f128.powf(0.0), 1.0);
+    assert!(nan.powf(2.0).is_nan());
+    assert_eq!(inf.powf(2.0), inf);
+    assert_eq!(neg_inf.powf(3.0), neg_inf);
+}
+
+#[test]
+#[cfg(reliable_f128_math)]
+fn test_sqrt_domain() {
+    assert!(f128::NAN.sqrt().is_nan());
+    assert!(f128::NEG_INFINITY.sqrt().is_nan());
+    assert!((-1.0f128).sqrt().is_nan());
+    assert_eq!((-0.0f128).sqrt(), -0.0);
+    assert_eq!(0.0f128.sqrt(), 0.0);
+    assert_eq!(1.0f128.sqrt(), 1.0);
+    assert_eq!(f128::INFINITY.sqrt(), f128::INFINITY);
+}
+
+#[test]
+#[cfg(reliable_f128_math)]
+fn test_exp() {
+    assert_eq!(1.0, 0.0f128.exp());
+    assert_approx_eq!(consts::E, 1.0f128.exp(), TOL);
+    assert_approx_eq!(148.41315910257660342111558004055227962348775, 5.0f128.exp(), TOL);
+
+    let inf: f128 = f128::INFINITY;
+    let neg_inf: f128 = f128::NEG_INFINITY;
+    let nan: f128 = f128::NAN;
+    assert_eq!(inf, inf.exp());
+    assert_eq!(0.0, neg_inf.exp());
+    assert!(nan.exp().is_nan());
+}
+
+#[test]
+#[cfg(reliable_f128_math)]
+fn test_exp2() {
+    assert_eq!(32.0, 5.0f128.exp2());
+    assert_eq!(1.0, 0.0f128.exp2());
+
+    let inf: f128 = f128::INFINITY;
+    let neg_inf: f128 = f128::NEG_INFINITY;
+    let nan: f128 = f128::NAN;
+    assert_eq!(inf, inf.exp2());
+    assert_eq!(0.0, neg_inf.exp2());
+    assert!(nan.exp2().is_nan());
+}
+
+#[test]
+#[cfg(reliable_f128_math)]
+fn test_ln() {
+    let nan: f128 = f128::NAN;
+    let inf: f128 = f128::INFINITY;
+    let neg_inf: f128 = f128::NEG_INFINITY;
+    assert_approx_eq!(1.0f128.exp().ln(), 1.0, TOL);
+    assert!(nan.ln().is_nan());
+    assert_eq!(inf.ln(), inf);
+    assert!(neg_inf.ln().is_nan());
+    assert!((-2.3f128).ln().is_nan());
+    assert_eq!((-0.0f128).ln(), neg_inf);
+    assert_eq!(0.0f128.ln(), neg_inf);
+    assert_approx_eq!(4.0f128.ln(), 1.3862943611198906188344642429163531366, TOL);
+}
+
+#[test]
+#[cfg(reliable_f128_math)]
+fn test_log() {
+    let nan: f128 = f128::NAN;
+    let inf: f128 = f128::INFINITY;
+    let neg_inf: f128 = f128::NEG_INFINITY;
+    assert_eq!(10.0f128.log(10.0), 1.0);
+    assert_approx_eq!(2.3f128.log(3.5), 0.66485771361478710036766645911922010272, TOL);
+    assert_eq!(1.0f128.exp().log(1.0f128.exp()), 1.0);
+    assert!(1.0f128.log(1.0).is_nan());
+    assert!(1.0f128.log(-13.9).is_nan());
+    assert!(nan.log(2.3).is_nan());
+    assert_eq!(inf.log(10.0), inf);
+    assert!(neg_inf.log(8.8).is_nan());
+    assert!((-2.3f128).log(0.1).is_nan());
+    assert_eq!((-0.0f128).log(2.0), neg_inf);
+    assert_eq!(0.0f128.log(7.0), neg_inf);
+}
+
+#[test]
+#[cfg(reliable_f128_math)]
+fn test_log2() {
+    let nan: f128 = f128::NAN;
+    let inf: f128 = f128::INFINITY;
+    let neg_inf: f128 = f128::NEG_INFINITY;
+    assert_approx_eq!(10.0f128.log2(), 3.32192809488736234787031942948939017, TOL);
+    assert_approx_eq!(2.3f128.log2(), 1.2016338611696504130002982471978765921, TOL);
+    assert_approx_eq!(1.0f128.exp().log2(), 1.4426950408889634073599246810018921381, TOL);
+    assert!(nan.log2().is_nan());
+    assert_eq!(inf.log2(), inf);
+    assert!(neg_inf.log2().is_nan());
+    assert!((-2.3f128).log2().is_nan());
+    assert_eq!((-0.0f128).log2(), neg_inf);
+    assert_eq!(0.0f128.log2(), neg_inf);
+}
+
+#[test]
+#[cfg(reliable_f128_math)]
+fn test_log10() {
+    let nan: f128 = f128::NAN;
+    let inf: f128 = f128::INFINITY;
+    let neg_inf: f128 = f128::NEG_INFINITY;
+    assert_eq!(10.0f128.log10(), 1.0);
+    assert_approx_eq!(2.3f128.log10(), 0.36172783601759284532595218865859309898, TOL);
+    assert_approx_eq!(1.0f128.exp().log10(), 0.43429448190325182765112891891660508222, TOL);
+    assert_eq!(1.0f128.log10(), 0.0);
+    assert!(nan.log10().is_nan());
+    assert_eq!(inf.log10(), inf);
+    assert!(neg_inf.log10().is_nan());
+    assert!((-2.3f128).log10().is_nan());
+    assert_eq!((-0.0f128).log10(), neg_inf);
+    assert_eq!(0.0f128.log10(), neg_inf);
+}
+
 #[test]
 fn test_to_degrees() {
     let pi: f128 = consts::PI;
@@ -313,8 +587,8 @@ fn test_to_degrees() {
     let inf: f128 = f128::INFINITY;
     let neg_inf: f128 = f128::NEG_INFINITY;
     assert_eq!(0.0f128.to_degrees(), 0.0);
-    assert_approx_eq!((-5.8f128).to_degrees(), -332.315521);
-    assert_eq!(pi.to_degrees(), 180.0);
+    assert_approx_eq!((-5.8f128).to_degrees(), -332.31552117587745090765431723855668471, TOL);
+    assert_approx_eq!(pi.to_degrees(), 180.0, TOL);
     assert!(nan.to_degrees().is_nan());
     assert_eq!(inf.to_degrees(), inf);
     assert_eq!(neg_inf.to_degrees(), neg_inf);
@@ -328,19 +602,122 @@ fn test_to_radians() {
     let inf: f128 = f128::INFINITY;
     let neg_inf: f128 = f128::NEG_INFINITY;
     assert_eq!(0.0f128.to_radians(), 0.0);
-    assert_approx_eq!(154.6f128.to_radians(), 2.698279);
-    assert_approx_eq!((-332.31f128).to_radians(), -5.799903);
+    assert_approx_eq!(154.6f128.to_radians(), 2.6982790235832334267135442069489767804, TOL);
+    assert_approx_eq!((-332.31f128).to_radians(), -5.7999036373023566567593094812182763013, TOL);
     // check approx rather than exact because round trip for pi doesn't fall on an exactly
     // representable value (unlike `f32` and `f64`).
-    assert_approx_eq!(180.0f128.to_radians(), pi);
+    assert_approx_eq!(180.0f128.to_radians(), pi, TOL_PRECISE);
     assert!(nan.to_radians().is_nan());
     assert_eq!(inf.to_radians(), inf);
     assert_eq!(neg_inf.to_radians(), neg_inf);
 }
 
 #[test]
+#[cfg(reliable_f128_math)]
+fn test_asinh() {
+    // Lower accuracy results are allowed, use increased tolerances
+    assert_eq!(0.0f128.asinh(), 0.0f128);
+    assert_eq!((-0.0f128).asinh(), -0.0f128);
+
+    let inf: f128 = f128::INFINITY;
+    let neg_inf: f128 = f128::NEG_INFINITY;
+    let nan: f128 = f128::NAN;
+    assert_eq!(inf.asinh(), inf);
+    assert_eq!(neg_inf.asinh(), neg_inf);
+    assert!(nan.asinh().is_nan());
+    assert!((-0.0f128).asinh().is_sign_negative());
+
+    // issue 63271
+    assert_approx_eq!(2.0f128.asinh(), 1.443635475178810342493276740273105f128, TOL_IMPR);
+    assert_approx_eq!((-2.0f128).asinh(), -1.443635475178810342493276740273105f128, TOL_IMPR);
+    // regression test for the catastrophic cancellation fixed in 72486
+    assert_approx_eq!(
+        (-67452098.07139316f128).asinh(),
+        -18.720075426274544393985484294000831757220,
+        TOL_IMPR
+    );
+
+    // test for low accuracy from issue 104548
+    assert_approx_eq!(60.0f128, 60.0f128.sinh().asinh(), TOL_IMPR);
+    // mul needed for approximate comparison to be meaningful
+    assert_approx_eq!(1.0f128, 1e-15f128.sinh().asinh() * 1e15f128, TOL_IMPR);
+}
+
+#[test]
+#[cfg(reliable_f128_math)]
+fn test_acosh() {
+    assert_eq!(1.0f128.acosh(), 0.0f128);
+    assert!(0.999f128.acosh().is_nan());
+
+    let inf: f128 = f128::INFINITY;
+    let neg_inf: f128 = f128::NEG_INFINITY;
+    let nan: f128 = f128::NAN;
+    assert_eq!(inf.acosh(), inf);
+    assert!(neg_inf.acosh().is_nan());
+    assert!(nan.acosh().is_nan());
+    assert_approx_eq!(2.0f128.acosh(), 1.31695789692481670862504634730796844f128, TOL_IMPR);
+    assert_approx_eq!(3.0f128.acosh(), 1.76274717403908605046521864995958461f128, TOL_IMPR);
+
+    // test for low accuracy from issue 104548
+    assert_approx_eq!(60.0f128, 60.0f128.cosh().acosh(), TOL_IMPR);
+}
+
+#[test]
+#[cfg(reliable_f128_math)]
+fn test_atanh() {
+    assert_eq!(0.0f128.atanh(), 0.0f128);
+    assert_eq!((-0.0f128).atanh(), -0.0f128);
+
+    let inf: f128 = f128::INFINITY;
+    let neg_inf: f128 = f128::NEG_INFINITY;
+    let nan: f128 = f128::NAN;
+    assert_eq!(1.0f128.atanh(), inf);
+    assert_eq!((-1.0f128).atanh(), neg_inf);
+    assert!(2f128.atanh().atanh().is_nan());
+    assert!((-2f128).atanh().atanh().is_nan());
+    assert!(inf.atanh().is_nan());
+    assert!(neg_inf.atanh().is_nan());
+    assert!(nan.atanh().is_nan());
+    assert_approx_eq!(0.5f128.atanh(), 0.54930614433405484569762261846126285f128, TOL_IMPR);
+    assert_approx_eq!((-0.5f128).atanh(), -0.54930614433405484569762261846126285f128, TOL_IMPR);
+}
+
+#[test]
+#[cfg(reliable_f128_math)]
+fn test_gamma() {
+    // precision can differ among platforms
+    assert_approx_eq!(1.0f128.gamma(), 1.0f128, TOL_IMPR);
+    assert_approx_eq!(2.0f128.gamma(), 1.0f128, TOL_IMPR);
+    assert_approx_eq!(3.0f128.gamma(), 2.0f128, TOL_IMPR);
+    assert_approx_eq!(4.0f128.gamma(), 6.0f128, TOL_IMPR);
+    assert_approx_eq!(5.0f128.gamma(), 24.0f128, TOL_IMPR);
+    assert_approx_eq!(0.5f128.gamma(), consts::PI.sqrt(), TOL_IMPR);
+    assert_approx_eq!((-0.5f128).gamma(), -2.0 * consts::PI.sqrt(), TOL_IMPR);
+    assert_eq!(0.0f128.gamma(), f128::INFINITY);
+    assert_eq!((-0.0f128).gamma(), f128::NEG_INFINITY);
+    assert!((-1.0f128).gamma().is_nan());
+    assert!((-2.0f128).gamma().is_nan());
+    assert!(f128::NAN.gamma().is_nan());
+    assert!(f128::NEG_INFINITY.gamma().is_nan());
+    assert_eq!(f128::INFINITY.gamma(), f128::INFINITY);
+    assert_eq!(1760.9f128.gamma(), f128::INFINITY);
+}
+
+#[test]
+#[cfg(reliable_f128_math)]
+fn test_ln_gamma() {
+    assert_approx_eq!(1.0f128.ln_gamma().0, 0.0f128, TOL_IMPR);
+    assert_eq!(1.0f128.ln_gamma().1, 1);
+    assert_approx_eq!(2.0f128.ln_gamma().0, 0.0f128, TOL_IMPR);
+    assert_eq!(2.0f128.ln_gamma().1, 1);
+    assert_approx_eq!(3.0f128.ln_gamma().0, 2.0f128.ln(), TOL_IMPR);
+    assert_eq!(3.0f128.ln_gamma().1, 1);
+    assert_approx_eq!((-0.5f128).ln_gamma().0, (2.0 * consts::PI.sqrt()).ln(), TOL_IMPR);
+    assert_eq!((-0.5f128).ln_gamma().1, -1);
+}
+
+#[test]
 fn test_real_consts() {
-    // FIXME(f16_f128): add math tests when available
     use super::consts;
 
     let pi: f128 = consts::PI;
@@ -351,29 +728,34 @@ fn test_real_consts() {
     let frac_pi_8: f128 = consts::FRAC_PI_8;
     let frac_1_pi: f128 = consts::FRAC_1_PI;
     let frac_2_pi: f128 = consts::FRAC_2_PI;
-    // let frac_2_sqrtpi: f128 = consts::FRAC_2_SQRT_PI;
-    // let sqrt2: f128 = consts::SQRT_2;
-    // let frac_1_sqrt2: f128 = consts::FRAC_1_SQRT_2;
-    // let e: f128 = consts::E;
-    // let log2_e: f128 = consts::LOG2_E;
-    // let log10_e: f128 = consts::LOG10_E;
-    // let ln_2: f128 = consts::LN_2;
-    // let ln_10: f128 = consts::LN_10;
-
-    assert_approx_eq!(frac_pi_2, pi / 2f128);
-    assert_approx_eq!(frac_pi_3, pi / 3f128);
-    assert_approx_eq!(frac_pi_4, pi / 4f128);
-    assert_approx_eq!(frac_pi_6, pi / 6f128);
-    assert_approx_eq!(frac_pi_8, pi / 8f128);
-    assert_approx_eq!(frac_1_pi, 1f128 / pi);
-    assert_approx_eq!(frac_2_pi, 2f128 / pi);
-    // assert_approx_eq!(frac_2_sqrtpi, 2f128 / pi.sqrt());
-    // assert_approx_eq!(sqrt2, 2f128.sqrt());
-    // assert_approx_eq!(frac_1_sqrt2, 1f128 / 2f128.sqrt());
-    // assert_approx_eq!(log2_e, e.log2());
-    // assert_approx_eq!(log10_e, e.log10());
-    // assert_approx_eq!(ln_2, 2f128.ln());
-    // assert_approx_eq!(ln_10, 10f128.ln());
+
+    assert_approx_eq!(frac_pi_2, pi / 2f128, TOL_PRECISE);
+    assert_approx_eq!(frac_pi_3, pi / 3f128, TOL_PRECISE);
+    assert_approx_eq!(frac_pi_4, pi / 4f128, TOL_PRECISE);
+    assert_approx_eq!(frac_pi_6, pi / 6f128, TOL_PRECISE);
+    assert_approx_eq!(frac_pi_8, pi / 8f128, TOL_PRECISE);
+    assert_approx_eq!(frac_1_pi, 1f128 / pi, TOL_PRECISE);
+    assert_approx_eq!(frac_2_pi, 2f128 / pi, TOL_PRECISE);
+
+    #[cfg(reliable_f128_math)]
+    {
+        let frac_2_sqrtpi: f128 = consts::FRAC_2_SQRT_PI;
+        let sqrt2: f128 = consts::SQRT_2;
+        let frac_1_sqrt2: f128 = consts::FRAC_1_SQRT_2;
+        let e: f128 = consts::E;
+        let log2_e: f128 = consts::LOG2_E;
+        let log10_e: f128 = consts::LOG10_E;
+        let ln_2: f128 = consts::LN_2;
+        let ln_10: f128 = consts::LN_10;
+
+        assert_approx_eq!(frac_2_sqrtpi, 2f128 / pi.sqrt(), TOL_PRECISE);
+        assert_approx_eq!(sqrt2, 2f128.sqrt(), TOL_PRECISE);
+        assert_approx_eq!(frac_1_sqrt2, 1f128 / 2f128.sqrt(), TOL_PRECISE);
+        assert_approx_eq!(log2_e, e.log2(), TOL_PRECISE);
+        assert_approx_eq!(log10_e, e.log10(), TOL_PRECISE);
+        assert_approx_eq!(ln_2, 2f128.ln(), TOL_PRECISE);
+        assert_approx_eq!(ln_10, 10f128.ln(), TOL_PRECISE);
+    }
 }
 
 #[test]
@@ -382,10 +764,10 @@ fn test_float_bits_conv() {
     assert_eq!((12.5f128).to_bits(), 0x40029000000000000000000000000000);
     assert_eq!((1337f128).to_bits(), 0x40094e40000000000000000000000000);
     assert_eq!((-14.25f128).to_bits(), 0xc002c800000000000000000000000000);
-    assert_approx_eq!(f128::from_bits(0x3fff0000000000000000000000000000), 1.0);
-    assert_approx_eq!(f128::from_bits(0x40029000000000000000000000000000), 12.5);
-    assert_approx_eq!(f128::from_bits(0x40094e40000000000000000000000000), 1337.0);
-    assert_approx_eq!(f128::from_bits(0xc002c800000000000000000000000000), -14.25);
+    assert_approx_eq!(f128::from_bits(0x3fff0000000000000000000000000000), 1.0, TOL_PRECISE);
+    assert_approx_eq!(f128::from_bits(0x40029000000000000000000000000000), 12.5, TOL_PRECISE);
+    assert_approx_eq!(f128::from_bits(0x40094e40000000000000000000000000), 1337.0, TOL_PRECISE);
+    assert_approx_eq!(f128::from_bits(0xc002c800000000000000000000000000), -14.25, TOL_PRECISE);
 
     // Check that NaNs roundtrip their bits regardless of signaling-ness
     // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
diff --git a/library/std/src/f16.rs b/library/std/src/f16.rs
index e3024defed7..10908332762 100644
--- a/library/std/src/f16.rs
+++ b/library/std/src/f16.rs
@@ -12,25 +12,180 @@ pub use core::f16::consts;
 
 #[cfg(not(test))]
 use crate::intrinsics;
+#[cfg(not(test))]
+use crate::sys::cmath;
 
 #[cfg(not(test))]
 impl f16 {
-    /// Raises a number to an integer power.
+    /// Returns the largest integer less than or equal to `self`.
     ///
-    /// Using this function is generally faster than using `powf`.
-    /// It might have a different sequence of rounding operations than `powf`,
-    /// so the results are not guaranteed to agree.
+    /// This function always returns the precise result.
     ///
-    /// # Unspecified precision
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = 3.7_f16;
+    /// let g = 3.0_f16;
+    /// let h = -3.7_f16;
     ///
-    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
-    /// can even differ within the same execution from one invocation to the next.
+    /// assert_eq!(f.floor(), 3.0);
+    /// assert_eq!(g.floor(), 3.0);
+    /// assert_eq!(h.floor(), -4.0);
+    /// # }
+    /// ```
     #[inline]
     #[rustc_allow_incoherent_impl]
     #[unstable(feature = "f16", issue = "116909")]
     #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn powi(self, n: i32) -> f16 {
-        unsafe { intrinsics::powif16(self, n) }
+    pub fn floor(self) -> f16 {
+        unsafe { intrinsics::floorf16(self) }
+    }
+
+    /// Returns the smallest integer greater than or equal to `self`.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = 3.01_f16;
+    /// let g = 4.0_f16;
+    ///
+    /// assert_eq!(f.ceil(), 4.0);
+    /// assert_eq!(g.ceil(), 4.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "ceiling")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn ceil(self) -> f16 {
+        unsafe { intrinsics::ceilf16(self) }
+    }
+
+    /// Returns the nearest integer to `self`. If a value is half-way between two
+    /// integers, round away from `0.0`.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = 3.3_f16;
+    /// let g = -3.3_f16;
+    /// let h = -3.7_f16;
+    /// let i = 3.5_f16;
+    /// let j = 4.5_f16;
+    ///
+    /// assert_eq!(f.round(), 3.0);
+    /// assert_eq!(g.round(), -3.0);
+    /// assert_eq!(h.round(), -4.0);
+    /// assert_eq!(i.round(), 4.0);
+    /// assert_eq!(j.round(), 5.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn round(self) -> f16 {
+        unsafe { intrinsics::roundf16(self) }
+    }
+
+    /// Returns the nearest integer to a number. Rounds half-way cases to the number
+    /// with an even least significant digit.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = 3.3_f16;
+    /// let g = -3.3_f16;
+    /// let h = 3.5_f16;
+    /// let i = 4.5_f16;
+    ///
+    /// assert_eq!(f.round_ties_even(), 3.0);
+    /// assert_eq!(g.round_ties_even(), -3.0);
+    /// assert_eq!(h.round_ties_even(), 4.0);
+    /// assert_eq!(i.round_ties_even(), 4.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn round_ties_even(self) -> f16 {
+        unsafe { intrinsics::rintf16(self) }
+    }
+
+    /// Returns the integer part of `self`.
+    /// This means that non-integer numbers are always truncated towards zero.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = 3.7_f16;
+    /// let g = 3.0_f16;
+    /// let h = -3.7_f16;
+    ///
+    /// assert_eq!(f.trunc(), 3.0);
+    /// assert_eq!(g.trunc(), 3.0);
+    /// assert_eq!(h.trunc(), -3.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "truncate")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn trunc(self) -> f16 {
+        unsafe { intrinsics::truncf16(self) }
+    }
+
+    /// Returns the fractional part of `self`.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 3.6_f16;
+    /// let y = -3.6_f16;
+    /// let abs_difference_x = (x.fract() - 0.6).abs();
+    /// let abs_difference_y = (y.fract() - (-0.6)).abs();
+    ///
+    /// assert!(abs_difference_x <= f16::EPSILON);
+    /// assert!(abs_difference_y <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn fract(self) -> f16 {
+        self - self.trunc()
     }
 
     /// Computes the absolute value of `self`.
@@ -60,4 +215,1127 @@ impl f16 {
         // FIXME(f16_f128): replace with `intrinsics::fabsf16` when available
         Self::from_bits(self.to_bits() & !(1 << 15))
     }
+
+    /// Returns a number that represents the sign of `self`.
+    ///
+    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
+    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
+    /// - NaN if the number is NaN
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = 3.5_f16;
+    ///
+    /// assert_eq!(f.signum(), 1.0);
+    /// assert_eq!(f16::NEG_INFINITY.signum(), -1.0);
+    ///
+    /// assert!(f16::NAN.signum().is_nan());
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn signum(self) -> f16 {
+        if self.is_nan() { Self::NAN } else { 1.0_f16.copysign(self) }
+    }
+
+    /// Returns a number composed of the magnitude of `self` and the sign of
+    /// `sign`.
+    ///
+    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise
+    /// equal to `-self`. If `self` is a NaN, then a NaN with the sign bit of
+    /// `sign` is returned. Note, however, that conserving the sign bit on NaN
+    /// across arithmetical operations is not generally guaranteed.
+    /// See [explanation of NaN as a special value](primitive@f16) for more info.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = 3.5_f16;
+    ///
+    /// assert_eq!(f.copysign(0.42), 3.5_f16);
+    /// assert_eq!(f.copysign(-0.42), -3.5_f16);
+    /// assert_eq!((-f).copysign(0.42), 3.5_f16);
+    /// assert_eq!((-f).copysign(-0.42), -3.5_f16);
+    ///
+    /// assert!(f16::NAN.copysign(1.0).is_nan());
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn copysign(self, sign: f16) -> f16 {
+        unsafe { intrinsics::copysignf16(self, sign) }
+    }
+
+    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
+    /// error, yielding a more accurate result than an unfused multiply-add.
+    ///
+    /// Using `mul_add` *may* be more performant than an unfused multiply-add if
+    /// the target architecture has a dedicated `fma` CPU instruction. However,
+    /// this is not always true, and will be heavily dependant on designing
+    /// algorithms with specific target hardware in mind.
+    ///
+    /// # Precision
+    ///
+    /// The result of this operation is guaranteed to be the rounded
+    /// infinite-precision result. It is specified by IEEE 754 as
+    /// `fusedMultiplyAdd` and guaranteed not to change.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let m = 10.0_f16;
+    /// let x = 4.0_f16;
+    /// let b = 60.0_f16;
+    ///
+    /// assert_eq!(m.mul_add(x, b), 100.0);
+    /// assert_eq!(m * x + b, 100.0);
+    ///
+    /// let one_plus_eps = 1.0_f16 + f16::EPSILON;
+    /// let one_minus_eps = 1.0_f16 - f16::EPSILON;
+    /// let minus_one = -1.0_f16;
+    ///
+    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
+    /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f16::EPSILON * f16::EPSILON);
+    /// // Different rounding with the non-fused multiply and add.
+    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn mul_add(self, a: f16, b: f16) -> f16 {
+        unsafe { intrinsics::fmaf16(self, a, b) }
+    }
+
+    /// Calculates Euclidean division, the matching method for `rem_euclid`.
+    ///
+    /// This computes the integer `n` such that
+    /// `self = n * rhs + self.rem_euclid(rhs)`.
+    /// In other words, the result is `self / rhs` rounded to the integer `n`
+    /// such that `self >= n * rhs`.
+    ///
+    /// # Precision
+    ///
+    /// The result of this operation is guaranteed to be the rounded
+    /// infinite-precision result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let a: f16 = 7.0;
+    /// let b = 4.0;
+    /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
+    /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
+    /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
+    /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn div_euclid(self, rhs: f16) -> f16 {
+        let q = (self / rhs).trunc();
+        if self % rhs < 0.0 {
+            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
+        }
+        q
+    }
+
+    /// Calculates the least nonnegative remainder of `self (mod rhs)`.
+    ///
+    /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
+    /// most cases. However, due to a floating point round-off error it can
+    /// result in `r == rhs.abs()`, violating the mathematical definition, if
+    /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
+    /// This result is not an element of the function's codomain, but it is the
+    /// closest floating point number in the real numbers and thus fulfills the
+    /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
+    /// approximately.
+    ///
+    /// # Precision
+    ///
+    /// The result of this operation is guaranteed to be the rounded
+    /// infinite-precision result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let a: f16 = 7.0;
+    /// let b = 4.0;
+    /// assert_eq!(a.rem_euclid(b), 3.0);
+    /// assert_eq!((-a).rem_euclid(b), 1.0);
+    /// assert_eq!(a.rem_euclid(-b), 3.0);
+    /// assert_eq!((-a).rem_euclid(-b), 1.0);
+    /// // limitation due to round-off error
+    /// assert!((-f16::EPSILON).rem_euclid(3.0) != 0.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[doc(alias = "modulo", alias = "mod")]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn rem_euclid(self, rhs: f16) -> f16 {
+        let r = self % rhs;
+        if r < 0.0 { r + rhs.abs() } else { r }
+    }
+
+    /// Raises a number to an integer power.
+    ///
+    /// Using this function is generally faster than using `powf`.
+    /// It might have a different sequence of rounding operations than `powf`,
+    /// so the results are not guaranteed to agree.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn powi(self, n: i32) -> f16 {
+        unsafe { intrinsics::powif16(self, n) }
+    }
+
+    /// Raises a number to a floating point power.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 2.0_f16;
+    /// let abs_difference = (x.powf(2.0) - (x * x)).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn powf(self, n: f16) -> f16 {
+        unsafe { intrinsics::powf16(self, n) }
+    }
+
+    /// Returns the square root of a number.
+    ///
+    /// Returns NaN if `self` is a negative number other than `-0.0`.
+    ///
+    /// # Precision
+    ///
+    /// The result of this operation is guaranteed to be the rounded
+    /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
+    /// and guaranteed not to change.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let positive = 4.0_f16;
+    /// let negative = -4.0_f16;
+    /// let negative_zero = -0.0_f16;
+    ///
+    /// assert_eq!(positive.sqrt(), 2.0);
+    /// assert!(negative.sqrt().is_nan());
+    /// assert!(negative_zero.sqrt() == negative_zero);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn sqrt(self) -> f16 {
+        unsafe { intrinsics::sqrtf16(self) }
+    }
+
+    /// Returns `e^(self)`, (the exponential function).
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let one = 1.0f16;
+    /// // e^1
+    /// let e = one.exp();
+    ///
+    /// // ln(e) - 1 == 0
+    /// let abs_difference = (e.ln() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn exp(self) -> f16 {
+        unsafe { intrinsics::expf16(self) }
+    }
+
+    /// Returns `2^(self)`.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = 2.0f16;
+    ///
+    /// // 2^2 - 4 == 0
+    /// let abs_difference = (f.exp2() - 4.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn exp2(self) -> f16 {
+        unsafe { intrinsics::exp2f16(self) }
+    }
+
+    /// Returns the natural logarithm of the number.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let one = 1.0f16;
+    /// // e^1
+    /// let e = one.exp();
+    ///
+    /// // ln(e) - 1 == 0
+    /// let abs_difference = (e.ln() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn ln(self) -> f16 {
+        unsafe { intrinsics::logf16(self) }
+    }
+
+    /// Returns the logarithm of the number with respect to an arbitrary base.
+    ///
+    /// The result might not be correctly rounded owing to implementation details;
+    /// `self.log2()` can produce more accurate results for base 2, and
+    /// `self.log10()` can produce more accurate results for base 10.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let five = 5.0f16;
+    ///
+    /// // log5(5) - 1 == 0
+    /// let abs_difference = (five.log(5.0) - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn log(self, base: f16) -> f16 {
+        self.ln() / base.ln()
+    }
+
+    /// Returns the base 2 logarithm of the number.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let two = 2.0f16;
+    ///
+    /// // log2(2) - 1 == 0
+    /// let abs_difference = (two.log2() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn log2(self) -> f16 {
+        unsafe { intrinsics::log2f16(self) }
+    }
+
+    /// Returns the base 10 logarithm of the number.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let ten = 10.0f16;
+    ///
+    /// // log10(10) - 1 == 0
+    /// let abs_difference = (ten.log10() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn log10(self) -> f16 {
+        unsafe { intrinsics::log10f16(self) }
+    }
+
+    /// Returns the cube root of a number.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `cbrtf` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 8.0f16;
+    ///
+    /// // x^(1/3) - 2 == 0
+    /// let abs_difference = (x.cbrt() - 2.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn cbrt(self) -> f16 {
+        (unsafe { cmath::cbrtf(self as f32) }) as f16
+    }
+
+    /// Compute the distance between the origin and a point (`x`, `y`) on the
+    /// Euclidean plane. Equivalently, compute the length of the hypotenuse of a
+    /// right-angle triangle with other sides having length `x.abs()` and
+    /// `y.abs()`.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `hypotf` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 2.0f16;
+    /// let y = 3.0f16;
+    ///
+    /// // sqrt(x^2 + y^2)
+    /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn hypot(self, other: f16) -> f16 {
+        (unsafe { cmath::hypotf(self as f32, other as f32) }) as f16
+    }
+
+    /// Computes the sine of a number (in radians).
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = std::f16::consts::FRAC_PI_2;
+    ///
+    /// let abs_difference = (x.sin() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn sin(self) -> f16 {
+        unsafe { intrinsics::sinf16(self) }
+    }
+
+    /// Computes the cosine of a number (in radians).
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 2.0 * std::f16::consts::PI;
+    ///
+    /// let abs_difference = (x.cos() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn cos(self) -> f16 {
+        unsafe { intrinsics::cosf16(self) }
+    }
+
+    /// Computes the tangent of a number (in radians).
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `tanf` from libc on Unix and
+    /// Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = std::f16::consts::FRAC_PI_4;
+    /// let abs_difference = (x.tan() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn tan(self) -> f16 {
+        (unsafe { cmath::tanf(self as f32) }) as f16
+    }
+
+    /// Computes the arcsine of a number. Return value is in radians in
+    /// the range [-pi/2, pi/2] or NaN if the number is outside the range
+    /// [-1, 1].
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `asinf` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = std::f16::consts::FRAC_PI_2;
+    ///
+    /// // asin(sin(pi/2))
+    /// let abs_difference = (f.sin().asin() - std::f16::consts::FRAC_PI_2).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "arcsin")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn asin(self) -> f16 {
+        (unsafe { cmath::asinf(self as f32) }) as f16
+    }
+
+    /// Computes the arccosine of a number. Return value is in radians in
+    /// the range [0, pi] or NaN if the number is outside the range
+    /// [-1, 1].
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `acosf` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = std::f16::consts::FRAC_PI_4;
+    ///
+    /// // acos(cos(pi/4))
+    /// let abs_difference = (f.cos().acos() - std::f16::consts::FRAC_PI_4).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "arccos")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn acos(self) -> f16 {
+        (unsafe { cmath::acosf(self as f32) }) as f16
+    }
+
+    /// Computes the arctangent of a number. Return value is in radians in the
+    /// range [-pi/2, pi/2];
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `atanf` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = 1.0f16;
+    ///
+    /// // atan(tan(1))
+    /// let abs_difference = (f.tan().atan() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "arctan")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn atan(self) -> f16 {
+        (unsafe { cmath::atanf(self as f32) }) as f16
+    }
+
+    /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
+    ///
+    /// * `x = 0`, `y = 0`: `0`
+    /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
+    /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
+    /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `atan2f` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// // Positive angles measured counter-clockwise
+    /// // from positive x axis
+    /// // -pi/4 radians (45 deg clockwise)
+    /// let x1 = 3.0f16;
+    /// let y1 = -3.0f16;
+    ///
+    /// // 3pi/4 radians (135 deg counter-clockwise)
+    /// let x2 = -3.0f16;
+    /// let y2 = 3.0f16;
+    ///
+    /// let abs_difference_1 = (y1.atan2(x1) - (-std::f16::consts::FRAC_PI_4)).abs();
+    /// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f16::consts::FRAC_PI_4)).abs();
+    ///
+    /// assert!(abs_difference_1 <= f16::EPSILON);
+    /// assert!(abs_difference_2 <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn atan2(self, other: f16) -> f16 {
+        (unsafe { cmath::atan2f(self as f32, other as f32) }) as f16
+    }
+
+    /// Simultaneously computes the sine and cosine of the number, `x`. Returns
+    /// `(sin(x), cos(x))`.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `(f16::sin(x),
+    /// f16::cos(x))`. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = std::f16::consts::FRAC_PI_4;
+    /// let f = x.sin_cos();
+    ///
+    /// let abs_difference_0 = (f.0 - x.sin()).abs();
+    /// let abs_difference_1 = (f.1 - x.cos()).abs();
+    ///
+    /// assert!(abs_difference_0 <= f16::EPSILON);
+    /// assert!(abs_difference_1 <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "sincos")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    pub fn sin_cos(self) -> (f16, f16) {
+        (self.sin(), self.cos())
+    }
+
+    /// Returns `e^(self) - 1` in a way that is accurate even if the
+    /// number is close to zero.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `expm1f` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 1e-4_f16;
+    ///
+    /// // for very small x, e^x is approximately 1 + x + x^2 / 2
+    /// let approx = x + x * x / 2.0;
+    /// let abs_difference = (x.exp_m1() - approx).abs();
+    ///
+    /// assert!(abs_difference < 1e-4);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn exp_m1(self) -> f16 {
+        (unsafe { cmath::expm1f(self as f32) }) as f16
+    }
+
+    /// Returns `ln(1+n)` (natural logarithm) more accurately than if
+    /// the operations were performed separately.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `log1pf` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 1e-4_f16;
+    ///
+    /// // for very small x, ln(1 + x) is approximately x - x^2 / 2
+    /// let approx = x - x * x / 2.0;
+    /// let abs_difference = (x.ln_1p() - approx).abs();
+    ///
+    /// assert!(abs_difference < 1e-4);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "log1p")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn ln_1p(self) -> f16 {
+        (unsafe { cmath::log1pf(self as f32) }) as f16
+    }
+
+    /// Hyperbolic sine function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `sinhf` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let e = std::f16::consts::E;
+    /// let x = 1.0f16;
+    ///
+    /// let f = x.sinh();
+    /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
+    /// let g = ((e * e) - 1.0) / (2.0 * e);
+    /// let abs_difference = (f - g).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn sinh(self) -> f16 {
+        (unsafe { cmath::sinhf(self as f32) }) as f16
+    }
+
+    /// Hyperbolic cosine function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `coshf` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let e = std::f16::consts::E;
+    /// let x = 1.0f16;
+    /// let f = x.cosh();
+    /// // Solving cosh() at 1 gives this result
+    /// let g = ((e * e) + 1.0) / (2.0 * e);
+    /// let abs_difference = (f - g).abs();
+    ///
+    /// // Same result
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn cosh(self) -> f16 {
+        (unsafe { cmath::coshf(self as f32) }) as f16
+    }
+
+    /// Hyperbolic tangent function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `tanhf` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let e = std::f16::consts::E;
+    /// let x = 1.0f16;
+    ///
+    /// let f = x.tanh();
+    /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
+    /// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2));
+    /// let abs_difference = (f - g).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn tanh(self) -> f16 {
+        (unsafe { cmath::tanhf(self as f32) }) as f16
+    }
+
+    /// Inverse hyperbolic sine function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 1.0f16;
+    /// let f = x.sinh().asinh();
+    ///
+    /// let abs_difference = (f - x).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "arcsinh")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn asinh(self) -> f16 {
+        let ax = self.abs();
+        let ix = 1.0 / ax;
+        (ax + (ax / (Self::hypot(1.0, ix) + ix))).ln_1p().copysign(self)
+    }
+
+    /// Inverse hyperbolic cosine function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 1.0f16;
+    /// let f = x.cosh().acosh();
+    ///
+    /// let abs_difference = (f - x).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "arccosh")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn acosh(self) -> f16 {
+        if self < 1.0 {
+            Self::NAN
+        } else {
+            (self + ((self - 1.0).sqrt() * (self + 1.0).sqrt())).ln()
+        }
+    }
+
+    /// Inverse hyperbolic tangent function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let e = std::f16::consts::E;
+    /// let f = e.tanh().atanh();
+    ///
+    /// let abs_difference = (f - e).abs();
+    ///
+    /// assert!(abs_difference <= 0.01);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "arctanh")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn atanh(self) -> f16 {
+        0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
+    }
+
+    /// Gamma function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `tgammaf` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// #![feature(float_gamma)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 5.0f16;
+    ///
+    /// let abs_difference = (x.gamma() - 24.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn gamma(self) -> f16 {
+        (unsafe { cmath::tgammaf(self as f32) }) as f16
+    }
+
+    /// Natural logarithm of the absolute value of the gamma function
+    ///
+    /// The integer part of the tuple indicates the sign of the gamma function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `lgamma_r` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// #![feature(float_gamma)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 2.0f16;
+    ///
+    /// let abs_difference = (x.ln_gamma().0 - 0.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn ln_gamma(self) -> (f16, i32) {
+        let mut signgamp: i32 = 0;
+        let x = (unsafe { cmath::lgammaf_r(self as f32, &mut signgamp) }) as f16;
+        (x, signgamp)
+    }
 }
diff --git a/library/std/src/f16/tests.rs b/library/std/src/f16/tests.rs
index f73bdf68e82..f0ef807dac1 100644
--- a/library/std/src/f16/tests.rs
+++ b/library/std/src/f16/tests.rs
@@ -4,11 +4,21 @@
 use crate::f16::consts;
 use crate::num::{FpCategory as Fp, *};
 
-// We run out of precision pretty quickly with f16
-// const F16_APPROX_L1: f16 = 0.001;
-const F16_APPROX_L2: f16 = 0.01;
-// const F16_APPROX_L3: f16 = 0.1;
-const F16_APPROX_L4: f16 = 0.5;
+/// Tolerance for results on the order of 10.0e-2;
+#[cfg(reliable_f16_math)]
+const TOL_N2: f16 = 0.0001;
+
+/// Tolerance for results on the order of 10.0e+0
+#[cfg(reliable_f16_math)]
+const TOL_0: f16 = 0.01;
+
+/// Tolerance for results on the order of 10.0e+2
+#[cfg(reliable_f16_math)]
+const TOL_P2: f16 = 0.5;
+
+/// Tolerance for results on the order of 10.0e+4
+#[cfg(reliable_f16_math)]
+const TOL_P4: f16 = 10.0;
 
 /// Smallest number
 const TINY_BITS: u16 = 0x1;
@@ -197,9 +207,100 @@ fn test_classify() {
     assert_eq!(1e-5f16.classify(), Fp::Subnormal);
 }
 
-// FIXME(f16_f128): add missing math functions when available
+#[test]
+#[cfg(reliable_f16_math)]
+fn test_floor() {
+    assert_approx_eq!(1.0f16.floor(), 1.0f16, TOL_0);
+    assert_approx_eq!(1.3f16.floor(), 1.0f16, TOL_0);
+    assert_approx_eq!(1.5f16.floor(), 1.0f16, TOL_0);
+    assert_approx_eq!(1.7f16.floor(), 1.0f16, TOL_0);
+    assert_approx_eq!(0.0f16.floor(), 0.0f16, TOL_0);
+    assert_approx_eq!((-0.0f16).floor(), -0.0f16, TOL_0);
+    assert_approx_eq!((-1.0f16).floor(), -1.0f16, TOL_0);
+    assert_approx_eq!((-1.3f16).floor(), -2.0f16, TOL_0);
+    assert_approx_eq!((-1.5f16).floor(), -2.0f16, TOL_0);
+    assert_approx_eq!((-1.7f16).floor(), -2.0f16, TOL_0);
+}
+
+#[test]
+#[cfg(reliable_f16_math)]
+fn test_ceil() {
+    assert_approx_eq!(1.0f16.ceil(), 1.0f16, TOL_0);
+    assert_approx_eq!(1.3f16.ceil(), 2.0f16, TOL_0);
+    assert_approx_eq!(1.5f16.ceil(), 2.0f16, TOL_0);
+    assert_approx_eq!(1.7f16.ceil(), 2.0f16, TOL_0);
+    assert_approx_eq!(0.0f16.ceil(), 0.0f16, TOL_0);
+    assert_approx_eq!((-0.0f16).ceil(), -0.0f16, TOL_0);
+    assert_approx_eq!((-1.0f16).ceil(), -1.0f16, TOL_0);
+    assert_approx_eq!((-1.3f16).ceil(), -1.0f16, TOL_0);
+    assert_approx_eq!((-1.5f16).ceil(), -1.0f16, TOL_0);
+    assert_approx_eq!((-1.7f16).ceil(), -1.0f16, TOL_0);
+}
+
+#[test]
+#[cfg(reliable_f16_math)]
+fn test_round() {
+    assert_approx_eq!(2.5f16.round(), 3.0f16, TOL_0);
+    assert_approx_eq!(1.0f16.round(), 1.0f16, TOL_0);
+    assert_approx_eq!(1.3f16.round(), 1.0f16, TOL_0);
+    assert_approx_eq!(1.5f16.round(), 2.0f16, TOL_0);
+    assert_approx_eq!(1.7f16.round(), 2.0f16, TOL_0);
+    assert_approx_eq!(0.0f16.round(), 0.0f16, TOL_0);
+    assert_approx_eq!((-0.0f16).round(), -0.0f16, TOL_0);
+    assert_approx_eq!((-1.0f16).round(), -1.0f16, TOL_0);
+    assert_approx_eq!((-1.3f16).round(), -1.0f16, TOL_0);
+    assert_approx_eq!((-1.5f16).round(), -2.0f16, TOL_0);
+    assert_approx_eq!((-1.7f16).round(), -2.0f16, TOL_0);
+}
+
+#[test]
+#[cfg(reliable_f16_math)]
+fn test_round_ties_even() {
+    assert_approx_eq!(2.5f16.round_ties_even(), 2.0f16, TOL_0);
+    assert_approx_eq!(1.0f16.round_ties_even(), 1.0f16, TOL_0);
+    assert_approx_eq!(1.3f16.round_ties_even(), 1.0f16, TOL_0);
+    assert_approx_eq!(1.5f16.round_ties_even(), 2.0f16, TOL_0);
+    assert_approx_eq!(1.7f16.round_ties_even(), 2.0f16, TOL_0);
+    assert_approx_eq!(0.0f16.round_ties_even(), 0.0f16, TOL_0);
+    assert_approx_eq!((-0.0f16).round_ties_even(), -0.0f16, TOL_0);
+    assert_approx_eq!((-1.0f16).round_ties_even(), -1.0f16, TOL_0);
+    assert_approx_eq!((-1.3f16).round_ties_even(), -1.0f16, TOL_0);
+    assert_approx_eq!((-1.5f16).round_ties_even(), -2.0f16, TOL_0);
+    assert_approx_eq!((-1.7f16).round_ties_even(), -2.0f16, TOL_0);
+}
 
 #[test]
+#[cfg(reliable_f16_math)]
+fn test_trunc() {
+    assert_approx_eq!(1.0f16.trunc(), 1.0f16, TOL_0);
+    assert_approx_eq!(1.3f16.trunc(), 1.0f16, TOL_0);
+    assert_approx_eq!(1.5f16.trunc(), 1.0f16, TOL_0);
+    assert_approx_eq!(1.7f16.trunc(), 1.0f16, TOL_0);
+    assert_approx_eq!(0.0f16.trunc(), 0.0f16, TOL_0);
+    assert_approx_eq!((-0.0f16).trunc(), -0.0f16, TOL_0);
+    assert_approx_eq!((-1.0f16).trunc(), -1.0f16, TOL_0);
+    assert_approx_eq!((-1.3f16).trunc(), -1.0f16, TOL_0);
+    assert_approx_eq!((-1.5f16).trunc(), -1.0f16, TOL_0);
+    assert_approx_eq!((-1.7f16).trunc(), -1.0f16, TOL_0);
+}
+
+#[test]
+#[cfg(reliable_f16_math)]
+fn test_fract() {
+    assert_approx_eq!(1.0f16.fract(), 0.0f16, TOL_0);
+    assert_approx_eq!(1.3f16.fract(), 0.3f16, TOL_0);
+    assert_approx_eq!(1.5f16.fract(), 0.5f16, TOL_0);
+    assert_approx_eq!(1.7f16.fract(), 0.7f16, TOL_0);
+    assert_approx_eq!(0.0f16.fract(), 0.0f16, TOL_0);
+    assert_approx_eq!((-0.0f16).fract(), -0.0f16, TOL_0);
+    assert_approx_eq!((-1.0f16).fract(), -0.0f16, TOL_0);
+    assert_approx_eq!((-1.3f16).fract(), -0.3f16, TOL_0);
+    assert_approx_eq!((-1.5f16).fract(), -0.5f16, TOL_0);
+    assert_approx_eq!((-1.7f16).fract(), -0.7f16, TOL_0);
+}
+
+#[test]
+#[cfg(reliable_f16_math)]
 fn test_abs() {
     assert_eq!(f16::INFINITY.abs(), f16::INFINITY);
     assert_eq!(1f16.abs(), 1f16);
@@ -299,6 +400,24 @@ fn test_next_down() {
 }
 
 #[test]
+#[cfg(reliable_f16_math)]
+fn test_mul_add() {
+    let nan: f16 = f16::NAN;
+    let inf: f16 = f16::INFINITY;
+    let neg_inf: f16 = f16::NEG_INFINITY;
+    assert_approx_eq!(12.3f16.mul_add(4.5, 6.7), 62.05, TOL_P2);
+    assert_approx_eq!((-12.3f16).mul_add(-4.5, -6.7), 48.65, TOL_P2);
+    assert_approx_eq!(0.0f16.mul_add(8.9, 1.2), 1.2, TOL_0);
+    assert_approx_eq!(3.4f16.mul_add(-0.0, 5.6), 5.6, TOL_0);
+    assert!(nan.mul_add(7.8, 9.0).is_nan());
+    assert_eq!(inf.mul_add(7.8, 9.0), inf);
+    assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf);
+    assert_eq!(8.9f16.mul_add(inf, 3.2), inf);
+    assert_eq!((-3.2f16).mul_add(2.4, neg_inf), neg_inf);
+}
+
+#[test]
+#[cfg(reliable_f16_math)]
 fn test_recip() {
     let nan: f16 = f16::NAN;
     let inf: f16 = f16::INFINITY;
@@ -307,20 +426,166 @@ fn test_recip() {
     assert_eq!(2.0f16.recip(), 0.5);
     assert_eq!((-0.4f16).recip(), -2.5);
     assert_eq!(0.0f16.recip(), inf);
+    assert_approx_eq!(f16::MAX.recip(), 1.526624e-5f16, 1e-4);
     assert!(nan.recip().is_nan());
     assert_eq!(inf.recip(), 0.0);
     assert_eq!(neg_inf.recip(), 0.0);
 }
 
 #[test]
+#[cfg(reliable_f16_math)]
+fn test_powi() {
+    // FIXME(llvm19): LLVM misoptimizes `powi.f16`
+    // <https://github.com/llvm/llvm-project/issues/98665>
+    // let nan: f16 = f16::NAN;
+    // let inf: f16 = f16::INFINITY;
+    // let neg_inf: f16 = f16::NEG_INFINITY;
+    // assert_eq!(1.0f16.powi(1), 1.0);
+    // assert_approx_eq!((-3.1f16).powi(2), 9.61, TOL_0);
+    // assert_approx_eq!(5.9f16.powi(-2), 0.028727, TOL_N2);
+    // assert_eq!(8.3f16.powi(0), 1.0);
+    // assert!(nan.powi(2).is_nan());
+    // assert_eq!(inf.powi(3), inf);
+    // assert_eq!(neg_inf.powi(2), inf);
+}
+
+#[test]
+#[cfg(reliable_f16_math)]
+fn test_powf() {
+    let nan: f16 = f16::NAN;
+    let inf: f16 = f16::INFINITY;
+    let neg_inf: f16 = f16::NEG_INFINITY;
+    assert_eq!(1.0f16.powf(1.0), 1.0);
+    assert_approx_eq!(3.4f16.powf(4.5), 246.408183, TOL_P2);
+    assert_approx_eq!(2.7f16.powf(-3.2), 0.041652, TOL_N2);
+    assert_approx_eq!((-3.1f16).powf(2.0), 9.61, TOL_P2);
+    assert_approx_eq!(5.9f16.powf(-2.0), 0.028727, TOL_N2);
+    assert_eq!(8.3f16.powf(0.0), 1.0);
+    assert!(nan.powf(2.0).is_nan());
+    assert_eq!(inf.powf(2.0), inf);
+    assert_eq!(neg_inf.powf(3.0), neg_inf);
+}
+
+#[test]
+#[cfg(reliable_f16_math)]
+fn test_sqrt_domain() {
+    assert!(f16::NAN.sqrt().is_nan());
+    assert!(f16::NEG_INFINITY.sqrt().is_nan());
+    assert!((-1.0f16).sqrt().is_nan());
+    assert_eq!((-0.0f16).sqrt(), -0.0);
+    assert_eq!(0.0f16.sqrt(), 0.0);
+    assert_eq!(1.0f16.sqrt(), 1.0);
+    assert_eq!(f16::INFINITY.sqrt(), f16::INFINITY);
+}
+
+#[test]
+#[cfg(reliable_f16_math)]
+fn test_exp() {
+    assert_eq!(1.0, 0.0f16.exp());
+    assert_approx_eq!(2.718282, 1.0f16.exp(), TOL_0);
+    assert_approx_eq!(148.413159, 5.0f16.exp(), TOL_0);
+
+    let inf: f16 = f16::INFINITY;
+    let neg_inf: f16 = f16::NEG_INFINITY;
+    let nan: f16 = f16::NAN;
+    assert_eq!(inf, inf.exp());
+    assert_eq!(0.0, neg_inf.exp());
+    assert!(nan.exp().is_nan());
+}
+
+#[test]
+#[cfg(reliable_f16_math)]
+fn test_exp2() {
+    assert_eq!(32.0, 5.0f16.exp2());
+    assert_eq!(1.0, 0.0f16.exp2());
+
+    let inf: f16 = f16::INFINITY;
+    let neg_inf: f16 = f16::NEG_INFINITY;
+    let nan: f16 = f16::NAN;
+    assert_eq!(inf, inf.exp2());
+    assert_eq!(0.0, neg_inf.exp2());
+    assert!(nan.exp2().is_nan());
+}
+
+#[test]
+#[cfg(reliable_f16_math)]
+fn test_ln() {
+    let nan: f16 = f16::NAN;
+    let inf: f16 = f16::INFINITY;
+    let neg_inf: f16 = f16::NEG_INFINITY;
+    assert_approx_eq!(1.0f16.exp().ln(), 1.0, TOL_0);
+    assert!(nan.ln().is_nan());
+    assert_eq!(inf.ln(), inf);
+    assert!(neg_inf.ln().is_nan());
+    assert!((-2.3f16).ln().is_nan());
+    assert_eq!((-0.0f16).ln(), neg_inf);
+    assert_eq!(0.0f16.ln(), neg_inf);
+    assert_approx_eq!(4.0f16.ln(), 1.386294, TOL_0);
+}
+
+#[test]
+#[cfg(reliable_f16_math)]
+fn test_log() {
+    let nan: f16 = f16::NAN;
+    let inf: f16 = f16::INFINITY;
+    let neg_inf: f16 = f16::NEG_INFINITY;
+    assert_eq!(10.0f16.log(10.0), 1.0);
+    assert_approx_eq!(2.3f16.log(3.5), 0.664858, TOL_0);
+    assert_eq!(1.0f16.exp().log(1.0f16.exp()), 1.0);
+    assert!(1.0f16.log(1.0).is_nan());
+    assert!(1.0f16.log(-13.9).is_nan());
+    assert!(nan.log(2.3).is_nan());
+    assert_eq!(inf.log(10.0), inf);
+    assert!(neg_inf.log(8.8).is_nan());
+    assert!((-2.3f16).log(0.1).is_nan());
+    assert_eq!((-0.0f16).log(2.0), neg_inf);
+    assert_eq!(0.0f16.log(7.0), neg_inf);
+}
+
+#[test]
+#[cfg(reliable_f16_math)]
+fn test_log2() {
+    let nan: f16 = f16::NAN;
+    let inf: f16 = f16::INFINITY;
+    let neg_inf: f16 = f16::NEG_INFINITY;
+    assert_approx_eq!(10.0f16.log2(), 3.321928, TOL_0);
+    assert_approx_eq!(2.3f16.log2(), 1.201634, TOL_0);
+    assert_approx_eq!(1.0f16.exp().log2(), 1.442695, TOL_0);
+    assert!(nan.log2().is_nan());
+    assert_eq!(inf.log2(), inf);
+    assert!(neg_inf.log2().is_nan());
+    assert!((-2.3f16).log2().is_nan());
+    assert_eq!((-0.0f16).log2(), neg_inf);
+    assert_eq!(0.0f16.log2(), neg_inf);
+}
+
+#[test]
+#[cfg(reliable_f16_math)]
+fn test_log10() {
+    let nan: f16 = f16::NAN;
+    let inf: f16 = f16::INFINITY;
+    let neg_inf: f16 = f16::NEG_INFINITY;
+    assert_eq!(10.0f16.log10(), 1.0);
+    assert_approx_eq!(2.3f16.log10(), 0.361728, TOL_0);
+    assert_approx_eq!(1.0f16.exp().log10(), 0.434294, TOL_0);
+    assert_eq!(1.0f16.log10(), 0.0);
+    assert!(nan.log10().is_nan());
+    assert_eq!(inf.log10(), inf);
+    assert!(neg_inf.log10().is_nan());
+    assert!((-2.3f16).log10().is_nan());
+    assert_eq!((-0.0f16).log10(), neg_inf);
+    assert_eq!(0.0f16.log10(), neg_inf);
+}
+
+#[test]
 fn test_to_degrees() {
     let pi: f16 = consts::PI;
     let nan: f16 = f16::NAN;
     let inf: f16 = f16::INFINITY;
     let neg_inf: f16 = f16::NEG_INFINITY;
     assert_eq!(0.0f16.to_degrees(), 0.0);
-    assert_approx_eq!((-5.8f16).to_degrees(), -332.315521);
-    assert_approx_eq!(pi.to_degrees(), 180.0, F16_APPROX_L4);
+    assert_approx_eq!((-5.8f16).to_degrees(), -332.315521, TOL_P2);
+    assert_approx_eq!(pi.to_degrees(), 180.0, TOL_P2);
     assert!(nan.to_degrees().is_nan());
     assert_eq!(inf.to_degrees(), inf);
     assert_eq!(neg_inf.to_degrees(), neg_inf);
@@ -334,15 +599,113 @@ fn test_to_radians() {
     let inf: f16 = f16::INFINITY;
     let neg_inf: f16 = f16::NEG_INFINITY;
     assert_eq!(0.0f16.to_radians(), 0.0);
-    assert_approx_eq!(154.6f16.to_radians(), 2.698279);
-    assert_approx_eq!((-332.31f16).to_radians(), -5.799903);
-    assert_approx_eq!(180.0f16.to_radians(), pi, F16_APPROX_L2);
+    assert_approx_eq!(154.6f16.to_radians(), 2.698279, TOL_0);
+    assert_approx_eq!((-332.31f16).to_radians(), -5.799903, TOL_0);
+    assert_approx_eq!(180.0f16.to_radians(), pi, TOL_0);
     assert!(nan.to_radians().is_nan());
     assert_eq!(inf.to_radians(), inf);
     assert_eq!(neg_inf.to_radians(), neg_inf);
 }
 
 #[test]
+#[cfg(reliable_f16_math)]
+fn test_asinh() {
+    assert_eq!(0.0f16.asinh(), 0.0f16);
+    assert_eq!((-0.0f16).asinh(), -0.0f16);
+
+    let inf: f16 = f16::INFINITY;
+    let neg_inf: f16 = f16::NEG_INFINITY;
+    let nan: f16 = f16::NAN;
+    assert_eq!(inf.asinh(), inf);
+    assert_eq!(neg_inf.asinh(), neg_inf);
+    assert!(nan.asinh().is_nan());
+    assert!((-0.0f16).asinh().is_sign_negative());
+    // issue 63271
+    assert_approx_eq!(2.0f16.asinh(), 1.443635475178810342493276740273105f16, TOL_0);
+    assert_approx_eq!((-2.0f16).asinh(), -1.443635475178810342493276740273105f16, TOL_0);
+    // regression test for the catastrophic cancellation fixed in 72486
+    assert_approx_eq!((-200.0f16).asinh(), -5.991470797049389, TOL_0);
+
+    // test for low accuracy from issue 104548
+    assert_approx_eq!(10.0f16, 10.0f16.sinh().asinh(), TOL_0);
+    // mul needed for approximate comparison to be meaningful
+    assert_approx_eq!(1.0f16, 1e-3f16.sinh().asinh() * 1e3f16, TOL_0);
+}
+
+#[test]
+#[cfg(reliable_f16_math)]
+fn test_acosh() {
+    assert_eq!(1.0f16.acosh(), 0.0f16);
+    assert!(0.999f16.acosh().is_nan());
+
+    let inf: f16 = f16::INFINITY;
+    let neg_inf: f16 = f16::NEG_INFINITY;
+    let nan: f16 = f16::NAN;
+    assert_eq!(inf.acosh(), inf);
+    assert!(neg_inf.acosh().is_nan());
+    assert!(nan.acosh().is_nan());
+    assert_approx_eq!(2.0f16.acosh(), 1.31695789692481670862504634730796844f16, TOL_0);
+    assert_approx_eq!(3.0f16.acosh(), 1.76274717403908605046521864995958461f16, TOL_0);
+
+    // test for low accuracy from issue 104548
+    assert_approx_eq!(10.0f16, 10.0f16.cosh().acosh(), TOL_P2);
+}
+
+#[test]
+#[cfg(reliable_f16_math)]
+fn test_atanh() {
+    assert_eq!(0.0f16.atanh(), 0.0f16);
+    assert_eq!((-0.0f16).atanh(), -0.0f16);
+
+    let inf: f16 = f16::INFINITY;
+    let neg_inf: f16 = f16::NEG_INFINITY;
+    let nan: f16 = f16::NAN;
+    assert_eq!(1.0f16.atanh(), inf);
+    assert_eq!((-1.0f16).atanh(), neg_inf);
+    assert!(2f16.atanh().atanh().is_nan());
+    assert!((-2f16).atanh().atanh().is_nan());
+    assert!(inf.atanh().is_nan());
+    assert!(neg_inf.atanh().is_nan());
+    assert!(nan.atanh().is_nan());
+    assert_approx_eq!(0.5f16.atanh(), 0.54930614433405484569762261846126285f16, TOL_0);
+    assert_approx_eq!((-0.5f16).atanh(), -0.54930614433405484569762261846126285f16, TOL_0);
+}
+
+#[test]
+#[cfg(reliable_f16_math)]
+fn test_gamma() {
+    // precision can differ among platforms
+    assert_approx_eq!(1.0f16.gamma(), 1.0f16, TOL_0);
+    assert_approx_eq!(2.0f16.gamma(), 1.0f16, TOL_0);
+    assert_approx_eq!(3.0f16.gamma(), 2.0f16, TOL_0);
+    assert_approx_eq!(4.0f16.gamma(), 6.0f16, TOL_0);
+    assert_approx_eq!(5.0f16.gamma(), 24.0f16, TOL_0);
+    assert_approx_eq!(0.5f16.gamma(), consts::PI.sqrt(), TOL_0);
+    assert_approx_eq!((-0.5f16).gamma(), -2.0 * consts::PI.sqrt(), TOL_0);
+    assert_eq!(0.0f16.gamma(), f16::INFINITY);
+    assert_eq!((-0.0f16).gamma(), f16::NEG_INFINITY);
+    assert!((-1.0f16).gamma().is_nan());
+    assert!((-2.0f16).gamma().is_nan());
+    assert!(f16::NAN.gamma().is_nan());
+    assert!(f16::NEG_INFINITY.gamma().is_nan());
+    assert_eq!(f16::INFINITY.gamma(), f16::INFINITY);
+    assert_eq!(171.71f16.gamma(), f16::INFINITY);
+}
+
+#[test]
+#[cfg(reliable_f16_math)]
+fn test_ln_gamma() {
+    assert_approx_eq!(1.0f16.ln_gamma().0, 0.0f16, TOL_0);
+    assert_eq!(1.0f16.ln_gamma().1, 1);
+    assert_approx_eq!(2.0f16.ln_gamma().0, 0.0f16, TOL_0);
+    assert_eq!(2.0f16.ln_gamma().1, 1);
+    assert_approx_eq!(3.0f16.ln_gamma().0, 2.0f16.ln(), TOL_0);
+    assert_eq!(3.0f16.ln_gamma().1, 1);
+    assert_approx_eq!((-0.5f16).ln_gamma().0, (2.0 * consts::PI.sqrt()).ln(), TOL_0);
+    assert_eq!((-0.5f16).ln_gamma().1, -1);
+}
+
+#[test]
 fn test_real_consts() {
     // FIXME(f16_f128): add math tests when available
     use super::consts;
@@ -355,29 +718,34 @@ fn test_real_consts() {
     let frac_pi_8: f16 = consts::FRAC_PI_8;
     let frac_1_pi: f16 = consts::FRAC_1_PI;
     let frac_2_pi: f16 = consts::FRAC_2_PI;
-    // let frac_2_sqrtpi: f16 = consts::FRAC_2_SQRT_PI;
-    // let sqrt2: f16 = consts::SQRT_2;
-    // let frac_1_sqrt2: f16 = consts::FRAC_1_SQRT_2;
-    // let e: f16 = consts::E;
-    // let log2_e: f16 = consts::LOG2_E;
-    // let log10_e: f16 = consts::LOG10_E;
-    // let ln_2: f16 = consts::LN_2;
-    // let ln_10: f16 = consts::LN_10;
-
-    assert_approx_eq!(frac_pi_2, pi / 2f16);
-    assert_approx_eq!(frac_pi_3, pi / 3f16);
-    assert_approx_eq!(frac_pi_4, pi / 4f16);
-    assert_approx_eq!(frac_pi_6, pi / 6f16);
-    assert_approx_eq!(frac_pi_8, pi / 8f16);
-    assert_approx_eq!(frac_1_pi, 1f16 / pi);
-    assert_approx_eq!(frac_2_pi, 2f16 / pi);
-    // assert_approx_eq!(frac_2_sqrtpi, 2f16 / pi.sqrt());
-    // assert_approx_eq!(sqrt2, 2f16.sqrt());
-    // assert_approx_eq!(frac_1_sqrt2, 1f16 / 2f16.sqrt());
-    // assert_approx_eq!(log2_e, e.log2());
-    // assert_approx_eq!(log10_e, e.log10());
-    // assert_approx_eq!(ln_2, 2f16.ln());
-    // assert_approx_eq!(ln_10, 10f16.ln());
+
+    assert_approx_eq!(frac_pi_2, pi / 2f16, TOL_0);
+    assert_approx_eq!(frac_pi_3, pi / 3f16, TOL_0);
+    assert_approx_eq!(frac_pi_4, pi / 4f16, TOL_0);
+    assert_approx_eq!(frac_pi_6, pi / 6f16, TOL_0);
+    assert_approx_eq!(frac_pi_8, pi / 8f16, TOL_0);
+    assert_approx_eq!(frac_1_pi, 1f16 / pi, TOL_0);
+    assert_approx_eq!(frac_2_pi, 2f16 / pi, TOL_0);
+
+    #[cfg(reliable_f16_math)]
+    {
+        let frac_2_sqrtpi: f16 = consts::FRAC_2_SQRT_PI;
+        let sqrt2: f16 = consts::SQRT_2;
+        let frac_1_sqrt2: f16 = consts::FRAC_1_SQRT_2;
+        let e: f16 = consts::E;
+        let log2_e: f16 = consts::LOG2_E;
+        let log10_e: f16 = consts::LOG10_E;
+        let ln_2: f16 = consts::LN_2;
+        let ln_10: f16 = consts::LN_10;
+
+        assert_approx_eq!(frac_2_sqrtpi, 2f16 / pi.sqrt(), TOL_0);
+        assert_approx_eq!(sqrt2, 2f16.sqrt(), TOL_0);
+        assert_approx_eq!(frac_1_sqrt2, 1f16 / 2f16.sqrt(), TOL_0);
+        assert_approx_eq!(log2_e, e.log2(), TOL_0);
+        assert_approx_eq!(log10_e, e.log10(), TOL_0);
+        assert_approx_eq!(ln_2, 2f16.ln(), TOL_0);
+        assert_approx_eq!(ln_10, 10f16.ln(), TOL_0);
+    }
 }
 
 #[test]
@@ -386,10 +754,10 @@ fn test_float_bits_conv() {
     assert_eq!((12.5f16).to_bits(), 0x4a40);
     assert_eq!((1337f16).to_bits(), 0x6539);
     assert_eq!((-14.25f16).to_bits(), 0xcb20);
-    assert_approx_eq!(f16::from_bits(0x3c00), 1.0);
-    assert_approx_eq!(f16::from_bits(0x4a40), 12.5);
-    assert_approx_eq!(f16::from_bits(0x6539), 1337.0);
-    assert_approx_eq!(f16::from_bits(0xcb20), -14.25);
+    assert_approx_eq!(f16::from_bits(0x3c00), 1.0, TOL_0);
+    assert_approx_eq!(f16::from_bits(0x4a40), 12.5, TOL_0);
+    assert_approx_eq!(f16::from_bits(0x6539), 1337.0, TOL_P4);
+    assert_approx_eq!(f16::from_bits(0xcb20), -14.25, TOL_0);
 
     // Check that NaNs roundtrip their bits regardless of signaling-ness
     let masked_nan1 = f16::NAN.to_bits() ^ NAN_MASK1;
diff --git a/library/std/src/macros.rs b/library/std/src/macros.rs
index ba519afc62b..1b0d7f3dbf2 100644
--- a/library/std/src/macros.rs
+++ b/library/std/src/macros.rs
@@ -382,7 +382,7 @@ macro_rules! assert_approx_eq {
         let diff = (*a - *b).abs();
         assert!(
             diff < $lim,
-            "{a:?} is not approximately equal to {b:?} (threshold {lim:?}, actual {diff:?})",
+            "{a:?} is not approximately equal to {b:?} (threshold {lim:?}, difference {diff:?})",
             lim = $lim
         );
     }};
diff --git a/library/std/src/sys/cmath.rs b/library/std/src/sys/cmath.rs
index 99df503b82d..2997e908fa1 100644
--- a/library/std/src/sys/cmath.rs
+++ b/library/std/src/sys/cmath.rs
@@ -28,6 +28,21 @@ extern "C" {
     pub fn lgamma_r(n: f64, s: &mut i32) -> f64;
     pub fn lgammaf_r(n: f32, s: &mut i32) -> f32;
 
+    pub fn acosf128(n: f128) -> f128;
+    pub fn asinf128(n: f128) -> f128;
+    pub fn atanf128(n: f128) -> f128;
+    pub fn atan2f128(a: f128, b: f128) -> f128;
+    pub fn cbrtf128(n: f128) -> f128;
+    pub fn coshf128(n: f128) -> f128;
+    pub fn expm1f128(n: f128) -> f128;
+    pub fn hypotf128(x: f128, y: f128) -> f128;
+    pub fn log1pf128(n: f128) -> f128;
+    pub fn sinhf128(n: f128) -> f128;
+    pub fn tanf128(n: f128) -> f128;
+    pub fn tanhf128(n: f128) -> f128;
+    pub fn tgammaf128(n: f128) -> f128;
+    pub fn lgammaf128_r(n: f128, s: &mut i32) -> f128;
+
     cfg_if::cfg_if! {
     if #[cfg(not(all(target_os = "windows", target_env = "msvc", target_arch = "x86")))] {
         pub fn acosf(n: f32) -> f32;