about summary refs log tree commit diff
path: root/library/compiler-builtins/libm/src/math/jn.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/compiler-builtins/libm/src/math/jn.rs')
-rw-r--r--library/compiler-builtins/libm/src/math/jn.rs339
1 files changed, 339 insertions, 0 deletions
diff --git a/library/compiler-builtins/libm/src/math/jn.rs b/library/compiler-builtins/libm/src/math/jn.rs
new file mode 100644
index 00000000000..31f8d9c5382
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/jn.rs
@@ -0,0 +1,339 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * jn(n, x), yn(n, x)
+ * floating point Bessel's function of the 1st and 2nd kind
+ * of order n
+ *
+ * Special cases:
+ *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
+ *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
+ * Note 2. About jn(n,x), yn(n,x)
+ *      For n=0, j0(x) is called,
+ *      for n=1, j1(x) is called,
+ *      for n<=x, forward recursion is used starting
+ *      from values of j0(x) and j1(x).
+ *      for n>x, a continued fraction approximation to
+ *      j(n,x)/j(n-1,x) is evaluated and then backward
+ *      recursion is used starting from a supposed value
+ *      for j(n,x). The resulting value of j(0,x) is
+ *      compared with the actual value to correct the
+ *      supposed value of j(n,x).
+ *
+ *      yn(n,x) is similar in all respects, except
+ *      that forward recursion is used for all
+ *      values of n>1.
+ */
+
+use super::{cos, fabs, get_high_word, get_low_word, j0, j1, log, sin, sqrt, y0, y1};
+
+const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
+
+/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f64).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn jn(n: i32, mut x: f64) -> f64 {
+    let mut ix: u32;
+    let lx: u32;
+    let nm1: i32;
+    let mut i: i32;
+    let mut sign: bool;
+    let mut a: f64;
+    let mut b: f64;
+    let mut temp: f64;
+
+    ix = get_high_word(x);
+    lx = get_low_word(x);
+    sign = (ix >> 31) != 0;
+    ix &= 0x7fffffff;
+
+    // -lx == !lx + 1
+    if ix | ((lx | (!lx).wrapping_add(1)) >> 31) > 0x7ff00000 {
+        /* nan */
+        return x;
+    }
+
+    /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
+     * Thus, J(-n,x) = J(n,-x)
+     */
+    /* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */
+    if n == 0 {
+        return j0(x);
+    }
+    if n < 0 {
+        nm1 = -(n + 1);
+        x = -x;
+        sign = !sign;
+    } else {
+        nm1 = n - 1;
+    }
+    if nm1 == 0 {
+        return j1(x);
+    }
+
+    sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
+    x = fabs(x);
+    if (ix | lx) == 0 || ix == 0x7ff00000 {
+        /* if x is 0 or inf */
+        b = 0.0;
+    } else if (nm1 as f64) < x {
+        /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+        if ix >= 0x52d00000 {
+            /* x > 2**302 */
+            /* (x >> n**2)
+             *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+             *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+             *      Let s=sin(x), c=cos(x),
+             *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+             *
+             *             n    sin(xn)*sqt2    cos(xn)*sqt2
+             *          ----------------------------------
+             *             0     s-c             c+s
+             *             1    -s-c            -c+s
+             *             2    -s+c            -c-s
+             *             3     s+c             c-s
+             */
+            temp = match nm1 & 3 {
+                0 => -cos(x) + sin(x),
+                1 => -cos(x) - sin(x),
+                2 => cos(x) - sin(x),
+                // 3
+                _ => cos(x) + sin(x),
+            };
+            b = INVSQRTPI * temp / sqrt(x);
+        } else {
+            a = j0(x);
+            b = j1(x);
+            i = 0;
+            while i < nm1 {
+                i += 1;
+                temp = b;
+                b = b * (2.0 * (i as f64) / x) - a; /* avoid underflow */
+                a = temp;
+            }
+        }
+    } else if ix < 0x3e100000 {
+        /* x < 2**-29 */
+        /* x is tiny, return the first Taylor expansion of J(n,x)
+         * J(n,x) = 1/n!*(x/2)^n  - ...
+         */
+        if nm1 > 32 {
+            /* underflow */
+            b = 0.0;
+        } else {
+            temp = x * 0.5;
+            b = temp;
+            a = 1.0;
+            i = 2;
+            while i <= nm1 + 1 {
+                a *= i as f64; /* a = n! */
+                b *= temp; /* b = (x/2)^n */
+                i += 1;
+            }
+            b = b / a;
+        }
+    } else {
+        /* use backward recurrence */
+        /*                      x      x^2      x^2
+         *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
+         *                      2n  - 2(n+1) - 2(n+2)
+         *
+         *                      1      1        1
+         *  (for large x)   =  ----  ------   ------   .....
+         *                      2n   2(n+1)   2(n+2)
+         *                      -- - ------ - ------ -
+         *                       x     x         x
+         *
+         * Let w = 2n/x and h=2/x, then the above quotient
+         * is equal to the continued fraction:
+         *                  1
+         *      = -----------------------
+         *                     1
+         *         w - -----------------
+         *                        1
+         *              w+h - ---------
+         *                     w+2h - ...
+         *
+         * To determine how many terms needed, let
+         * Q(0) = w, Q(1) = w(w+h) - 1,
+         * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+         * When Q(k) > 1e4      good for single
+         * When Q(k) > 1e9      good for double
+         * When Q(k) > 1e17     good for quadruple
+         */
+        /* determine k */
+        let mut t: f64;
+        let mut q0: f64;
+        let mut q1: f64;
+        let mut w: f64;
+        let h: f64;
+        let mut z: f64;
+        let mut tmp: f64;
+        let nf: f64;
+
+        let mut k: i32;
+
+        nf = (nm1 as f64) + 1.0;
+        w = 2.0 * nf / x;
+        h = 2.0 / x;
+        z = w + h;
+        q0 = w;
+        q1 = w * z - 1.0;
+        k = 1;
+        while q1 < 1.0e9 {
+            k += 1;
+            z += h;
+            tmp = z * q1 - q0;
+            q0 = q1;
+            q1 = tmp;
+        }
+        t = 0.0;
+        i = k;
+        while i >= 0 {
+            t = 1.0 / (2.0 * ((i as f64) + nf) / x - t);
+            i -= 1;
+        }
+        a = t;
+        b = 1.0;
+        /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+         *  Hence, if n*(log(2n/x)) > ...
+         *  single 8.8722839355e+01
+         *  double 7.09782712893383973096e+02
+         *  long double 1.1356523406294143949491931077970765006170e+04
+         *  then recurrent value may overflow and the result is
+         *  likely underflow to zero
+         */
+        tmp = nf * log(fabs(w));
+        if tmp < 7.09782712893383973096e+02 {
+            i = nm1;
+            while i > 0 {
+                temp = b;
+                b = b * (2.0 * (i as f64)) / x - a;
+                a = temp;
+                i -= 1;
+            }
+        } else {
+            i = nm1;
+            while i > 0 {
+                temp = b;
+                b = b * (2.0 * (i as f64)) / x - a;
+                a = temp;
+                /* scale b to avoid spurious overflow */
+                let x1p500 = f64::from_bits(0x5f30000000000000); // 0x1p500 == 2^500
+                if b > x1p500 {
+                    a /= b;
+                    t /= b;
+                    b = 1.0;
+                }
+                i -= 1;
+            }
+        }
+        z = j0(x);
+        w = j1(x);
+        if fabs(z) >= fabs(w) {
+            b = t * z / b;
+        } else {
+            b = t * w / a;
+        }
+    }
+
+    if sign { -b } else { b }
+}
+
+/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f64).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn yn(n: i32, x: f64) -> f64 {
+    let mut ix: u32;
+    let lx: u32;
+    let mut ib: u32;
+    let nm1: i32;
+    let mut sign: bool;
+    let mut i: i32;
+    let mut a: f64;
+    let mut b: f64;
+    let mut temp: f64;
+
+    ix = get_high_word(x);
+    lx = get_low_word(x);
+    sign = (ix >> 31) != 0;
+    ix &= 0x7fffffff;
+
+    // -lx == !lx + 1
+    if ix | ((lx | (!lx).wrapping_add(1)) >> 31) > 0x7ff00000 {
+        /* nan */
+        return x;
+    }
+    if sign && (ix | lx) != 0 {
+        /* x < 0 */
+        return 0.0 / 0.0;
+    }
+    if ix == 0x7ff00000 {
+        return 0.0;
+    }
+
+    if n == 0 {
+        return y0(x);
+    }
+    if n < 0 {
+        nm1 = -(n + 1);
+        sign = (n & 1) != 0;
+    } else {
+        nm1 = n - 1;
+        sign = false;
+    }
+    if nm1 == 0 {
+        if sign {
+            return -y1(x);
+        } else {
+            return y1(x);
+        }
+    }
+
+    if ix >= 0x52d00000 {
+        /* x > 2**302 */
+        /* (x >> n**2)
+         *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+         *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+         *      Let s=sin(x), c=cos(x),
+         *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+         *
+         *             n    sin(xn)*sqt2    cos(xn)*sqt2
+         *          ----------------------------------
+         *             0     s-c             c+s
+         *             1    -s-c            -c+s
+         *             2    -s+c            -c-s
+         *             3     s+c             c-s
+         */
+        temp = match nm1 & 3 {
+            0 => -sin(x) - cos(x),
+            1 => -sin(x) + cos(x),
+            2 => sin(x) + cos(x),
+            // 3
+            _ => sin(x) - cos(x),
+        };
+        b = INVSQRTPI * temp / sqrt(x);
+    } else {
+        a = y0(x);
+        b = y1(x);
+        /* quit if b is -inf */
+        ib = get_high_word(b);
+        i = 0;
+        while i < nm1 && ib != 0xfff00000 {
+            i += 1;
+            temp = b;
+            b = (2.0 * (i as f64) / x) * b - a;
+            ib = get_high_word(b);
+            a = temp;
+        }
+    }
+
+    if sign { -b } else { b }
+}