about summary refs log tree commit diff
path: root/compiler/rustc_trait_selection/src/traits/select
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_trait_selection/src/traits/select')
-rw-r--r--compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs635
-rw-r--r--compiler/rustc_trait_selection/src/traits/select/confirmation.rs810
-rw-r--r--compiler/rustc_trait_selection/src/traits/select/mod.rs2436
3 files changed, 3881 insertions, 0 deletions
diff --git a/compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs b/compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs
new file mode 100644
index 00000000000..1d5441b8eff
--- /dev/null
+++ b/compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs
@@ -0,0 +1,635 @@
+//! Candidate assembly.
+//!
+//! The selection process begins by examining all in-scope impls,
+//! caller obligations, and so forth and assembling a list of
+//! candidates. See the [rustc dev guide] for more details.
+//!
+//! [rustc dev guide]:https://rustc-dev-guide.rust-lang.org/traits/resolution.html#candidate-assembly
+use rustc_hir as hir;
+use rustc_infer::traits::{Obligation, SelectionError, TraitObligation};
+use rustc_middle::ty::{self, TypeFoldable};
+use rustc_target::spec::abi::Abi;
+
+use crate::traits::{util, SelectionResult};
+
+use super::BuiltinImplConditions;
+use super::SelectionCandidate::{self, *};
+use super::{SelectionCandidateSet, SelectionContext, TraitObligationStack};
+
+impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
+    pub(super) fn candidate_from_obligation<'o>(
+        &mut self,
+        stack: &TraitObligationStack<'o, 'tcx>,
+    ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
+        // Watch out for overflow. This intentionally bypasses (and does
+        // not update) the cache.
+        self.check_recursion_limit(&stack.obligation, &stack.obligation)?;
+
+        // Check the cache. Note that we freshen the trait-ref
+        // separately rather than using `stack.fresh_trait_ref` --
+        // this is because we want the unbound variables to be
+        // replaced with fresh types starting from index 0.
+        let cache_fresh_trait_pred = self.infcx.freshen(stack.obligation.predicate);
+        debug!(
+            "candidate_from_obligation(cache_fresh_trait_pred={:?}, obligation={:?})",
+            cache_fresh_trait_pred, stack
+        );
+        debug_assert!(!stack.obligation.predicate.has_escaping_bound_vars());
+
+        if let Some(c) =
+            self.check_candidate_cache(stack.obligation.param_env, cache_fresh_trait_pred)
+        {
+            debug!("CACHE HIT: SELECT({:?})={:?}", cache_fresh_trait_pred, c);
+            return c;
+        }
+
+        // If no match, compute result and insert into cache.
+        //
+        // FIXME(nikomatsakis) -- this cache is not taking into
+        // account cycles that may have occurred in forming the
+        // candidate. I don't know of any specific problems that
+        // result but it seems awfully suspicious.
+        let (candidate, dep_node) =
+            self.in_task(|this| this.candidate_from_obligation_no_cache(stack));
+
+        debug!("CACHE MISS: SELECT({:?})={:?}", cache_fresh_trait_pred, candidate);
+        self.insert_candidate_cache(
+            stack.obligation.param_env,
+            cache_fresh_trait_pred,
+            dep_node,
+            candidate.clone(),
+        );
+        candidate
+    }
+
+    pub(super) fn assemble_candidates<'o>(
+        &mut self,
+        stack: &TraitObligationStack<'o, 'tcx>,
+    ) -> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>> {
+        let TraitObligationStack { obligation, .. } = *stack;
+        let obligation = &Obligation {
+            param_env: obligation.param_env,
+            cause: obligation.cause.clone(),
+            recursion_depth: obligation.recursion_depth,
+            predicate: self.infcx().resolve_vars_if_possible(&obligation.predicate),
+        };
+
+        if obligation.predicate.skip_binder().self_ty().is_ty_var() {
+            // Self is a type variable (e.g., `_: AsRef<str>`).
+            //
+            // This is somewhat problematic, as the current scheme can't really
+            // handle it turning to be a projection. This does end up as truly
+            // ambiguous in most cases anyway.
+            //
+            // Take the fast path out - this also improves
+            // performance by preventing assemble_candidates_from_impls from
+            // matching every impl for this trait.
+            return Ok(SelectionCandidateSet { vec: vec![], ambiguous: true });
+        }
+
+        let mut candidates = SelectionCandidateSet { vec: Vec::new(), ambiguous: false };
+
+        self.assemble_candidates_for_trait_alias(obligation, &mut candidates)?;
+
+        // Other bounds. Consider both in-scope bounds from fn decl
+        // and applicable impls. There is a certain set of precedence rules here.
+        let def_id = obligation.predicate.def_id();
+        let lang_items = self.tcx().lang_items();
+
+        if lang_items.copy_trait() == Some(def_id) {
+            debug!("obligation self ty is {:?}", obligation.predicate.skip_binder().self_ty());
+
+            // User-defined copy impls are permitted, but only for
+            // structs and enums.
+            self.assemble_candidates_from_impls(obligation, &mut candidates)?;
+
+            // For other types, we'll use the builtin rules.
+            let copy_conditions = self.copy_clone_conditions(obligation);
+            self.assemble_builtin_bound_candidates(copy_conditions, &mut candidates)?;
+        } else if lang_items.discriminant_kind_trait() == Some(def_id) {
+            // `DiscriminantKind` is automatically implemented for every type.
+            candidates.vec.push(DiscriminantKindCandidate);
+        } else if lang_items.sized_trait() == Some(def_id) {
+            // Sized is never implementable by end-users, it is
+            // always automatically computed.
+            let sized_conditions = self.sized_conditions(obligation);
+            self.assemble_builtin_bound_candidates(sized_conditions, &mut candidates)?;
+        } else if lang_items.unsize_trait() == Some(def_id) {
+            self.assemble_candidates_for_unsizing(obligation, &mut candidates);
+        } else {
+            if lang_items.clone_trait() == Some(def_id) {
+                // Same builtin conditions as `Copy`, i.e., every type which has builtin support
+                // for `Copy` also has builtin support for `Clone`, and tuples/arrays of `Clone`
+                // types have builtin support for `Clone`.
+                let clone_conditions = self.copy_clone_conditions(obligation);
+                self.assemble_builtin_bound_candidates(clone_conditions, &mut candidates)?;
+            }
+
+            self.assemble_generator_candidates(obligation, &mut candidates)?;
+            self.assemble_closure_candidates(obligation, &mut candidates)?;
+            self.assemble_fn_pointer_candidates(obligation, &mut candidates)?;
+            self.assemble_candidates_from_impls(obligation, &mut candidates)?;
+            self.assemble_candidates_from_object_ty(obligation, &mut candidates);
+        }
+
+        self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
+        self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?;
+        // Auto implementations have lower priority, so we only
+        // consider triggering a default if there is no other impl that can apply.
+        if candidates.vec.is_empty() {
+            self.assemble_candidates_from_auto_impls(obligation, &mut candidates)?;
+        }
+        debug!("candidate list size: {}", candidates.vec.len());
+        Ok(candidates)
+    }
+
+    fn assemble_candidates_from_projected_tys(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+        candidates: &mut SelectionCandidateSet<'tcx>,
+    ) {
+        debug!("assemble_candidates_for_projected_tys({:?})", obligation);
+
+        // Before we go into the whole placeholder thing, just
+        // quickly check if the self-type is a projection at all.
+        match obligation.predicate.skip_binder().trait_ref.self_ty().kind {
+            ty::Projection(_) | ty::Opaque(..) => {}
+            ty::Infer(ty::TyVar(_)) => {
+                span_bug!(
+                    obligation.cause.span,
+                    "Self=_ should have been handled by assemble_candidates"
+                );
+            }
+            _ => return,
+        }
+
+        let result = self
+            .infcx
+            .probe(|_| self.match_projection_obligation_against_definition_bounds(obligation));
+
+        if result {
+            candidates.vec.push(ProjectionCandidate);
+        }
+    }
+
+    /// Given an obligation like `<SomeTrait for T>`, searches the obligations that the caller
+    /// supplied to find out whether it is listed among them.
+    ///
+    /// Never affects the inference environment.
+    fn assemble_candidates_from_caller_bounds<'o>(
+        &mut self,
+        stack: &TraitObligationStack<'o, 'tcx>,
+        candidates: &mut SelectionCandidateSet<'tcx>,
+    ) -> Result<(), SelectionError<'tcx>> {
+        debug!("assemble_candidates_from_caller_bounds({:?})", stack.obligation);
+
+        let all_bounds = stack
+            .obligation
+            .param_env
+            .caller_bounds()
+            .iter()
+            .filter_map(|o| o.to_opt_poly_trait_ref());
+
+        // Micro-optimization: filter out predicates relating to different traits.
+        let matching_bounds =
+            all_bounds.filter(|p| p.def_id() == stack.obligation.predicate.def_id());
+
+        // Keep only those bounds which may apply, and propagate overflow if it occurs.
+        let mut param_candidates = vec![];
+        for bound in matching_bounds {
+            let wc = self.evaluate_where_clause(stack, bound)?;
+            if wc.may_apply() {
+                param_candidates.push(ParamCandidate(bound));
+            }
+        }
+
+        candidates.vec.extend(param_candidates);
+
+        Ok(())
+    }
+
+    fn assemble_generator_candidates(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+        candidates: &mut SelectionCandidateSet<'tcx>,
+    ) -> Result<(), SelectionError<'tcx>> {
+        if self.tcx().lang_items().gen_trait() != Some(obligation.predicate.def_id()) {
+            return Ok(());
+        }
+
+        // Okay to skip binder because the substs on generator types never
+        // touch bound regions, they just capture the in-scope
+        // type/region parameters.
+        let self_ty = obligation.self_ty().skip_binder();
+        match self_ty.kind {
+            ty::Generator(..) => {
+                debug!(
+                    "assemble_generator_candidates: self_ty={:?} obligation={:?}",
+                    self_ty, obligation
+                );
+
+                candidates.vec.push(GeneratorCandidate);
+            }
+            ty::Infer(ty::TyVar(_)) => {
+                debug!("assemble_generator_candidates: ambiguous self-type");
+                candidates.ambiguous = true;
+            }
+            _ => {}
+        }
+
+        Ok(())
+    }
+
+    /// Checks for the artificial impl that the compiler will create for an obligation like `X :
+    /// FnMut<..>` where `X` is a closure type.
+    ///
+    /// Note: the type parameters on a closure candidate are modeled as *output* type
+    /// parameters and hence do not affect whether this trait is a match or not. They will be
+    /// unified during the confirmation step.
+    fn assemble_closure_candidates(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+        candidates: &mut SelectionCandidateSet<'tcx>,
+    ) -> Result<(), SelectionError<'tcx>> {
+        let kind = match self.tcx().fn_trait_kind_from_lang_item(obligation.predicate.def_id()) {
+            Some(k) => k,
+            None => {
+                return Ok(());
+            }
+        };
+
+        // Okay to skip binder because the substs on closure types never
+        // touch bound regions, they just capture the in-scope
+        // type/region parameters
+        match obligation.self_ty().skip_binder().kind {
+            ty::Closure(_, closure_substs) => {
+                debug!("assemble_unboxed_candidates: kind={:?} obligation={:?}", kind, obligation);
+                match self.infcx.closure_kind(closure_substs) {
+                    Some(closure_kind) => {
+                        debug!("assemble_unboxed_candidates: closure_kind = {:?}", closure_kind);
+                        if closure_kind.extends(kind) {
+                            candidates.vec.push(ClosureCandidate);
+                        }
+                    }
+                    None => {
+                        debug!("assemble_unboxed_candidates: closure_kind not yet known");
+                        candidates.vec.push(ClosureCandidate);
+                    }
+                }
+            }
+            ty::Infer(ty::TyVar(_)) => {
+                debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
+                candidates.ambiguous = true;
+            }
+            _ => {}
+        }
+
+        Ok(())
+    }
+
+    /// Implements one of the `Fn()` family for a fn pointer.
+    fn assemble_fn_pointer_candidates(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+        candidates: &mut SelectionCandidateSet<'tcx>,
+    ) -> Result<(), SelectionError<'tcx>> {
+        // We provide impl of all fn traits for fn pointers.
+        if self.tcx().fn_trait_kind_from_lang_item(obligation.predicate.def_id()).is_none() {
+            return Ok(());
+        }
+
+        // Okay to skip binder because what we are inspecting doesn't involve bound regions.
+        let self_ty = obligation.self_ty().skip_binder();
+        match self_ty.kind {
+            ty::Infer(ty::TyVar(_)) => {
+                debug!("assemble_fn_pointer_candidates: ambiguous self-type");
+                candidates.ambiguous = true; // Could wind up being a fn() type.
+            }
+            // Provide an impl, but only for suitable `fn` pointers.
+            ty::FnPtr(_) => {
+                if let ty::FnSig {
+                    unsafety: hir::Unsafety::Normal,
+                    abi: Abi::Rust,
+                    c_variadic: false,
+                    ..
+                } = self_ty.fn_sig(self.tcx()).skip_binder()
+                {
+                    candidates.vec.push(FnPointerCandidate);
+                }
+            }
+            // Provide an impl for suitable functions, rejecting `#[target_feature]` functions (RFC 2396).
+            ty::FnDef(def_id, _) => {
+                if let ty::FnSig {
+                    unsafety: hir::Unsafety::Normal,
+                    abi: Abi::Rust,
+                    c_variadic: false,
+                    ..
+                } = self_ty.fn_sig(self.tcx()).skip_binder()
+                {
+                    if self.tcx().codegen_fn_attrs(def_id).target_features.is_empty() {
+                        candidates.vec.push(FnPointerCandidate);
+                    }
+                }
+            }
+            _ => {}
+        }
+
+        Ok(())
+    }
+
+    /// Searches for impls that might apply to `obligation`.
+    fn assemble_candidates_from_impls(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+        candidates: &mut SelectionCandidateSet<'tcx>,
+    ) -> Result<(), SelectionError<'tcx>> {
+        debug!("assemble_candidates_from_impls(obligation={:?})", obligation);
+
+        // Essentially any user-written impl will match with an error type,
+        // so creating `ImplCandidates` isn't useful. However, we might
+        // end up finding a candidate elsewhere (e.g. a `BuiltinCandidate` for `Sized)
+        // This helps us avoid overflow: see issue #72839
+        // Since compilation is already guaranteed to fail, this is just
+        // to try to show the 'nicest' possible errors to the user.
+        if obligation.references_error() {
+            return Ok(());
+        }
+
+        self.tcx().for_each_relevant_impl(
+            obligation.predicate.def_id(),
+            obligation.predicate.skip_binder().trait_ref.self_ty(),
+            |impl_def_id| {
+                self.infcx.probe(|_| {
+                    if let Ok(_substs) = self.match_impl(impl_def_id, obligation) {
+                        candidates.vec.push(ImplCandidate(impl_def_id));
+                    }
+                });
+            },
+        );
+
+        Ok(())
+    }
+
+    fn assemble_candidates_from_auto_impls(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+        candidates: &mut SelectionCandidateSet<'tcx>,
+    ) -> Result<(), SelectionError<'tcx>> {
+        // Okay to skip binder here because the tests we do below do not involve bound regions.
+        let self_ty = obligation.self_ty().skip_binder();
+        debug!("assemble_candidates_from_auto_impls(self_ty={:?})", self_ty);
+
+        let def_id = obligation.predicate.def_id();
+
+        if self.tcx().trait_is_auto(def_id) {
+            match self_ty.kind {
+                ty::Dynamic(..) => {
+                    // For object types, we don't know what the closed
+                    // over types are. This means we conservatively
+                    // say nothing; a candidate may be added by
+                    // `assemble_candidates_from_object_ty`.
+                }
+                ty::Foreign(..) => {
+                    // Since the contents of foreign types is unknown,
+                    // we don't add any `..` impl. Default traits could
+                    // still be provided by a manual implementation for
+                    // this trait and type.
+                }
+                ty::Param(..) | ty::Projection(..) => {
+                    // In these cases, we don't know what the actual
+                    // type is.  Therefore, we cannot break it down
+                    // into its constituent types. So we don't
+                    // consider the `..` impl but instead just add no
+                    // candidates: this means that typeck will only
+                    // succeed if there is another reason to believe
+                    // that this obligation holds. That could be a
+                    // where-clause or, in the case of an object type,
+                    // it could be that the object type lists the
+                    // trait (e.g., `Foo+Send : Send`). See
+                    // `compile-fail/typeck-default-trait-impl-send-param.rs`
+                    // for an example of a test case that exercises
+                    // this path.
+                }
+                ty::Infer(ty::TyVar(_)) => {
+                    // The auto impl might apply; we don't know.
+                    candidates.ambiguous = true;
+                }
+                ty::Generator(_, _, movability)
+                    if self.tcx().lang_items().unpin_trait() == Some(def_id) =>
+                {
+                    match movability {
+                        hir::Movability::Static => {
+                            // Immovable generators are never `Unpin`, so
+                            // suppress the normal auto-impl candidate for it.
+                        }
+                        hir::Movability::Movable => {
+                            // Movable generators are always `Unpin`, so add an
+                            // unconditional builtin candidate.
+                            candidates.vec.push(BuiltinCandidate { has_nested: false });
+                        }
+                    }
+                }
+
+                _ => candidates.vec.push(AutoImplCandidate(def_id)),
+            }
+        }
+
+        Ok(())
+    }
+
+    /// Searches for impls that might apply to `obligation`.
+    fn assemble_candidates_from_object_ty(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+        candidates: &mut SelectionCandidateSet<'tcx>,
+    ) {
+        debug!(
+            "assemble_candidates_from_object_ty(self_ty={:?})",
+            obligation.self_ty().skip_binder()
+        );
+
+        self.infcx.probe(|_snapshot| {
+            // The code below doesn't care about regions, and the
+            // self-ty here doesn't escape this probe, so just erase
+            // any LBR.
+            let self_ty = self.tcx().erase_late_bound_regions(&obligation.self_ty());
+            let poly_trait_ref = match self_ty.kind {
+                ty::Dynamic(ref data, ..) => {
+                    if data.auto_traits().any(|did| did == obligation.predicate.def_id()) {
+                        debug!(
+                            "assemble_candidates_from_object_ty: matched builtin bound, \
+                             pushing candidate"
+                        );
+                        candidates.vec.push(BuiltinObjectCandidate);
+                        return;
+                    }
+
+                    if let Some(principal) = data.principal() {
+                        if !self.infcx.tcx.features().object_safe_for_dispatch {
+                            principal.with_self_ty(self.tcx(), self_ty)
+                        } else if self.tcx().is_object_safe(principal.def_id()) {
+                            principal.with_self_ty(self.tcx(), self_ty)
+                        } else {
+                            return;
+                        }
+                    } else {
+                        // Only auto trait bounds exist.
+                        return;
+                    }
+                }
+                ty::Infer(ty::TyVar(_)) => {
+                    debug!("assemble_candidates_from_object_ty: ambiguous");
+                    candidates.ambiguous = true; // could wind up being an object type
+                    return;
+                }
+                _ => return,
+            };
+
+            debug!("assemble_candidates_from_object_ty: poly_trait_ref={:?}", poly_trait_ref);
+
+            // Count only those upcast versions that match the trait-ref
+            // we are looking for. Specifically, do not only check for the
+            // correct trait, but also the correct type parameters.
+            // For example, we may be trying to upcast `Foo` to `Bar<i32>`,
+            // but `Foo` is declared as `trait Foo: Bar<u32>`.
+            let upcast_trait_refs = util::supertraits(self.tcx(), poly_trait_ref)
+                .filter(|upcast_trait_ref| {
+                    self.infcx
+                        .probe(|_| self.match_poly_trait_ref(obligation, *upcast_trait_ref).is_ok())
+                })
+                .count();
+
+            if upcast_trait_refs > 1 {
+                // Can be upcast in many ways; need more type information.
+                candidates.ambiguous = true;
+            } else if upcast_trait_refs == 1 {
+                candidates.vec.push(ObjectCandidate);
+            }
+        })
+    }
+
+    /// Searches for unsizing that might apply to `obligation`.
+    fn assemble_candidates_for_unsizing(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+        candidates: &mut SelectionCandidateSet<'tcx>,
+    ) {
+        // We currently never consider higher-ranked obligations e.g.
+        // `for<'a> &'a T: Unsize<Trait+'a>` to be implemented. This is not
+        // because they are a priori invalid, and we could potentially add support
+        // for them later, it's just that there isn't really a strong need for it.
+        // A `T: Unsize<U>` obligation is always used as part of a `T: CoerceUnsize<U>`
+        // impl, and those are generally applied to concrete types.
+        //
+        // That said, one might try to write a fn with a where clause like
+        //     for<'a> Foo<'a, T>: Unsize<Foo<'a, Trait>>
+        // where the `'a` is kind of orthogonal to the relevant part of the `Unsize`.
+        // Still, you'd be more likely to write that where clause as
+        //     T: Trait
+        // so it seems ok if we (conservatively) fail to accept that `Unsize`
+        // obligation above. Should be possible to extend this in the future.
+        let source = match obligation.self_ty().no_bound_vars() {
+            Some(t) => t,
+            None => {
+                // Don't add any candidates if there are bound regions.
+                return;
+            }
+        };
+        let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
+
+        debug!("assemble_candidates_for_unsizing(source={:?}, target={:?})", source, target);
+
+        let may_apply = match (&source.kind, &target.kind) {
+            // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
+            (&ty::Dynamic(ref data_a, ..), &ty::Dynamic(ref data_b, ..)) => {
+                // Upcasts permit two things:
+                //
+                // 1. Dropping auto traits, e.g., `Foo + Send` to `Foo`
+                // 2. Tightening the region bound, e.g., `Foo + 'a` to `Foo + 'b` if `'a: 'b`
+                //
+                // Note that neither of these changes requires any
+                // change at runtime. Eventually this will be
+                // generalized.
+                //
+                // We always upcast when we can because of reason
+                // #2 (region bounds).
+                data_a.principal_def_id() == data_b.principal_def_id()
+                    && data_b
+                        .auto_traits()
+                        // All of a's auto traits need to be in b's auto traits.
+                        .all(|b| data_a.auto_traits().any(|a| a == b))
+            }
+
+            // `T` -> `Trait`
+            (_, &ty::Dynamic(..)) => true,
+
+            // Ambiguous handling is below `T` -> `Trait`, because inference
+            // variables can still implement `Unsize<Trait>` and nested
+            // obligations will have the final say (likely deferred).
+            (&ty::Infer(ty::TyVar(_)), _) | (_, &ty::Infer(ty::TyVar(_))) => {
+                debug!("assemble_candidates_for_unsizing: ambiguous");
+                candidates.ambiguous = true;
+                false
+            }
+
+            // `[T; n]` -> `[T]`
+            (&ty::Array(..), &ty::Slice(_)) => true,
+
+            // `Struct<T>` -> `Struct<U>`
+            (&ty::Adt(def_id_a, _), &ty::Adt(def_id_b, _)) if def_id_a.is_struct() => {
+                def_id_a == def_id_b
+            }
+
+            // `(.., T)` -> `(.., U)`
+            (&ty::Tuple(tys_a), &ty::Tuple(tys_b)) => tys_a.len() == tys_b.len(),
+
+            _ => false,
+        };
+
+        if may_apply {
+            candidates.vec.push(BuiltinUnsizeCandidate);
+        }
+    }
+
+    fn assemble_candidates_for_trait_alias(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+        candidates: &mut SelectionCandidateSet<'tcx>,
+    ) -> Result<(), SelectionError<'tcx>> {
+        // Okay to skip binder here because the tests we do below do not involve bound regions.
+        let self_ty = obligation.self_ty().skip_binder();
+        debug!("assemble_candidates_for_trait_alias(self_ty={:?})", self_ty);
+
+        let def_id = obligation.predicate.def_id();
+
+        if self.tcx().is_trait_alias(def_id) {
+            candidates.vec.push(TraitAliasCandidate(def_id));
+        }
+
+        Ok(())
+    }
+
+    /// Assembles the trait which are built-in to the language itself:
+    /// `Copy`, `Clone` and `Sized`.
+    fn assemble_builtin_bound_candidates(
+        &mut self,
+        conditions: BuiltinImplConditions<'tcx>,
+        candidates: &mut SelectionCandidateSet<'tcx>,
+    ) -> Result<(), SelectionError<'tcx>> {
+        match conditions {
+            BuiltinImplConditions::Where(nested) => {
+                debug!("builtin_bound: nested={:?}", nested);
+                candidates
+                    .vec
+                    .push(BuiltinCandidate { has_nested: !nested.skip_binder().is_empty() });
+            }
+            BuiltinImplConditions::None => {}
+            BuiltinImplConditions::Ambiguous => {
+                debug!("assemble_builtin_bound_candidates: ambiguous builtin");
+                candidates.ambiguous = true;
+            }
+        }
+
+        Ok(())
+    }
+}
diff --git a/compiler/rustc_trait_selection/src/traits/select/confirmation.rs b/compiler/rustc_trait_selection/src/traits/select/confirmation.rs
new file mode 100644
index 00000000000..3d6eb845136
--- /dev/null
+++ b/compiler/rustc_trait_selection/src/traits/select/confirmation.rs
@@ -0,0 +1,810 @@
+//! Confirmation.
+//!
+//! Confirmation unifies the output type parameters of the trait
+//! with the values found in the obligation, possibly yielding a
+//! type error.  See the [rustc dev guide] for more details.
+//!
+//! [rustc dev guide]:
+//! https://rustc-dev-guide.rust-lang.org/traits/resolution.html#confirmation
+use rustc_data_structures::stack::ensure_sufficient_stack;
+use rustc_hir::lang_items::LangItem;
+use rustc_index::bit_set::GrowableBitSet;
+use rustc_infer::infer::InferOk;
+use rustc_middle::ty::subst::{GenericArg, GenericArgKind, Subst, SubstsRef};
+use rustc_middle::ty::{self, Ty};
+use rustc_middle::ty::{ToPolyTraitRef, ToPredicate, WithConstness};
+use rustc_span::def_id::DefId;
+
+use crate::traits::project::{self, normalize_with_depth};
+use crate::traits::select::TraitObligationExt;
+use crate::traits::util;
+use crate::traits::util::{closure_trait_ref_and_return_type, predicate_for_trait_def};
+use crate::traits::Normalized;
+use crate::traits::OutputTypeParameterMismatch;
+use crate::traits::Selection;
+use crate::traits::TraitNotObjectSafe;
+use crate::traits::{BuiltinDerivedObligation, ImplDerivedObligation};
+use crate::traits::{
+    ImplSourceAutoImpl, ImplSourceBuiltin, ImplSourceClosure, ImplSourceDiscriminantKind,
+    ImplSourceFnPointer, ImplSourceGenerator, ImplSourceObject, ImplSourceParam,
+    ImplSourceTraitAlias, ImplSourceUserDefined,
+};
+use crate::traits::{
+    ImplSourceAutoImplData, ImplSourceBuiltinData, ImplSourceClosureData,
+    ImplSourceDiscriminantKindData, ImplSourceFnPointerData, ImplSourceGeneratorData,
+    ImplSourceObjectData, ImplSourceTraitAliasData, ImplSourceUserDefinedData,
+};
+use crate::traits::{ObjectCastObligation, PredicateObligation, TraitObligation};
+use crate::traits::{Obligation, ObligationCause};
+use crate::traits::{SelectionError, Unimplemented};
+
+use super::BuiltinImplConditions;
+use super::SelectionCandidate::{self, *};
+use super::SelectionContext;
+
+use std::iter;
+
+impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
+    pub(super) fn confirm_candidate(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+        candidate: SelectionCandidate<'tcx>,
+    ) -> Result<Selection<'tcx>, SelectionError<'tcx>> {
+        debug!("confirm_candidate({:?}, {:?})", obligation, candidate);
+
+        match candidate {
+            BuiltinCandidate { has_nested } => {
+                let data = self.confirm_builtin_candidate(obligation, has_nested);
+                Ok(ImplSourceBuiltin(data))
+            }
+
+            ParamCandidate(param) => {
+                let obligations = self.confirm_param_candidate(obligation, param);
+                Ok(ImplSourceParam(obligations))
+            }
+
+            ImplCandidate(impl_def_id) => {
+                Ok(ImplSourceUserDefined(self.confirm_impl_candidate(obligation, impl_def_id)))
+            }
+
+            AutoImplCandidate(trait_def_id) => {
+                let data = self.confirm_auto_impl_candidate(obligation, trait_def_id);
+                Ok(ImplSourceAutoImpl(data))
+            }
+
+            ProjectionCandidate => {
+                self.confirm_projection_candidate(obligation);
+                Ok(ImplSourceParam(Vec::new()))
+            }
+
+            ClosureCandidate => {
+                let vtable_closure = self.confirm_closure_candidate(obligation)?;
+                Ok(ImplSourceClosure(vtable_closure))
+            }
+
+            GeneratorCandidate => {
+                let vtable_generator = self.confirm_generator_candidate(obligation)?;
+                Ok(ImplSourceGenerator(vtable_generator))
+            }
+
+            FnPointerCandidate => {
+                let data = self.confirm_fn_pointer_candidate(obligation)?;
+                Ok(ImplSourceFnPointer(data))
+            }
+
+            DiscriminantKindCandidate => {
+                Ok(ImplSourceDiscriminantKind(ImplSourceDiscriminantKindData))
+            }
+
+            TraitAliasCandidate(alias_def_id) => {
+                let data = self.confirm_trait_alias_candidate(obligation, alias_def_id);
+                Ok(ImplSourceTraitAlias(data))
+            }
+
+            ObjectCandidate => {
+                let data = self.confirm_object_candidate(obligation);
+                Ok(ImplSourceObject(data))
+            }
+
+            BuiltinObjectCandidate => {
+                // This indicates something like `Trait + Send: Send`. In this case, we know that
+                // this holds because that's what the object type is telling us, and there's really
+                // no additional obligations to prove and no types in particular to unify, etc.
+                Ok(ImplSourceParam(Vec::new()))
+            }
+
+            BuiltinUnsizeCandidate => {
+                let data = self.confirm_builtin_unsize_candidate(obligation)?;
+                Ok(ImplSourceBuiltin(data))
+            }
+        }
+    }
+
+    fn confirm_projection_candidate(&mut self, obligation: &TraitObligation<'tcx>) {
+        self.infcx.commit_unconditionally(|_| {
+            let result = self.match_projection_obligation_against_definition_bounds(obligation);
+            assert!(result);
+        })
+    }
+
+    fn confirm_param_candidate(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+        param: ty::PolyTraitRef<'tcx>,
+    ) -> Vec<PredicateObligation<'tcx>> {
+        debug!("confirm_param_candidate({:?},{:?})", obligation, param);
+
+        // During evaluation, we already checked that this
+        // where-clause trait-ref could be unified with the obligation
+        // trait-ref. Repeat that unification now without any
+        // transactional boundary; it should not fail.
+        match self.match_where_clause_trait_ref(obligation, param) {
+            Ok(obligations) => obligations,
+            Err(()) => {
+                bug!(
+                    "Where clause `{:?}` was applicable to `{:?}` but now is not",
+                    param,
+                    obligation
+                );
+            }
+        }
+    }
+
+    fn confirm_builtin_candidate(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+        has_nested: bool,
+    ) -> ImplSourceBuiltinData<PredicateObligation<'tcx>> {
+        debug!("confirm_builtin_candidate({:?}, {:?})", obligation, has_nested);
+
+        let lang_items = self.tcx().lang_items();
+        let obligations = if has_nested {
+            let trait_def = obligation.predicate.def_id();
+            let conditions = if Some(trait_def) == lang_items.sized_trait() {
+                self.sized_conditions(obligation)
+            } else if Some(trait_def) == lang_items.copy_trait() {
+                self.copy_clone_conditions(obligation)
+            } else if Some(trait_def) == lang_items.clone_trait() {
+                self.copy_clone_conditions(obligation)
+            } else {
+                bug!("unexpected builtin trait {:?}", trait_def)
+            };
+            let nested = match conditions {
+                BuiltinImplConditions::Where(nested) => nested,
+                _ => bug!("obligation {:?} had matched a builtin impl but now doesn't", obligation),
+            };
+
+            let cause = obligation.derived_cause(BuiltinDerivedObligation);
+            ensure_sufficient_stack(|| {
+                self.collect_predicates_for_types(
+                    obligation.param_env,
+                    cause,
+                    obligation.recursion_depth + 1,
+                    trait_def,
+                    nested,
+                )
+            })
+        } else {
+            vec![]
+        };
+
+        debug!("confirm_builtin_candidate: obligations={:?}", obligations);
+
+        ImplSourceBuiltinData { nested: obligations }
+    }
+
+    /// This handles the case where a `auto trait Foo` impl is being used.
+    /// The idea is that the impl applies to `X : Foo` if the following conditions are met:
+    ///
+    /// 1. For each constituent type `Y` in `X`, `Y : Foo` holds
+    /// 2. For each where-clause `C` declared on `Foo`, `[Self => X] C` holds.
+    fn confirm_auto_impl_candidate(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+        trait_def_id: DefId,
+    ) -> ImplSourceAutoImplData<PredicateObligation<'tcx>> {
+        debug!("confirm_auto_impl_candidate({:?}, {:?})", obligation, trait_def_id);
+
+        let types = obligation.predicate.map_bound(|inner| {
+            let self_ty = self.infcx.shallow_resolve(inner.self_ty());
+            self.constituent_types_for_ty(self_ty)
+        });
+        self.vtable_auto_impl(obligation, trait_def_id, types)
+    }
+
+    /// See `confirm_auto_impl_candidate`.
+    fn vtable_auto_impl(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+        trait_def_id: DefId,
+        nested: ty::Binder<Vec<Ty<'tcx>>>,
+    ) -> ImplSourceAutoImplData<PredicateObligation<'tcx>> {
+        debug!("vtable_auto_impl: nested={:?}", nested);
+        ensure_sufficient_stack(|| {
+            let cause = obligation.derived_cause(BuiltinDerivedObligation);
+            let mut obligations = self.collect_predicates_for_types(
+                obligation.param_env,
+                cause,
+                obligation.recursion_depth + 1,
+                trait_def_id,
+                nested,
+            );
+
+            let trait_obligations: Vec<PredicateObligation<'_>> =
+                self.infcx.commit_unconditionally(|_| {
+                    let poly_trait_ref = obligation.predicate.to_poly_trait_ref();
+                    let (trait_ref, _) =
+                        self.infcx.replace_bound_vars_with_placeholders(&poly_trait_ref);
+                    let cause = obligation.derived_cause(ImplDerivedObligation);
+                    self.impl_or_trait_obligations(
+                        cause,
+                        obligation.recursion_depth + 1,
+                        obligation.param_env,
+                        trait_def_id,
+                        &trait_ref.substs,
+                    )
+                });
+
+            // Adds the predicates from the trait.  Note that this contains a `Self: Trait`
+            // predicate as usual.  It won't have any effect since auto traits are coinductive.
+            obligations.extend(trait_obligations);
+
+            debug!("vtable_auto_impl: obligations={:?}", obligations);
+
+            ImplSourceAutoImplData { trait_def_id, nested: obligations }
+        })
+    }
+
+    fn confirm_impl_candidate(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+        impl_def_id: DefId,
+    ) -> ImplSourceUserDefinedData<'tcx, PredicateObligation<'tcx>> {
+        debug!("confirm_impl_candidate({:?},{:?})", obligation, impl_def_id);
+
+        // First, create the substitutions by matching the impl again,
+        // this time not in a probe.
+        self.infcx.commit_unconditionally(|_| {
+            let substs = self.rematch_impl(impl_def_id, obligation);
+            debug!("confirm_impl_candidate: substs={:?}", substs);
+            let cause = obligation.derived_cause(ImplDerivedObligation);
+            ensure_sufficient_stack(|| {
+                self.vtable_impl(
+                    impl_def_id,
+                    substs,
+                    cause,
+                    obligation.recursion_depth + 1,
+                    obligation.param_env,
+                )
+            })
+        })
+    }
+
+    fn vtable_impl(
+        &mut self,
+        impl_def_id: DefId,
+        mut substs: Normalized<'tcx, SubstsRef<'tcx>>,
+        cause: ObligationCause<'tcx>,
+        recursion_depth: usize,
+        param_env: ty::ParamEnv<'tcx>,
+    ) -> ImplSourceUserDefinedData<'tcx, PredicateObligation<'tcx>> {
+        debug!(
+            "vtable_impl(impl_def_id={:?}, substs={:?}, recursion_depth={})",
+            impl_def_id, substs, recursion_depth,
+        );
+
+        let mut impl_obligations = self.impl_or_trait_obligations(
+            cause,
+            recursion_depth,
+            param_env,
+            impl_def_id,
+            &substs.value,
+        );
+
+        debug!(
+            "vtable_impl: impl_def_id={:?} impl_obligations={:?}",
+            impl_def_id, impl_obligations
+        );
+
+        // Because of RFC447, the impl-trait-ref and obligations
+        // are sufficient to determine the impl substs, without
+        // relying on projections in the impl-trait-ref.
+        //
+        // e.g., `impl<U: Tr, V: Iterator<Item=U>> Foo<<U as Tr>::T> for V`
+        impl_obligations.append(&mut substs.obligations);
+
+        ImplSourceUserDefinedData { impl_def_id, substs: substs.value, nested: impl_obligations }
+    }
+
+    fn confirm_object_candidate(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+    ) -> ImplSourceObjectData<'tcx, PredicateObligation<'tcx>> {
+        debug!("confirm_object_candidate({:?})", obligation);
+
+        // FIXME(nmatsakis) skipping binder here seems wrong -- we should
+        // probably flatten the binder from the obligation and the binder
+        // from the object. Have to try to make a broken test case that
+        // results.
+        let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
+        let poly_trait_ref = match self_ty.kind {
+            ty::Dynamic(ref data, ..) => data
+                .principal()
+                .unwrap_or_else(|| {
+                    span_bug!(obligation.cause.span, "object candidate with no principal")
+                })
+                .with_self_ty(self.tcx(), self_ty),
+            _ => span_bug!(obligation.cause.span, "object candidate with non-object"),
+        };
+
+        let mut upcast_trait_ref = None;
+        let mut nested = vec![];
+        let vtable_base;
+
+        {
+            let tcx = self.tcx();
+
+            // We want to find the first supertrait in the list of
+            // supertraits that we can unify with, and do that
+            // unification. We know that there is exactly one in the list
+            // where we can unify, because otherwise select would have
+            // reported an ambiguity. (When we do find a match, also
+            // record it for later.)
+            let nonmatching = util::supertraits(tcx, poly_trait_ref).take_while(|&t| {
+                match self.infcx.commit_if_ok(|_| self.match_poly_trait_ref(obligation, t)) {
+                    Ok(obligations) => {
+                        upcast_trait_ref = Some(t);
+                        nested.extend(obligations);
+                        false
+                    }
+                    Err(_) => true,
+                }
+            });
+
+            // Additionally, for each of the non-matching predicates that
+            // we pass over, we sum up the set of number of vtable
+            // entries, so that we can compute the offset for the selected
+            // trait.
+            vtable_base = nonmatching.map(|t| super::util::count_own_vtable_entries(tcx, t)).sum();
+        }
+
+        ImplSourceObjectData { upcast_trait_ref: upcast_trait_ref.unwrap(), vtable_base, nested }
+    }
+
+    fn confirm_fn_pointer_candidate(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+    ) -> Result<ImplSourceFnPointerData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>>
+    {
+        debug!("confirm_fn_pointer_candidate({:?})", obligation);
+
+        // Okay to skip binder; it is reintroduced below.
+        let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
+        let sig = self_ty.fn_sig(self.tcx());
+        let trait_ref = closure_trait_ref_and_return_type(
+            self.tcx(),
+            obligation.predicate.def_id(),
+            self_ty,
+            sig,
+            util::TupleArgumentsFlag::Yes,
+        )
+        .map_bound(|(trait_ref, _)| trait_ref);
+
+        let Normalized { value: trait_ref, obligations } = ensure_sufficient_stack(|| {
+            project::normalize_with_depth(
+                self,
+                obligation.param_env,
+                obligation.cause.clone(),
+                obligation.recursion_depth + 1,
+                &trait_ref,
+            )
+        });
+
+        self.confirm_poly_trait_refs(
+            obligation.cause.clone(),
+            obligation.param_env,
+            obligation.predicate.to_poly_trait_ref(),
+            trait_ref,
+        )?;
+        Ok(ImplSourceFnPointerData { fn_ty: self_ty, nested: obligations })
+    }
+
+    fn confirm_trait_alias_candidate(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+        alias_def_id: DefId,
+    ) -> ImplSourceTraitAliasData<'tcx, PredicateObligation<'tcx>> {
+        debug!("confirm_trait_alias_candidate({:?}, {:?})", obligation, alias_def_id);
+
+        self.infcx.commit_unconditionally(|_| {
+            let (predicate, _) =
+                self.infcx().replace_bound_vars_with_placeholders(&obligation.predicate);
+            let trait_ref = predicate.trait_ref;
+            let trait_def_id = trait_ref.def_id;
+            let substs = trait_ref.substs;
+
+            let trait_obligations = self.impl_or_trait_obligations(
+                obligation.cause.clone(),
+                obligation.recursion_depth,
+                obligation.param_env,
+                trait_def_id,
+                &substs,
+            );
+
+            debug!(
+                "confirm_trait_alias_candidate: trait_def_id={:?} trait_obligations={:?}",
+                trait_def_id, trait_obligations
+            );
+
+            ImplSourceTraitAliasData { alias_def_id, substs, nested: trait_obligations }
+        })
+    }
+
+    fn confirm_generator_candidate(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+    ) -> Result<ImplSourceGeneratorData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>>
+    {
+        // Okay to skip binder because the substs on generator types never
+        // touch bound regions, they just capture the in-scope
+        // type/region parameters.
+        let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
+        let (generator_def_id, substs) = match self_ty.kind {
+            ty::Generator(id, substs, _) => (id, substs),
+            _ => bug!("closure candidate for non-closure {:?}", obligation),
+        };
+
+        debug!("confirm_generator_candidate({:?},{:?},{:?})", obligation, generator_def_id, substs);
+
+        let trait_ref = self.generator_trait_ref_unnormalized(obligation, substs);
+        let Normalized { value: trait_ref, mut obligations } = ensure_sufficient_stack(|| {
+            normalize_with_depth(
+                self,
+                obligation.param_env,
+                obligation.cause.clone(),
+                obligation.recursion_depth + 1,
+                &trait_ref,
+            )
+        });
+
+        debug!(
+            "confirm_generator_candidate(generator_def_id={:?}, \
+             trait_ref={:?}, obligations={:?})",
+            generator_def_id, trait_ref, obligations
+        );
+
+        obligations.extend(self.confirm_poly_trait_refs(
+            obligation.cause.clone(),
+            obligation.param_env,
+            obligation.predicate.to_poly_trait_ref(),
+            trait_ref,
+        )?);
+
+        Ok(ImplSourceGeneratorData { generator_def_id, substs, nested: obligations })
+    }
+
+    fn confirm_closure_candidate(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+    ) -> Result<ImplSourceClosureData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>> {
+        debug!("confirm_closure_candidate({:?})", obligation);
+
+        let kind = self
+            .tcx()
+            .fn_trait_kind_from_lang_item(obligation.predicate.def_id())
+            .unwrap_or_else(|| bug!("closure candidate for non-fn trait {:?}", obligation));
+
+        // Okay to skip binder because the substs on closure types never
+        // touch bound regions, they just capture the in-scope
+        // type/region parameters.
+        let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
+        let (closure_def_id, substs) = match self_ty.kind {
+            ty::Closure(id, substs) => (id, substs),
+            _ => bug!("closure candidate for non-closure {:?}", obligation),
+        };
+
+        let trait_ref = self.closure_trait_ref_unnormalized(obligation, substs);
+        let Normalized { value: trait_ref, mut obligations } = ensure_sufficient_stack(|| {
+            normalize_with_depth(
+                self,
+                obligation.param_env,
+                obligation.cause.clone(),
+                obligation.recursion_depth + 1,
+                &trait_ref,
+            )
+        });
+
+        debug!(
+            "confirm_closure_candidate(closure_def_id={:?}, trait_ref={:?}, obligations={:?})",
+            closure_def_id, trait_ref, obligations
+        );
+
+        obligations.extend(self.confirm_poly_trait_refs(
+            obligation.cause.clone(),
+            obligation.param_env,
+            obligation.predicate.to_poly_trait_ref(),
+            trait_ref,
+        )?);
+
+        // FIXME: Chalk
+
+        if !self.tcx().sess.opts.debugging_opts.chalk {
+            obligations.push(Obligation::new(
+                obligation.cause.clone(),
+                obligation.param_env,
+                ty::PredicateAtom::ClosureKind(closure_def_id, substs, kind)
+                    .to_predicate(self.tcx()),
+            ));
+        }
+
+        Ok(ImplSourceClosureData { closure_def_id, substs, nested: obligations })
+    }
+
+    /// In the case of closure types and fn pointers,
+    /// we currently treat the input type parameters on the trait as
+    /// outputs. This means that when we have a match we have only
+    /// considered the self type, so we have to go back and make sure
+    /// to relate the argument types too. This is kind of wrong, but
+    /// since we control the full set of impls, also not that wrong,
+    /// and it DOES yield better error messages (since we don't report
+    /// errors as if there is no applicable impl, but rather report
+    /// errors are about mismatched argument types.
+    ///
+    /// Here is an example. Imagine we have a closure expression
+    /// and we desugared it so that the type of the expression is
+    /// `Closure`, and `Closure` expects `i32` as argument. Then it
+    /// is "as if" the compiler generated this impl:
+    ///
+    ///     impl Fn(i32) for Closure { ... }
+    ///
+    /// Now imagine our obligation is `Closure: Fn(usize)`. So far
+    /// we have matched the self type `Closure`. At this point we'll
+    /// compare the `i32` to `usize` and generate an error.
+    ///
+    /// Note that this checking occurs *after* the impl has selected,
+    /// because these output type parameters should not affect the
+    /// selection of the impl. Therefore, if there is a mismatch, we
+    /// report an error to the user.
+    fn confirm_poly_trait_refs(
+        &mut self,
+        obligation_cause: ObligationCause<'tcx>,
+        obligation_param_env: ty::ParamEnv<'tcx>,
+        obligation_trait_ref: ty::PolyTraitRef<'tcx>,
+        expected_trait_ref: ty::PolyTraitRef<'tcx>,
+    ) -> Result<Vec<PredicateObligation<'tcx>>, SelectionError<'tcx>> {
+        self.infcx
+            .at(&obligation_cause, obligation_param_env)
+            .sup(obligation_trait_ref, expected_trait_ref)
+            .map(|InferOk { obligations, .. }| obligations)
+            .map_err(|e| OutputTypeParameterMismatch(expected_trait_ref, obligation_trait_ref, e))
+    }
+
+    fn confirm_builtin_unsize_candidate(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+    ) -> Result<ImplSourceBuiltinData<PredicateObligation<'tcx>>, SelectionError<'tcx>> {
+        let tcx = self.tcx();
+
+        // `assemble_candidates_for_unsizing` should ensure there are no late-bound
+        // regions here. See the comment there for more details.
+        let source = self.infcx.shallow_resolve(obligation.self_ty().no_bound_vars().unwrap());
+        let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
+        let target = self.infcx.shallow_resolve(target);
+
+        debug!("confirm_builtin_unsize_candidate(source={:?}, target={:?})", source, target);
+
+        let mut nested = vec![];
+        match (&source.kind, &target.kind) {
+            // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
+            (&ty::Dynamic(ref data_a, r_a), &ty::Dynamic(ref data_b, r_b)) => {
+                // See `assemble_candidates_for_unsizing` for more info.
+                let existential_predicates = data_a.map_bound(|data_a| {
+                    let iter = data_a
+                        .principal()
+                        .map(ty::ExistentialPredicate::Trait)
+                        .into_iter()
+                        .chain(data_a.projection_bounds().map(ty::ExistentialPredicate::Projection))
+                        .chain(data_b.auto_traits().map(ty::ExistentialPredicate::AutoTrait));
+                    tcx.mk_existential_predicates(iter)
+                });
+                let source_trait = tcx.mk_dynamic(existential_predicates, r_b);
+
+                // Require that the traits involved in this upcast are **equal**;
+                // only the **lifetime bound** is changed.
+                let InferOk { obligations, .. } = self
+                    .infcx
+                    .at(&obligation.cause, obligation.param_env)
+                    .sup(target, source_trait)
+                    .map_err(|_| Unimplemented)?;
+                nested.extend(obligations);
+
+                // Register one obligation for 'a: 'b.
+                let cause = ObligationCause::new(
+                    obligation.cause.span,
+                    obligation.cause.body_id,
+                    ObjectCastObligation(target),
+                );
+                let outlives = ty::OutlivesPredicate(r_a, r_b);
+                nested.push(Obligation::with_depth(
+                    cause,
+                    obligation.recursion_depth + 1,
+                    obligation.param_env,
+                    ty::Binder::bind(outlives).to_predicate(tcx),
+                ));
+            }
+
+            // `T` -> `Trait`
+            (_, &ty::Dynamic(ref data, r)) => {
+                let mut object_dids = data.auto_traits().chain(data.principal_def_id());
+                if let Some(did) = object_dids.find(|did| !tcx.is_object_safe(*did)) {
+                    return Err(TraitNotObjectSafe(did));
+                }
+
+                let cause = ObligationCause::new(
+                    obligation.cause.span,
+                    obligation.cause.body_id,
+                    ObjectCastObligation(target),
+                );
+
+                let predicate_to_obligation = |predicate| {
+                    Obligation::with_depth(
+                        cause.clone(),
+                        obligation.recursion_depth + 1,
+                        obligation.param_env,
+                        predicate,
+                    )
+                };
+
+                // Create obligations:
+                //  - Casting `T` to `Trait`
+                //  - For all the various builtin bounds attached to the object cast. (In other
+                //  words, if the object type is `Foo + Send`, this would create an obligation for
+                //  the `Send` check.)
+                //  - Projection predicates
+                nested.extend(
+                    data.iter().map(|predicate| {
+                        predicate_to_obligation(predicate.with_self_ty(tcx, source))
+                    }),
+                );
+
+                // We can only make objects from sized types.
+                let tr = ty::TraitRef::new(
+                    tcx.require_lang_item(LangItem::Sized, None),
+                    tcx.mk_substs_trait(source, &[]),
+                );
+                nested.push(predicate_to_obligation(tr.without_const().to_predicate(tcx)));
+
+                // If the type is `Foo + 'a`, ensure that the type
+                // being cast to `Foo + 'a` outlives `'a`:
+                let outlives = ty::OutlivesPredicate(source, r);
+                nested.push(predicate_to_obligation(ty::Binder::dummy(outlives).to_predicate(tcx)));
+            }
+
+            // `[T; n]` -> `[T]`
+            (&ty::Array(a, _), &ty::Slice(b)) => {
+                let InferOk { obligations, .. } = self
+                    .infcx
+                    .at(&obligation.cause, obligation.param_env)
+                    .eq(b, a)
+                    .map_err(|_| Unimplemented)?;
+                nested.extend(obligations);
+            }
+
+            // `Struct<T>` -> `Struct<U>`
+            (&ty::Adt(def, substs_a), &ty::Adt(_, substs_b)) => {
+                let maybe_unsizing_param_idx = |arg: GenericArg<'tcx>| match arg.unpack() {
+                    GenericArgKind::Type(ty) => match ty.kind {
+                        ty::Param(p) => Some(p.index),
+                        _ => None,
+                    },
+
+                    // Lifetimes aren't allowed to change during unsizing.
+                    GenericArgKind::Lifetime(_) => None,
+
+                    GenericArgKind::Const(ct) => match ct.val {
+                        ty::ConstKind::Param(p) => Some(p.index),
+                        _ => None,
+                    },
+                };
+
+                // The last field of the structure has to exist and contain type/const parameters.
+                let (tail_field, prefix_fields) =
+                    def.non_enum_variant().fields.split_last().ok_or(Unimplemented)?;
+                let tail_field_ty = tcx.type_of(tail_field.did);
+
+                let mut unsizing_params = GrowableBitSet::new_empty();
+                let mut found = false;
+                for arg in tail_field_ty.walk() {
+                    if let Some(i) = maybe_unsizing_param_idx(arg) {
+                        unsizing_params.insert(i);
+                        found = true;
+                    }
+                }
+                if !found {
+                    return Err(Unimplemented);
+                }
+
+                // Ensure none of the other fields mention the parameters used
+                // in unsizing.
+                // FIXME(eddyb) cache this (including computing `unsizing_params`)
+                // by putting it in a query; it would only need the `DefId` as it
+                // looks at declared field types, not anything substituted.
+                for field in prefix_fields {
+                    for arg in tcx.type_of(field.did).walk() {
+                        if let Some(i) = maybe_unsizing_param_idx(arg) {
+                            if unsizing_params.contains(i) {
+                                return Err(Unimplemented);
+                            }
+                        }
+                    }
+                }
+
+                // Extract `TailField<T>` and `TailField<U>` from `Struct<T>` and `Struct<U>`.
+                let source_tail = tail_field_ty.subst(tcx, substs_a);
+                let target_tail = tail_field_ty.subst(tcx, substs_b);
+
+                // Check that the source struct with the target's
+                // unsizing parameters is equal to the target.
+                let substs = tcx.mk_substs(substs_a.iter().enumerate().map(|(i, k)| {
+                    if unsizing_params.contains(i as u32) { substs_b[i] } else { k }
+                }));
+                let new_struct = tcx.mk_adt(def, substs);
+                let InferOk { obligations, .. } = self
+                    .infcx
+                    .at(&obligation.cause, obligation.param_env)
+                    .eq(target, new_struct)
+                    .map_err(|_| Unimplemented)?;
+                nested.extend(obligations);
+
+                // Construct the nested `TailField<T>: Unsize<TailField<U>>` predicate.
+                nested.push(predicate_for_trait_def(
+                    tcx,
+                    obligation.param_env,
+                    obligation.cause.clone(),
+                    obligation.predicate.def_id(),
+                    obligation.recursion_depth + 1,
+                    source_tail,
+                    &[target_tail.into()],
+                ));
+            }
+
+            // `(.., T)` -> `(.., U)`
+            (&ty::Tuple(tys_a), &ty::Tuple(tys_b)) => {
+                assert_eq!(tys_a.len(), tys_b.len());
+
+                // The last field of the tuple has to exist.
+                let (&a_last, a_mid) = tys_a.split_last().ok_or(Unimplemented)?;
+                let &b_last = tys_b.last().unwrap();
+
+                // Check that the source tuple with the target's
+                // last element is equal to the target.
+                let new_tuple = tcx.mk_tup(
+                    a_mid.iter().map(|k| k.expect_ty()).chain(iter::once(b_last.expect_ty())),
+                );
+                let InferOk { obligations, .. } = self
+                    .infcx
+                    .at(&obligation.cause, obligation.param_env)
+                    .eq(target, new_tuple)
+                    .map_err(|_| Unimplemented)?;
+                nested.extend(obligations);
+
+                // Construct the nested `T: Unsize<U>` predicate.
+                nested.push(ensure_sufficient_stack(|| {
+                    predicate_for_trait_def(
+                        tcx,
+                        obligation.param_env,
+                        obligation.cause.clone(),
+                        obligation.predicate.def_id(),
+                        obligation.recursion_depth + 1,
+                        a_last.expect_ty(),
+                        &[b_last],
+                    )
+                }));
+            }
+
+            _ => bug!(),
+        };
+
+        Ok(ImplSourceBuiltinData { nested })
+    }
+}
diff --git a/compiler/rustc_trait_selection/src/traits/select/mod.rs b/compiler/rustc_trait_selection/src/traits/select/mod.rs
new file mode 100644
index 00000000000..82f476b463d
--- /dev/null
+++ b/compiler/rustc_trait_selection/src/traits/select/mod.rs
@@ -0,0 +1,2436 @@
+//! Candidate selection. See the [rustc dev guide] for more information on how this works.
+//!
+//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection
+
+use self::EvaluationResult::*;
+use self::SelectionCandidate::*;
+
+use super::coherence::{self, Conflict};
+use super::project;
+use super::project::normalize_with_depth_to;
+use super::util;
+use super::util::{closure_trait_ref_and_return_type, predicate_for_trait_def};
+use super::wf;
+use super::DerivedObligationCause;
+use super::Obligation;
+use super::ObligationCauseCode;
+use super::Selection;
+use super::SelectionResult;
+use super::TraitQueryMode;
+use super::{Normalized, ProjectionCacheKey};
+use super::{ObligationCause, PredicateObligation, TraitObligation};
+use super::{Overflow, SelectionError, Unimplemented};
+
+use crate::infer::{InferCtxt, InferOk, TypeFreshener};
+use crate::traits::error_reporting::InferCtxtExt;
+use crate::traits::project::ProjectionCacheKeyExt;
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_data_structures::stack::ensure_sufficient_stack;
+use rustc_errors::ErrorReported;
+use rustc_hir as hir;
+use rustc_hir::def_id::DefId;
+use rustc_middle::dep_graph::{DepKind, DepNodeIndex};
+use rustc_middle::mir::interpret::ErrorHandled;
+use rustc_middle::ty::fast_reject;
+use rustc_middle::ty::relate::TypeRelation;
+use rustc_middle::ty::subst::{GenericArgKind, Subst, SubstsRef};
+use rustc_middle::ty::{
+    self, ToPolyTraitRef, ToPredicate, Ty, TyCtxt, TypeFoldable, WithConstness,
+};
+use rustc_span::symbol::sym;
+
+use std::cell::{Cell, RefCell};
+use std::cmp;
+use std::fmt::{self, Display};
+use std::iter;
+use std::rc::Rc;
+
+pub use rustc_middle::traits::select::*;
+
+mod candidate_assembly;
+mod confirmation;
+
+#[derive(Clone, Debug)]
+pub enum IntercrateAmbiguityCause {
+    DownstreamCrate { trait_desc: String, self_desc: Option<String> },
+    UpstreamCrateUpdate { trait_desc: String, self_desc: Option<String> },
+    ReservationImpl { message: String },
+}
+
+impl IntercrateAmbiguityCause {
+    /// Emits notes when the overlap is caused by complex intercrate ambiguities.
+    /// See #23980 for details.
+    pub fn add_intercrate_ambiguity_hint(&self, err: &mut rustc_errors::DiagnosticBuilder<'_>) {
+        err.note(&self.intercrate_ambiguity_hint());
+    }
+
+    pub fn intercrate_ambiguity_hint(&self) -> String {
+        match self {
+            &IntercrateAmbiguityCause::DownstreamCrate { ref trait_desc, ref self_desc } => {
+                let self_desc = if let &Some(ref ty) = self_desc {
+                    format!(" for type `{}`", ty)
+                } else {
+                    String::new()
+                };
+                format!("downstream crates may implement trait `{}`{}", trait_desc, self_desc)
+            }
+            &IntercrateAmbiguityCause::UpstreamCrateUpdate { ref trait_desc, ref self_desc } => {
+                let self_desc = if let &Some(ref ty) = self_desc {
+                    format!(" for type `{}`", ty)
+                } else {
+                    String::new()
+                };
+                format!(
+                    "upstream crates may add a new impl of trait `{}`{} \
+                     in future versions",
+                    trait_desc, self_desc
+                )
+            }
+            &IntercrateAmbiguityCause::ReservationImpl { ref message } => message.clone(),
+        }
+    }
+}
+
+pub struct SelectionContext<'cx, 'tcx> {
+    infcx: &'cx InferCtxt<'cx, 'tcx>,
+
+    /// Freshener used specifically for entries on the obligation
+    /// stack. This ensures that all entries on the stack at one time
+    /// will have the same set of placeholder entries, which is
+    /// important for checking for trait bounds that recursively
+    /// require themselves.
+    freshener: TypeFreshener<'cx, 'tcx>,
+
+    /// If `true`, indicates that the evaluation should be conservative
+    /// and consider the possibility of types outside this crate.
+    /// This comes up primarily when resolving ambiguity. Imagine
+    /// there is some trait reference `$0: Bar` where `$0` is an
+    /// inference variable. If `intercrate` is true, then we can never
+    /// say for sure that this reference is not implemented, even if
+    /// there are *no impls at all for `Bar`*, because `$0` could be
+    /// bound to some type that in a downstream crate that implements
+    /// `Bar`. This is the suitable mode for coherence. Elsewhere,
+    /// though, we set this to false, because we are only interested
+    /// in types that the user could actually have written --- in
+    /// other words, we consider `$0: Bar` to be unimplemented if
+    /// there is no type that the user could *actually name* that
+    /// would satisfy it. This avoids crippling inference, basically.
+    intercrate: bool,
+
+    intercrate_ambiguity_causes: Option<Vec<IntercrateAmbiguityCause>>,
+
+    /// Controls whether or not to filter out negative impls when selecting.
+    /// This is used in librustdoc to distinguish between the lack of an impl
+    /// and a negative impl
+    allow_negative_impls: bool,
+
+    /// The mode that trait queries run in, which informs our error handling
+    /// policy. In essence, canonicalized queries need their errors propagated
+    /// rather than immediately reported because we do not have accurate spans.
+    query_mode: TraitQueryMode,
+}
+
+// A stack that walks back up the stack frame.
+struct TraitObligationStack<'prev, 'tcx> {
+    obligation: &'prev TraitObligation<'tcx>,
+
+    /// The trait ref from `obligation` but "freshened" with the
+    /// selection-context's freshener. Used to check for recursion.
+    fresh_trait_ref: ty::PolyTraitRef<'tcx>,
+
+    /// Starts out equal to `depth` -- if, during evaluation, we
+    /// encounter a cycle, then we will set this flag to the minimum
+    /// depth of that cycle for all participants in the cycle. These
+    /// participants will then forego caching their results. This is
+    /// not the most efficient solution, but it addresses #60010. The
+    /// problem we are trying to prevent:
+    ///
+    /// - If you have `A: AutoTrait` requires `B: AutoTrait` and `C: NonAutoTrait`
+    /// - `B: AutoTrait` requires `A: AutoTrait` (coinductive cycle, ok)
+    /// - `C: NonAutoTrait` requires `A: AutoTrait` (non-coinductive cycle, not ok)
+    ///
+    /// you don't want to cache that `B: AutoTrait` or `A: AutoTrait`
+    /// is `EvaluatedToOk`; this is because they were only considered
+    /// ok on the premise that if `A: AutoTrait` held, but we indeed
+    /// encountered a problem (later on) with `A: AutoTrait. So we
+    /// currently set a flag on the stack node for `B: AutoTrait` (as
+    /// well as the second instance of `A: AutoTrait`) to suppress
+    /// caching.
+    ///
+    /// This is a simple, targeted fix. A more-performant fix requires
+    /// deeper changes, but would permit more caching: we could
+    /// basically defer caching until we have fully evaluated the
+    /// tree, and then cache the entire tree at once. In any case, the
+    /// performance impact here shouldn't be so horrible: every time
+    /// this is hit, we do cache at least one trait, so we only
+    /// evaluate each member of a cycle up to N times, where N is the
+    /// length of the cycle. This means the performance impact is
+    /// bounded and we shouldn't have any terrible worst-cases.
+    reached_depth: Cell<usize>,
+
+    previous: TraitObligationStackList<'prev, 'tcx>,
+
+    /// The number of parent frames plus one (thus, the topmost frame has depth 1).
+    depth: usize,
+
+    /// The depth-first number of this node in the search graph -- a
+    /// pre-order index. Basically, a freshly incremented counter.
+    dfn: usize,
+}
+
+struct SelectionCandidateSet<'tcx> {
+    // A list of candidates that definitely apply to the current
+    // obligation (meaning: types unify).
+    vec: Vec<SelectionCandidate<'tcx>>,
+
+    // If `true`, then there were candidates that might or might
+    // not have applied, but we couldn't tell. This occurs when some
+    // of the input types are type variables, in which case there are
+    // various "builtin" rules that might or might not trigger.
+    ambiguous: bool,
+}
+
+#[derive(PartialEq, Eq, Debug, Clone)]
+struct EvaluatedCandidate<'tcx> {
+    candidate: SelectionCandidate<'tcx>,
+    evaluation: EvaluationResult,
+}
+
+/// When does the builtin impl for `T: Trait` apply?
+enum BuiltinImplConditions<'tcx> {
+    /// The impl is conditional on `T1, T2, ...: Trait`.
+    Where(ty::Binder<Vec<Ty<'tcx>>>),
+    /// There is no built-in impl. There may be some other
+    /// candidate (a where-clause or user-defined impl).
+    None,
+    /// It is unknown whether there is an impl.
+    Ambiguous,
+}
+
+impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
+    pub fn new(infcx: &'cx InferCtxt<'cx, 'tcx>) -> SelectionContext<'cx, 'tcx> {
+        SelectionContext {
+            infcx,
+            freshener: infcx.freshener(),
+            intercrate: false,
+            intercrate_ambiguity_causes: None,
+            allow_negative_impls: false,
+            query_mode: TraitQueryMode::Standard,
+        }
+    }
+
+    pub fn intercrate(infcx: &'cx InferCtxt<'cx, 'tcx>) -> SelectionContext<'cx, 'tcx> {
+        SelectionContext {
+            infcx,
+            freshener: infcx.freshener(),
+            intercrate: true,
+            intercrate_ambiguity_causes: None,
+            allow_negative_impls: false,
+            query_mode: TraitQueryMode::Standard,
+        }
+    }
+
+    pub fn with_negative(
+        infcx: &'cx InferCtxt<'cx, 'tcx>,
+        allow_negative_impls: bool,
+    ) -> SelectionContext<'cx, 'tcx> {
+        debug!("with_negative({:?})", allow_negative_impls);
+        SelectionContext {
+            infcx,
+            freshener: infcx.freshener(),
+            intercrate: false,
+            intercrate_ambiguity_causes: None,
+            allow_negative_impls,
+            query_mode: TraitQueryMode::Standard,
+        }
+    }
+
+    pub fn with_query_mode(
+        infcx: &'cx InferCtxt<'cx, 'tcx>,
+        query_mode: TraitQueryMode,
+    ) -> SelectionContext<'cx, 'tcx> {
+        debug!("with_query_mode({:?})", query_mode);
+        SelectionContext {
+            infcx,
+            freshener: infcx.freshener(),
+            intercrate: false,
+            intercrate_ambiguity_causes: None,
+            allow_negative_impls: false,
+            query_mode,
+        }
+    }
+
+    /// Enables tracking of intercrate ambiguity causes. These are
+    /// used in coherence to give improved diagnostics. We don't do
+    /// this until we detect a coherence error because it can lead to
+    /// false overflow results (#47139) and because it costs
+    /// computation time.
+    pub fn enable_tracking_intercrate_ambiguity_causes(&mut self) {
+        assert!(self.intercrate);
+        assert!(self.intercrate_ambiguity_causes.is_none());
+        self.intercrate_ambiguity_causes = Some(vec![]);
+        debug!("selcx: enable_tracking_intercrate_ambiguity_causes");
+    }
+
+    /// Gets the intercrate ambiguity causes collected since tracking
+    /// was enabled and disables tracking at the same time. If
+    /// tracking is not enabled, just returns an empty vector.
+    pub fn take_intercrate_ambiguity_causes(&mut self) -> Vec<IntercrateAmbiguityCause> {
+        assert!(self.intercrate);
+        self.intercrate_ambiguity_causes.take().unwrap_or(vec![])
+    }
+
+    pub fn infcx(&self) -> &'cx InferCtxt<'cx, 'tcx> {
+        self.infcx
+    }
+
+    pub fn tcx(&self) -> TyCtxt<'tcx> {
+        self.infcx.tcx
+    }
+
+    pub fn closure_typer(&self) -> &'cx InferCtxt<'cx, 'tcx> {
+        self.infcx
+    }
+
+    ///////////////////////////////////////////////////////////////////////////
+    // Selection
+    //
+    // The selection phase tries to identify *how* an obligation will
+    // be resolved. For example, it will identify which impl or
+    // parameter bound is to be used. The process can be inconclusive
+    // if the self type in the obligation is not fully inferred. Selection
+    // can result in an error in one of two ways:
+    //
+    // 1. If no applicable impl or parameter bound can be found.
+    // 2. If the output type parameters in the obligation do not match
+    //    those specified by the impl/bound. For example, if the obligation
+    //    is `Vec<Foo>: Iterable<Bar>`, but the impl specifies
+    //    `impl<T> Iterable<T> for Vec<T>`, than an error would result.
+
+    /// Attempts to satisfy the obligation. If successful, this will affect the surrounding
+    /// type environment by performing unification.
+    pub fn select(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+    ) -> SelectionResult<'tcx, Selection<'tcx>> {
+        debug!("select({:?})", obligation);
+        debug_assert!(!obligation.predicate.has_escaping_bound_vars());
+
+        let pec = &ProvisionalEvaluationCache::default();
+        let stack = self.push_stack(TraitObligationStackList::empty(pec), obligation);
+
+        let candidate = match self.candidate_from_obligation(&stack) {
+            Err(SelectionError::Overflow) => {
+                // In standard mode, overflow must have been caught and reported
+                // earlier.
+                assert!(self.query_mode == TraitQueryMode::Canonical);
+                return Err(SelectionError::Overflow);
+            }
+            Err(e) => {
+                return Err(e);
+            }
+            Ok(None) => {
+                return Ok(None);
+            }
+            Ok(Some(candidate)) => candidate,
+        };
+
+        match self.confirm_candidate(obligation, candidate) {
+            Err(SelectionError::Overflow) => {
+                assert!(self.query_mode == TraitQueryMode::Canonical);
+                Err(SelectionError::Overflow)
+            }
+            Err(e) => Err(e),
+            Ok(candidate) => Ok(Some(candidate)),
+        }
+    }
+
+    ///////////////////////////////////////////////////////////////////////////
+    // EVALUATION
+    //
+    // Tests whether an obligation can be selected or whether an impl
+    // can be applied to particular types. It skips the "confirmation"
+    // step and hence completely ignores output type parameters.
+    //
+    // The result is "true" if the obligation *may* hold and "false" if
+    // we can be sure it does not.
+
+    /// Evaluates whether the obligation `obligation` can be satisfied (by any means).
+    pub fn predicate_may_hold_fatal(&mut self, obligation: &PredicateObligation<'tcx>) -> bool {
+        debug!("predicate_may_hold_fatal({:?})", obligation);
+
+        // This fatal query is a stopgap that should only be used in standard mode,
+        // where we do not expect overflow to be propagated.
+        assert!(self.query_mode == TraitQueryMode::Standard);
+
+        self.evaluate_root_obligation(obligation)
+            .expect("Overflow should be caught earlier in standard query mode")
+            .may_apply()
+    }
+
+    /// Evaluates whether the obligation `obligation` can be satisfied
+    /// and returns an `EvaluationResult`. This is meant for the
+    /// *initial* call.
+    pub fn evaluate_root_obligation(
+        &mut self,
+        obligation: &PredicateObligation<'tcx>,
+    ) -> Result<EvaluationResult, OverflowError> {
+        self.evaluation_probe(|this| {
+            this.evaluate_predicate_recursively(
+                TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
+                obligation.clone(),
+            )
+        })
+    }
+
+    fn evaluation_probe(
+        &mut self,
+        op: impl FnOnce(&mut Self) -> Result<EvaluationResult, OverflowError>,
+    ) -> Result<EvaluationResult, OverflowError> {
+        self.infcx.probe(|snapshot| -> Result<EvaluationResult, OverflowError> {
+            let result = op(self)?;
+
+            match self.infcx.leak_check(true, snapshot) {
+                Ok(()) => {}
+                Err(_) => return Ok(EvaluatedToErr),
+            }
+
+            match self.infcx.region_constraints_added_in_snapshot(snapshot) {
+                None => Ok(result),
+                Some(_) => Ok(result.max(EvaluatedToOkModuloRegions)),
+            }
+        })
+    }
+
+    /// Evaluates the predicates in `predicates` recursively. Note that
+    /// this applies projections in the predicates, and therefore
+    /// is run within an inference probe.
+    fn evaluate_predicates_recursively<'o, I>(
+        &mut self,
+        stack: TraitObligationStackList<'o, 'tcx>,
+        predicates: I,
+    ) -> Result<EvaluationResult, OverflowError>
+    where
+        I: IntoIterator<Item = PredicateObligation<'tcx>>,
+    {
+        let mut result = EvaluatedToOk;
+        for obligation in predicates {
+            let eval = self.evaluate_predicate_recursively(stack, obligation.clone())?;
+            debug!("evaluate_predicate_recursively({:?}) = {:?}", obligation, eval);
+            if let EvaluatedToErr = eval {
+                // fast-path - EvaluatedToErr is the top of the lattice,
+                // so we don't need to look on the other predicates.
+                return Ok(EvaluatedToErr);
+            } else {
+                result = cmp::max(result, eval);
+            }
+        }
+        Ok(result)
+    }
+
+    fn evaluate_predicate_recursively<'o>(
+        &mut self,
+        previous_stack: TraitObligationStackList<'o, 'tcx>,
+        obligation: PredicateObligation<'tcx>,
+    ) -> Result<EvaluationResult, OverflowError> {
+        debug!(
+            "evaluate_predicate_recursively(previous_stack={:?}, obligation={:?})",
+            previous_stack.head(),
+            obligation
+        );
+
+        // `previous_stack` stores a `TraitObligation`, while `obligation` is
+        // a `PredicateObligation`. These are distinct types, so we can't
+        // use any `Option` combinator method that would force them to be
+        // the same.
+        match previous_stack.head() {
+            Some(h) => self.check_recursion_limit(&obligation, h.obligation)?,
+            None => self.check_recursion_limit(&obligation, &obligation)?,
+        }
+
+        match obligation.predicate.skip_binders() {
+            ty::PredicateAtom::Trait(t, _) => {
+                let t = ty::Binder::bind(t);
+                debug_assert!(!t.has_escaping_bound_vars());
+                let obligation = obligation.with(t);
+                self.evaluate_trait_predicate_recursively(previous_stack, obligation)
+            }
+
+            ty::PredicateAtom::Subtype(p) => {
+                let p = ty::Binder::bind(p);
+                // Does this code ever run?
+                match self.infcx.subtype_predicate(&obligation.cause, obligation.param_env, p) {
+                    Some(Ok(InferOk { mut obligations, .. })) => {
+                        self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
+                        self.evaluate_predicates_recursively(
+                            previous_stack,
+                            obligations.into_iter(),
+                        )
+                    }
+                    Some(Err(_)) => Ok(EvaluatedToErr),
+                    None => Ok(EvaluatedToAmbig),
+                }
+            }
+
+            ty::PredicateAtom::WellFormed(arg) => match wf::obligations(
+                self.infcx,
+                obligation.param_env,
+                obligation.cause.body_id,
+                arg,
+                obligation.cause.span,
+            ) {
+                Some(mut obligations) => {
+                    self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
+                    self.evaluate_predicates_recursively(previous_stack, obligations.into_iter())
+                }
+                None => Ok(EvaluatedToAmbig),
+            },
+
+            ty::PredicateAtom::TypeOutlives(..) | ty::PredicateAtom::RegionOutlives(..) => {
+                // We do not consider region relationships when evaluating trait matches.
+                Ok(EvaluatedToOkModuloRegions)
+            }
+
+            ty::PredicateAtom::ObjectSafe(trait_def_id) => {
+                if self.tcx().is_object_safe(trait_def_id) {
+                    Ok(EvaluatedToOk)
+                } else {
+                    Ok(EvaluatedToErr)
+                }
+            }
+
+            ty::PredicateAtom::Projection(data) => {
+                let data = ty::Binder::bind(data);
+                let project_obligation = obligation.with(data);
+                match project::poly_project_and_unify_type(self, &project_obligation) {
+                    Ok(Ok(Some(mut subobligations))) => {
+                        self.add_depth(subobligations.iter_mut(), obligation.recursion_depth);
+                        let result = self.evaluate_predicates_recursively(
+                            previous_stack,
+                            subobligations.into_iter(),
+                        );
+                        if let Some(key) =
+                            ProjectionCacheKey::from_poly_projection_predicate(self, data)
+                        {
+                            self.infcx.inner.borrow_mut().projection_cache().complete(key);
+                        }
+                        result
+                    }
+                    Ok(Ok(None)) => Ok(EvaluatedToAmbig),
+                    // EvaluatedToRecur might also be acceptable here, but use
+                    // Unknown for now because it means that we won't dismiss a
+                    // selection candidate solely because it has a projection
+                    // cycle. This is closest to the previous behavior of
+                    // immediately erroring.
+                    Ok(Err(project::InProgress)) => Ok(EvaluatedToUnknown),
+                    Err(_) => Ok(EvaluatedToErr),
+                }
+            }
+
+            ty::PredicateAtom::ClosureKind(_, closure_substs, kind) => {
+                match self.infcx.closure_kind(closure_substs) {
+                    Some(closure_kind) => {
+                        if closure_kind.extends(kind) {
+                            Ok(EvaluatedToOk)
+                        } else {
+                            Ok(EvaluatedToErr)
+                        }
+                    }
+                    None => Ok(EvaluatedToAmbig),
+                }
+            }
+
+            ty::PredicateAtom::ConstEvaluatable(def_id, substs) => {
+                match self.tcx().const_eval_resolve(
+                    obligation.param_env,
+                    def_id,
+                    substs,
+                    None,
+                    None,
+                ) {
+                    Ok(_) => Ok(EvaluatedToOk),
+                    Err(ErrorHandled::TooGeneric) => Ok(EvaluatedToAmbig),
+                    Err(_) => Ok(EvaluatedToErr),
+                }
+            }
+
+            ty::PredicateAtom::ConstEquate(c1, c2) => {
+                debug!("evaluate_predicate_recursively: equating consts c1={:?} c2={:?}", c1, c2);
+
+                let evaluate = |c: &'tcx ty::Const<'tcx>| {
+                    if let ty::ConstKind::Unevaluated(def, substs, promoted) = c.val {
+                        self.infcx
+                            .const_eval_resolve(
+                                obligation.param_env,
+                                def,
+                                substs,
+                                promoted,
+                                Some(obligation.cause.span),
+                            )
+                            .map(|val| ty::Const::from_value(self.tcx(), val, c.ty))
+                    } else {
+                        Ok(c)
+                    }
+                };
+
+                match (evaluate(c1), evaluate(c2)) {
+                    (Ok(c1), Ok(c2)) => {
+                        match self.infcx().at(&obligation.cause, obligation.param_env).eq(c1, c2) {
+                            Ok(_) => Ok(EvaluatedToOk),
+                            Err(_) => Ok(EvaluatedToErr),
+                        }
+                    }
+                    (Err(ErrorHandled::Reported(ErrorReported)), _)
+                    | (_, Err(ErrorHandled::Reported(ErrorReported))) => Ok(EvaluatedToErr),
+                    (Err(ErrorHandled::Linted), _) | (_, Err(ErrorHandled::Linted)) => span_bug!(
+                        obligation.cause.span(self.tcx()),
+                        "ConstEquate: const_eval_resolve returned an unexpected error"
+                    ),
+                    (Err(ErrorHandled::TooGeneric), _) | (_, Err(ErrorHandled::TooGeneric)) => {
+                        Ok(EvaluatedToAmbig)
+                    }
+                }
+            }
+        }
+    }
+
+    fn evaluate_trait_predicate_recursively<'o>(
+        &mut self,
+        previous_stack: TraitObligationStackList<'o, 'tcx>,
+        mut obligation: TraitObligation<'tcx>,
+    ) -> Result<EvaluationResult, OverflowError> {
+        debug!("evaluate_trait_predicate_recursively({:?})", obligation);
+
+        if !self.intercrate
+            && obligation.is_global()
+            && obligation.param_env.caller_bounds().iter().all(|bound| bound.needs_subst())
+        {
+            // If a param env has no global bounds, global obligations do not
+            // depend on its particular value in order to work, so we can clear
+            // out the param env and get better caching.
+            debug!("evaluate_trait_predicate_recursively({:?}) - in global", obligation);
+            obligation.param_env = obligation.param_env.without_caller_bounds();
+        }
+
+        let stack = self.push_stack(previous_stack, &obligation);
+        let fresh_trait_ref = stack.fresh_trait_ref;
+        if let Some(result) = self.check_evaluation_cache(obligation.param_env, fresh_trait_ref) {
+            debug!("CACHE HIT: EVAL({:?})={:?}", fresh_trait_ref, result);
+            return Ok(result);
+        }
+
+        if let Some(result) = stack.cache().get_provisional(fresh_trait_ref) {
+            debug!("PROVISIONAL CACHE HIT: EVAL({:?})={:?}", fresh_trait_ref, result);
+            stack.update_reached_depth(stack.cache().current_reached_depth());
+            return Ok(result);
+        }
+
+        // Check if this is a match for something already on the
+        // stack. If so, we don't want to insert the result into the
+        // main cache (it is cycle dependent) nor the provisional
+        // cache (which is meant for things that have completed but
+        // for a "backedge" -- this result *is* the backedge).
+        if let Some(cycle_result) = self.check_evaluation_cycle(&stack) {
+            return Ok(cycle_result);
+        }
+
+        let (result, dep_node) = self.in_task(|this| this.evaluate_stack(&stack));
+        let result = result?;
+
+        if !result.must_apply_modulo_regions() {
+            stack.cache().on_failure(stack.dfn);
+        }
+
+        let reached_depth = stack.reached_depth.get();
+        if reached_depth >= stack.depth {
+            debug!("CACHE MISS: EVAL({:?})={:?}", fresh_trait_ref, result);
+            self.insert_evaluation_cache(obligation.param_env, fresh_trait_ref, dep_node, result);
+
+            stack.cache().on_completion(stack.depth, |fresh_trait_ref, provisional_result| {
+                self.insert_evaluation_cache(
+                    obligation.param_env,
+                    fresh_trait_ref,
+                    dep_node,
+                    provisional_result.max(result),
+                );
+            });
+        } else {
+            debug!("PROVISIONAL: {:?}={:?}", fresh_trait_ref, result);
+            debug!(
+                "evaluate_trait_predicate_recursively: caching provisionally because {:?} \
+                 is a cycle participant (at depth {}, reached depth {})",
+                fresh_trait_ref, stack.depth, reached_depth,
+            );
+
+            stack.cache().insert_provisional(stack.dfn, reached_depth, fresh_trait_ref, result);
+        }
+
+        Ok(result)
+    }
+
+    /// If there is any previous entry on the stack that precisely
+    /// matches this obligation, then we can assume that the
+    /// obligation is satisfied for now (still all other conditions
+    /// must be met of course). One obvious case this comes up is
+    /// marker traits like `Send`. Think of a linked list:
+    ///
+    ///    struct List<T> { data: T, next: Option<Box<List<T>>> }
+    ///
+    /// `Box<List<T>>` will be `Send` if `T` is `Send` and
+    /// `Option<Box<List<T>>>` is `Send`, and in turn
+    /// `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
+    /// `Send`.
+    ///
+    /// Note that we do this comparison using the `fresh_trait_ref`
+    /// fields. Because these have all been freshened using
+    /// `self.freshener`, we can be sure that (a) this will not
+    /// affect the inferencer state and (b) that if we see two
+    /// fresh regions with the same index, they refer to the same
+    /// unbound type variable.
+    fn check_evaluation_cycle(
+        &mut self,
+        stack: &TraitObligationStack<'_, 'tcx>,
+    ) -> Option<EvaluationResult> {
+        if let Some(cycle_depth) = stack
+            .iter()
+            .skip(1) // Skip top-most frame.
+            .find(|prev| {
+                stack.obligation.param_env == prev.obligation.param_env
+                    && stack.fresh_trait_ref == prev.fresh_trait_ref
+            })
+            .map(|stack| stack.depth)
+        {
+            debug!(
+                "evaluate_stack({:?}) --> recursive at depth {}",
+                stack.fresh_trait_ref, cycle_depth,
+            );
+
+            // If we have a stack like `A B C D E A`, where the top of
+            // the stack is the final `A`, then this will iterate over
+            // `A, E, D, C, B` -- i.e., all the participants apart
+            // from the cycle head. We mark them as participating in a
+            // cycle. This suppresses caching for those nodes. See
+            // `in_cycle` field for more details.
+            stack.update_reached_depth(cycle_depth);
+
+            // Subtle: when checking for a coinductive cycle, we do
+            // not compare using the "freshened trait refs" (which
+            // have erased regions) but rather the fully explicit
+            // trait refs. This is important because it's only a cycle
+            // if the regions match exactly.
+            let cycle = stack.iter().skip(1).take_while(|s| s.depth >= cycle_depth);
+            let tcx = self.tcx();
+            let cycle =
+                cycle.map(|stack| stack.obligation.predicate.without_const().to_predicate(tcx));
+            if self.coinductive_match(cycle) {
+                debug!("evaluate_stack({:?}) --> recursive, coinductive", stack.fresh_trait_ref);
+                Some(EvaluatedToOk)
+            } else {
+                debug!("evaluate_stack({:?}) --> recursive, inductive", stack.fresh_trait_ref);
+                Some(EvaluatedToRecur)
+            }
+        } else {
+            None
+        }
+    }
+
+    fn evaluate_stack<'o>(
+        &mut self,
+        stack: &TraitObligationStack<'o, 'tcx>,
+    ) -> Result<EvaluationResult, OverflowError> {
+        // In intercrate mode, whenever any of the generics are unbound,
+        // there can always be an impl. Even if there are no impls in
+        // this crate, perhaps the type would be unified with
+        // something from another crate that does provide an impl.
+        //
+        // In intra mode, we must still be conservative. The reason is
+        // that we want to avoid cycles. Imagine an impl like:
+        //
+        //     impl<T:Eq> Eq for Vec<T>
+        //
+        // and a trait reference like `$0 : Eq` where `$0` is an
+        // unbound variable. When we evaluate this trait-reference, we
+        // will unify `$0` with `Vec<$1>` (for some fresh variable
+        // `$1`), on the condition that `$1 : Eq`. We will then wind
+        // up with many candidates (since that are other `Eq` impls
+        // that apply) and try to winnow things down. This results in
+        // a recursive evaluation that `$1 : Eq` -- as you can
+        // imagine, this is just where we started. To avoid that, we
+        // check for unbound variables and return an ambiguous (hence possible)
+        // match if we've seen this trait before.
+        //
+        // This suffices to allow chains like `FnMut` implemented in
+        // terms of `Fn` etc, but we could probably make this more
+        // precise still.
+        let unbound_input_types =
+            stack.fresh_trait_ref.skip_binder().substs.types().any(|ty| ty.is_fresh());
+        // This check was an imperfect workaround for a bug in the old
+        // intercrate mode; it should be removed when that goes away.
+        if unbound_input_types && self.intercrate {
+            debug!(
+                "evaluate_stack({:?}) --> unbound argument, intercrate -->  ambiguous",
+                stack.fresh_trait_ref
+            );
+            // Heuristics: show the diagnostics when there are no candidates in crate.
+            if self.intercrate_ambiguity_causes.is_some() {
+                debug!("evaluate_stack: intercrate_ambiguity_causes is some");
+                if let Ok(candidate_set) = self.assemble_candidates(stack) {
+                    if !candidate_set.ambiguous && candidate_set.vec.is_empty() {
+                        let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
+                        let self_ty = trait_ref.self_ty();
+                        let cause = IntercrateAmbiguityCause::DownstreamCrate {
+                            trait_desc: trait_ref.print_only_trait_path().to_string(),
+                            self_desc: if self_ty.has_concrete_skeleton() {
+                                Some(self_ty.to_string())
+                            } else {
+                                None
+                            },
+                        };
+                        debug!("evaluate_stack: pushing cause = {:?}", cause);
+                        self.intercrate_ambiguity_causes.as_mut().unwrap().push(cause);
+                    }
+                }
+            }
+            return Ok(EvaluatedToAmbig);
+        }
+        if unbound_input_types
+            && stack.iter().skip(1).any(|prev| {
+                stack.obligation.param_env == prev.obligation.param_env
+                    && self.match_fresh_trait_refs(
+                        stack.fresh_trait_ref,
+                        prev.fresh_trait_ref,
+                        prev.obligation.param_env,
+                    )
+            })
+        {
+            debug!(
+                "evaluate_stack({:?}) --> unbound argument, recursive --> giving up",
+                stack.fresh_trait_ref
+            );
+            return Ok(EvaluatedToUnknown);
+        }
+
+        match self.candidate_from_obligation(stack) {
+            Ok(Some(c)) => self.evaluate_candidate(stack, &c),
+            Ok(None) => Ok(EvaluatedToAmbig),
+            Err(Overflow) => Err(OverflowError),
+            Err(..) => Ok(EvaluatedToErr),
+        }
+    }
+
+    /// For defaulted traits, we use a co-inductive strategy to solve, so
+    /// that recursion is ok. This routine returns `true` if the top of the
+    /// stack (`cycle[0]`):
+    ///
+    /// - is a defaulted trait,
+    /// - it also appears in the backtrace at some position `X`,
+    /// - all the predicates at positions `X..` between `X` and the top are
+    ///   also defaulted traits.
+    pub fn coinductive_match<I>(&mut self, cycle: I) -> bool
+    where
+        I: Iterator<Item = ty::Predicate<'tcx>>,
+    {
+        let mut cycle = cycle;
+        cycle.all(|predicate| self.coinductive_predicate(predicate))
+    }
+
+    fn coinductive_predicate(&self, predicate: ty::Predicate<'tcx>) -> bool {
+        let result = match predicate.skip_binders() {
+            ty::PredicateAtom::Trait(ref data, _) => self.tcx().trait_is_auto(data.def_id()),
+            _ => false,
+        };
+        debug!("coinductive_predicate({:?}) = {:?}", predicate, result);
+        result
+    }
+
+    /// Further evaluates `candidate` to decide whether all type parameters match and whether nested
+    /// obligations are met. Returns whether `candidate` remains viable after this further
+    /// scrutiny.
+    fn evaluate_candidate<'o>(
+        &mut self,
+        stack: &TraitObligationStack<'o, 'tcx>,
+        candidate: &SelectionCandidate<'tcx>,
+    ) -> Result<EvaluationResult, OverflowError> {
+        debug!(
+            "evaluate_candidate: depth={} candidate={:?}",
+            stack.obligation.recursion_depth, candidate
+        );
+        let result = self.evaluation_probe(|this| {
+            let candidate = (*candidate).clone();
+            match this.confirm_candidate(stack.obligation, candidate) {
+                Ok(selection) => this.evaluate_predicates_recursively(
+                    stack.list(),
+                    selection.nested_obligations().into_iter(),
+                ),
+                Err(..) => Ok(EvaluatedToErr),
+            }
+        })?;
+        debug!(
+            "evaluate_candidate: depth={} result={:?}",
+            stack.obligation.recursion_depth, result
+        );
+        Ok(result)
+    }
+
+    fn check_evaluation_cache(
+        &self,
+        param_env: ty::ParamEnv<'tcx>,
+        trait_ref: ty::PolyTraitRef<'tcx>,
+    ) -> Option<EvaluationResult> {
+        let tcx = self.tcx();
+        if self.can_use_global_caches(param_env) {
+            if let Some(res) = tcx.evaluation_cache.get(&param_env.and(trait_ref), tcx) {
+                return Some(res);
+            }
+        }
+        self.infcx.evaluation_cache.get(&param_env.and(trait_ref), tcx)
+    }
+
+    fn insert_evaluation_cache(
+        &mut self,
+        param_env: ty::ParamEnv<'tcx>,
+        trait_ref: ty::PolyTraitRef<'tcx>,
+        dep_node: DepNodeIndex,
+        result: EvaluationResult,
+    ) {
+        // Avoid caching results that depend on more than just the trait-ref
+        // - the stack can create recursion.
+        if result.is_stack_dependent() {
+            return;
+        }
+
+        if self.can_use_global_caches(param_env) {
+            if !trait_ref.needs_infer() {
+                debug!(
+                    "insert_evaluation_cache(trait_ref={:?}, candidate={:?}) global",
+                    trait_ref, result,
+                );
+                // This may overwrite the cache with the same value
+                // FIXME: Due to #50507 this overwrites the different values
+                // This should be changed to use HashMapExt::insert_same
+                // when that is fixed
+                self.tcx().evaluation_cache.insert(param_env.and(trait_ref), dep_node, result);
+                return;
+            }
+        }
+
+        debug!("insert_evaluation_cache(trait_ref={:?}, candidate={:?})", trait_ref, result,);
+        self.infcx.evaluation_cache.insert(param_env.and(trait_ref), dep_node, result);
+    }
+
+    /// For various reasons, it's possible for a subobligation
+    /// to have a *lower* recursion_depth than the obligation used to create it.
+    /// Projection sub-obligations may be returned from the projection cache,
+    /// which results in obligations with an 'old' `recursion_depth`.
+    /// Additionally, methods like `wf::obligations` and
+    /// `InferCtxt.subtype_predicate` produce subobligations without
+    /// taking in a 'parent' depth, causing the generated subobligations
+    /// to have a `recursion_depth` of `0`.
+    ///
+    /// To ensure that obligation_depth never decreasees, we force all subobligations
+    /// to have at least the depth of the original obligation.
+    fn add_depth<T: 'cx, I: Iterator<Item = &'cx mut Obligation<'tcx, T>>>(
+        &self,
+        it: I,
+        min_depth: usize,
+    ) {
+        it.for_each(|o| o.recursion_depth = cmp::max(min_depth, o.recursion_depth) + 1);
+    }
+
+    /// Checks that the recursion limit has not been exceeded.
+    ///
+    /// The weird return type of this function allows it to be used with the `try` (`?`)
+    /// operator within certain functions.
+    fn check_recursion_limit<T: Display + TypeFoldable<'tcx>, V: Display + TypeFoldable<'tcx>>(
+        &self,
+        obligation: &Obligation<'tcx, T>,
+        error_obligation: &Obligation<'tcx, V>,
+    ) -> Result<(), OverflowError> {
+        if !self.infcx.tcx.sess.recursion_limit().value_within_limit(obligation.recursion_depth) {
+            match self.query_mode {
+                TraitQueryMode::Standard => {
+                    self.infcx().report_overflow_error(error_obligation, true);
+                }
+                TraitQueryMode::Canonical => {
+                    return Err(OverflowError);
+                }
+            }
+        }
+        Ok(())
+    }
+
+    fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
+    where
+        OP: FnOnce(&mut Self) -> R,
+    {
+        let (result, dep_node) =
+            self.tcx().dep_graph.with_anon_task(DepKind::TraitSelect, || op(self));
+        self.tcx().dep_graph.read_index(dep_node);
+        (result, dep_node)
+    }
+
+    // Treat negative impls as unimplemented, and reservation impls as ambiguity.
+    fn filter_negative_and_reservation_impls(
+        &mut self,
+        candidate: SelectionCandidate<'tcx>,
+    ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
+        if let ImplCandidate(def_id) = candidate {
+            let tcx = self.tcx();
+            match tcx.impl_polarity(def_id) {
+                ty::ImplPolarity::Negative if !self.allow_negative_impls => {
+                    return Err(Unimplemented);
+                }
+                ty::ImplPolarity::Reservation => {
+                    if let Some(intercrate_ambiguity_clauses) =
+                        &mut self.intercrate_ambiguity_causes
+                    {
+                        let attrs = tcx.get_attrs(def_id);
+                        let attr = tcx.sess.find_by_name(&attrs, sym::rustc_reservation_impl);
+                        let value = attr.and_then(|a| a.value_str());
+                        if let Some(value) = value {
+                            debug!(
+                                "filter_negative_and_reservation_impls: \
+                                 reservation impl ambiguity on {:?}",
+                                def_id
+                            );
+                            intercrate_ambiguity_clauses.push(
+                                IntercrateAmbiguityCause::ReservationImpl {
+                                    message: value.to_string(),
+                                },
+                            );
+                        }
+                    }
+                    return Ok(None);
+                }
+                _ => {}
+            };
+        }
+        Ok(Some(candidate))
+    }
+
+    fn candidate_from_obligation_no_cache<'o>(
+        &mut self,
+        stack: &TraitObligationStack<'o, 'tcx>,
+    ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
+        if let Some(conflict) = self.is_knowable(stack) {
+            debug!("coherence stage: not knowable");
+            if self.intercrate_ambiguity_causes.is_some() {
+                debug!("evaluate_stack: intercrate_ambiguity_causes is some");
+                // Heuristics: show the diagnostics when there are no candidates in crate.
+                if let Ok(candidate_set) = self.assemble_candidates(stack) {
+                    let mut no_candidates_apply = true;
+
+                    for c in candidate_set.vec.iter() {
+                        if self.evaluate_candidate(stack, &c)?.may_apply() {
+                            no_candidates_apply = false;
+                            break;
+                        }
+                    }
+
+                    if !candidate_set.ambiguous && no_candidates_apply {
+                        let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
+                        let self_ty = trait_ref.self_ty();
+                        let trait_desc = trait_ref.print_only_trait_path().to_string();
+                        let self_desc = if self_ty.has_concrete_skeleton() {
+                            Some(self_ty.to_string())
+                        } else {
+                            None
+                        };
+                        let cause = if let Conflict::Upstream = conflict {
+                            IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_desc, self_desc }
+                        } else {
+                            IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc }
+                        };
+                        debug!("evaluate_stack: pushing cause = {:?}", cause);
+                        self.intercrate_ambiguity_causes.as_mut().unwrap().push(cause);
+                    }
+                }
+            }
+            return Ok(None);
+        }
+
+        let candidate_set = self.assemble_candidates(stack)?;
+
+        if candidate_set.ambiguous {
+            debug!("candidate set contains ambig");
+            return Ok(None);
+        }
+
+        let mut candidates = candidate_set.vec;
+
+        debug!("assembled {} candidates for {:?}: {:?}", candidates.len(), stack, candidates);
+
+        // At this point, we know that each of the entries in the
+        // candidate set is *individually* applicable. Now we have to
+        // figure out if they contain mutual incompatibilities. This
+        // frequently arises if we have an unconstrained input type --
+        // for example, we are looking for `$0: Eq` where `$0` is some
+        // unconstrained type variable. In that case, we'll get a
+        // candidate which assumes $0 == int, one that assumes `$0 ==
+        // usize`, etc. This spells an ambiguity.
+
+        // If there is more than one candidate, first winnow them down
+        // by considering extra conditions (nested obligations and so
+        // forth). We don't winnow if there is exactly one
+        // candidate. This is a relatively minor distinction but it
+        // can lead to better inference and error-reporting. An
+        // example would be if there was an impl:
+        //
+        //     impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
+        //
+        // and we were to see some code `foo.push_clone()` where `boo`
+        // is a `Vec<Bar>` and `Bar` does not implement `Clone`.  If
+        // we were to winnow, we'd wind up with zero candidates.
+        // Instead, we select the right impl now but report "`Bar` does
+        // not implement `Clone`".
+        if candidates.len() == 1 {
+            return self.filter_negative_and_reservation_impls(candidates.pop().unwrap());
+        }
+
+        // Winnow, but record the exact outcome of evaluation, which
+        // is needed for specialization. Propagate overflow if it occurs.
+        let mut candidates = candidates
+            .into_iter()
+            .map(|c| match self.evaluate_candidate(stack, &c) {
+                Ok(eval) if eval.may_apply() => {
+                    Ok(Some(EvaluatedCandidate { candidate: c, evaluation: eval }))
+                }
+                Ok(_) => Ok(None),
+                Err(OverflowError) => Err(Overflow),
+            })
+            .flat_map(Result::transpose)
+            .collect::<Result<Vec<_>, _>>()?;
+
+        debug!("winnowed to {} candidates for {:?}: {:?}", candidates.len(), stack, candidates);
+
+        let needs_infer = stack.obligation.predicate.needs_infer();
+
+        // If there are STILL multiple candidates, we can further
+        // reduce the list by dropping duplicates -- including
+        // resolving specializations.
+        if candidates.len() > 1 {
+            let mut i = 0;
+            while i < candidates.len() {
+                let is_dup = (0..candidates.len()).filter(|&j| i != j).any(|j| {
+                    self.candidate_should_be_dropped_in_favor_of(
+                        &candidates[i],
+                        &candidates[j],
+                        needs_infer,
+                    )
+                });
+                if is_dup {
+                    debug!("Dropping candidate #{}/{}: {:?}", i, candidates.len(), candidates[i]);
+                    candidates.swap_remove(i);
+                } else {
+                    debug!("Retaining candidate #{}/{}: {:?}", i, candidates.len(), candidates[i]);
+                    i += 1;
+
+                    // If there are *STILL* multiple candidates, give up
+                    // and report ambiguity.
+                    if i > 1 {
+                        debug!("multiple matches, ambig");
+                        return Ok(None);
+                    }
+                }
+            }
+        }
+
+        // If there are *NO* candidates, then there are no impls --
+        // that we know of, anyway. Note that in the case where there
+        // are unbound type variables within the obligation, it might
+        // be the case that you could still satisfy the obligation
+        // from another crate by instantiating the type variables with
+        // a type from another crate that does have an impl. This case
+        // is checked for in `evaluate_stack` (and hence users
+        // who might care about this case, like coherence, should use
+        // that function).
+        if candidates.is_empty() {
+            // If there's an error type, 'downgrade' our result from
+            // `Err(Unimplemented)` to `Ok(None)`. This helps us avoid
+            // emitting additional spurious errors, since we're guaranteed
+            // to have emitted at least one.
+            if stack.obligation.references_error() {
+                debug!("no results for error type, treating as ambiguous");
+                return Ok(None);
+            }
+            return Err(Unimplemented);
+        }
+
+        // Just one candidate left.
+        self.filter_negative_and_reservation_impls(candidates.pop().unwrap().candidate)
+    }
+
+    fn is_knowable<'o>(&mut self, stack: &TraitObligationStack<'o, 'tcx>) -> Option<Conflict> {
+        debug!("is_knowable(intercrate={:?})", self.intercrate);
+
+        if !self.intercrate {
+            return None;
+        }
+
+        let obligation = &stack.obligation;
+        let predicate = self.infcx().resolve_vars_if_possible(&obligation.predicate);
+
+        // Okay to skip binder because of the nature of the
+        // trait-ref-is-knowable check, which does not care about
+        // bound regions.
+        let trait_ref = predicate.skip_binder().trait_ref;
+
+        coherence::trait_ref_is_knowable(self.tcx(), trait_ref)
+    }
+
+    /// Returns `true` if the global caches can be used.
+    /// Do note that if the type itself is not in the
+    /// global tcx, the local caches will be used.
+    fn can_use_global_caches(&self, param_env: ty::ParamEnv<'tcx>) -> bool {
+        // If there are any inference variables in the `ParamEnv`, then we
+        // always use a cache local to this particular scope. Otherwise, we
+        // switch to a global cache.
+        if param_env.needs_infer() {
+            return false;
+        }
+
+        // Avoid using the master cache during coherence and just rely
+        // on the local cache. This effectively disables caching
+        // during coherence. It is really just a simplification to
+        // avoid us having to fear that coherence results "pollute"
+        // the master cache. Since coherence executes pretty quickly,
+        // it's not worth going to more trouble to increase the
+        // hit-rate, I don't think.
+        if self.intercrate {
+            return false;
+        }
+
+        // Otherwise, we can use the global cache.
+        true
+    }
+
+    fn check_candidate_cache(
+        &mut self,
+        param_env: ty::ParamEnv<'tcx>,
+        cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
+    ) -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>> {
+        let tcx = self.tcx();
+        let trait_ref = &cache_fresh_trait_pred.skip_binder().trait_ref;
+        if self.can_use_global_caches(param_env) {
+            if let Some(res) = tcx.selection_cache.get(&param_env.and(*trait_ref), tcx) {
+                return Some(res);
+            }
+        }
+        self.infcx.selection_cache.get(&param_env.and(*trait_ref), tcx)
+    }
+
+    /// Determines whether can we safely cache the result
+    /// of selecting an obligation. This is almost always `true`,
+    /// except when dealing with certain `ParamCandidate`s.
+    ///
+    /// Ordinarily, a `ParamCandidate` will contain no inference variables,
+    /// since it was usually produced directly from a `DefId`. However,
+    /// certain cases (currently only librustdoc's blanket impl finder),
+    /// a `ParamEnv` may be explicitly constructed with inference types.
+    /// When this is the case, we do *not* want to cache the resulting selection
+    /// candidate. This is due to the fact that it might not always be possible
+    /// to equate the obligation's trait ref and the candidate's trait ref,
+    /// if more constraints end up getting added to an inference variable.
+    ///
+    /// Because of this, we always want to re-run the full selection
+    /// process for our obligation the next time we see it, since
+    /// we might end up picking a different `SelectionCandidate` (or none at all).
+    fn can_cache_candidate(
+        &self,
+        result: &SelectionResult<'tcx, SelectionCandidate<'tcx>>,
+    ) -> bool {
+        match result {
+            Ok(Some(SelectionCandidate::ParamCandidate(trait_ref))) => !trait_ref.needs_infer(),
+            _ => true,
+        }
+    }
+
+    fn insert_candidate_cache(
+        &mut self,
+        param_env: ty::ParamEnv<'tcx>,
+        cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
+        dep_node: DepNodeIndex,
+        candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>,
+    ) {
+        let tcx = self.tcx();
+        let trait_ref = cache_fresh_trait_pred.skip_binder().trait_ref;
+
+        if !self.can_cache_candidate(&candidate) {
+            debug!(
+                "insert_candidate_cache(trait_ref={:?}, candidate={:?} -\
+                 candidate is not cacheable",
+                trait_ref, candidate
+            );
+            return;
+        }
+
+        if self.can_use_global_caches(param_env) {
+            if let Err(Overflow) = candidate {
+                // Don't cache overflow globally; we only produce this in certain modes.
+            } else if !trait_ref.needs_infer() {
+                if !candidate.needs_infer() {
+                    debug!(
+                        "insert_candidate_cache(trait_ref={:?}, candidate={:?}) global",
+                        trait_ref, candidate,
+                    );
+                    // This may overwrite the cache with the same value.
+                    tcx.selection_cache.insert(param_env.and(trait_ref), dep_node, candidate);
+                    return;
+                }
+            }
+        }
+
+        debug!(
+            "insert_candidate_cache(trait_ref={:?}, candidate={:?}) local",
+            trait_ref, candidate,
+        );
+        self.infcx.selection_cache.insert(param_env.and(trait_ref), dep_node, candidate);
+    }
+
+    fn match_projection_obligation_against_definition_bounds(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+    ) -> bool {
+        let poly_trait_predicate = self.infcx().resolve_vars_if_possible(&obligation.predicate);
+        let (placeholder_trait_predicate, _) =
+            self.infcx().replace_bound_vars_with_placeholders(&poly_trait_predicate);
+        debug!(
+            "match_projection_obligation_against_definition_bounds: \
+             placeholder_trait_predicate={:?}",
+            placeholder_trait_predicate,
+        );
+
+        let tcx = self.infcx.tcx;
+        let predicates = match placeholder_trait_predicate.trait_ref.self_ty().kind {
+            ty::Projection(ref data) => {
+                tcx.projection_predicates(data.item_def_id).subst(tcx, data.substs)
+            }
+            ty::Opaque(def_id, substs) => tcx.projection_predicates(def_id).subst(tcx, substs),
+            _ => {
+                span_bug!(
+                    obligation.cause.span,
+                    "match_projection_obligation_against_definition_bounds() called \
+                     but self-ty is not a projection: {:?}",
+                    placeholder_trait_predicate.trait_ref.self_ty()
+                );
+            }
+        };
+
+        let matching_bound = predicates.iter().find_map(|bound| {
+            if let ty::PredicateAtom::Trait(pred, _) = bound.skip_binders() {
+                let bound = ty::Binder::bind(pred.trait_ref);
+                if self.infcx.probe(|_| {
+                    self.match_projection(obligation, bound, placeholder_trait_predicate.trait_ref)
+                }) {
+                    return Some(bound);
+                }
+            }
+            None
+        });
+
+        debug!(
+            "match_projection_obligation_against_definition_bounds: \
+             matching_bound={:?}",
+            matching_bound
+        );
+        match matching_bound {
+            None => false,
+            Some(bound) => {
+                // Repeat the successful match, if any, this time outside of a probe.
+                let result =
+                    self.match_projection(obligation, bound, placeholder_trait_predicate.trait_ref);
+
+                assert!(result);
+                true
+            }
+        }
+    }
+
+    fn match_projection(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+        trait_bound: ty::PolyTraitRef<'tcx>,
+        placeholder_trait_ref: ty::TraitRef<'tcx>,
+    ) -> bool {
+        debug_assert!(!placeholder_trait_ref.has_escaping_bound_vars());
+        self.infcx
+            .at(&obligation.cause, obligation.param_env)
+            .sup(ty::Binder::dummy(placeholder_trait_ref), trait_bound)
+            .is_ok()
+    }
+
+    fn evaluate_where_clause<'o>(
+        &mut self,
+        stack: &TraitObligationStack<'o, 'tcx>,
+        where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
+    ) -> Result<EvaluationResult, OverflowError> {
+        self.evaluation_probe(|this| {
+            match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
+                Ok(obligations) => {
+                    this.evaluate_predicates_recursively(stack.list(), obligations.into_iter())
+                }
+                Err(()) => Ok(EvaluatedToErr),
+            }
+        })
+    }
+
+    ///////////////////////////////////////////////////////////////////////////
+    // WINNOW
+    //
+    // Winnowing is the process of attempting to resolve ambiguity by
+    // probing further. During the winnowing process, we unify all
+    // type variables and then we also attempt to evaluate recursive
+    // bounds to see if they are satisfied.
+
+    /// Returns `true` if `victim` should be dropped in favor of
+    /// `other`. Generally speaking we will drop duplicate
+    /// candidates and prefer where-clause candidates.
+    ///
+    /// See the comment for "SelectionCandidate" for more details.
+    fn candidate_should_be_dropped_in_favor_of(
+        &mut self,
+        victim: &EvaluatedCandidate<'tcx>,
+        other: &EvaluatedCandidate<'tcx>,
+        needs_infer: bool,
+    ) -> bool {
+        if victim.candidate == other.candidate {
+            return true;
+        }
+
+        // Check if a bound would previously have been removed when normalizing
+        // the param_env so that it can be given the lowest priority. See
+        // #50825 for the motivation for this.
+        let is_global =
+            |cand: &ty::PolyTraitRef<'_>| cand.is_global() && !cand.has_late_bound_regions();
+
+        // (*) Prefer `BuiltinCandidate { has_nested: false }` and `DiscriminantKindCandidate`
+        // to anything else.
+        //
+        // This is a fix for #53123 and prevents winnowing from accidentally extending the
+        // lifetime of a variable.
+        match other.candidate {
+            // (*)
+            BuiltinCandidate { has_nested: false } | DiscriminantKindCandidate => true,
+            ParamCandidate(ref cand) => match victim.candidate {
+                AutoImplCandidate(..) => {
+                    bug!(
+                        "default implementations shouldn't be recorded \
+                         when there are other valid candidates"
+                    );
+                }
+                // (*)
+                BuiltinCandidate { has_nested: false } | DiscriminantKindCandidate => false,
+                ImplCandidate(..)
+                | ClosureCandidate
+                | GeneratorCandidate
+                | FnPointerCandidate
+                | BuiltinObjectCandidate
+                | BuiltinUnsizeCandidate
+                | BuiltinCandidate { .. }
+                | TraitAliasCandidate(..) => {
+                    // Global bounds from the where clause should be ignored
+                    // here (see issue #50825). Otherwise, we have a where
+                    // clause so don't go around looking for impls.
+                    !is_global(cand)
+                }
+                ObjectCandidate | ProjectionCandidate => {
+                    // Arbitrarily give param candidates priority
+                    // over projection and object candidates.
+                    !is_global(cand)
+                }
+                ParamCandidate(..) => false,
+            },
+            ObjectCandidate | ProjectionCandidate => match victim.candidate {
+                AutoImplCandidate(..) => {
+                    bug!(
+                        "default implementations shouldn't be recorded \
+                         when there are other valid candidates"
+                    );
+                }
+                // (*)
+                BuiltinCandidate { has_nested: false } | DiscriminantKindCandidate => false,
+                ImplCandidate(..)
+                | ClosureCandidate
+                | GeneratorCandidate
+                | FnPointerCandidate
+                | BuiltinObjectCandidate
+                | BuiltinUnsizeCandidate
+                | BuiltinCandidate { .. }
+                | TraitAliasCandidate(..) => true,
+                ObjectCandidate | ProjectionCandidate => {
+                    // Arbitrarily give param candidates priority
+                    // over projection and object candidates.
+                    true
+                }
+                ParamCandidate(ref cand) => is_global(cand),
+            },
+            ImplCandidate(other_def) => {
+                // See if we can toss out `victim` based on specialization.
+                // This requires us to know *for sure* that the `other` impl applies
+                // i.e., `EvaluatedToOk`.
+                if other.evaluation.must_apply_modulo_regions() {
+                    match victim.candidate {
+                        ImplCandidate(victim_def) => {
+                            let tcx = self.tcx();
+                            if tcx.specializes((other_def, victim_def)) {
+                                return true;
+                            }
+                            return match tcx.impls_are_allowed_to_overlap(other_def, victim_def) {
+                                Some(ty::ImplOverlapKind::Permitted { marker: true }) => {
+                                    // Subtle: If the predicate we are evaluating has inference
+                                    // variables, do *not* allow discarding candidates due to
+                                    // marker trait impls.
+                                    //
+                                    // Without this restriction, we could end up accidentally
+                                    // constrainting inference variables based on an arbitrarily
+                                    // chosen trait impl.
+                                    //
+                                    // Imagine we have the following code:
+                                    //
+                                    // ```rust
+                                    // #[marker] trait MyTrait {}
+                                    // impl MyTrait for u8 {}
+                                    // impl MyTrait for bool {}
+                                    // ```
+                                    //
+                                    // And we are evaluating the predicate `<_#0t as MyTrait>`.
+                                    //
+                                    // During selection, we will end up with one candidate for each
+                                    // impl of `MyTrait`. If we were to discard one impl in favor
+                                    // of the other, we would be left with one candidate, causing
+                                    // us to "successfully" select the predicate, unifying
+                                    // _#0t with (for example) `u8`.
+                                    //
+                                    // However, we have no reason to believe that this unification
+                                    // is correct - we've essentially just picked an arbitrary
+                                    // *possibility* for _#0t, and required that this be the *only*
+                                    // possibility.
+                                    //
+                                    // Eventually, we will either:
+                                    // 1) Unify all inference variables in the predicate through
+                                    // some other means (e.g. type-checking of a function). We will
+                                    // then be in a position to drop marker trait candidates
+                                    // without constraining inference variables (since there are
+                                    // none left to constrin)
+                                    // 2) Be left with some unconstrained inference variables. We
+                                    // will then correctly report an inference error, since the
+                                    // existence of multiple marker trait impls tells us nothing
+                                    // about which one should actually apply.
+                                    !needs_infer
+                                }
+                                Some(_) => true,
+                                None => false,
+                            };
+                        }
+                        ParamCandidate(ref cand) => {
+                            // Prefer the impl to a global where clause candidate.
+                            return is_global(cand);
+                        }
+                        _ => (),
+                    }
+                }
+
+                false
+            }
+            ClosureCandidate
+            | GeneratorCandidate
+            | FnPointerCandidate
+            | BuiltinObjectCandidate
+            | BuiltinUnsizeCandidate
+            | BuiltinCandidate { has_nested: true } => {
+                match victim.candidate {
+                    ParamCandidate(ref cand) => {
+                        // Prefer these to a global where-clause bound
+                        // (see issue #50825).
+                        is_global(cand) && other.evaluation.must_apply_modulo_regions()
+                    }
+                    _ => false,
+                }
+            }
+            _ => false,
+        }
+    }
+
+    fn sized_conditions(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+    ) -> BuiltinImplConditions<'tcx> {
+        use self::BuiltinImplConditions::{Ambiguous, None, Where};
+
+        // NOTE: binder moved to (*)
+        let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
+
+        match self_ty.kind {
+            ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
+            | ty::Uint(_)
+            | ty::Int(_)
+            | ty::Bool
+            | ty::Float(_)
+            | ty::FnDef(..)
+            | ty::FnPtr(_)
+            | ty::RawPtr(..)
+            | ty::Char
+            | ty::Ref(..)
+            | ty::Generator(..)
+            | ty::GeneratorWitness(..)
+            | ty::Array(..)
+            | ty::Closure(..)
+            | ty::Never
+            | ty::Error(_) => {
+                // safe for everything
+                Where(ty::Binder::dummy(Vec::new()))
+            }
+
+            ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => None,
+
+            ty::Tuple(tys) => {
+                Where(ty::Binder::bind(tys.last().into_iter().map(|k| k.expect_ty()).collect()))
+            }
+
+            ty::Adt(def, substs) => {
+                let sized_crit = def.sized_constraint(self.tcx());
+                // (*) binder moved here
+                Where(ty::Binder::bind(
+                    sized_crit.iter().map(|ty| ty.subst(self.tcx(), substs)).collect(),
+                ))
+            }
+
+            ty::Projection(_) | ty::Param(_) | ty::Opaque(..) => None,
+            ty::Infer(ty::TyVar(_)) => Ambiguous,
+
+            ty::Placeholder(..)
+            | ty::Bound(..)
+            | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
+                bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
+            }
+        }
+    }
+
+    fn copy_clone_conditions(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+    ) -> BuiltinImplConditions<'tcx> {
+        // NOTE: binder moved to (*)
+        let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
+
+        use self::BuiltinImplConditions::{Ambiguous, None, Where};
+
+        match self_ty.kind {
+            ty::Infer(ty::IntVar(_))
+            | ty::Infer(ty::FloatVar(_))
+            | ty::FnDef(..)
+            | ty::FnPtr(_)
+            | ty::Error(_) => Where(ty::Binder::dummy(Vec::new())),
+
+            ty::Uint(_)
+            | ty::Int(_)
+            | ty::Bool
+            | ty::Float(_)
+            | ty::Char
+            | ty::RawPtr(..)
+            | ty::Never
+            | ty::Ref(_, _, hir::Mutability::Not) => {
+                // Implementations provided in libcore
+                None
+            }
+
+            ty::Dynamic(..)
+            | ty::Str
+            | ty::Slice(..)
+            | ty::Generator(..)
+            | ty::GeneratorWitness(..)
+            | ty::Foreign(..)
+            | ty::Ref(_, _, hir::Mutability::Mut) => None,
+
+            ty::Array(element_ty, _) => {
+                // (*) binder moved here
+                Where(ty::Binder::bind(vec![element_ty]))
+            }
+
+            ty::Tuple(tys) => {
+                // (*) binder moved here
+                Where(ty::Binder::bind(tys.iter().map(|k| k.expect_ty()).collect()))
+            }
+
+            ty::Closure(_, substs) => {
+                // (*) binder moved here
+                Where(ty::Binder::bind(substs.as_closure().upvar_tys().collect()))
+            }
+
+            ty::Adt(..) | ty::Projection(..) | ty::Param(..) | ty::Opaque(..) => {
+                // Fallback to whatever user-defined impls exist in this case.
+                None
+            }
+
+            ty::Infer(ty::TyVar(_)) => {
+                // Unbound type variable. Might or might not have
+                // applicable impls and so forth, depending on what
+                // those type variables wind up being bound to.
+                Ambiguous
+            }
+
+            ty::Placeholder(..)
+            | ty::Bound(..)
+            | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
+                bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
+            }
+        }
+    }
+
+    /// For default impls, we need to break apart a type into its
+    /// "constituent types" -- meaning, the types that it contains.
+    ///
+    /// Here are some (simple) examples:
+    ///
+    /// ```
+    /// (i32, u32) -> [i32, u32]
+    /// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
+    /// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
+    /// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
+    /// ```
+    fn constituent_types_for_ty(&self, t: Ty<'tcx>) -> Vec<Ty<'tcx>> {
+        match t.kind {
+            ty::Uint(_)
+            | ty::Int(_)
+            | ty::Bool
+            | ty::Float(_)
+            | ty::FnDef(..)
+            | ty::FnPtr(_)
+            | ty::Str
+            | ty::Error(_)
+            | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
+            | ty::Never
+            | ty::Char => Vec::new(),
+
+            ty::Placeholder(..)
+            | ty::Dynamic(..)
+            | ty::Param(..)
+            | ty::Foreign(..)
+            | ty::Projection(..)
+            | ty::Bound(..)
+            | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
+                bug!("asked to assemble constituent types of unexpected type: {:?}", t);
+            }
+
+            ty::RawPtr(ty::TypeAndMut { ty: element_ty, .. }) | ty::Ref(_, element_ty, _) => {
+                vec![element_ty]
+            }
+
+            ty::Array(element_ty, _) | ty::Slice(element_ty) => vec![element_ty],
+
+            ty::Tuple(ref tys) => {
+                // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
+                tys.iter().map(|k| k.expect_ty()).collect()
+            }
+
+            ty::Closure(_, ref substs) => substs.as_closure().upvar_tys().collect(),
+
+            ty::Generator(_, ref substs, _) => {
+                let witness = substs.as_generator().witness();
+                substs.as_generator().upvar_tys().chain(iter::once(witness)).collect()
+            }
+
+            ty::GeneratorWitness(types) => {
+                // This is sound because no regions in the witness can refer to
+                // the binder outside the witness. So we'll effectivly reuse
+                // the implicit binder around the witness.
+                types.skip_binder().to_vec()
+            }
+
+            // For `PhantomData<T>`, we pass `T`.
+            ty::Adt(def, substs) if def.is_phantom_data() => substs.types().collect(),
+
+            ty::Adt(def, substs) => def.all_fields().map(|f| f.ty(self.tcx(), substs)).collect(),
+
+            ty::Opaque(def_id, substs) => {
+                // We can resolve the `impl Trait` to its concrete type,
+                // which enforces a DAG between the functions requiring
+                // the auto trait bounds in question.
+                vec![self.tcx().type_of(def_id).subst(self.tcx(), substs)]
+            }
+        }
+    }
+
+    fn collect_predicates_for_types(
+        &mut self,
+        param_env: ty::ParamEnv<'tcx>,
+        cause: ObligationCause<'tcx>,
+        recursion_depth: usize,
+        trait_def_id: DefId,
+        types: ty::Binder<Vec<Ty<'tcx>>>,
+    ) -> Vec<PredicateObligation<'tcx>> {
+        // Because the types were potentially derived from
+        // higher-ranked obligations they may reference late-bound
+        // regions. For example, `for<'a> Foo<&'a i32> : Copy` would
+        // yield a type like `for<'a> &'a i32`. In general, we
+        // maintain the invariant that we never manipulate bound
+        // regions, so we have to process these bound regions somehow.
+        //
+        // The strategy is to:
+        //
+        // 1. Instantiate those regions to placeholder regions (e.g.,
+        //    `for<'a> &'a i32` becomes `&0 i32`.
+        // 2. Produce something like `&'0 i32 : Copy`
+        // 3. Re-bind the regions back to `for<'a> &'a i32 : Copy`
+
+        types
+            .skip_binder() // binder moved -\
+            .iter()
+            .flat_map(|ty| {
+                let ty: ty::Binder<Ty<'tcx>> = ty::Binder::bind(ty); // <----/
+
+                self.infcx.commit_unconditionally(|_| {
+                    let (placeholder_ty, _) = self.infcx.replace_bound_vars_with_placeholders(&ty);
+                    let Normalized { value: normalized_ty, mut obligations } =
+                        ensure_sufficient_stack(|| {
+                            project::normalize_with_depth(
+                                self,
+                                param_env,
+                                cause.clone(),
+                                recursion_depth,
+                                &placeholder_ty,
+                            )
+                        });
+                    let placeholder_obligation = predicate_for_trait_def(
+                        self.tcx(),
+                        param_env,
+                        cause.clone(),
+                        trait_def_id,
+                        recursion_depth,
+                        normalized_ty,
+                        &[],
+                    );
+                    obligations.push(placeholder_obligation);
+                    obligations
+                })
+            })
+            .collect()
+    }
+
+    ///////////////////////////////////////////////////////////////////////////
+    // Matching
+    //
+    // Matching is a common path used for both evaluation and
+    // confirmation.  It basically unifies types that appear in impls
+    // and traits. This does affect the surrounding environment;
+    // therefore, when used during evaluation, match routines must be
+    // run inside of a `probe()` so that their side-effects are
+    // contained.
+
+    fn rematch_impl(
+        &mut self,
+        impl_def_id: DefId,
+        obligation: &TraitObligation<'tcx>,
+    ) -> Normalized<'tcx, SubstsRef<'tcx>> {
+        match self.match_impl(impl_def_id, obligation) {
+            Ok(substs) => substs,
+            Err(()) => {
+                bug!(
+                    "Impl {:?} was matchable against {:?} but now is not",
+                    impl_def_id,
+                    obligation
+                );
+            }
+        }
+    }
+
+    fn match_impl(
+        &mut self,
+        impl_def_id: DefId,
+        obligation: &TraitObligation<'tcx>,
+    ) -> Result<Normalized<'tcx, SubstsRef<'tcx>>, ()> {
+        let impl_trait_ref = self.tcx().impl_trait_ref(impl_def_id).unwrap();
+
+        // Before we create the substitutions and everything, first
+        // consider a "quick reject". This avoids creating more types
+        // and so forth that we need to.
+        if self.fast_reject_trait_refs(obligation, &impl_trait_ref) {
+            return Err(());
+        }
+
+        let (placeholder_obligation, _) =
+            self.infcx().replace_bound_vars_with_placeholders(&obligation.predicate);
+        let placeholder_obligation_trait_ref = placeholder_obligation.trait_ref;
+
+        let impl_substs = self.infcx.fresh_substs_for_item(obligation.cause.span, impl_def_id);
+
+        let impl_trait_ref = impl_trait_ref.subst(self.tcx(), impl_substs);
+
+        let Normalized { value: impl_trait_ref, obligations: mut nested_obligations } =
+            ensure_sufficient_stack(|| {
+                project::normalize_with_depth(
+                    self,
+                    obligation.param_env,
+                    obligation.cause.clone(),
+                    obligation.recursion_depth + 1,
+                    &impl_trait_ref,
+                )
+            });
+
+        debug!(
+            "match_impl(impl_def_id={:?}, obligation={:?}, \
+             impl_trait_ref={:?}, placeholder_obligation_trait_ref={:?})",
+            impl_def_id, obligation, impl_trait_ref, placeholder_obligation_trait_ref
+        );
+
+        let InferOk { obligations, .. } = self
+            .infcx
+            .at(&obligation.cause, obligation.param_env)
+            .eq(placeholder_obligation_trait_ref, impl_trait_ref)
+            .map_err(|e| debug!("match_impl: failed eq_trait_refs due to `{}`", e))?;
+        nested_obligations.extend(obligations);
+
+        if !self.intercrate
+            && self.tcx().impl_polarity(impl_def_id) == ty::ImplPolarity::Reservation
+        {
+            debug!("match_impl: reservation impls only apply in intercrate mode");
+            return Err(());
+        }
+
+        debug!("match_impl: success impl_substs={:?}", impl_substs);
+        Ok(Normalized { value: impl_substs, obligations: nested_obligations })
+    }
+
+    fn fast_reject_trait_refs(
+        &mut self,
+        obligation: &TraitObligation<'_>,
+        impl_trait_ref: &ty::TraitRef<'_>,
+    ) -> bool {
+        // We can avoid creating type variables and doing the full
+        // substitution if we find that any of the input types, when
+        // simplified, do not match.
+
+        obligation.predicate.skip_binder().trait_ref.substs.iter().zip(impl_trait_ref.substs).any(
+            |(obligation_arg, impl_arg)| {
+                match (obligation_arg.unpack(), impl_arg.unpack()) {
+                    (GenericArgKind::Type(obligation_ty), GenericArgKind::Type(impl_ty)) => {
+                        let simplified_obligation_ty =
+                            fast_reject::simplify_type(self.tcx(), obligation_ty, true);
+                        let simplified_impl_ty =
+                            fast_reject::simplify_type(self.tcx(), impl_ty, false);
+
+                        simplified_obligation_ty.is_some()
+                            && simplified_impl_ty.is_some()
+                            && simplified_obligation_ty != simplified_impl_ty
+                    }
+                    (GenericArgKind::Lifetime(_), GenericArgKind::Lifetime(_)) => {
+                        // Lifetimes can never cause a rejection.
+                        false
+                    }
+                    (GenericArgKind::Const(_), GenericArgKind::Const(_)) => {
+                        // Conservatively ignore consts (i.e. assume they might
+                        // unify later) until we have `fast_reject` support for
+                        // them (if we'll ever need it, even).
+                        false
+                    }
+                    _ => unreachable!(),
+                }
+            },
+        )
+    }
+
+    /// Normalize `where_clause_trait_ref` and try to match it against
+    /// `obligation`. If successful, return any predicates that
+    /// result from the normalization. Normalization is necessary
+    /// because where-clauses are stored in the parameter environment
+    /// unnormalized.
+    fn match_where_clause_trait_ref(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+        where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
+    ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
+        self.match_poly_trait_ref(obligation, where_clause_trait_ref)
+    }
+
+    /// Returns `Ok` if `poly_trait_ref` being true implies that the
+    /// obligation is satisfied.
+    fn match_poly_trait_ref(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+        poly_trait_ref: ty::PolyTraitRef<'tcx>,
+    ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
+        debug!(
+            "match_poly_trait_ref: obligation={:?} poly_trait_ref={:?}",
+            obligation, poly_trait_ref
+        );
+
+        self.infcx
+            .at(&obligation.cause, obligation.param_env)
+            .sup(obligation.predicate.to_poly_trait_ref(), poly_trait_ref)
+            .map(|InferOk { obligations, .. }| obligations)
+            .map_err(|_| ())
+    }
+
+    ///////////////////////////////////////////////////////////////////////////
+    // Miscellany
+
+    fn match_fresh_trait_refs(
+        &self,
+        previous: ty::PolyTraitRef<'tcx>,
+        current: ty::PolyTraitRef<'tcx>,
+        param_env: ty::ParamEnv<'tcx>,
+    ) -> bool {
+        let mut matcher = ty::_match::Match::new(self.tcx(), param_env);
+        matcher.relate(previous, current).is_ok()
+    }
+
+    fn push_stack<'o>(
+        &mut self,
+        previous_stack: TraitObligationStackList<'o, 'tcx>,
+        obligation: &'o TraitObligation<'tcx>,
+    ) -> TraitObligationStack<'o, 'tcx> {
+        let fresh_trait_ref =
+            obligation.predicate.to_poly_trait_ref().fold_with(&mut self.freshener);
+
+        let dfn = previous_stack.cache.next_dfn();
+        let depth = previous_stack.depth() + 1;
+        TraitObligationStack {
+            obligation,
+            fresh_trait_ref,
+            reached_depth: Cell::new(depth),
+            previous: previous_stack,
+            dfn,
+            depth,
+        }
+    }
+
+    fn closure_trait_ref_unnormalized(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+        substs: SubstsRef<'tcx>,
+    ) -> ty::PolyTraitRef<'tcx> {
+        debug!("closure_trait_ref_unnormalized(obligation={:?}, substs={:?})", obligation, substs);
+        let closure_sig = substs.as_closure().sig();
+
+        debug!("closure_trait_ref_unnormalized: closure_sig = {:?}", closure_sig);
+
+        // (1) Feels icky to skip the binder here, but OTOH we know
+        // that the self-type is an unboxed closure type and hence is
+        // in fact unparameterized (or at least does not reference any
+        // regions bound in the obligation). Still probably some
+        // refactoring could make this nicer.
+        closure_trait_ref_and_return_type(
+            self.tcx(),
+            obligation.predicate.def_id(),
+            obligation.predicate.skip_binder().self_ty(), // (1)
+            closure_sig,
+            util::TupleArgumentsFlag::No,
+        )
+        .map_bound(|(trait_ref, _)| trait_ref)
+    }
+
+    fn generator_trait_ref_unnormalized(
+        &mut self,
+        obligation: &TraitObligation<'tcx>,
+        substs: SubstsRef<'tcx>,
+    ) -> ty::PolyTraitRef<'tcx> {
+        let gen_sig = substs.as_generator().poly_sig();
+
+        // (1) Feels icky to skip the binder here, but OTOH we know
+        // that the self-type is an generator type and hence is
+        // in fact unparameterized (or at least does not reference any
+        // regions bound in the obligation). Still probably some
+        // refactoring could make this nicer.
+
+        super::util::generator_trait_ref_and_outputs(
+            self.tcx(),
+            obligation.predicate.def_id(),
+            obligation.predicate.skip_binder().self_ty(), // (1)
+            gen_sig,
+        )
+        .map_bound(|(trait_ref, ..)| trait_ref)
+    }
+
+    /// Returns the obligations that are implied by instantiating an
+    /// impl or trait. The obligations are substituted and fully
+    /// normalized. This is used when confirming an impl or default
+    /// impl.
+    fn impl_or_trait_obligations(
+        &mut self,
+        cause: ObligationCause<'tcx>,
+        recursion_depth: usize,
+        param_env: ty::ParamEnv<'tcx>,
+        def_id: DefId,           // of impl or trait
+        substs: SubstsRef<'tcx>, // for impl or trait
+    ) -> Vec<PredicateObligation<'tcx>> {
+        debug!("impl_or_trait_obligations(def_id={:?})", def_id);
+        let tcx = self.tcx();
+
+        // To allow for one-pass evaluation of the nested obligation,
+        // each predicate must be preceded by the obligations required
+        // to normalize it.
+        // for example, if we have:
+        //    impl<U: Iterator<Item: Copy>, V: Iterator<Item = U>> Foo for V
+        // the impl will have the following predicates:
+        //    <V as Iterator>::Item = U,
+        //    U: Iterator, U: Sized,
+        //    V: Iterator, V: Sized,
+        //    <U as Iterator>::Item: Copy
+        // When we substitute, say, `V => IntoIter<u32>, U => $0`, the last
+        // obligation will normalize to `<$0 as Iterator>::Item = $1` and
+        // `$1: Copy`, so we must ensure the obligations are emitted in
+        // that order.
+        let predicates = tcx.predicates_of(def_id);
+        assert_eq!(predicates.parent, None);
+        let mut obligations = Vec::with_capacity(predicates.predicates.len());
+        for (predicate, _) in predicates.predicates {
+            let predicate = normalize_with_depth_to(
+                self,
+                param_env,
+                cause.clone(),
+                recursion_depth,
+                &predicate.subst(tcx, substs),
+                &mut obligations,
+            );
+            obligations.push(Obligation {
+                cause: cause.clone(),
+                recursion_depth,
+                param_env,
+                predicate,
+            });
+        }
+
+        // We are performing deduplication here to avoid exponential blowups
+        // (#38528) from happening, but the real cause of the duplication is
+        // unknown. What we know is that the deduplication avoids exponential
+        // amount of predicates being propagated when processing deeply nested
+        // types.
+        //
+        // This code is hot enough that it's worth avoiding the allocation
+        // required for the FxHashSet when possible. Special-casing lengths 0,
+        // 1 and 2 covers roughly 75-80% of the cases.
+        if obligations.len() <= 1 {
+            // No possibility of duplicates.
+        } else if obligations.len() == 2 {
+            // Only two elements. Drop the second if they are equal.
+            if obligations[0] == obligations[1] {
+                obligations.truncate(1);
+            }
+        } else {
+            // Three or more elements. Use a general deduplication process.
+            let mut seen = FxHashSet::default();
+            obligations.retain(|i| seen.insert(i.clone()));
+        }
+
+        obligations
+    }
+}
+
+trait TraitObligationExt<'tcx> {
+    fn derived_cause(
+        &self,
+        variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>,
+    ) -> ObligationCause<'tcx>;
+}
+
+impl<'tcx> TraitObligationExt<'tcx> for TraitObligation<'tcx> {
+    #[allow(unused_comparisons)]
+    fn derived_cause(
+        &self,
+        variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>,
+    ) -> ObligationCause<'tcx> {
+        /*!
+         * Creates a cause for obligations that are derived from
+         * `obligation` by a recursive search (e.g., for a builtin
+         * bound, or eventually a `auto trait Foo`). If `obligation`
+         * is itself a derived obligation, this is just a clone, but
+         * otherwise we create a "derived obligation" cause so as to
+         * keep track of the original root obligation for error
+         * reporting.
+         */
+
+        let obligation = self;
+
+        // NOTE(flaper87): As of now, it keeps track of the whole error
+        // chain. Ideally, we should have a way to configure this either
+        // by using -Z verbose or just a CLI argument.
+        let derived_cause = DerivedObligationCause {
+            parent_trait_ref: obligation.predicate.to_poly_trait_ref(),
+            parent_code: Rc::new(obligation.cause.code.clone()),
+        };
+        let derived_code = variant(derived_cause);
+        ObligationCause::new(obligation.cause.span, obligation.cause.body_id, derived_code)
+    }
+}
+
+impl<'o, 'tcx> TraitObligationStack<'o, 'tcx> {
+    fn list(&'o self) -> TraitObligationStackList<'o, 'tcx> {
+        TraitObligationStackList::with(self)
+    }
+
+    fn cache(&self) -> &'o ProvisionalEvaluationCache<'tcx> {
+        self.previous.cache
+    }
+
+    fn iter(&'o self) -> TraitObligationStackList<'o, 'tcx> {
+        self.list()
+    }
+
+    /// Indicates that attempting to evaluate this stack entry
+    /// required accessing something from the stack at depth `reached_depth`.
+    fn update_reached_depth(&self, reached_depth: usize) {
+        assert!(
+            self.depth > reached_depth,
+            "invoked `update_reached_depth` with something under this stack: \
+             self.depth={} reached_depth={}",
+            self.depth,
+            reached_depth,
+        );
+        debug!("update_reached_depth(reached_depth={})", reached_depth);
+        let mut p = self;
+        while reached_depth < p.depth {
+            debug!("update_reached_depth: marking {:?} as cycle participant", p.fresh_trait_ref);
+            p.reached_depth.set(p.reached_depth.get().min(reached_depth));
+            p = p.previous.head.unwrap();
+        }
+    }
+}
+
+/// The "provisional evaluation cache" is used to store intermediate cache results
+/// when solving auto traits. Auto traits are unusual in that they can support
+/// cycles. So, for example, a "proof tree" like this would be ok:
+///
+/// - `Foo<T>: Send` :-
+///   - `Bar<T>: Send` :-
+///     - `Foo<T>: Send` -- cycle, but ok
+///   - `Baz<T>: Send`
+///
+/// Here, to prove `Foo<T>: Send`, we have to prove `Bar<T>: Send` and
+/// `Baz<T>: Send`. Proving `Bar<T>: Send` in turn required `Foo<T>: Send`.
+/// For non-auto traits, this cycle would be an error, but for auto traits (because
+/// they are coinductive) it is considered ok.
+///
+/// However, there is a complication: at the point where we have
+/// "proven" `Bar<T>: Send`, we have in fact only proven it
+/// *provisionally*. In particular, we proved that `Bar<T>: Send`
+/// *under the assumption* that `Foo<T>: Send`. But what if we later
+/// find out this assumption is wrong?  Specifically, we could
+/// encounter some kind of error proving `Baz<T>: Send`. In that case,
+/// `Bar<T>: Send` didn't turn out to be true.
+///
+/// In Issue #60010, we found a bug in rustc where it would cache
+/// these intermediate results. This was fixed in #60444 by disabling
+/// *all* caching for things involved in a cycle -- in our example,
+/// that would mean we don't cache that `Bar<T>: Send`.  But this led
+/// to large slowdowns.
+///
+/// Specifically, imagine this scenario, where proving `Baz<T>: Send`
+/// first requires proving `Bar<T>: Send` (which is true:
+///
+/// - `Foo<T>: Send` :-
+///   - `Bar<T>: Send` :-
+///     - `Foo<T>: Send` -- cycle, but ok
+///   - `Baz<T>: Send`
+///     - `Bar<T>: Send` -- would be nice for this to be a cache hit!
+///     - `*const T: Send` -- but what if we later encounter an error?
+///
+/// The *provisional evaluation cache* resolves this issue. It stores
+/// cache results that we've proven but which were involved in a cycle
+/// in some way. We track the minimal stack depth (i.e., the
+/// farthest from the top of the stack) that we are dependent on.
+/// The idea is that the cache results within are all valid -- so long as
+/// none of the nodes in between the current node and the node at that minimum
+/// depth result in an error (in which case the cached results are just thrown away).
+///
+/// During evaluation, we consult this provisional cache and rely on
+/// it. Accessing a cached value is considered equivalent to accessing
+/// a result at `reached_depth`, so it marks the *current* solution as
+/// provisional as well. If an error is encountered, we toss out any
+/// provisional results added from the subtree that encountered the
+/// error.  When we pop the node at `reached_depth` from the stack, we
+/// can commit all the things that remain in the provisional cache.
+struct ProvisionalEvaluationCache<'tcx> {
+    /// next "depth first number" to issue -- just a counter
+    dfn: Cell<usize>,
+
+    /// Stores the "coldest" depth (bottom of stack) reached by any of
+    /// the evaluation entries. The idea here is that all things in the provisional
+    /// cache are always dependent on *something* that is colder in the stack:
+    /// therefore, if we add a new entry that is dependent on something *colder still*,
+    /// we have to modify the depth for all entries at once.
+    ///
+    /// Example:
+    ///
+    /// Imagine we have a stack `A B C D E` (with `E` being the top of
+    /// the stack).  We cache something with depth 2, which means that
+    /// it was dependent on C.  Then we pop E but go on and process a
+    /// new node F: A B C D F.  Now F adds something to the cache with
+    /// depth 1, meaning it is dependent on B.  Our original cache
+    /// entry is also dependent on B, because there is a path from E
+    /// to C and then from C to F and from F to B.
+    reached_depth: Cell<usize>,
+
+    /// Map from cache key to the provisionally evaluated thing.
+    /// The cache entries contain the result but also the DFN in which they
+    /// were added. The DFN is used to clear out values on failure.
+    ///
+    /// Imagine we have a stack like:
+    ///
+    /// - `A B C` and we add a cache for the result of C (DFN 2)
+    /// - Then we have a stack `A B D` where `D` has DFN 3
+    /// - We try to solve D by evaluating E: `A B D E` (DFN 4)
+    /// - `E` generates various cache entries which have cyclic dependices on `B`
+    ///   - `A B D E F` and so forth
+    ///   - the DFN of `F` for example would be 5
+    /// - then we determine that `E` is in error -- we will then clear
+    ///   all cache values whose DFN is >= 4 -- in this case, that
+    ///   means the cached value for `F`.
+    map: RefCell<FxHashMap<ty::PolyTraitRef<'tcx>, ProvisionalEvaluation>>,
+}
+
+/// A cache value for the provisional cache: contains the depth-first
+/// number (DFN) and result.
+#[derive(Copy, Clone, Debug)]
+struct ProvisionalEvaluation {
+    from_dfn: usize,
+    result: EvaluationResult,
+}
+
+impl<'tcx> Default for ProvisionalEvaluationCache<'tcx> {
+    fn default() -> Self {
+        Self { dfn: Cell::new(0), reached_depth: Cell::new(usize::MAX), map: Default::default() }
+    }
+}
+
+impl<'tcx> ProvisionalEvaluationCache<'tcx> {
+    /// Get the next DFN in sequence (basically a counter).
+    fn next_dfn(&self) -> usize {
+        let result = self.dfn.get();
+        self.dfn.set(result + 1);
+        result
+    }
+
+    /// Check the provisional cache for any result for
+    /// `fresh_trait_ref`. If there is a hit, then you must consider
+    /// it an access to the stack slots at depth
+    /// `self.current_reached_depth()` and above.
+    fn get_provisional(&self, fresh_trait_ref: ty::PolyTraitRef<'tcx>) -> Option<EvaluationResult> {
+        debug!(
+            "get_provisional(fresh_trait_ref={:?}) = {:#?} with reached-depth {}",
+            fresh_trait_ref,
+            self.map.borrow().get(&fresh_trait_ref),
+            self.reached_depth.get(),
+        );
+        Some(self.map.borrow().get(&fresh_trait_ref)?.result)
+    }
+
+    /// Current value of the `reached_depth` counter -- all the
+    /// provisional cache entries are dependent on the item at this
+    /// depth.
+    fn current_reached_depth(&self) -> usize {
+        self.reached_depth.get()
+    }
+
+    /// Insert a provisional result into the cache. The result came
+    /// from the node with the given DFN. It accessed a minimum depth
+    /// of `reached_depth` to compute. It evaluated `fresh_trait_ref`
+    /// and resulted in `result`.
+    fn insert_provisional(
+        &self,
+        from_dfn: usize,
+        reached_depth: usize,
+        fresh_trait_ref: ty::PolyTraitRef<'tcx>,
+        result: EvaluationResult,
+    ) {
+        debug!(
+            "insert_provisional(from_dfn={}, reached_depth={}, fresh_trait_ref={:?}, result={:?})",
+            from_dfn, reached_depth, fresh_trait_ref, result,
+        );
+        let r_d = self.reached_depth.get();
+        self.reached_depth.set(r_d.min(reached_depth));
+
+        debug!("insert_provisional: reached_depth={:?}", self.reached_depth.get());
+
+        self.map.borrow_mut().insert(fresh_trait_ref, ProvisionalEvaluation { from_dfn, result });
+    }
+
+    /// Invoked when the node with dfn `dfn` does not get a successful
+    /// result.  This will clear out any provisional cache entries
+    /// that were added since `dfn` was created. This is because the
+    /// provisional entries are things which must assume that the
+    /// things on the stack at the time of their creation succeeded --
+    /// since the failing node is presently at the top of the stack,
+    /// these provisional entries must either depend on it or some
+    /// ancestor of it.
+    fn on_failure(&self, dfn: usize) {
+        debug!("on_failure(dfn={:?})", dfn,);
+        self.map.borrow_mut().retain(|key, eval| {
+            if !eval.from_dfn >= dfn {
+                debug!("on_failure: removing {:?}", key);
+                false
+            } else {
+                true
+            }
+        });
+    }
+
+    /// Invoked when the node at depth `depth` completed without
+    /// depending on anything higher in the stack (if that completion
+    /// was a failure, then `on_failure` should have been invoked
+    /// already). The callback `op` will be invoked for each
+    /// provisional entry that we can now confirm.
+    fn on_completion(
+        &self,
+        depth: usize,
+        mut op: impl FnMut(ty::PolyTraitRef<'tcx>, EvaluationResult),
+    ) {
+        debug!("on_completion(depth={}, reached_depth={})", depth, self.reached_depth.get(),);
+
+        if self.reached_depth.get() < depth {
+            debug!("on_completion: did not yet reach depth to complete");
+            return;
+        }
+
+        for (fresh_trait_ref, eval) in self.map.borrow_mut().drain() {
+            debug!("on_completion: fresh_trait_ref={:?} eval={:?}", fresh_trait_ref, eval,);
+
+            op(fresh_trait_ref, eval.result);
+        }
+
+        self.reached_depth.set(usize::MAX);
+    }
+}
+
+#[derive(Copy, Clone)]
+struct TraitObligationStackList<'o, 'tcx> {
+    cache: &'o ProvisionalEvaluationCache<'tcx>,
+    head: Option<&'o TraitObligationStack<'o, 'tcx>>,
+}
+
+impl<'o, 'tcx> TraitObligationStackList<'o, 'tcx> {
+    fn empty(cache: &'o ProvisionalEvaluationCache<'tcx>) -> TraitObligationStackList<'o, 'tcx> {
+        TraitObligationStackList { cache, head: None }
+    }
+
+    fn with(r: &'o TraitObligationStack<'o, 'tcx>) -> TraitObligationStackList<'o, 'tcx> {
+        TraitObligationStackList { cache: r.cache(), head: Some(r) }
+    }
+
+    fn head(&self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
+        self.head
+    }
+
+    fn depth(&self) -> usize {
+        if let Some(head) = self.head { head.depth } else { 0 }
+    }
+}
+
+impl<'o, 'tcx> Iterator for TraitObligationStackList<'o, 'tcx> {
+    type Item = &'o TraitObligationStack<'o, 'tcx>;
+
+    fn next(&mut self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
+        match self.head {
+            Some(o) => {
+                *self = o.previous;
+                Some(o)
+            }
+            None => None,
+        }
+    }
+}
+
+impl<'o, 'tcx> fmt::Debug for TraitObligationStack<'o, 'tcx> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        write!(f, "TraitObligationStack({:?})", self.obligation)
+    }
+}