about summary refs log tree commit diff
path: root/library/std/src/f16.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/std/src/f16.rs')
-rw-r--r--library/std/src/f16.rs1296
1 files changed, 1287 insertions, 9 deletions
diff --git a/library/std/src/f16.rs b/library/std/src/f16.rs
index e3024defed7..10908332762 100644
--- a/library/std/src/f16.rs
+++ b/library/std/src/f16.rs
@@ -12,25 +12,180 @@ pub use core::f16::consts;
 
 #[cfg(not(test))]
 use crate::intrinsics;
+#[cfg(not(test))]
+use crate::sys::cmath;
 
 #[cfg(not(test))]
 impl f16 {
-    /// Raises a number to an integer power.
+    /// Returns the largest integer less than or equal to `self`.
     ///
-    /// Using this function is generally faster than using `powf`.
-    /// It might have a different sequence of rounding operations than `powf`,
-    /// so the results are not guaranteed to agree.
+    /// This function always returns the precise result.
     ///
-    /// # Unspecified precision
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = 3.7_f16;
+    /// let g = 3.0_f16;
+    /// let h = -3.7_f16;
     ///
-    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
-    /// can even differ within the same execution from one invocation to the next.
+    /// assert_eq!(f.floor(), 3.0);
+    /// assert_eq!(g.floor(), 3.0);
+    /// assert_eq!(h.floor(), -4.0);
+    /// # }
+    /// ```
     #[inline]
     #[rustc_allow_incoherent_impl]
     #[unstable(feature = "f16", issue = "116909")]
     #[must_use = "method returns a new number and does not mutate the original value"]
-    pub fn powi(self, n: i32) -> f16 {
-        unsafe { intrinsics::powif16(self, n) }
+    pub fn floor(self) -> f16 {
+        unsafe { intrinsics::floorf16(self) }
+    }
+
+    /// Returns the smallest integer greater than or equal to `self`.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = 3.01_f16;
+    /// let g = 4.0_f16;
+    ///
+    /// assert_eq!(f.ceil(), 4.0);
+    /// assert_eq!(g.ceil(), 4.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "ceiling")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn ceil(self) -> f16 {
+        unsafe { intrinsics::ceilf16(self) }
+    }
+
+    /// Returns the nearest integer to `self`. If a value is half-way between two
+    /// integers, round away from `0.0`.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = 3.3_f16;
+    /// let g = -3.3_f16;
+    /// let h = -3.7_f16;
+    /// let i = 3.5_f16;
+    /// let j = 4.5_f16;
+    ///
+    /// assert_eq!(f.round(), 3.0);
+    /// assert_eq!(g.round(), -3.0);
+    /// assert_eq!(h.round(), -4.0);
+    /// assert_eq!(i.round(), 4.0);
+    /// assert_eq!(j.round(), 5.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn round(self) -> f16 {
+        unsafe { intrinsics::roundf16(self) }
+    }
+
+    /// Returns the nearest integer to a number. Rounds half-way cases to the number
+    /// with an even least significant digit.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = 3.3_f16;
+    /// let g = -3.3_f16;
+    /// let h = 3.5_f16;
+    /// let i = 4.5_f16;
+    ///
+    /// assert_eq!(f.round_ties_even(), 3.0);
+    /// assert_eq!(g.round_ties_even(), -3.0);
+    /// assert_eq!(h.round_ties_even(), 4.0);
+    /// assert_eq!(i.round_ties_even(), 4.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn round_ties_even(self) -> f16 {
+        unsafe { intrinsics::rintf16(self) }
+    }
+
+    /// Returns the integer part of `self`.
+    /// This means that non-integer numbers are always truncated towards zero.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = 3.7_f16;
+    /// let g = 3.0_f16;
+    /// let h = -3.7_f16;
+    ///
+    /// assert_eq!(f.trunc(), 3.0);
+    /// assert_eq!(g.trunc(), 3.0);
+    /// assert_eq!(h.trunc(), -3.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "truncate")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn trunc(self) -> f16 {
+        unsafe { intrinsics::truncf16(self) }
+    }
+
+    /// Returns the fractional part of `self`.
+    ///
+    /// This function always returns the precise result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 3.6_f16;
+    /// let y = -3.6_f16;
+    /// let abs_difference_x = (x.fract() - 0.6).abs();
+    /// let abs_difference_y = (y.fract() - (-0.6)).abs();
+    ///
+    /// assert!(abs_difference_x <= f16::EPSILON);
+    /// assert!(abs_difference_y <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn fract(self) -> f16 {
+        self - self.trunc()
     }
 
     /// Computes the absolute value of `self`.
@@ -60,4 +215,1127 @@ impl f16 {
         // FIXME(f16_f128): replace with `intrinsics::fabsf16` when available
         Self::from_bits(self.to_bits() & !(1 << 15))
     }
+
+    /// Returns a number that represents the sign of `self`.
+    ///
+    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
+    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
+    /// - NaN if the number is NaN
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = 3.5_f16;
+    ///
+    /// assert_eq!(f.signum(), 1.0);
+    /// assert_eq!(f16::NEG_INFINITY.signum(), -1.0);
+    ///
+    /// assert!(f16::NAN.signum().is_nan());
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn signum(self) -> f16 {
+        if self.is_nan() { Self::NAN } else { 1.0_f16.copysign(self) }
+    }
+
+    /// Returns a number composed of the magnitude of `self` and the sign of
+    /// `sign`.
+    ///
+    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise
+    /// equal to `-self`. If `self` is a NaN, then a NaN with the sign bit of
+    /// `sign` is returned. Note, however, that conserving the sign bit on NaN
+    /// across arithmetical operations is not generally guaranteed.
+    /// See [explanation of NaN as a special value](primitive@f16) for more info.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = 3.5_f16;
+    ///
+    /// assert_eq!(f.copysign(0.42), 3.5_f16);
+    /// assert_eq!(f.copysign(-0.42), -3.5_f16);
+    /// assert_eq!((-f).copysign(0.42), 3.5_f16);
+    /// assert_eq!((-f).copysign(-0.42), -3.5_f16);
+    ///
+    /// assert!(f16::NAN.copysign(1.0).is_nan());
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn copysign(self, sign: f16) -> f16 {
+        unsafe { intrinsics::copysignf16(self, sign) }
+    }
+
+    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
+    /// error, yielding a more accurate result than an unfused multiply-add.
+    ///
+    /// Using `mul_add` *may* be more performant than an unfused multiply-add if
+    /// the target architecture has a dedicated `fma` CPU instruction. However,
+    /// this is not always true, and will be heavily dependant on designing
+    /// algorithms with specific target hardware in mind.
+    ///
+    /// # Precision
+    ///
+    /// The result of this operation is guaranteed to be the rounded
+    /// infinite-precision result. It is specified by IEEE 754 as
+    /// `fusedMultiplyAdd` and guaranteed not to change.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let m = 10.0_f16;
+    /// let x = 4.0_f16;
+    /// let b = 60.0_f16;
+    ///
+    /// assert_eq!(m.mul_add(x, b), 100.0);
+    /// assert_eq!(m * x + b, 100.0);
+    ///
+    /// let one_plus_eps = 1.0_f16 + f16::EPSILON;
+    /// let one_minus_eps = 1.0_f16 - f16::EPSILON;
+    /// let minus_one = -1.0_f16;
+    ///
+    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
+    /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f16::EPSILON * f16::EPSILON);
+    /// // Different rounding with the non-fused multiply and add.
+    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn mul_add(self, a: f16, b: f16) -> f16 {
+        unsafe { intrinsics::fmaf16(self, a, b) }
+    }
+
+    /// Calculates Euclidean division, the matching method for `rem_euclid`.
+    ///
+    /// This computes the integer `n` such that
+    /// `self = n * rhs + self.rem_euclid(rhs)`.
+    /// In other words, the result is `self / rhs` rounded to the integer `n`
+    /// such that `self >= n * rhs`.
+    ///
+    /// # Precision
+    ///
+    /// The result of this operation is guaranteed to be the rounded
+    /// infinite-precision result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let a: f16 = 7.0;
+    /// let b = 4.0;
+    /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
+    /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
+    /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
+    /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn div_euclid(self, rhs: f16) -> f16 {
+        let q = (self / rhs).trunc();
+        if self % rhs < 0.0 {
+            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
+        }
+        q
+    }
+
+    /// Calculates the least nonnegative remainder of `self (mod rhs)`.
+    ///
+    /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
+    /// most cases. However, due to a floating point round-off error it can
+    /// result in `r == rhs.abs()`, violating the mathematical definition, if
+    /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
+    /// This result is not an element of the function's codomain, but it is the
+    /// closest floating point number in the real numbers and thus fulfills the
+    /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
+    /// approximately.
+    ///
+    /// # Precision
+    ///
+    /// The result of this operation is guaranteed to be the rounded
+    /// infinite-precision result.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let a: f16 = 7.0;
+    /// let b = 4.0;
+    /// assert_eq!(a.rem_euclid(b), 3.0);
+    /// assert_eq!((-a).rem_euclid(b), 1.0);
+    /// assert_eq!(a.rem_euclid(-b), 3.0);
+    /// assert_eq!((-a).rem_euclid(-b), 1.0);
+    /// // limitation due to round-off error
+    /// assert!((-f16::EPSILON).rem_euclid(3.0) != 0.0);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[doc(alias = "modulo", alias = "mod")]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn rem_euclid(self, rhs: f16) -> f16 {
+        let r = self % rhs;
+        if r < 0.0 { r + rhs.abs() } else { r }
+    }
+
+    /// Raises a number to an integer power.
+    ///
+    /// Using this function is generally faster than using `powf`.
+    /// It might have a different sequence of rounding operations than `powf`,
+    /// so the results are not guaranteed to agree.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn powi(self, n: i32) -> f16 {
+        unsafe { intrinsics::powif16(self, n) }
+    }
+
+    /// Raises a number to a floating point power.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 2.0_f16;
+    /// let abs_difference = (x.powf(2.0) - (x * x)).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn powf(self, n: f16) -> f16 {
+        unsafe { intrinsics::powf16(self, n) }
+    }
+
+    /// Returns the square root of a number.
+    ///
+    /// Returns NaN if `self` is a negative number other than `-0.0`.
+    ///
+    /// # Precision
+    ///
+    /// The result of this operation is guaranteed to be the rounded
+    /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
+    /// and guaranteed not to change.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let positive = 4.0_f16;
+    /// let negative = -4.0_f16;
+    /// let negative_zero = -0.0_f16;
+    ///
+    /// assert_eq!(positive.sqrt(), 2.0);
+    /// assert!(negative.sqrt().is_nan());
+    /// assert!(negative_zero.sqrt() == negative_zero);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn sqrt(self) -> f16 {
+        unsafe { intrinsics::sqrtf16(self) }
+    }
+
+    /// Returns `e^(self)`, (the exponential function).
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let one = 1.0f16;
+    /// // e^1
+    /// let e = one.exp();
+    ///
+    /// // ln(e) - 1 == 0
+    /// let abs_difference = (e.ln() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn exp(self) -> f16 {
+        unsafe { intrinsics::expf16(self) }
+    }
+
+    /// Returns `2^(self)`.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = 2.0f16;
+    ///
+    /// // 2^2 - 4 == 0
+    /// let abs_difference = (f.exp2() - 4.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn exp2(self) -> f16 {
+        unsafe { intrinsics::exp2f16(self) }
+    }
+
+    /// Returns the natural logarithm of the number.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let one = 1.0f16;
+    /// // e^1
+    /// let e = one.exp();
+    ///
+    /// // ln(e) - 1 == 0
+    /// let abs_difference = (e.ln() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn ln(self) -> f16 {
+        unsafe { intrinsics::logf16(self) }
+    }
+
+    /// Returns the logarithm of the number with respect to an arbitrary base.
+    ///
+    /// The result might not be correctly rounded owing to implementation details;
+    /// `self.log2()` can produce more accurate results for base 2, and
+    /// `self.log10()` can produce more accurate results for base 10.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let five = 5.0f16;
+    ///
+    /// // log5(5) - 1 == 0
+    /// let abs_difference = (five.log(5.0) - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn log(self, base: f16) -> f16 {
+        self.ln() / base.ln()
+    }
+
+    /// Returns the base 2 logarithm of the number.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let two = 2.0f16;
+    ///
+    /// // log2(2) - 1 == 0
+    /// let abs_difference = (two.log2() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn log2(self) -> f16 {
+        unsafe { intrinsics::log2f16(self) }
+    }
+
+    /// Returns the base 10 logarithm of the number.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let ten = 10.0f16;
+    ///
+    /// // log10(10) - 1 == 0
+    /// let abs_difference = (ten.log10() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn log10(self) -> f16 {
+        unsafe { intrinsics::log10f16(self) }
+    }
+
+    /// Returns the cube root of a number.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `cbrtf` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 8.0f16;
+    ///
+    /// // x^(1/3) - 2 == 0
+    /// let abs_difference = (x.cbrt() - 2.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn cbrt(self) -> f16 {
+        (unsafe { cmath::cbrtf(self as f32) }) as f16
+    }
+
+    /// Compute the distance between the origin and a point (`x`, `y`) on the
+    /// Euclidean plane. Equivalently, compute the length of the hypotenuse of a
+    /// right-angle triangle with other sides having length `x.abs()` and
+    /// `y.abs()`.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `hypotf` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 2.0f16;
+    /// let y = 3.0f16;
+    ///
+    /// // sqrt(x^2 + y^2)
+    /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn hypot(self, other: f16) -> f16 {
+        (unsafe { cmath::hypotf(self as f32, other as f32) }) as f16
+    }
+
+    /// Computes the sine of a number (in radians).
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = std::f16::consts::FRAC_PI_2;
+    ///
+    /// let abs_difference = (x.sin() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn sin(self) -> f16 {
+        unsafe { intrinsics::sinf16(self) }
+    }
+
+    /// Computes the cosine of a number (in radians).
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 2.0 * std::f16::consts::PI;
+    ///
+    /// let abs_difference = (x.cos() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn cos(self) -> f16 {
+        unsafe { intrinsics::cosf16(self) }
+    }
+
+    /// Computes the tangent of a number (in radians).
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `tanf` from libc on Unix and
+    /// Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = std::f16::consts::FRAC_PI_4;
+    /// let abs_difference = (x.tan() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn tan(self) -> f16 {
+        (unsafe { cmath::tanf(self as f32) }) as f16
+    }
+
+    /// Computes the arcsine of a number. Return value is in radians in
+    /// the range [-pi/2, pi/2] or NaN if the number is outside the range
+    /// [-1, 1].
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `asinf` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = std::f16::consts::FRAC_PI_2;
+    ///
+    /// // asin(sin(pi/2))
+    /// let abs_difference = (f.sin().asin() - std::f16::consts::FRAC_PI_2).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "arcsin")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn asin(self) -> f16 {
+        (unsafe { cmath::asinf(self as f32) }) as f16
+    }
+
+    /// Computes the arccosine of a number. Return value is in radians in
+    /// the range [0, pi] or NaN if the number is outside the range
+    /// [-1, 1].
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `acosf` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = std::f16::consts::FRAC_PI_4;
+    ///
+    /// // acos(cos(pi/4))
+    /// let abs_difference = (f.cos().acos() - std::f16::consts::FRAC_PI_4).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "arccos")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn acos(self) -> f16 {
+        (unsafe { cmath::acosf(self as f32) }) as f16
+    }
+
+    /// Computes the arctangent of a number. Return value is in radians in the
+    /// range [-pi/2, pi/2];
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `atanf` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let f = 1.0f16;
+    ///
+    /// // atan(tan(1))
+    /// let abs_difference = (f.tan().atan() - 1.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "arctan")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn atan(self) -> f16 {
+        (unsafe { cmath::atanf(self as f32) }) as f16
+    }
+
+    /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
+    ///
+    /// * `x = 0`, `y = 0`: `0`
+    /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
+    /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
+    /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `atan2f` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// // Positive angles measured counter-clockwise
+    /// // from positive x axis
+    /// // -pi/4 radians (45 deg clockwise)
+    /// let x1 = 3.0f16;
+    /// let y1 = -3.0f16;
+    ///
+    /// // 3pi/4 radians (135 deg counter-clockwise)
+    /// let x2 = -3.0f16;
+    /// let y2 = 3.0f16;
+    ///
+    /// let abs_difference_1 = (y1.atan2(x1) - (-std::f16::consts::FRAC_PI_4)).abs();
+    /// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f16::consts::FRAC_PI_4)).abs();
+    ///
+    /// assert!(abs_difference_1 <= f16::EPSILON);
+    /// assert!(abs_difference_2 <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn atan2(self, other: f16) -> f16 {
+        (unsafe { cmath::atan2f(self as f32, other as f32) }) as f16
+    }
+
+    /// Simultaneously computes the sine and cosine of the number, `x`. Returns
+    /// `(sin(x), cos(x))`.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `(f16::sin(x),
+    /// f16::cos(x))`. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = std::f16::consts::FRAC_PI_4;
+    /// let f = x.sin_cos();
+    ///
+    /// let abs_difference_0 = (f.0 - x.sin()).abs();
+    /// let abs_difference_1 = (f.1 - x.cos()).abs();
+    ///
+    /// assert!(abs_difference_0 <= f16::EPSILON);
+    /// assert!(abs_difference_1 <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "sincos")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    pub fn sin_cos(self) -> (f16, f16) {
+        (self.sin(), self.cos())
+    }
+
+    /// Returns `e^(self) - 1` in a way that is accurate even if the
+    /// number is close to zero.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `expm1f` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 1e-4_f16;
+    ///
+    /// // for very small x, e^x is approximately 1 + x + x^2 / 2
+    /// let approx = x + x * x / 2.0;
+    /// let abs_difference = (x.exp_m1() - approx).abs();
+    ///
+    /// assert!(abs_difference < 1e-4);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn exp_m1(self) -> f16 {
+        (unsafe { cmath::expm1f(self as f32) }) as f16
+    }
+
+    /// Returns `ln(1+n)` (natural logarithm) more accurately than if
+    /// the operations were performed separately.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `log1pf` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 1e-4_f16;
+    ///
+    /// // for very small x, ln(1 + x) is approximately x - x^2 / 2
+    /// let approx = x - x * x / 2.0;
+    /// let abs_difference = (x.ln_1p() - approx).abs();
+    ///
+    /// assert!(abs_difference < 1e-4);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "log1p")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn ln_1p(self) -> f16 {
+        (unsafe { cmath::log1pf(self as f32) }) as f16
+    }
+
+    /// Hyperbolic sine function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `sinhf` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let e = std::f16::consts::E;
+    /// let x = 1.0f16;
+    ///
+    /// let f = x.sinh();
+    /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
+    /// let g = ((e * e) - 1.0) / (2.0 * e);
+    /// let abs_difference = (f - g).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn sinh(self) -> f16 {
+        (unsafe { cmath::sinhf(self as f32) }) as f16
+    }
+
+    /// Hyperbolic cosine function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `coshf` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let e = std::f16::consts::E;
+    /// let x = 1.0f16;
+    /// let f = x.cosh();
+    /// // Solving cosh() at 1 gives this result
+    /// let g = ((e * e) + 1.0) / (2.0 * e);
+    /// let abs_difference = (f - g).abs();
+    ///
+    /// // Same result
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn cosh(self) -> f16 {
+        (unsafe { cmath::coshf(self as f32) }) as f16
+    }
+
+    /// Hyperbolic tangent function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `tanhf` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let e = std::f16::consts::E;
+    /// let x = 1.0f16;
+    ///
+    /// let f = x.tanh();
+    /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
+    /// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2));
+    /// let abs_difference = (f - g).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn tanh(self) -> f16 {
+        (unsafe { cmath::tanhf(self as f32) }) as f16
+    }
+
+    /// Inverse hyperbolic sine function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 1.0f16;
+    /// let f = x.sinh().asinh();
+    ///
+    /// let abs_difference = (f - x).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "arcsinh")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn asinh(self) -> f16 {
+        let ax = self.abs();
+        let ix = 1.0 / ax;
+        (ax + (ax / (Self::hypot(1.0, ix) + ix))).ln_1p().copysign(self)
+    }
+
+    /// Inverse hyperbolic cosine function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 1.0f16;
+    /// let f = x.cosh().acosh();
+    ///
+    /// let abs_difference = (f - x).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "arccosh")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn acosh(self) -> f16 {
+        if self < 1.0 {
+            Self::NAN
+        } else {
+            (self + ((self - 1.0).sqrt() * (self + 1.0).sqrt())).ln()
+        }
+    }
+
+    /// Inverse hyperbolic tangent function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let e = std::f16::consts::E;
+    /// let f = e.tanh().atanh();
+    ///
+    /// let abs_difference = (f - e).abs();
+    ///
+    /// assert!(abs_difference <= 0.01);
+    /// # }
+    /// ```
+    #[inline]
+    #[doc(alias = "arctanh")]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn atanh(self) -> f16 {
+        0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
+    }
+
+    /// Gamma function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `tgammaf` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// #![feature(float_gamma)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 5.0f16;
+    ///
+    /// let abs_difference = (x.gamma() - 24.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn gamma(self) -> f16 {
+        (unsafe { cmath::tgammaf(self as f32) }) as f16
+    }
+
+    /// Natural logarithm of the absolute value of the gamma function
+    ///
+    /// The integer part of the tuple indicates the sign of the gamma function.
+    ///
+    /// # Unspecified precision
+    ///
+    /// The precision of this function is non-deterministic. This means it varies by platform,
+    /// Rust version, and can even differ within the same execution from one invocation to the next.
+    ///
+    /// This function currently corresponds to the `lgamma_r` from libc on Unix
+    /// and Windows. Note that this might change in the future.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(f16)]
+    /// #![feature(float_gamma)]
+    /// # #[cfg(reliable_f16_math)] {
+    ///
+    /// let x = 2.0f16;
+    ///
+    /// let abs_difference = (x.ln_gamma().0 - 0.0).abs();
+    ///
+    /// assert!(abs_difference <= f16::EPSILON);
+    /// # }
+    /// ```
+    #[inline]
+    #[rustc_allow_incoherent_impl]
+    #[unstable(feature = "f16", issue = "116909")]
+    #[must_use = "method returns a new number and does not mutate the original value"]
+    pub fn ln_gamma(self) -> (f16, i32) {
+        let mut signgamp: i32 = 0;
+        let x = (unsafe { cmath::lgammaf_r(self as f32, &mut signgamp) }) as f16;
+        (x, signgamp)
+    }
 }