diff options
Diffstat (limited to 'library/compiler-builtins/libm/src/math')
168 files changed, 17579 insertions, 0 deletions
diff --git a/library/compiler-builtins/libm/src/math/acos.rs b/library/compiler-builtins/libm/src/math/acos.rs new file mode 100644 index 00000000000..23b13251ee2 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/acos.rs @@ -0,0 +1,112 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_acos.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* acos(x) + * Method : + * acos(x) = pi/2 - asin(x) + * acos(-x) = pi/2 + asin(x) + * For |x|<=0.5 + * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) + * For x>0.5 + * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) + * = 2asin(sqrt((1-x)/2)) + * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) + * = 2f + (2c + 2s*z*R(z)) + * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term + * for f so that f+c ~ sqrt(z). + * For x<-0.5 + * acos(x) = pi - 2asin(sqrt((1-|x|)/2)) + * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) + * + * Special cases: + * if x is NaN, return x itself; + * if |x|>1, return NaN with invalid signal. + * + * Function needed: sqrt + */ + +use super::sqrt; + +const PIO2_HI: f64 = 1.57079632679489655800e+00; /* 0x3FF921FB, 0x54442D18 */ +const PIO2_LO: f64 = 6.12323399573676603587e-17; /* 0x3C91A626, 0x33145C07 */ +const PS0: f64 = 1.66666666666666657415e-01; /* 0x3FC55555, 0x55555555 */ +const PS1: f64 = -3.25565818622400915405e-01; /* 0xBFD4D612, 0x03EB6F7D */ +const PS2: f64 = 2.01212532134862925881e-01; /* 0x3FC9C155, 0x0E884455 */ +const PS3: f64 = -4.00555345006794114027e-02; /* 0xBFA48228, 0xB5688F3B */ +const PS4: f64 = 7.91534994289814532176e-04; /* 0x3F49EFE0, 0x7501B288 */ +const PS5: f64 = 3.47933107596021167570e-05; /* 0x3F023DE1, 0x0DFDF709 */ +const QS1: f64 = -2.40339491173441421878e+00; /* 0xC0033A27, 0x1C8A2D4B */ +const QS2: f64 = 2.02094576023350569471e+00; /* 0x40002AE5, 0x9C598AC8 */ +const QS3: f64 = -6.88283971605453293030e-01; /* 0xBFE6066C, 0x1B8D0159 */ +const QS4: f64 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ + +fn r(z: f64) -> f64 { + let p: f64 = z * (PS0 + z * (PS1 + z * (PS2 + z * (PS3 + z * (PS4 + z * PS5))))); + let q: f64 = 1.0 + z * (QS1 + z * (QS2 + z * (QS3 + z * QS4))); + p / q +} + +/// Arccosine (f64) +/// +/// Computes the inverse cosine (arc cosine) of the input value. +/// Arguments must be in the range -1 to 1. +/// Returns values in radians, in the range of 0 to pi. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn acos(x: f64) -> f64 { + let x1p_120f = f64::from_bits(0x3870000000000000); // 0x1p-120 === 2 ^ -120 + let z: f64; + let w: f64; + let s: f64; + let c: f64; + let df: f64; + let hx: u32; + let ix: u32; + + hx = (x.to_bits() >> 32) as u32; + ix = hx & 0x7fffffff; + /* |x| >= 1 or nan */ + if ix >= 0x3ff00000 { + let lx: u32 = x.to_bits() as u32; + + if ((ix - 0x3ff00000) | lx) == 0 { + /* acos(1)=0, acos(-1)=pi */ + if (hx >> 31) != 0 { + return 2. * PIO2_HI + x1p_120f; + } + return 0.; + } + return 0. / (x - x); + } + /* |x| < 0.5 */ + if ix < 0x3fe00000 { + if ix <= 0x3c600000 { + /* |x| < 2**-57 */ + return PIO2_HI + x1p_120f; + } + return PIO2_HI - (x - (PIO2_LO - x * r(x * x))); + } + /* x < -0.5 */ + if (hx >> 31) != 0 { + z = (1.0 + x) * 0.5; + s = sqrt(z); + w = r(z) * s - PIO2_LO; + return 2. * (PIO2_HI - (s + w)); + } + /* x > 0.5 */ + z = (1.0 - x) * 0.5; + s = sqrt(z); + // Set the low 4 bytes to zero + df = f64::from_bits(s.to_bits() & 0xff_ff_ff_ff_00_00_00_00); + + c = (z - df * df) / (s + df); + w = r(z) * s + c; + 2. * (df + w) +} diff --git a/library/compiler-builtins/libm/src/math/acosf.rs b/library/compiler-builtins/libm/src/math/acosf.rs new file mode 100644 index 00000000000..dd88eea5b13 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/acosf.rs @@ -0,0 +1,79 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_acosf.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +use super::sqrt::sqrtf; + +const PIO2_HI: f32 = 1.5707962513e+00; /* 0x3fc90fda */ +const PIO2_LO: f32 = 7.5497894159e-08; /* 0x33a22168 */ +const P_S0: f32 = 1.6666586697e-01; +const P_S1: f32 = -4.2743422091e-02; +const P_S2: f32 = -8.6563630030e-03; +const Q_S1: f32 = -7.0662963390e-01; + +fn r(z: f32) -> f32 { + let p = z * (P_S0 + z * (P_S1 + z * P_S2)); + let q = 1. + z * Q_S1; + p / q +} + +/// Arccosine (f32) +/// +/// Computes the inverse cosine (arc cosine) of the input value. +/// Arguments must be in the range -1 to 1. +/// Returns values in radians, in the range of 0 to pi. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn acosf(x: f32) -> f32 { + let x1p_120 = f32::from_bits(0x03800000); // 0x1p-120 === 2 ^ (-120) + + let z: f32; + let w: f32; + let s: f32; + + let mut hx = x.to_bits(); + let ix = hx & 0x7fffffff; + /* |x| >= 1 or nan */ + if ix >= 0x3f800000 { + if ix == 0x3f800000 { + if (hx >> 31) != 0 { + return 2. * PIO2_HI + x1p_120; + } + return 0.; + } + return 0. / (x - x); + } + /* |x| < 0.5 */ + if ix < 0x3f000000 { + if ix <= 0x32800000 { + /* |x| < 2**-26 */ + return PIO2_HI + x1p_120; + } + return PIO2_HI - (x - (PIO2_LO - x * r(x * x))); + } + /* x < -0.5 */ + if (hx >> 31) != 0 { + z = (1. + x) * 0.5; + s = sqrtf(z); + w = r(z) * s - PIO2_LO; + return 2. * (PIO2_HI - (s + w)); + } + /* x > 0.5 */ + z = (1. - x) * 0.5; + s = sqrtf(z); + hx = s.to_bits(); + let df = f32::from_bits(hx & 0xfffff000); + let c = (z - df * df) / (s + df); + w = r(z) * s + c; + 2. * (df + w) +} diff --git a/library/compiler-builtins/libm/src/math/acosh.rs b/library/compiler-builtins/libm/src/math/acosh.rs new file mode 100644 index 00000000000..d1f5b9fa937 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/acosh.rs @@ -0,0 +1,27 @@ +use super::{log, log1p, sqrt}; + +const LN2: f64 = 0.693147180559945309417232121458176568; /* 0x3fe62e42, 0xfefa39ef*/ + +/// Inverse hyperbolic cosine (f64) +/// +/// Calculates the inverse hyperbolic cosine of `x`. +/// Is defined as `log(x + sqrt(x*x-1))`. +/// `x` must be a number greater than or equal to 1. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn acosh(x: f64) -> f64 { + let u = x.to_bits(); + let e = ((u >> 52) as usize) & 0x7ff; + + /* x < 1 domain error is handled in the called functions */ + + if e < 0x3ff + 1 { + /* |x| < 2, up to 2ulp error in [1,1.125] */ + return log1p(x - 1.0 + sqrt((x - 1.0) * (x - 1.0) + 2.0 * (x - 1.0))); + } + if e < 0x3ff + 26 { + /* |x| < 0x1p26 */ + return log(2.0 * x - 1.0 / (x + sqrt(x * x - 1.0))); + } + /* |x| >= 0x1p26 or nan */ + return log(x) + LN2; +} diff --git a/library/compiler-builtins/libm/src/math/acoshf.rs b/library/compiler-builtins/libm/src/math/acoshf.rs new file mode 100644 index 00000000000..ad3455fdd48 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/acoshf.rs @@ -0,0 +1,26 @@ +use super::{log1pf, logf, sqrtf}; + +const LN2: f32 = 0.693147180559945309417232121458176568; + +/// Inverse hyperbolic cosine (f32) +/// +/// Calculates the inverse hyperbolic cosine of `x`. +/// Is defined as `log(x + sqrt(x*x-1))`. +/// `x` must be a number greater than or equal to 1. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn acoshf(x: f32) -> f32 { + let u = x.to_bits(); + let a = u & 0x7fffffff; + + if a < 0x3f800000 + (1 << 23) { + /* |x| < 2, invalid if x < 1 or nan */ + /* up to 2ulp error in [1,1.125] */ + return log1pf(x - 1.0 + sqrtf((x - 1.0) * (x - 1.0) + 2.0 * (x - 1.0))); + } + if a < 0x3f800000 + (12 << 23) { + /* |x| < 0x1p12 */ + return logf(2.0 * x - 1.0 / (x + sqrtf(x * x - 1.0))); + } + /* x >= 0x1p12 */ + return logf(x) + LN2; +} diff --git a/library/compiler-builtins/libm/src/math/arch/aarch64.rs b/library/compiler-builtins/libm/src/math/arch/aarch64.rs new file mode 100644 index 00000000000..020bb731cdc --- /dev/null +++ b/library/compiler-builtins/libm/src/math/arch/aarch64.rs @@ -0,0 +1,115 @@ +//! Architecture-specific support for aarch64 with neon. + +use core::arch::asm; + +pub fn fma(mut x: f64, y: f64, z: f64) -> f64 { + // SAFETY: `fmadd` is available with neon and has no side effects. + unsafe { + asm!( + "fmadd {x:d}, {x:d}, {y:d}, {z:d}", + x = inout(vreg) x, + y = in(vreg) y, + z = in(vreg) z, + options(nomem, nostack, pure) + ); + } + x +} + +pub fn fmaf(mut x: f32, y: f32, z: f32) -> f32 { + // SAFETY: `fmadd` is available with neon and has no side effects. + unsafe { + asm!( + "fmadd {x:s}, {x:s}, {y:s}, {z:s}", + x = inout(vreg) x, + y = in(vreg) y, + z = in(vreg) z, + options(nomem, nostack, pure) + ); + } + x +} + +pub fn rint(mut x: f64) -> f64 { + // SAFETY: `frintn` is available with neon and has no side effects. + // + // `frintn` is always round-to-nearest which does not match the C specification, but Rust does + // not support rounding modes. + unsafe { + asm!( + "frintn {x:d}, {x:d}", + x = inout(vreg) x, + options(nomem, nostack, pure) + ); + } + x +} + +pub fn rintf(mut x: f32) -> f32 { + // SAFETY: `frintn` is available with neon and has no side effects. + // + // `frintn` is always round-to-nearest which does not match the C specification, but Rust does + // not support rounding modes. + unsafe { + asm!( + "frintn {x:s}, {x:s}", + x = inout(vreg) x, + options(nomem, nostack, pure) + ); + } + x +} + +#[cfg(all(f16_enabled, target_feature = "fp16"))] +pub fn rintf16(mut x: f16) -> f16 { + // SAFETY: `frintn` is available for `f16` with `fp16` (implies `neon`) and has no side effects. + // + // `frintn` is always round-to-nearest which does not match the C specification, but Rust does + // not support rounding modes. + unsafe { + asm!( + "frintn {x:h}, {x:h}", + x = inout(vreg) x, + options(nomem, nostack, pure) + ); + } + x +} + +pub fn sqrt(mut x: f64) -> f64 { + // SAFETY: `fsqrt` is available with neon and has no side effects. + unsafe { + asm!( + "fsqrt {x:d}, {x:d}", + x = inout(vreg) x, + options(nomem, nostack, pure) + ); + } + x +} + +pub fn sqrtf(mut x: f32) -> f32 { + // SAFETY: `fsqrt` is available with neon and has no side effects. + unsafe { + asm!( + "fsqrt {x:s}, {x:s}", + x = inout(vreg) x, + options(nomem, nostack, pure) + ); + } + x +} + +#[cfg(all(f16_enabled, target_feature = "fp16"))] +pub fn sqrtf16(mut x: f16) -> f16 { + // SAFETY: `fsqrt` is available for `f16` with `fp16` (implies `neon`) and has no + // side effects. + unsafe { + asm!( + "fsqrt {x:h}, {x:h}", + x = inout(vreg) x, + options(nomem, nostack, pure) + ); + } + x +} diff --git a/library/compiler-builtins/libm/src/math/arch/i586.rs b/library/compiler-builtins/libm/src/math/arch/i586.rs new file mode 100644 index 00000000000..f92b9a2af71 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/arch/i586.rs @@ -0,0 +1,37 @@ +//! Architecture-specific support for x86-32 without SSE2 + +use super::super::fabs; + +/// Use an alternative implementation on x86, because the +/// main implementation fails with the x87 FPU used by +/// debian i386, probably due to excess precision issues. +/// Basic implementation taken from https://github.com/rust-lang/libm/issues/219. +pub fn ceil(x: f64) -> f64 { + if fabs(x).to_bits() < 4503599627370496.0_f64.to_bits() { + let truncated = x as i64 as f64; + if truncated < x { + return truncated + 1.0; + } else { + return truncated; + } + } else { + return x; + } +} + +/// Use an alternative implementation on x86, because the +/// main implementation fails with the x87 FPU used by +/// debian i386, probably due to excess precision issues. +/// Basic implementation taken from https://github.com/rust-lang/libm/issues/219. +pub fn floor(x: f64) -> f64 { + if fabs(x).to_bits() < 4503599627370496.0_f64.to_bits() { + let truncated = x as i64 as f64; + if truncated > x { + return truncated - 1.0; + } else { + return truncated; + } + } else { + return x; + } +} diff --git a/library/compiler-builtins/libm/src/math/arch/i686.rs b/library/compiler-builtins/libm/src/math/arch/i686.rs new file mode 100644 index 00000000000..3e1d19bfab6 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/arch/i686.rs @@ -0,0 +1,27 @@ +//! Architecture-specific support for x86-32 and x86-64 with SSE2 + +pub fn sqrtf(mut x: f32) -> f32 { + // SAFETY: `sqrtss` is part of `sse2`, which this module is gated behind. It has no memory + // access or side effects. + unsafe { + core::arch::asm!( + "sqrtss {x}, {x}", + x = inout(xmm_reg) x, + options(nostack, nomem, pure), + ) + }; + x +} + +pub fn sqrt(mut x: f64) -> f64 { + // SAFETY: `sqrtsd` is part of `sse2`, which this module is gated behind. It has no memory + // access or side effects. + unsafe { + core::arch::asm!( + "sqrtsd {x}, {x}", + x = inout(xmm_reg) x, + options(nostack, nomem, pure), + ) + }; + x +} diff --git a/library/compiler-builtins/libm/src/math/arch/mod.rs b/library/compiler-builtins/libm/src/math/arch/mod.rs new file mode 100644 index 00000000000..d9f2aad66d4 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/arch/mod.rs @@ -0,0 +1,50 @@ +//! Architecture-specific routines and operations. +//! +//! LLVM will already optimize calls to some of these in cases that there are hardware +//! instructions. Providing an implementation here just ensures that the faster implementation +//! is used when calling the function directly. This helps anyone who uses `libm` directly, as +//! well as improving things when these routines are called as part of other implementations. + +// Most implementations should be defined here, to ensure they are not made available when +// soft floats are required. +#[cfg(arch_enabled)] +cfg_if! { + if #[cfg(all(target_arch = "wasm32", intrinsics_enabled))] { + mod wasm32; + pub use wasm32::{ + ceil, ceilf, fabs, fabsf, floor, floorf, rint, rintf, sqrt, sqrtf, trunc, truncf, + }; + } else if #[cfg(target_feature = "sse2")] { + mod i686; + pub use i686::{sqrt, sqrtf}; + } else if #[cfg(all( + any(target_arch = "aarch64", target_arch = "arm64ec"), + target_feature = "neon" + ))] { + mod aarch64; + + pub use aarch64::{ + fma, + fmaf, + rint, + rintf, + sqrt, + sqrtf, + }; + + #[cfg(all(f16_enabled, target_feature = "fp16"))] + pub use aarch64::{ + rintf16, + sqrtf16, + }; + } +} + +// There are certain architecture-specific implementations that are needed for correctness +// even with `force-soft-float`. These are configured here. +cfg_if! { + if #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))] { + mod i586; + pub use i586::{ceil, floor}; + } +} diff --git a/library/compiler-builtins/libm/src/math/arch/wasm32.rs b/library/compiler-builtins/libm/src/math/arch/wasm32.rs new file mode 100644 index 00000000000..de80c8a5817 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/arch/wasm32.rs @@ -0,0 +1,50 @@ +//! Wasm has builtins for simple float operations. Use the unstable `core::arch` intrinsics which +//! are significantly faster than soft float operations. + +pub fn ceil(x: f64) -> f64 { + core::arch::wasm32::f64_ceil(x) +} + +pub fn ceilf(x: f32) -> f32 { + core::arch::wasm32::f32_ceil(x) +} + +pub fn fabs(x: f64) -> f64 { + x.abs() +} + +pub fn fabsf(x: f32) -> f32 { + x.abs() +} + +pub fn floor(x: f64) -> f64 { + core::arch::wasm32::f64_floor(x) +} + +pub fn floorf(x: f32) -> f32 { + core::arch::wasm32::f32_floor(x) +} + +pub fn rint(x: f64) -> f64 { + core::arch::wasm32::f64_nearest(x) +} + +pub fn rintf(x: f32) -> f32 { + core::arch::wasm32::f32_nearest(x) +} + +pub fn sqrt(x: f64) -> f64 { + core::arch::wasm32::f64_sqrt(x) +} + +pub fn sqrtf(x: f32) -> f32 { + core::arch::wasm32::f32_sqrt(x) +} + +pub fn trunc(x: f64) -> f64 { + core::arch::wasm32::f64_trunc(x) +} + +pub fn truncf(x: f32) -> f32 { + core::arch::wasm32::f32_trunc(x) +} diff --git a/library/compiler-builtins/libm/src/math/asin.rs b/library/compiler-builtins/libm/src/math/asin.rs new file mode 100644 index 00000000000..12d0cd35fa5 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/asin.rs @@ -0,0 +1,115 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_asin.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* asin(x) + * Method : + * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... + * we approximate asin(x) on [0,0.5] by + * asin(x) = x + x*x^2*R(x^2) + * where + * R(x^2) is a rational approximation of (asin(x)-x)/x^3 + * and its remez error is bounded by + * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) + * + * For x in [0.5,1] + * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) + * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; + * then for x>0.98 + * asin(x) = pi/2 - 2*(s+s*z*R(z)) + * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) + * For x<=0.98, let pio4_hi = pio2_hi/2, then + * f = hi part of s; + * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) + * and + * asin(x) = pi/2 - 2*(s+s*z*R(z)) + * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) + * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) + * + * Special cases: + * if x is NaN, return x itself; + * if |x|>1, return NaN with invalid signal. + * + */ + +use super::{fabs, get_high_word, get_low_word, sqrt, with_set_low_word}; + +const PIO2_HI: f64 = 1.57079632679489655800e+00; /* 0x3FF921FB, 0x54442D18 */ +const PIO2_LO: f64 = 6.12323399573676603587e-17; /* 0x3C91A626, 0x33145C07 */ +/* coefficients for R(x^2) */ +const P_S0: f64 = 1.66666666666666657415e-01; /* 0x3FC55555, 0x55555555 */ +const P_S1: f64 = -3.25565818622400915405e-01; /* 0xBFD4D612, 0x03EB6F7D */ +const P_S2: f64 = 2.01212532134862925881e-01; /* 0x3FC9C155, 0x0E884455 */ +const P_S3: f64 = -4.00555345006794114027e-02; /* 0xBFA48228, 0xB5688F3B */ +const P_S4: f64 = 7.91534994289814532176e-04; /* 0x3F49EFE0, 0x7501B288 */ +const P_S5: f64 = 3.47933107596021167570e-05; /* 0x3F023DE1, 0x0DFDF709 */ +const Q_S1: f64 = -2.40339491173441421878e+00; /* 0xC0033A27, 0x1C8A2D4B */ +const Q_S2: f64 = 2.02094576023350569471e+00; /* 0x40002AE5, 0x9C598AC8 */ +const Q_S3: f64 = -6.88283971605453293030e-01; /* 0xBFE6066C, 0x1B8D0159 */ +const Q_S4: f64 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ + +fn comp_r(z: f64) -> f64 { + let p = z * (P_S0 + z * (P_S1 + z * (P_S2 + z * (P_S3 + z * (P_S4 + z * P_S5))))); + let q = 1.0 + z * (Q_S1 + z * (Q_S2 + z * (Q_S3 + z * Q_S4))); + p / q +} + +/// Arcsine (f64) +/// +/// Computes the inverse sine (arc sine) of the argument `x`. +/// Arguments to asin must be in the range -1 to 1. +/// Returns values in radians, in the range of -pi/2 to pi/2. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn asin(mut x: f64) -> f64 { + let z: f64; + let r: f64; + let s: f64; + let hx: u32; + let ix: u32; + + hx = get_high_word(x); + ix = hx & 0x7fffffff; + /* |x| >= 1 or nan */ + if ix >= 0x3ff00000 { + let lx: u32; + lx = get_low_word(x); + if ((ix - 0x3ff00000) | lx) == 0 { + /* asin(1) = +-pi/2 with inexact */ + return x * PIO2_HI + f64::from_bits(0x3870000000000000); + } else { + return 0.0 / (x - x); + } + } + /* |x| < 0.5 */ + if ix < 0x3fe00000 { + /* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */ + if (0x00100000..0x3e500000).contains(&ix) { + return x; + } else { + return x + x * comp_r(x * x); + } + } + /* 1 > |x| >= 0.5 */ + z = (1.0 - fabs(x)) * 0.5; + s = sqrt(z); + r = comp_r(z); + if ix >= 0x3fef3333 { + /* if |x| > 0.975 */ + x = PIO2_HI - (2. * (s + s * r) - PIO2_LO); + } else { + let f: f64; + let c: f64; + /* f+c = sqrt(z) */ + f = with_set_low_word(s, 0); + c = (z - f * f) / (s + f); + x = 0.5 * PIO2_HI - (2.0 * s * r - (PIO2_LO - 2.0 * c) - (0.5 * PIO2_HI - 2.0 * f)); + } + if hx >> 31 != 0 { -x } else { x } +} diff --git a/library/compiler-builtins/libm/src/math/asinf.rs b/library/compiler-builtins/libm/src/math/asinf.rs new file mode 100644 index 00000000000..ed685556730 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/asinf.rs @@ -0,0 +1,68 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_asinf.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +use super::sqrt::sqrt; +use super::support::Float; + +const PIO2: f64 = 1.570796326794896558e+00; + +/* coefficients for R(x^2) */ +const P_S0: f32 = 1.6666586697e-01; +const P_S1: f32 = -4.2743422091e-02; +const P_S2: f32 = -8.6563630030e-03; +const Q_S1: f32 = -7.0662963390e-01; + +fn r(z: f32) -> f32 { + let p = z * (P_S0 + z * (P_S1 + z * P_S2)); + let q = 1. + z * Q_S1; + p / q +} + +/// Arcsine (f32) +/// +/// Computes the inverse sine (arc sine) of the argument `x`. +/// Arguments to asin must be in the range -1 to 1. +/// Returns values in radians, in the range of -pi/2 to pi/2. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn asinf(mut x: f32) -> f32 { + let x1p_120 = f64::from_bits(0x3870000000000000); // 0x1p-120 === 2 ^ (-120) + + let hx = x.to_bits(); + let ix = hx & 0x7fffffff; + + if ix >= 0x3f800000 { + /* |x| >= 1 */ + if ix == 0x3f800000 { + /* |x| == 1 */ + return ((x as f64) * PIO2 + x1p_120) as f32; /* asin(+-1) = +-pi/2 with inexact */ + } + return 0. / (x - x); /* asin(|x|>1) is NaN */ + } + + if ix < 0x3f000000 { + /* |x| < 0.5 */ + /* if 0x1p-126 <= |x| < 0x1p-12, avoid raising underflow */ + if (0x00800000..0x39800000).contains(&ix) { + return x; + } + return x + x * r(x * x); + } + + /* 1 > |x| >= 0.5 */ + let z = (1. - Float::abs(x)) * 0.5; + let s = sqrt(z as f64); + x = (PIO2 - 2. * (s + s * (r(z) as f64))) as f32; + if (hx >> 31) != 0 { -x } else { x } +} diff --git a/library/compiler-builtins/libm/src/math/asinh.rs b/library/compiler-builtins/libm/src/math/asinh.rs new file mode 100644 index 00000000000..75d3c3ad462 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/asinh.rs @@ -0,0 +1,36 @@ +use super::{log, log1p, sqrt}; + +const LN2: f64 = 0.693147180559945309417232121458176568; /* 0x3fe62e42, 0xfefa39ef*/ + +/* asinh(x) = sign(x)*log(|x|+sqrt(x*x+1)) ~= x - x^3/6 + o(x^5) */ +/// Inverse hyperbolic sine (f64) +/// +/// Calculates the inverse hyperbolic sine of `x`. +/// Is defined as `sgn(x)*log(|x|+sqrt(x*x+1))`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn asinh(mut x: f64) -> f64 { + let mut u = x.to_bits(); + let e = ((u >> 52) as usize) & 0x7ff; + let sign = (u >> 63) != 0; + + /* |x| */ + u &= (!0) >> 1; + x = f64::from_bits(u); + + if e >= 0x3ff + 26 { + /* |x| >= 0x1p26 or inf or nan */ + x = log(x) + LN2; + } else if e >= 0x3ff + 1 { + /* |x| >= 2 */ + x = log(2.0 * x + 1.0 / (sqrt(x * x + 1.0) + x)); + } else if e >= 0x3ff - 26 { + /* |x| >= 0x1p-26, up to 1.6ulp error in [0.125,0.5] */ + x = log1p(x + x * x / (sqrt(x * x + 1.0) + 1.0)); + } else { + /* |x| < 0x1p-26, raise inexact if x != 0 */ + let x1p120 = f64::from_bits(0x4770000000000000); + force_eval!(x + x1p120); + } + + if sign { -x } else { x } +} diff --git a/library/compiler-builtins/libm/src/math/asinhf.rs b/library/compiler-builtins/libm/src/math/asinhf.rs new file mode 100644 index 00000000000..27ed9dd372d --- /dev/null +++ b/library/compiler-builtins/libm/src/math/asinhf.rs @@ -0,0 +1,35 @@ +use super::{log1pf, logf, sqrtf}; + +const LN2: f32 = 0.693147180559945309417232121458176568; + +/* asinh(x) = sign(x)*log(|x|+sqrt(x*x+1)) ~= x - x^3/6 + o(x^5) */ +/// Inverse hyperbolic sine (f32) +/// +/// Calculates the inverse hyperbolic sine of `x`. +/// Is defined as `sgn(x)*log(|x|+sqrt(x*x+1))`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn asinhf(mut x: f32) -> f32 { + let u = x.to_bits(); + let i = u & 0x7fffffff; + let sign = (u >> 31) != 0; + + /* |x| */ + x = f32::from_bits(i); + + if i >= 0x3f800000 + (12 << 23) { + /* |x| >= 0x1p12 or inf or nan */ + x = logf(x) + LN2; + } else if i >= 0x3f800000 + (1 << 23) { + /* |x| >= 2 */ + x = logf(2.0 * x + 1.0 / (sqrtf(x * x + 1.0) + x)); + } else if i >= 0x3f800000 - (12 << 23) { + /* |x| >= 0x1p-12, up to 1.6ulp error in [0.125,0.5] */ + x = log1pf(x + x * x / (sqrtf(x * x + 1.0) + 1.0)); + } else { + /* |x| < 0x1p-12, raise inexact if x!=0 */ + let x1p120 = f32::from_bits(0x7b800000); + force_eval!(x + x1p120); + } + + if sign { -x } else { x } +} diff --git a/library/compiler-builtins/libm/src/math/atan.rs b/library/compiler-builtins/libm/src/math/atan.rs new file mode 100644 index 00000000000..4ca5cc91a1e --- /dev/null +++ b/library/compiler-builtins/libm/src/math/atan.rs @@ -0,0 +1,182 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/s_atan.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* atan(x) + * Method + * 1. Reduce x to positive by atan(x) = -atan(-x). + * 2. According to the integer k=4t+0.25 chopped, t=x, the argument + * is further reduced to one of the following intervals and the + * arctangent of t is evaluated by the corresponding formula: + * + * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) + * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) + * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) + * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) + * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +use core::f64; + +use super::fabs; + +const ATANHI: [f64; 4] = [ + 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ + 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ + 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ + 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ +]; + +const ATANLO: [f64; 4] = [ + 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ + 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ + 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ + 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ +]; + +const AT: [f64; 11] = [ + 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ + -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ + 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ + -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ + 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ + -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ + 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ + -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ + 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ + -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ + 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ +]; + +/// Arctangent (f64) +/// +/// Computes the inverse tangent (arc tangent) of the input value. +/// Returns a value in radians, in the range of -pi/2 to pi/2. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn atan(x: f64) -> f64 { + let mut x = x; + let mut ix = (x.to_bits() >> 32) as u32; + let sign = ix >> 31; + ix &= 0x7fff_ffff; + if ix >= 0x4410_0000 { + if x.is_nan() { + return x; + } + + let z = ATANHI[3] + f64::from_bits(0x0380_0000); // 0x1p-120f + return if sign != 0 { -z } else { z }; + } + + let id = if ix < 0x3fdc_0000 { + /* |x| < 0.4375 */ + if ix < 0x3e40_0000 { + /* |x| < 2^-27 */ + if ix < 0x0010_0000 { + /* raise underflow for subnormal x */ + force_eval!(x as f32); + } + + return x; + } + + -1 + } else { + x = fabs(x); + if ix < 0x3ff30000 { + /* |x| < 1.1875 */ + if ix < 0x3fe60000 { + /* 7/16 <= |x| < 11/16 */ + x = (2. * x - 1.) / (2. + x); + 0 + } else { + /* 11/16 <= |x| < 19/16 */ + x = (x - 1.) / (x + 1.); + 1 + } + } else if ix < 0x40038000 { + /* |x| < 2.4375 */ + x = (x - 1.5) / (1. + 1.5 * x); + 2 + } else { + /* 2.4375 <= |x| < 2^66 */ + x = -1. / x; + 3 + } + }; + + let z = x * x; + let w = z * z; + /* break sum from i=0 to 10 AT[i]z**(i+1) into odd and even poly */ + let s1 = z * (AT[0] + w * (AT[2] + w * (AT[4] + w * (AT[6] + w * (AT[8] + w * AT[10]))))); + let s2 = w * (AT[1] + w * (AT[3] + w * (AT[5] + w * (AT[7] + w * AT[9])))); + + if id < 0 { + return x - x * (s1 + s2); + } + + let z = i!(ATANHI, id as usize) - (x * (s1 + s2) - i!(ATANLO, id as usize) - x); + + if sign != 0 { -z } else { z } +} + +#[cfg(test)] +mod tests { + use core::f64; + + use super::atan; + + #[test] + fn sanity_check() { + for (input, answer) in [ + (3.0_f64.sqrt() / 3.0, f64::consts::FRAC_PI_6), + (1.0, f64::consts::FRAC_PI_4), + (3.0_f64.sqrt(), f64::consts::FRAC_PI_3), + (-3.0_f64.sqrt() / 3.0, -f64::consts::FRAC_PI_6), + (-1.0, -f64::consts::FRAC_PI_4), + (-3.0_f64.sqrt(), -f64::consts::FRAC_PI_3), + ] + .iter() + { + assert!( + (atan(*input) - answer) / answer < 1e-5, + "\natan({:.4}/16) = {:.4}, actual: {}", + input * 16.0, + answer, + atan(*input) + ); + } + } + + #[test] + fn zero() { + assert_eq!(atan(0.0), 0.0); + } + + #[test] + fn infinity() { + assert_eq!(atan(f64::INFINITY), f64::consts::FRAC_PI_2); + } + + #[test] + fn minus_infinity() { + assert_eq!(atan(f64::NEG_INFINITY), -f64::consts::FRAC_PI_2); + } + + #[test] + fn nan() { + assert!(atan(f64::NAN).is_nan()); + } +} diff --git a/library/compiler-builtins/libm/src/math/atan2.rs b/library/compiler-builtins/libm/src/math/atan2.rs new file mode 100644 index 00000000000..c668731cf37 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/atan2.rs @@ -0,0 +1,131 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_atan2.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + * + */ +/* atan2(y,x) + * Method : + * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x). + * 2. Reduce x to positive by (if x and y are unexceptional): + * ARG (x+iy) = arctan(y/x) ... if x > 0, + * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0, + * + * Special cases: + * + * ATAN2((anything), NaN ) is NaN; + * ATAN2(NAN , (anything) ) is NaN; + * ATAN2(+-0, +(anything but NaN)) is +-0 ; + * ATAN2(+-0, -(anything but NaN)) is +-pi ; + * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2; + * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ; + * ATAN2(+-(anything but INF and NaN), -INF) is +-pi; + * ATAN2(+-INF,+INF ) is +-pi/4 ; + * ATAN2(+-INF,-INF ) is +-3pi/4; + * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2; + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +use super::{atan, fabs}; + +const PI: f64 = 3.1415926535897931160E+00; /* 0x400921FB, 0x54442D18 */ +const PI_LO: f64 = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */ + +/// Arctangent of y/x (f64) +/// +/// Computes the inverse tangent (arc tangent) of `y/x`. +/// Produces the correct result even for angles near pi/2 or -pi/2 (that is, when `x` is near 0). +/// Returns a value in radians, in the range of -pi to pi. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn atan2(y: f64, x: f64) -> f64 { + if x.is_nan() || y.is_nan() { + return x + y; + } + let mut ix = (x.to_bits() >> 32) as u32; + let lx = x.to_bits() as u32; + let mut iy = (y.to_bits() >> 32) as u32; + let ly = y.to_bits() as u32; + if ((ix.wrapping_sub(0x3ff00000)) | lx) == 0 { + /* x = 1.0 */ + return atan(y); + } + let m = ((iy >> 31) & 1) | ((ix >> 30) & 2); /* 2*sign(x)+sign(y) */ + ix &= 0x7fffffff; + iy &= 0x7fffffff; + + /* when y = 0 */ + if (iy | ly) == 0 { + return match m { + 0 | 1 => y, /* atan(+-0,+anything)=+-0 */ + 2 => PI, /* atan(+0,-anything) = PI */ + _ => -PI, /* atan(-0,-anything) =-PI */ + }; + } + /* when x = 0 */ + if (ix | lx) == 0 { + return if m & 1 != 0 { -PI / 2.0 } else { PI / 2.0 }; + } + /* when x is INF */ + if ix == 0x7ff00000 { + if iy == 0x7ff00000 { + return match m { + 0 => PI / 4.0, /* atan(+INF,+INF) */ + 1 => -PI / 4.0, /* atan(-INF,+INF) */ + 2 => 3.0 * PI / 4.0, /* atan(+INF,-INF) */ + _ => -3.0 * PI / 4.0, /* atan(-INF,-INF) */ + }; + } else { + return match m { + 0 => 0.0, /* atan(+...,+INF) */ + 1 => -0.0, /* atan(-...,+INF) */ + 2 => PI, /* atan(+...,-INF) */ + _ => -PI, /* atan(-...,-INF) */ + }; + } + } + /* |y/x| > 0x1p64 */ + if ix.wrapping_add(64 << 20) < iy || iy == 0x7ff00000 { + return if m & 1 != 0 { -PI / 2.0 } else { PI / 2.0 }; + } + + /* z = atan(|y/x|) without spurious underflow */ + let z = if (m & 2 != 0) && iy.wrapping_add(64 << 20) < ix { + /* |y/x| < 0x1p-64, x<0 */ + 0.0 + } else { + atan(fabs(y / x)) + }; + match m { + 0 => z, /* atan(+,+) */ + 1 => -z, /* atan(-,+) */ + 2 => PI - (z - PI_LO), /* atan(+,-) */ + _ => (z - PI_LO) - PI, /* atan(-,-) */ + } +} + +#[cfg(test)] +mod tests { + use super::*; + + #[test] + #[cfg_attr(x86_no_sse, ignore = "FIXME(i586): possible incorrect rounding")] + fn sanity_check() { + assert_eq!(atan2(0.0, 1.0), 0.0); + assert_eq!(atan2(0.0, -1.0), PI); + assert_eq!(atan2(-0.0, -1.0), -PI); + assert_eq!(atan2(3.0, 2.0), atan(3.0 / 2.0)); + assert_eq!(atan2(2.0, -1.0), atan(2.0 / -1.0) + PI); + assert_eq!(atan2(-2.0, -1.0), atan(-2.0 / -1.0) - PI); + } +} diff --git a/library/compiler-builtins/libm/src/math/atan2f.rs b/library/compiler-builtins/libm/src/math/atan2f.rs new file mode 100644 index 00000000000..95b466fff4e --- /dev/null +++ b/library/compiler-builtins/libm/src/math/atan2f.rs @@ -0,0 +1,90 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_atan2f.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +use super::{atanf, fabsf}; + +const PI: f32 = 3.1415927410e+00; /* 0x40490fdb */ +const PI_LO: f32 = -8.7422776573e-08; /* 0xb3bbbd2e */ + +/// Arctangent of y/x (f32) +/// +/// Computes the inverse tangent (arc tangent) of `y/x`. +/// Produces the correct result even for angles near pi/2 or -pi/2 (that is, when `x` is near 0). +/// Returns a value in radians, in the range of -pi to pi. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn atan2f(y: f32, x: f32) -> f32 { + if x.is_nan() || y.is_nan() { + return x + y; + } + let mut ix = x.to_bits(); + let mut iy = y.to_bits(); + + if ix == 0x3f800000 { + /* x=1.0 */ + return atanf(y); + } + let m = ((iy >> 31) & 1) | ((ix >> 30) & 2); /* 2*sign(x)+sign(y) */ + ix &= 0x7fffffff; + iy &= 0x7fffffff; + + /* when y = 0 */ + if iy == 0 { + return match m { + 0 | 1 => y, /* atan(+-0,+anything)=+-0 */ + 2 => PI, /* atan(+0,-anything) = pi */ + _ => -PI, /* atan(-0,-anything) =-pi */ + }; + } + /* when x = 0 */ + if ix == 0 { + return if m & 1 != 0 { -PI / 2. } else { PI / 2. }; + } + /* when x is INF */ + if ix == 0x7f800000 { + return if iy == 0x7f800000 { + match m { + 0 => PI / 4., /* atan(+INF,+INF) */ + 1 => -PI / 4., /* atan(-INF,+INF) */ + 2 => 3. * PI / 4., /* atan(+INF,-INF)*/ + _ => -3. * PI / 4., /* atan(-INF,-INF)*/ + } + } else { + match m { + 0 => 0., /* atan(+...,+INF) */ + 1 => -0., /* atan(-...,+INF) */ + 2 => PI, /* atan(+...,-INF) */ + _ => -PI, /* atan(-...,-INF) */ + } + }; + } + /* |y/x| > 0x1p26 */ + if (ix + (26 << 23) < iy) || (iy == 0x7f800000) { + return if m & 1 != 0 { -PI / 2. } else { PI / 2. }; + } + + /* z = atan(|y/x|) with correct underflow */ + let z = if (m & 2 != 0) && (iy + (26 << 23) < ix) { + /*|y/x| < 0x1p-26, x < 0 */ + 0. + } else { + atanf(fabsf(y / x)) + }; + match m { + 0 => z, /* atan(+,+) */ + 1 => -z, /* atan(-,+) */ + 2 => PI - (z - PI_LO), /* atan(+,-) */ + _ => (z - PI_LO) - PI, /* case 3 */ /* atan(-,-) */ + } +} diff --git a/library/compiler-builtins/libm/src/math/atanf.rs b/library/compiler-builtins/libm/src/math/atanf.rs new file mode 100644 index 00000000000..eb3d401cd96 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/atanf.rs @@ -0,0 +1,103 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/s_atanf.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +use super::fabsf; + +const ATAN_HI: [f32; 4] = [ + 4.6364760399e-01, /* atan(0.5)hi 0x3eed6338 */ + 7.8539812565e-01, /* atan(1.0)hi 0x3f490fda */ + 9.8279368877e-01, /* atan(1.5)hi 0x3f7b985e */ + 1.5707962513e+00, /* atan(inf)hi 0x3fc90fda */ +]; + +const ATAN_LO: [f32; 4] = [ + 5.0121582440e-09, /* atan(0.5)lo 0x31ac3769 */ + 3.7748947079e-08, /* atan(1.0)lo 0x33222168 */ + 3.4473217170e-08, /* atan(1.5)lo 0x33140fb4 */ + 7.5497894159e-08, /* atan(inf)lo 0x33a22168 */ +]; + +const A_T: [f32; 5] = + [3.3333328366e-01, -1.9999158382e-01, 1.4253635705e-01, -1.0648017377e-01, 6.1687607318e-02]; + +/// Arctangent (f32) +/// +/// Computes the inverse tangent (arc tangent) of the input value. +/// Returns a value in radians, in the range of -pi/2 to pi/2. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn atanf(mut x: f32) -> f32 { + let x1p_120 = f32::from_bits(0x03800000); // 0x1p-120 === 2 ^ (-120) + + let z: f32; + + let mut ix = x.to_bits(); + let sign = (ix >> 31) != 0; + ix &= 0x7fffffff; + + if ix >= 0x4c800000 { + /* if |x| >= 2**26 */ + if x.is_nan() { + return x; + } + z = i!(ATAN_HI, 3) + x1p_120; + return if sign { -z } else { z }; + } + let id = if ix < 0x3ee00000 { + /* |x| < 0.4375 */ + if ix < 0x39800000 { + /* |x| < 2**-12 */ + if ix < 0x00800000 { + /* raise underflow for subnormal x */ + force_eval!(x * x); + } + return x; + } + -1 + } else { + x = fabsf(x); + if ix < 0x3f980000 { + /* |x| < 1.1875 */ + if ix < 0x3f300000 { + /* 7/16 <= |x| < 11/16 */ + x = (2. * x - 1.) / (2. + x); + 0 + } else { + /* 11/16 <= |x| < 19/16 */ + x = (x - 1.) / (x + 1.); + 1 + } + } else if ix < 0x401c0000 { + /* |x| < 2.4375 */ + x = (x - 1.5) / (1. + 1.5 * x); + 2 + } else { + /* 2.4375 <= |x| < 2**26 */ + x = -1. / x; + 3 + } + }; + /* end of argument reduction */ + z = x * x; + let w = z * z; + /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ + let s1 = z * (i!(A_T, 0) + w * (i!(A_T, 2) + w * i!(A_T, 4))); + let s2 = w * (i!(A_T, 1) + w * i!(A_T, 3)); + if id < 0 { + return x - x * (s1 + s2); + } + let id = id as usize; + let z = i!(ATAN_HI, id) - ((x * (s1 + s2) - i!(ATAN_LO, id)) - x); + if sign { -z } else { z } +} diff --git a/library/compiler-builtins/libm/src/math/atanh.rs b/library/compiler-builtins/libm/src/math/atanh.rs new file mode 100644 index 00000000000..9dc826f5605 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/atanh.rs @@ -0,0 +1,33 @@ +use super::log1p; + +/* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */ +/// Inverse hyperbolic tangent (f64) +/// +/// Calculates the inverse hyperbolic tangent of `x`. +/// Is defined as `log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn atanh(x: f64) -> f64 { + let u = x.to_bits(); + let e = ((u >> 52) as usize) & 0x7ff; + let sign = (u >> 63) != 0; + + /* |x| */ + let mut y = f64::from_bits(u & 0x7fff_ffff_ffff_ffff); + + if e < 0x3ff - 1 { + if e < 0x3ff - 32 { + /* handle underflow */ + if e == 0 { + force_eval!(y as f32); + } + } else { + /* |x| < 0.5, up to 1.7ulp error */ + y = 0.5 * log1p(2.0 * y + 2.0 * y * y / (1.0 - y)); + } + } else { + /* avoid overflow */ + y = 0.5 * log1p(2.0 * (y / (1.0 - y))); + } + + if sign { -y } else { y } +} diff --git a/library/compiler-builtins/libm/src/math/atanhf.rs b/library/compiler-builtins/libm/src/math/atanhf.rs new file mode 100644 index 00000000000..80ccec1f67f --- /dev/null +++ b/library/compiler-builtins/libm/src/math/atanhf.rs @@ -0,0 +1,33 @@ +use super::log1pf; + +/* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */ +/// Inverse hyperbolic tangent (f32) +/// +/// Calculates the inverse hyperbolic tangent of `x`. +/// Is defined as `log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn atanhf(mut x: f32) -> f32 { + let mut u = x.to_bits(); + let sign = (u >> 31) != 0; + + /* |x| */ + u &= 0x7fffffff; + x = f32::from_bits(u); + + if u < 0x3f800000 - (1 << 23) { + if u < 0x3f800000 - (32 << 23) { + /* handle underflow */ + if u < (1 << 23) { + force_eval!(x * x); + } + } else { + /* |x| < 0.5, up to 1.7ulp error */ + x = 0.5 * log1pf(2.0 * x + 2.0 * x * x / (1.0 - x)); + } + } else { + /* avoid overflow */ + x = 0.5 * log1pf(2.0 * (x / (1.0 - x))); + } + + if sign { -x } else { x } +} diff --git a/library/compiler-builtins/libm/src/math/cbrt.rs b/library/compiler-builtins/libm/src/math/cbrt.rs new file mode 100644 index 00000000000..9d3311cd6a8 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/cbrt.rs @@ -0,0 +1,215 @@ +/* SPDX-License-Identifier: MIT */ +/* origin: core-math/src/binary64/cbrt/cbrt.c + * Copyright (c) 2021-2022 Alexei Sibidanov. + * Ported to Rust in 2025 by Trevor Gross. + */ + +use super::Float; +use super::support::{FpResult, Round, cold_path}; + +/// Compute the cube root of the argument. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn cbrt(x: f64) -> f64 { + cbrt_round(x, Round::Nearest).val +} + +pub fn cbrt_round(x: f64, round: Round) -> FpResult<f64> { + const ESCALE: [f64; 3] = [ + 1.0, + hf64!("0x1.428a2f98d728bp+0"), /* 2^(1/3) */ + hf64!("0x1.965fea53d6e3dp+0"), /* 2^(2/3) */ + ]; + + /* the polynomial c0+c1*x+c2*x^2+c3*x^3 approximates x^(1/3) on [1,2] + with maximal error < 9.2e-5 (attained at x=2) */ + const C: [f64; 4] = [ + hf64!("0x1.1b0babccfef9cp-1"), + hf64!("0x1.2c9a3e94d1da5p-1"), + hf64!("-0x1.4dc30b1a1ddbap-3"), + hf64!("0x1.7a8d3e4ec9b07p-6"), + ]; + + let u0: f64 = hf64!("0x1.5555555555555p-2"); + let u1: f64 = hf64!("0x1.c71c71c71c71cp-3"); + + let rsc = [1.0, -1.0, 0.5, -0.5, 0.25, -0.25]; + + let off = [hf64!("0x1p-53"), 0.0, 0.0, 0.0]; + + /* rm=0 for rounding to nearest, and other values for directed roundings */ + let hx: u64 = x.to_bits(); + let mut mant: u64 = hx & f64::SIG_MASK; + let sign: u64 = hx >> 63; + + let mut e: u32 = (hx >> f64::SIG_BITS) as u32 & f64::EXP_SAT; + + if ((e + 1) & f64::EXP_SAT) < 2 { + cold_path(); + + let ix: u64 = hx & !f64::SIGN_MASK; + + /* 0, inf, nan: we return x + x instead of simply x, + to that for x a signaling NaN, it correctly triggers + the invalid exception. */ + if e == f64::EXP_SAT || ix == 0 { + return FpResult::ok(x + x); + } + + let nz = ix.leading_zeros() - 11; /* subnormal */ + mant <<= nz; + mant &= f64::SIG_MASK; + e = e.wrapping_sub(nz - 1); + } + + e = e.wrapping_add(3072); + let cvt1: u64 = mant | (0x3ffu64 << 52); + let mut cvt5: u64 = cvt1; + + let et: u32 = e / 3; + let it: u32 = e % 3; + + /* 2^(3k+it) <= x < 2^(3k+it+1), with 0 <= it <= 3 */ + cvt5 += u64::from(it) << f64::SIG_BITS; + cvt5 |= sign << 63; + let zz: f64 = f64::from_bits(cvt5); + + /* cbrt(x) = cbrt(zz)*2^(et-1365) where 1 <= zz < 8 */ + let mut isc: u64 = ESCALE[it as usize].to_bits(); // todo: index + isc |= sign << 63; + let cvt2: u64 = isc; + let z: f64 = f64::from_bits(cvt1); + + /* cbrt(zz) = cbrt(z)*isc, where isc encodes 1, 2^(1/3) or 2^(2/3), + and 1 <= z < 2 */ + let r: f64 = 1.0 / z; + let rr: f64 = r * rsc[((it as usize) << 1) | sign as usize]; + let z2: f64 = z * z; + let c0: f64 = C[0] + z * C[1]; + let c2: f64 = C[2] + z * C[3]; + let mut y: f64 = c0 + z2 * c2; + let mut y2: f64 = y * y; + + /* y is an approximation of z^(1/3) */ + let mut h: f64 = y2 * (y * r) - 1.0; + + /* h determines the error between y and z^(1/3) */ + y -= (h * y) * (u0 - u1 * h); + + /* The correction y -= (h*y)*(u0 - u1*h) corresponds to a cubic variant + of Newton's method, with the function f(y) = 1-z/y^3. */ + y *= f64::from_bits(cvt2); + + /* Now y is an approximation of zz^(1/3), + * and rr an approximation of 1/zz. We now perform another iteration of + * Newton-Raphson, this time with a linear approximation only. */ + y2 = y * y; + let mut y2l: f64 = y.fma(y, -y2); + + /* y2 + y2l = y^2 exactly */ + let mut y3: f64 = y2 * y; + let mut y3l: f64 = y.fma(y2, -y3) + y * y2l; + + /* y3 + y3l approximates y^3 with about 106 bits of accuracy */ + h = ((y3 - zz) + y3l) * rr; + let mut dy: f64 = h * (y * u0); + + /* the approximation of zz^(1/3) is y - dy */ + let mut y1: f64 = y - dy; + dy = (y - y1) - dy; + + /* the approximation of zz^(1/3) is now y1 + dy, where |dy| < 1/2 ulp(y) + * (for rounding to nearest) */ + let mut ady: f64 = dy.abs(); + + /* For directed roundings, ady0 is tiny when dy is tiny, or ady0 is near + * from ulp(1); + * for rounding to nearest, ady0 is tiny when dy is near from 1/2 ulp(1), + * or from 3/2 ulp(1). */ + let mut ady0: f64 = (ady - off[round as usize]).abs(); + let mut ady1: f64 = (ady - (hf64!("0x1p-52") + off[round as usize])).abs(); + + if ady0 < hf64!("0x1p-75") || ady1 < hf64!("0x1p-75") { + cold_path(); + + y2 = y1 * y1; + y2l = y1.fma(y1, -y2); + y3 = y2 * y1; + y3l = y1.fma(y2, -y3) + y1 * y2l; + h = ((y3 - zz) + y3l) * rr; + dy = h * (y1 * u0); + y = y1 - dy; + dy = (y1 - y) - dy; + y1 = y; + ady = dy.abs(); + ady0 = (ady - off[round as usize]).abs(); + ady1 = (ady - (hf64!("0x1p-52") + off[round as usize])).abs(); + + if ady0 < hf64!("0x1p-98") || ady1 < hf64!("0x1p-98") { + cold_path(); + let azz: f64 = zz.abs(); + + // ~ 0x1.79d15d0e8d59b80000000000000ffc3dp+0 + if azz == hf64!("0x1.9b78223aa307cp+1") { + y1 = hf64!("0x1.79d15d0e8d59cp+0").copysign(zz); + } + + // ~ 0x1.de87aa837820e80000000000001c0f08p+0 + if azz == hf64!("0x1.a202bfc89ddffp+2") { + y1 = hf64!("0x1.de87aa837820fp+0").copysign(zz); + } + + if round != Round::Nearest { + let wlist = [ + (hf64!("0x1.3a9ccd7f022dbp+0"), hf64!("0x1.1236160ba9b93p+0")), // ~ 0x1.1236160ba9b930000000000001e7e8fap+0 + (hf64!("0x1.7845d2faac6fep+0"), hf64!("0x1.23115e657e49cp+0")), // ~ 0x1.23115e657e49c0000000000001d7a799p+0 + (hf64!("0x1.d1ef81cbbbe71p+0"), hf64!("0x1.388fb44cdcf5ap+0")), // ~ 0x1.388fb44cdcf5a0000000000002202c55p+0 + (hf64!("0x1.0a2014f62987cp+1"), hf64!("0x1.46bcbf47dc1e8p+0")), // ~ 0x1.46bcbf47dc1e8000000000000303aa2dp+0 + (hf64!("0x1.fe18a044a5501p+1"), hf64!("0x1.95decfec9c904p+0")), // ~ 0x1.95decfec9c9040000000000000159e8ep+0 + (hf64!("0x1.a6bb8c803147bp+2"), hf64!("0x1.e05335a6401dep+0")), // ~ 0x1.e05335a6401de00000000000027ca017p+0 + (hf64!("0x1.ac8538a031cbdp+2"), hf64!("0x1.e281d87098de8p+0")), // ~ 0x1.e281d87098de80000000000000ee9314p+0 + ]; + + for (a, b) in wlist { + if azz == a { + let tmp = if round as u64 + sign == 2 { hf64!("0x1p-52") } else { 0.0 }; + y1 = (b + tmp).copysign(zz); + } + } + } + } + } + + let mut cvt3: u64 = y1.to_bits(); + cvt3 = cvt3.wrapping_add(((et.wrapping_sub(342).wrapping_sub(1023)) as u64) << 52); + let m0: u64 = cvt3 << 30; + let m1 = m0 >> 63; + + if (m0 ^ m1) <= (1u64 << 30) { + cold_path(); + + let mut cvt4: u64 = y1.to_bits(); + cvt4 = (cvt4 + (164 << 15)) & 0xffffffffffff0000u64; + + if ((f64::from_bits(cvt4) - y1) - dy).abs() < hf64!("0x1p-60") || (zz).abs() == 1.0 { + cvt3 = (cvt3 + (1u64 << 15)) & 0xffffffffffff0000u64; + } + } + + FpResult::ok(f64::from_bits(cvt3)) +} + +#[cfg(test)] +mod tests { + use super::*; + + #[test] + fn spot_checks() { + if !cfg!(x86_no_sse) { + // Exposes a rounding mode problem. Ignored on i586 because of inaccurate FMA. + assert_biteq!( + cbrt(f64::from_bits(0xf7f792b28f600000)), + f64::from_bits(0xd29ce68655d962f3) + ); + } + } +} diff --git a/library/compiler-builtins/libm/src/math/cbrtf.rs b/library/compiler-builtins/libm/src/math/cbrtf.rs new file mode 100644 index 00000000000..9d70305c647 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/cbrtf.rs @@ -0,0 +1,75 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtf.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + * Debugged and optimized by Bruce D. Evans. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* cbrtf(x) + * Return cube root of x + */ + +use core::f32; + +const B1: u32 = 709958130; /* B1 = (127-127.0/3-0.03306235651)*2**23 */ +const B2: u32 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */ + +/// Cube root (f32) +/// +/// Computes the cube root of the argument. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn cbrtf(x: f32) -> f32 { + let x1p24 = f32::from_bits(0x4b800000); // 0x1p24f === 2 ^ 24 + + let mut r: f64; + let mut t: f64; + let mut ui: u32 = x.to_bits(); + let mut hx: u32 = ui & 0x7fffffff; + + if hx >= 0x7f800000 { + /* cbrt(NaN,INF) is itself */ + return x + x; + } + + /* rough cbrt to 5 bits */ + if hx < 0x00800000 { + /* zero or subnormal? */ + if hx == 0 { + return x; /* cbrt(+-0) is itself */ + } + ui = (x * x1p24).to_bits(); + hx = ui & 0x7fffffff; + hx = hx / 3 + B2; + } else { + hx = hx / 3 + B1; + } + ui &= 0x80000000; + ui |= hx; + + /* + * First step Newton iteration (solving t*t-x/t == 0) to 16 bits. In + * double precision so that its terms can be arranged for efficiency + * without causing overflow or underflow. + */ + t = f32::from_bits(ui) as f64; + r = t * t * t; + t = t * (x as f64 + x as f64 + r) / (x as f64 + r + r); + + /* + * Second step Newton iteration to 47 bits. In double precision for + * efficiency and accuracy. + */ + r = t * t * t; + t = t * (x as f64 + x as f64 + r) / (x as f64 + r + r); + + /* rounding to 24 bits is perfect in round-to-nearest mode */ + t as f32 +} diff --git a/library/compiler-builtins/libm/src/math/ceil.rs b/library/compiler-builtins/libm/src/math/ceil.rs new file mode 100644 index 00000000000..4e103545727 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/ceil.rs @@ -0,0 +1,46 @@ +/// Ceil (f16) +/// +/// Finds the nearest integer greater than or equal to `x`. +#[cfg(f16_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn ceilf16(x: f16) -> f16 { + super::generic::ceil(x) +} + +/// Ceil (f32) +/// +/// Finds the nearest integer greater than or equal to `x`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn ceilf(x: f32) -> f32 { + select_implementation! { + name: ceilf, + use_arch: all(target_arch = "wasm32", intrinsics_enabled), + args: x, + } + + super::generic::ceil(x) +} + +/// Ceil (f64) +/// +/// Finds the nearest integer greater than or equal to `x`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn ceil(x: f64) -> f64 { + select_implementation! { + name: ceil, + use_arch: all(target_arch = "wasm32", intrinsics_enabled), + use_arch_required: all(target_arch = "x86", not(target_feature = "sse2")), + args: x, + } + + super::generic::ceil(x) +} + +/// Ceil (f128) +/// +/// Finds the nearest integer greater than or equal to `x`. +#[cfg(f128_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn ceilf128(x: f128) -> f128 { + super::generic::ceil(x) +} diff --git a/library/compiler-builtins/libm/src/math/copysign.rs b/library/compiler-builtins/libm/src/math/copysign.rs new file mode 100644 index 00000000000..d2a86e7fd54 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/copysign.rs @@ -0,0 +1,88 @@ +/// Sign of Y, magnitude of X (f16) +/// +/// Constructs a number with the magnitude (absolute value) of its +/// first argument, `x`, and the sign of its second argument, `y`. +#[cfg(f16_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn copysignf16(x: f16, y: f16) -> f16 { + super::generic::copysign(x, y) +} + +/// Sign of Y, magnitude of X (f32) +/// +/// Constructs a number with the magnitude (absolute value) of its +/// first argument, `x`, and the sign of its second argument, `y`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn copysignf(x: f32, y: f32) -> f32 { + super::generic::copysign(x, y) +} + +/// Sign of Y, magnitude of X (f64) +/// +/// Constructs a number with the magnitude (absolute value) of its +/// first argument, `x`, and the sign of its second argument, `y`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn copysign(x: f64, y: f64) -> f64 { + super::generic::copysign(x, y) +} + +/// Sign of Y, magnitude of X (f128) +/// +/// Constructs a number with the magnitude (absolute value) of its +/// first argument, `x`, and the sign of its second argument, `y`. +#[cfg(f128_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn copysignf128(x: f128, y: f128) -> f128 { + super::generic::copysign(x, y) +} + +#[cfg(test)] +mod tests { + use super::*; + use crate::support::Float; + + fn spec_test<F: Float>(f: impl Fn(F, F) -> F) { + assert_biteq!(f(F::ZERO, F::ZERO), F::ZERO); + assert_biteq!(f(F::NEG_ZERO, F::ZERO), F::ZERO); + assert_biteq!(f(F::ZERO, F::NEG_ZERO), F::NEG_ZERO); + assert_biteq!(f(F::NEG_ZERO, F::NEG_ZERO), F::NEG_ZERO); + + assert_biteq!(f(F::ONE, F::ONE), F::ONE); + assert_biteq!(f(F::NEG_ONE, F::ONE), F::ONE); + assert_biteq!(f(F::ONE, F::NEG_ONE), F::NEG_ONE); + assert_biteq!(f(F::NEG_ONE, F::NEG_ONE), F::NEG_ONE); + + assert_biteq!(f(F::INFINITY, F::INFINITY), F::INFINITY); + assert_biteq!(f(F::NEG_INFINITY, F::INFINITY), F::INFINITY); + assert_biteq!(f(F::INFINITY, F::NEG_INFINITY), F::NEG_INFINITY); + assert_biteq!(f(F::NEG_INFINITY, F::NEG_INFINITY), F::NEG_INFINITY); + + // Not required but we expect it + assert_biteq!(f(F::NAN, F::NAN), F::NAN); + assert_biteq!(f(F::NEG_NAN, F::NAN), F::NAN); + assert_biteq!(f(F::NAN, F::NEG_NAN), F::NEG_NAN); + assert_biteq!(f(F::NEG_NAN, F::NEG_NAN), F::NEG_NAN); + } + + #[test] + #[cfg(f16_enabled)] + fn spec_tests_f16() { + spec_test::<f16>(copysignf16); + } + + #[test] + fn spec_tests_f32() { + spec_test::<f32>(copysignf); + } + + #[test] + fn spec_tests_f64() { + spec_test::<f64>(copysign); + } + + #[test] + #[cfg(f128_enabled)] + fn spec_tests_f128() { + spec_test::<f128>(copysignf128); + } +} diff --git a/library/compiler-builtins/libm/src/math/copysignf.rs b/library/compiler-builtins/libm/src/math/copysignf.rs new file mode 100644 index 00000000000..8b9bed4c0c4 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/copysignf.rs @@ -0,0 +1,8 @@ +/// Sign of Y, magnitude of X (f32) +/// +/// Constructs a number with the magnitude (absolute value) of its +/// first argument, `x`, and the sign of its second argument, `y`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn copysignf(x: f32, y: f32) -> f32 { + super::generic::copysign(x, y) +} diff --git a/library/compiler-builtins/libm/src/math/copysignf128.rs b/library/compiler-builtins/libm/src/math/copysignf128.rs new file mode 100644 index 00000000000..7bd81d42b2e --- /dev/null +++ b/library/compiler-builtins/libm/src/math/copysignf128.rs @@ -0,0 +1,8 @@ +/// Sign of Y, magnitude of X (f128) +/// +/// Constructs a number with the magnitude (absolute value) of its +/// first argument, `x`, and the sign of its second argument, `y`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn copysignf128(x: f128, y: f128) -> f128 { + super::generic::copysign(x, y) +} diff --git a/library/compiler-builtins/libm/src/math/copysignf16.rs b/library/compiler-builtins/libm/src/math/copysignf16.rs new file mode 100644 index 00000000000..82065868601 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/copysignf16.rs @@ -0,0 +1,8 @@ +/// Sign of Y, magnitude of X (f16) +/// +/// Constructs a number with the magnitude (absolute value) of its +/// first argument, `x`, and the sign of its second argument, `y`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn copysignf16(x: f16, y: f16) -> f16 { + super::generic::copysign(x, y) +} diff --git a/library/compiler-builtins/libm/src/math/cos.rs b/library/compiler-builtins/libm/src/math/cos.rs new file mode 100644 index 00000000000..de99cd4c5e4 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/cos.rs @@ -0,0 +1,77 @@ +// origin: FreeBSD /usr/src/lib/msun/src/s_cos.c */ +// +// ==================================================== +// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. +// +// Developed at SunPro, a Sun Microsystems, Inc. business. +// Permission to use, copy, modify, and distribute this +// software is freely granted, provided that this notice +// is preserved. +// ==================================================== + +use super::{k_cos, k_sin, rem_pio2}; + +// cos(x) +// Return cosine function of x. +// +// kernel function: +// k_sin ... sine function on [-pi/4,pi/4] +// k_cos ... cosine function on [-pi/4,pi/4] +// rem_pio2 ... argument reduction routine +// +// Method. +// Let S,C and T denote the sin, cos and tan respectively on +// [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 +// in [-pi/4 , +pi/4], and let n = k mod 4. +// We have +// +// n sin(x) cos(x) tan(x) +// ---------------------------------------------------------- +// 0 S C T +// 1 C -S -1/T +// 2 -S -C T +// 3 -C S -1/T +// ---------------------------------------------------------- +// +// Special cases: +// Let trig be any of sin, cos, or tan. +// trig(+-INF) is NaN, with signals; +// trig(NaN) is that NaN; +// +// Accuracy: +// TRIG(x) returns trig(x) nearly rounded +// + +/// The cosine of `x` (f64). +/// +/// `x` is specified in radians. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn cos(x: f64) -> f64 { + let ix = (f64::to_bits(x) >> 32) as u32 & 0x7fffffff; + + /* |x| ~< pi/4 */ + if ix <= 0x3fe921fb { + if ix < 0x3e46a09e { + /* if x < 2**-27 * sqrt(2) */ + /* raise inexact if x != 0 */ + if x as i32 == 0 { + return 1.0; + } + } + return k_cos(x, 0.0); + } + + /* cos(Inf or NaN) is NaN */ + if ix >= 0x7ff00000 { + return x - x; + } + + /* argument reduction needed */ + let (n, y0, y1) = rem_pio2(x); + match n & 3 { + 0 => k_cos(y0, y1), + 1 => -k_sin(y0, y1, 1), + 2 => -k_cos(y0, y1), + _ => k_sin(y0, y1, 1), + } +} diff --git a/library/compiler-builtins/libm/src/math/cosf.rs b/library/compiler-builtins/libm/src/math/cosf.rs new file mode 100644 index 00000000000..27c2fc3b994 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/cosf.rs @@ -0,0 +1,86 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/s_cosf.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + * Optimized by Bruce D. Evans. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +use core::f64::consts::FRAC_PI_2; + +use super::{k_cosf, k_sinf, rem_pio2f}; + +/* Small multiples of pi/2 rounded to double precision. */ +const C1_PIO2: f64 = 1. * FRAC_PI_2; /* 0x3FF921FB, 0x54442D18 */ +const C2_PIO2: f64 = 2. * FRAC_PI_2; /* 0x400921FB, 0x54442D18 */ +const C3_PIO2: f64 = 3. * FRAC_PI_2; /* 0x4012D97C, 0x7F3321D2 */ +const C4_PIO2: f64 = 4. * FRAC_PI_2; /* 0x401921FB, 0x54442D18 */ + +/// The cosine of `x` (f32). +/// +/// `x` is specified in radians. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn cosf(x: f32) -> f32 { + let x64 = x as f64; + + let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120 + + let mut ix = x.to_bits(); + let sign = (ix >> 31) != 0; + ix &= 0x7fffffff; + + if ix <= 0x3f490fda { + /* |x| ~<= pi/4 */ + if ix < 0x39800000 { + /* |x| < 2**-12 */ + /* raise inexact if x != 0 */ + force_eval!(x + x1p120); + return 1.; + } + return k_cosf(x64); + } + if ix <= 0x407b53d1 { + /* |x| ~<= 5*pi/4 */ + if ix > 0x4016cbe3 { + /* |x| ~> 3*pi/4 */ + return -k_cosf(if sign { x64 + C2_PIO2 } else { x64 - C2_PIO2 }); + } else if sign { + return k_sinf(x64 + C1_PIO2); + } else { + return k_sinf(C1_PIO2 - x64); + } + } + if ix <= 0x40e231d5 { + /* |x| ~<= 9*pi/4 */ + if ix > 0x40afeddf { + /* |x| ~> 7*pi/4 */ + return k_cosf(if sign { x64 + C4_PIO2 } else { x64 - C4_PIO2 }); + } else if sign { + return k_sinf(-x64 - C3_PIO2); + } else { + return k_sinf(x64 - C3_PIO2); + } + } + + /* cos(Inf or NaN) is NaN */ + if ix >= 0x7f800000 { + return x - x; + } + + /* general argument reduction needed */ + let (n, y) = rem_pio2f(x); + match n & 3 { + 0 => k_cosf(y), + 1 => k_sinf(-y), + 2 => -k_cosf(y), + _ => k_sinf(y), + } +} diff --git a/library/compiler-builtins/libm/src/math/cosh.rs b/library/compiler-builtins/libm/src/math/cosh.rs new file mode 100644 index 00000000000..d2e43fd6cb6 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/cosh.rs @@ -0,0 +1,36 @@ +use super::{exp, expm1, k_expo2}; + +/// Hyperbolic cosine (f64) +/// +/// Computes the hyperbolic cosine of the argument x. +/// Is defined as `(exp(x) + exp(-x))/2` +/// Angles are specified in radians. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn cosh(mut x: f64) -> f64 { + /* |x| */ + let mut ix = x.to_bits(); + ix &= 0x7fffffffffffffff; + x = f64::from_bits(ix); + let w = ix >> 32; + + /* |x| < log(2) */ + if w < 0x3fe62e42 { + if w < 0x3ff00000 - (26 << 20) { + let x1p120 = f64::from_bits(0x4770000000000000); + force_eval!(x + x1p120); + return 1.; + } + let t = expm1(x); // exponential minus 1 + return 1. + t * t / (2. * (1. + t)); + } + + /* |x| < log(DBL_MAX) */ + if w < 0x40862e42 { + let t = exp(x); + /* note: if x>log(0x1p26) then the 1/t is not needed */ + return 0.5 * (t + 1. / t); + } + + /* |x| > log(DBL_MAX) or nan */ + k_expo2(x) +} diff --git a/library/compiler-builtins/libm/src/math/coshf.rs b/library/compiler-builtins/libm/src/math/coshf.rs new file mode 100644 index 00000000000..567a24410e7 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/coshf.rs @@ -0,0 +1,36 @@ +use super::{expf, expm1f, k_expo2f}; + +/// Hyperbolic cosine (f64) +/// +/// Computes the hyperbolic cosine of the argument x. +/// Is defined as `(exp(x) + exp(-x))/2` +/// Angles are specified in radians. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn coshf(mut x: f32) -> f32 { + let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120 + + /* |x| */ + let mut ix = x.to_bits(); + ix &= 0x7fffffff; + x = f32::from_bits(ix); + let w = ix; + + /* |x| < log(2) */ + if w < 0x3f317217 { + if w < (0x3f800000 - (12 << 23)) { + force_eval!(x + x1p120); + return 1.; + } + let t = expm1f(x); + return 1. + t * t / (2. * (1. + t)); + } + + /* |x| < log(FLT_MAX) */ + if w < 0x42b17217 { + let t = expf(x); + return 0.5 * (t + 1. / t); + } + + /* |x| > log(FLT_MAX) or nan */ + k_expo2f(x) +} diff --git a/library/compiler-builtins/libm/src/math/erf.rs b/library/compiler-builtins/libm/src/math/erf.rs new file mode 100644 index 00000000000..1b634abec6b --- /dev/null +++ b/library/compiler-builtins/libm/src/math/erf.rs @@ -0,0 +1,310 @@ +use super::{exp, fabs, get_high_word, with_set_low_word}; +/* origin: FreeBSD /usr/src/lib/msun/src/s_erf.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* double erf(double x) + * double erfc(double x) + * x + * 2 |\ + * erf(x) = --------- | exp(-t*t)dt + * sqrt(pi) \| + * 0 + * + * erfc(x) = 1-erf(x) + * Note that + * erf(-x) = -erf(x) + * erfc(-x) = 2 - erfc(x) + * + * Method: + * 1. For |x| in [0, 0.84375] + * erf(x) = x + x*R(x^2) + * erfc(x) = 1 - erf(x) if x in [-.84375,0.25] + * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] + * where R = P/Q where P is an odd poly of degree 8 and + * Q is an odd poly of degree 10. + * -57.90 + * | R - (erf(x)-x)/x | <= 2 + * + * + * Remark. The formula is derived by noting + * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) + * and that + * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 + * is close to one. The interval is chosen because the fix + * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is + * near 0.6174), and by some experiment, 0.84375 is chosen to + * guarantee the error is less than one ulp for erf. + * + * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and + * c = 0.84506291151 rounded to single (24 bits) + * erf(x) = sign(x) * (c + P1(s)/Q1(s)) + * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 + * 1+(c+P1(s)/Q1(s)) if x < 0 + * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 + * Remark: here we use the taylor series expansion at x=1. + * erf(1+s) = erf(1) + s*Poly(s) + * = 0.845.. + P1(s)/Q1(s) + * That is, we use rational approximation to approximate + * erf(1+s) - (c = (single)0.84506291151) + * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] + * where + * P1(s) = degree 6 poly in s + * Q1(s) = degree 6 poly in s + * + * 3. For x in [1.25,1/0.35(~2.857143)], + * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) + * erf(x) = 1 - erfc(x) + * where + * R1(z) = degree 7 poly in z, (z=1/x^2) + * S1(z) = degree 8 poly in z + * + * 4. For x in [1/0.35,28] + * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 + * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0 + * = 2.0 - tiny (if x <= -6) + * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else + * erf(x) = sign(x)*(1.0 - tiny) + * where + * R2(z) = degree 6 poly in z, (z=1/x^2) + * S2(z) = degree 7 poly in z + * + * Note1: + * To compute exp(-x*x-0.5625+R/S), let s be a single + * precision number and s := x; then + * -x*x = -s*s + (s-x)*(s+x) + * exp(-x*x-0.5626+R/S) = + * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); + * Note2: + * Here 4 and 5 make use of the asymptotic series + * exp(-x*x) + * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) + * x*sqrt(pi) + * We use rational approximation to approximate + * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625 + * Here is the error bound for R1/S1 and R2/S2 + * |R1/S1 - f(x)| < 2**(-62.57) + * |R2/S2 - f(x)| < 2**(-61.52) + * + * 5. For inf > x >= 28 + * erf(x) = sign(x) *(1 - tiny) (raise inexact) + * erfc(x) = tiny*tiny (raise underflow) if x > 0 + * = 2 - tiny if x<0 + * + * 7. Special case: + * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, + * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, + * erfc/erf(NaN) is NaN + */ + +const ERX: f64 = 8.45062911510467529297e-01; /* 0x3FEB0AC1, 0x60000000 */ +/* + * Coefficients for approximation to erf on [0,0.84375] + */ +const EFX8: f64 = 1.02703333676410069053e+00; /* 0x3FF06EBA, 0x8214DB69 */ +const PP0: f64 = 1.28379167095512558561e-01; /* 0x3FC06EBA, 0x8214DB68 */ +const PP1: f64 = -3.25042107247001499370e-01; /* 0xBFD4CD7D, 0x691CB913 */ +const PP2: f64 = -2.84817495755985104766e-02; /* 0xBF9D2A51, 0xDBD7194F */ +const PP3: f64 = -5.77027029648944159157e-03; /* 0xBF77A291, 0x236668E4 */ +const PP4: f64 = -2.37630166566501626084e-05; /* 0xBEF8EAD6, 0x120016AC */ +const QQ1: f64 = 3.97917223959155352819e-01; /* 0x3FD97779, 0xCDDADC09 */ +const QQ2: f64 = 6.50222499887672944485e-02; /* 0x3FB0A54C, 0x5536CEBA */ +const QQ3: f64 = 5.08130628187576562776e-03; /* 0x3F74D022, 0xC4D36B0F */ +const QQ4: f64 = 1.32494738004321644526e-04; /* 0x3F215DC9, 0x221C1A10 */ +const QQ5: f64 = -3.96022827877536812320e-06; /* 0xBED09C43, 0x42A26120 */ +/* + * Coefficients for approximation to erf in [0.84375,1.25] + */ +const PA0: f64 = -2.36211856075265944077e-03; /* 0xBF6359B8, 0xBEF77538 */ +const PA1: f64 = 4.14856118683748331666e-01; /* 0x3FDA8D00, 0xAD92B34D */ +const PA2: f64 = -3.72207876035701323847e-01; /* 0xBFD7D240, 0xFBB8C3F1 */ +const PA3: f64 = 3.18346619901161753674e-01; /* 0x3FD45FCA, 0x805120E4 */ +const PA4: f64 = -1.10894694282396677476e-01; /* 0xBFBC6398, 0x3D3E28EC */ +const PA5: f64 = 3.54783043256182359371e-02; /* 0x3FA22A36, 0x599795EB */ +const PA6: f64 = -2.16637559486879084300e-03; /* 0xBF61BF38, 0x0A96073F */ +const QA1: f64 = 1.06420880400844228286e-01; /* 0x3FBB3E66, 0x18EEE323 */ +const QA2: f64 = 5.40397917702171048937e-01; /* 0x3FE14AF0, 0x92EB6F33 */ +const QA3: f64 = 7.18286544141962662868e-02; /* 0x3FB2635C, 0xD99FE9A7 */ +const QA4: f64 = 1.26171219808761642112e-01; /* 0x3FC02660, 0xE763351F */ +const QA5: f64 = 1.36370839120290507362e-02; /* 0x3F8BEDC2, 0x6B51DD1C */ +const QA6: f64 = 1.19844998467991074170e-02; /* 0x3F888B54, 0x5735151D */ +/* + * Coefficients for approximation to erfc in [1.25,1/0.35] + */ +const RA0: f64 = -9.86494403484714822705e-03; /* 0xBF843412, 0x600D6435 */ +const RA1: f64 = -6.93858572707181764372e-01; /* 0xBFE63416, 0xE4BA7360 */ +const RA2: f64 = -1.05586262253232909814e+01; /* 0xC0251E04, 0x41B0E726 */ +const RA3: f64 = -6.23753324503260060396e+01; /* 0xC04F300A, 0xE4CBA38D */ +const RA4: f64 = -1.62396669462573470355e+02; /* 0xC0644CB1, 0x84282266 */ +const RA5: f64 = -1.84605092906711035994e+02; /* 0xC067135C, 0xEBCCABB2 */ +const RA6: f64 = -8.12874355063065934246e+01; /* 0xC0545265, 0x57E4D2F2 */ +const RA7: f64 = -9.81432934416914548592e+00; /* 0xC023A0EF, 0xC69AC25C */ +const SA1: f64 = 1.96512716674392571292e+01; /* 0x4033A6B9, 0xBD707687 */ +const SA2: f64 = 1.37657754143519042600e+02; /* 0x4061350C, 0x526AE721 */ +const SA3: f64 = 4.34565877475229228821e+02; /* 0x407B290D, 0xD58A1A71 */ +const SA4: f64 = 6.45387271733267880336e+02; /* 0x40842B19, 0x21EC2868 */ +const SA5: f64 = 4.29008140027567833386e+02; /* 0x407AD021, 0x57700314 */ +const SA6: f64 = 1.08635005541779435134e+02; /* 0x405B28A3, 0xEE48AE2C */ +const SA7: f64 = 6.57024977031928170135e+00; /* 0x401A47EF, 0x8E484A93 */ +const SA8: f64 = -6.04244152148580987438e-02; /* 0xBFAEEFF2, 0xEE749A62 */ +/* + * Coefficients for approximation to erfc in [1/.35,28] + */ +const RB0: f64 = -9.86494292470009928597e-03; /* 0xBF843412, 0x39E86F4A */ +const RB1: f64 = -7.99283237680523006574e-01; /* 0xBFE993BA, 0x70C285DE */ +const RB2: f64 = -1.77579549177547519889e+01; /* 0xC031C209, 0x555F995A */ +const RB3: f64 = -1.60636384855821916062e+02; /* 0xC064145D, 0x43C5ED98 */ +const RB4: f64 = -6.37566443368389627722e+02; /* 0xC083EC88, 0x1375F228 */ +const RB5: f64 = -1.02509513161107724954e+03; /* 0xC0900461, 0x6A2E5992 */ +const RB6: f64 = -4.83519191608651397019e+02; /* 0xC07E384E, 0x9BDC383F */ +const SB1: f64 = 3.03380607434824582924e+01; /* 0x403E568B, 0x261D5190 */ +const SB2: f64 = 3.25792512996573918826e+02; /* 0x40745CAE, 0x221B9F0A */ +const SB3: f64 = 1.53672958608443695994e+03; /* 0x409802EB, 0x189D5118 */ +const SB4: f64 = 3.19985821950859553908e+03; /* 0x40A8FFB7, 0x688C246A */ +const SB5: f64 = 2.55305040643316442583e+03; /* 0x40A3F219, 0xCEDF3BE6 */ +const SB6: f64 = 4.74528541206955367215e+02; /* 0x407DA874, 0xE79FE763 */ +const SB7: f64 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */ + +fn erfc1(x: f64) -> f64 { + let s: f64; + let p: f64; + let q: f64; + + s = fabs(x) - 1.0; + p = PA0 + s * (PA1 + s * (PA2 + s * (PA3 + s * (PA4 + s * (PA5 + s * PA6))))); + q = 1.0 + s * (QA1 + s * (QA2 + s * (QA3 + s * (QA4 + s * (QA5 + s * QA6))))); + + 1.0 - ERX - p / q +} + +fn erfc2(ix: u32, mut x: f64) -> f64 { + let s: f64; + let r: f64; + let big_s: f64; + let z: f64; + + if ix < 0x3ff40000 { + /* |x| < 1.25 */ + return erfc1(x); + } + + x = fabs(x); + s = 1.0 / (x * x); + if ix < 0x4006db6d { + /* |x| < 1/.35 ~ 2.85714 */ + r = RA0 + s * (RA1 + s * (RA2 + s * (RA3 + s * (RA4 + s * (RA5 + s * (RA6 + s * RA7)))))); + big_s = 1.0 + + s * (SA1 + + s * (SA2 + s * (SA3 + s * (SA4 + s * (SA5 + s * (SA6 + s * (SA7 + s * SA8))))))); + } else { + /* |x| > 1/.35 */ + r = RB0 + s * (RB1 + s * (RB2 + s * (RB3 + s * (RB4 + s * (RB5 + s * RB6))))); + big_s = + 1.0 + s * (SB1 + s * (SB2 + s * (SB3 + s * (SB4 + s * (SB5 + s * (SB6 + s * SB7)))))); + } + z = with_set_low_word(x, 0); + + exp(-z * z - 0.5625) * exp((z - x) * (z + x) + r / big_s) / x +} + +/// Error function (f64) +/// +/// Calculates an approximation to the “error function”, which estimates +/// the probability that an observation will fall within x standard +/// deviations of the mean (assuming a normal distribution). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn erf(x: f64) -> f64 { + let r: f64; + let s: f64; + let z: f64; + let y: f64; + let mut ix: u32; + let sign: usize; + + ix = get_high_word(x); + sign = (ix >> 31) as usize; + ix &= 0x7fffffff; + if ix >= 0x7ff00000 { + /* erf(nan)=nan, erf(+-inf)=+-1 */ + return 1.0 - 2.0 * (sign as f64) + 1.0 / x; + } + if ix < 0x3feb0000 { + /* |x| < 0.84375 */ + if ix < 0x3e300000 { + /* |x| < 2**-28 */ + /* avoid underflow */ + return 0.125 * (8.0 * x + EFX8 * x); + } + z = x * x; + r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4))); + s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5)))); + y = r / s; + return x + x * y; + } + if ix < 0x40180000 { + /* 0.84375 <= |x| < 6 */ + y = 1.0 - erfc2(ix, x); + } else { + let x1p_1022 = f64::from_bits(0x0010000000000000); + y = 1.0 - x1p_1022; + } + + if sign != 0 { -y } else { y } +} + +/// Complementary error function (f64) +/// +/// Calculates the complementary probability. +/// Is `1 - erf(x)`. Is computed directly, so that you can use it to avoid +/// the loss of precision that would result from subtracting +/// large probabilities (on large `x`) from 1. +pub fn erfc(x: f64) -> f64 { + let r: f64; + let s: f64; + let z: f64; + let y: f64; + let mut ix: u32; + let sign: usize; + + ix = get_high_word(x); + sign = (ix >> 31) as usize; + ix &= 0x7fffffff; + if ix >= 0x7ff00000 { + /* erfc(nan)=nan, erfc(+-inf)=0,2 */ + return 2.0 * (sign as f64) + 1.0 / x; + } + if ix < 0x3feb0000 { + /* |x| < 0.84375 */ + if ix < 0x3c700000 { + /* |x| < 2**-56 */ + return 1.0 - x; + } + z = x * x; + r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4))); + s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5)))); + y = r / s; + if sign != 0 || ix < 0x3fd00000 { + /* x < 1/4 */ + return 1.0 - (x + x * y); + } + return 0.5 - (x - 0.5 + x * y); + } + if ix < 0x403c0000 { + /* 0.84375 <= |x| < 28 */ + if sign != 0 { + return 2.0 - erfc2(ix, x); + } else { + return erfc2(ix, x); + } + } + + let x1p_1022 = f64::from_bits(0x0010000000000000); + if sign != 0 { 2.0 - x1p_1022 } else { x1p_1022 * x1p_1022 } +} diff --git a/library/compiler-builtins/libm/src/math/erff.rs b/library/compiler-builtins/libm/src/math/erff.rs new file mode 100644 index 00000000000..2e41183bfc0 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/erff.rs @@ -0,0 +1,222 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/s_erff.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +use super::{expf, fabsf}; + +const ERX: f32 = 8.4506291151e-01; /* 0x3f58560b */ +/* + * Coefficients for approximation to erf on [0,0.84375] + */ +const EFX8: f32 = 1.0270333290e+00; /* 0x3f8375d4 */ +const PP0: f32 = 1.2837916613e-01; /* 0x3e0375d4 */ +const PP1: f32 = -3.2504209876e-01; /* 0xbea66beb */ +const PP2: f32 = -2.8481749818e-02; /* 0xbce9528f */ +const PP3: f32 = -5.7702702470e-03; /* 0xbbbd1489 */ +const PP4: f32 = -2.3763017452e-05; /* 0xb7c756b1 */ +const QQ1: f32 = 3.9791721106e-01; /* 0x3ecbbbce */ +const QQ2: f32 = 6.5022252500e-02; /* 0x3d852a63 */ +const QQ3: f32 = 5.0813062117e-03; /* 0x3ba68116 */ +const QQ4: f32 = 1.3249473704e-04; /* 0x390aee49 */ +const QQ5: f32 = -3.9602282413e-06; /* 0xb684e21a */ +/* + * Coefficients for approximation to erf in [0.84375,1.25] + */ +const PA0: f32 = -2.3621185683e-03; /* 0xbb1acdc6 */ +const PA1: f32 = 4.1485610604e-01; /* 0x3ed46805 */ +const PA2: f32 = -3.7220788002e-01; /* 0xbebe9208 */ +const PA3: f32 = 3.1834661961e-01; /* 0x3ea2fe54 */ +const PA4: f32 = -1.1089469492e-01; /* 0xbde31cc2 */ +const PA5: f32 = 3.5478305072e-02; /* 0x3d1151b3 */ +const PA6: f32 = -2.1663755178e-03; /* 0xbb0df9c0 */ +const QA1: f32 = 1.0642088205e-01; /* 0x3dd9f331 */ +const QA2: f32 = 5.4039794207e-01; /* 0x3f0a5785 */ +const QA3: f32 = 7.1828655899e-02; /* 0x3d931ae7 */ +const QA4: f32 = 1.2617121637e-01; /* 0x3e013307 */ +const QA5: f32 = 1.3637083583e-02; /* 0x3c5f6e13 */ +const QA6: f32 = 1.1984500103e-02; /* 0x3c445aa3 */ +/* + * Coefficients for approximation to erfc in [1.25,1/0.35] + */ +const RA0: f32 = -9.8649440333e-03; /* 0xbc21a093 */ +const RA1: f32 = -6.9385856390e-01; /* 0xbf31a0b7 */ +const RA2: f32 = -1.0558626175e+01; /* 0xc128f022 */ +const RA3: f32 = -6.2375331879e+01; /* 0xc2798057 */ +const RA4: f32 = -1.6239666748e+02; /* 0xc322658c */ +const RA5: f32 = -1.8460508728e+02; /* 0xc3389ae7 */ +const RA6: f32 = -8.1287437439e+01; /* 0xc2a2932b */ +const RA7: f32 = -9.8143291473e+00; /* 0xc11d077e */ +const SA1: f32 = 1.9651271820e+01; /* 0x419d35ce */ +const SA2: f32 = 1.3765776062e+02; /* 0x4309a863 */ +const SA3: f32 = 4.3456588745e+02; /* 0x43d9486f */ +const SA4: f32 = 6.4538726807e+02; /* 0x442158c9 */ +const SA5: f32 = 4.2900814819e+02; /* 0x43d6810b */ +const SA6: f32 = 1.0863500214e+02; /* 0x42d9451f */ +const SA7: f32 = 6.5702495575e+00; /* 0x40d23f7c */ +const SA8: f32 = -6.0424413532e-02; /* 0xbd777f97 */ +/* + * Coefficients for approximation to erfc in [1/.35,28] + */ +const RB0: f32 = -9.8649431020e-03; /* 0xbc21a092 */ +const RB1: f32 = -7.9928326607e-01; /* 0xbf4c9dd4 */ +const RB2: f32 = -1.7757955551e+01; /* 0xc18e104b */ +const RB3: f32 = -1.6063638306e+02; /* 0xc320a2ea */ +const RB4: f32 = -6.3756646729e+02; /* 0xc41f6441 */ +const RB5: f32 = -1.0250950928e+03; /* 0xc480230b */ +const RB6: f32 = -4.8351919556e+02; /* 0xc3f1c275 */ +const SB1: f32 = 3.0338060379e+01; /* 0x41f2b459 */ +const SB2: f32 = 3.2579251099e+02; /* 0x43a2e571 */ +const SB3: f32 = 1.5367296143e+03; /* 0x44c01759 */ +const SB4: f32 = 3.1998581543e+03; /* 0x4547fdbb */ +const SB5: f32 = 2.5530502930e+03; /* 0x451f90ce */ +const SB6: f32 = 4.7452853394e+02; /* 0x43ed43a7 */ +const SB7: f32 = -2.2440952301e+01; /* 0xc1b38712 */ + +fn erfc1(x: f32) -> f32 { + let s: f32; + let p: f32; + let q: f32; + + s = fabsf(x) - 1.0; + p = PA0 + s * (PA1 + s * (PA2 + s * (PA3 + s * (PA4 + s * (PA5 + s * PA6))))); + q = 1.0 + s * (QA1 + s * (QA2 + s * (QA3 + s * (QA4 + s * (QA5 + s * QA6))))); + return 1.0 - ERX - p / q; +} + +fn erfc2(mut ix: u32, mut x: f32) -> f32 { + let s: f32; + let r: f32; + let big_s: f32; + let z: f32; + + if ix < 0x3fa00000 { + /* |x| < 1.25 */ + return erfc1(x); + } + + x = fabsf(x); + s = 1.0 / (x * x); + if ix < 0x4036db6d { + /* |x| < 1/0.35 */ + r = RA0 + s * (RA1 + s * (RA2 + s * (RA3 + s * (RA4 + s * (RA5 + s * (RA6 + s * RA7)))))); + big_s = 1.0 + + s * (SA1 + + s * (SA2 + s * (SA3 + s * (SA4 + s * (SA5 + s * (SA6 + s * (SA7 + s * SA8))))))); + } else { + /* |x| >= 1/0.35 */ + r = RB0 + s * (RB1 + s * (RB2 + s * (RB3 + s * (RB4 + s * (RB5 + s * RB6))))); + big_s = + 1.0 + s * (SB1 + s * (SB2 + s * (SB3 + s * (SB4 + s * (SB5 + s * (SB6 + s * SB7)))))); + } + ix = x.to_bits(); + z = f32::from_bits(ix & 0xffffe000); + + expf(-z * z - 0.5625) * expf((z - x) * (z + x) + r / big_s) / x +} + +/// Error function (f32) +/// +/// Calculates an approximation to the “error function”, which estimates +/// the probability that an observation will fall within x standard +/// deviations of the mean (assuming a normal distribution). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn erff(x: f32) -> f32 { + let r: f32; + let s: f32; + let z: f32; + let y: f32; + let mut ix: u32; + let sign: usize; + + ix = x.to_bits(); + sign = (ix >> 31) as usize; + ix &= 0x7fffffff; + if ix >= 0x7f800000 { + /* erf(nan)=nan, erf(+-inf)=+-1 */ + return 1.0 - 2.0 * (sign as f32) + 1.0 / x; + } + if ix < 0x3f580000 { + /* |x| < 0.84375 */ + if ix < 0x31800000 { + /* |x| < 2**-28 */ + /*avoid underflow */ + return 0.125 * (8.0 * x + EFX8 * x); + } + z = x * x; + r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4))); + s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5)))); + y = r / s; + return x + x * y; + } + if ix < 0x40c00000 { + /* |x| < 6 */ + y = 1.0 - erfc2(ix, x); + } else { + let x1p_120 = f32::from_bits(0x03800000); + y = 1.0 - x1p_120; + } + + if sign != 0 { -y } else { y } +} + +/// Complementary error function (f32) +/// +/// Calculates the complementary probability. +/// Is `1 - erf(x)`. Is computed directly, so that you can use it to avoid +/// the loss of precision that would result from subtracting +/// large probabilities (on large `x`) from 1. +pub fn erfcf(x: f32) -> f32 { + let r: f32; + let s: f32; + let z: f32; + let y: f32; + let mut ix: u32; + let sign: usize; + + ix = x.to_bits(); + sign = (ix >> 31) as usize; + ix &= 0x7fffffff; + if ix >= 0x7f800000 { + /* erfc(nan)=nan, erfc(+-inf)=0,2 */ + return 2.0 * (sign as f32) + 1.0 / x; + } + + if ix < 0x3f580000 { + /* |x| < 0.84375 */ + if ix < 0x23800000 { + /* |x| < 2**-56 */ + return 1.0 - x; + } + z = x * x; + r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4))); + s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5)))); + y = r / s; + if sign != 0 || ix < 0x3e800000 { + /* x < 1/4 */ + return 1.0 - (x + x * y); + } + return 0.5 - (x - 0.5 + x * y); + } + if ix < 0x41e00000 { + /* |x| < 28 */ + if sign != 0 { + return 2.0 - erfc2(ix, x); + } else { + return erfc2(ix, x); + } + } + + let x1p_120 = f32::from_bits(0x03800000); + if sign != 0 { 2.0 - x1p_120 } else { x1p_120 * x1p_120 } +} diff --git a/library/compiler-builtins/libm/src/math/exp.rs b/library/compiler-builtins/libm/src/math/exp.rs new file mode 100644 index 00000000000..782042b62cd --- /dev/null +++ b/library/compiler-builtins/libm/src/math/exp.rs @@ -0,0 +1,150 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_exp.c */ +/* + * ==================================================== + * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. + * + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* exp(x) + * Returns the exponential of x. + * + * Method + * 1. Argument reduction: + * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. + * Given x, find r and integer k such that + * + * x = k*ln2 + r, |r| <= 0.5*ln2. + * + * Here r will be represented as r = hi-lo for better + * accuracy. + * + * 2. Approximation of exp(r) by a special rational function on + * the interval [0,0.34658]: + * Write + * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... + * We use a special Remez algorithm on [0,0.34658] to generate + * a polynomial of degree 5 to approximate R. The maximum error + * of this polynomial approximation is bounded by 2**-59. In + * other words, + * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 + * (where z=r*r, and the values of P1 to P5 are listed below) + * and + * | 5 | -59 + * | 2.0+P1*z+...+P5*z - R(z) | <= 2 + * | | + * The computation of exp(r) thus becomes + * 2*r + * exp(r) = 1 + ---------- + * R(r) - r + * r*c(r) + * = 1 + r + ----------- (for better accuracy) + * 2 - c(r) + * where + * 2 4 10 + * c(r) = r - (P1*r + P2*r + ... + P5*r ). + * + * 3. Scale back to obtain exp(x): + * From step 1, we have + * exp(x) = 2^k * exp(r) + * + * Special cases: + * exp(INF) is INF, exp(NaN) is NaN; + * exp(-INF) is 0, and + * for finite argument, only exp(0)=1 is exact. + * + * Accuracy: + * according to an error analysis, the error is always less than + * 1 ulp (unit in the last place). + * + * Misc. info. + * For IEEE double + * if x > 709.782712893383973096 then exp(x) overflows + * if x < -745.133219101941108420 then exp(x) underflows + */ + +use super::scalbn; + +const HALF: [f64; 2] = [0.5, -0.5]; +const LN2HI: f64 = 6.93147180369123816490e-01; /* 0x3fe62e42, 0xfee00000 */ +const LN2LO: f64 = 1.90821492927058770002e-10; /* 0x3dea39ef, 0x35793c76 */ +const INVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */ +const P1: f64 = 1.66666666666666019037e-01; /* 0x3FC55555, 0x5555553E */ +const P2: f64 = -2.77777777770155933842e-03; /* 0xBF66C16C, 0x16BEBD93 */ +const P3: f64 = 6.61375632143793436117e-05; /* 0x3F11566A, 0xAF25DE2C */ +const P4: f64 = -1.65339022054652515390e-06; /* 0xBEBBBD41, 0xC5D26BF1 */ +const P5: f64 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ + +/// Exponential, base *e* (f64) +/// +/// Calculate the exponential of `x`, that is, *e* raised to the power `x` +/// (where *e* is the base of the natural system of logarithms, approximately 2.71828). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn exp(mut x: f64) -> f64 { + let x1p1023 = f64::from_bits(0x7fe0000000000000); // 0x1p1023 === 2 ^ 1023 + let x1p_149 = f64::from_bits(0x36a0000000000000); // 0x1p-149 === 2 ^ -149 + + let hi: f64; + let lo: f64; + let c: f64; + let xx: f64; + let y: f64; + let k: i32; + let sign: i32; + let mut hx: u32; + + hx = (x.to_bits() >> 32) as u32; + sign = (hx >> 31) as i32; + hx &= 0x7fffffff; /* high word of |x| */ + + /* special cases */ + if hx >= 0x4086232b { + /* if |x| >= 708.39... */ + if x.is_nan() { + return x; + } + if x > 709.782712893383973096 { + /* overflow if x!=inf */ + x *= x1p1023; + return x; + } + if x < -708.39641853226410622 { + /* underflow if x!=-inf */ + force_eval!((-x1p_149 / x) as f32); + if x < -745.13321910194110842 { + return 0.; + } + } + } + + /* argument reduction */ + if hx > 0x3fd62e42 { + /* if |x| > 0.5 ln2 */ + if hx >= 0x3ff0a2b2 { + /* if |x| >= 1.5 ln2 */ + k = (INVLN2 * x + i!(HALF, sign as usize)) as i32; + } else { + k = 1 - sign - sign; + } + hi = x - k as f64 * LN2HI; /* k*ln2hi is exact here */ + lo = k as f64 * LN2LO; + x = hi - lo; + } else if hx > 0x3e300000 { + /* if |x| > 2**-28 */ + k = 0; + hi = x; + lo = 0.; + } else { + /* inexact if x!=0 */ + force_eval!(x1p1023 + x); + return 1. + x; + } + + /* x is now in primary range */ + xx = x * x; + c = x - xx * (P1 + xx * (P2 + xx * (P3 + xx * (P4 + xx * P5)))); + y = 1. + (x * c / (2. - c) - lo + hi); + if k == 0 { y } else { scalbn(y, k) } +} diff --git a/library/compiler-builtins/libm/src/math/exp10.rs b/library/compiler-builtins/libm/src/math/exp10.rs new file mode 100644 index 00000000000..7c33c92b603 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/exp10.rs @@ -0,0 +1,23 @@ +use super::{exp2, modf, pow}; + +const LN10: f64 = 3.32192809488736234787031942948939; +const P10: &[f64] = &[ + 1e-15, 1e-14, 1e-13, 1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, +]; + +/// Calculates 10 raised to the power of `x` (f64). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn exp10(x: f64) -> f64 { + let (mut y, n) = modf(x); + let u: u64 = n.to_bits(); + /* fabs(n) < 16 without raising invalid on nan */ + if ((u >> 52) & 0x7ff) < 0x3ff + 4 { + if y == 0.0 { + return i!(P10, ((n as isize) + 15) as usize); + } + y = exp2(LN10 * y); + return y * i!(P10, ((n as isize) + 15) as usize); + } + return pow(10.0, x); +} diff --git a/library/compiler-builtins/libm/src/math/exp10f.rs b/library/compiler-builtins/libm/src/math/exp10f.rs new file mode 100644 index 00000000000..0520a41f2e9 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/exp10f.rs @@ -0,0 +1,22 @@ +use super::{exp2, exp2f, modff}; + +const LN10_F32: f32 = 3.32192809488736234787031942948939; +const LN10_F64: f64 = 3.32192809488736234787031942948939; +const P10: &[f32] = + &[1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7]; + +/// Calculates 10 raised to the power of `x` (f32). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn exp10f(x: f32) -> f32 { + let (mut y, n) = modff(x); + let u = n.to_bits(); + /* fabsf(n) < 8 without raising invalid on nan */ + if ((u >> 23) & 0xff) < 0x7f + 3 { + if y == 0.0 { + return i!(P10, ((n as isize) + 7) as usize); + } + y = exp2f(LN10_F32 * y); + return y * i!(P10, ((n as isize) + 7) as usize); + } + return exp2(LN10_F64 * (x as f64)) as f32; +} diff --git a/library/compiler-builtins/libm/src/math/exp2.rs b/library/compiler-builtins/libm/src/math/exp2.rs new file mode 100644 index 00000000000..6e98d066cbf --- /dev/null +++ b/library/compiler-builtins/libm/src/math/exp2.rs @@ -0,0 +1,394 @@ +// origin: FreeBSD /usr/src/lib/msun/src/s_exp2.c */ +//- +// Copyright (c) 2005 David Schultz <das@FreeBSD.ORG> +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions +// are met: +// 1. Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// 2. Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// +// THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS +// OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) +// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY +// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF +// SUCH DAMAGE. + +use super::scalbn; + +const TBLSIZE: usize = 256; + +#[rustfmt::skip] +static TBL: [u64; TBLSIZE * 2] = [ + // exp2(z + eps) eps + 0x3fe6a09e667f3d5d, 0x3d39880000000000, + 0x3fe6b052fa751744, 0x3cd8000000000000, + 0x3fe6c012750bd9fe, 0xbd28780000000000, + 0x3fe6cfdcddd476bf, 0x3d1ec00000000000, + 0x3fe6dfb23c651a29, 0xbcd8000000000000, + 0x3fe6ef9298593ae3, 0xbcbc000000000000, + 0x3fe6ff7df9519386, 0xbd2fd80000000000, + 0x3fe70f7466f42da3, 0xbd2c880000000000, + 0x3fe71f75e8ec5fc3, 0x3d13c00000000000, + 0x3fe72f8286eacf05, 0xbd38300000000000, + 0x3fe73f9a48a58152, 0xbd00c00000000000, + 0x3fe74fbd35d7ccfc, 0x3d2f880000000000, + 0x3fe75feb564267f1, 0x3d03e00000000000, + 0x3fe77024b1ab6d48, 0xbd27d00000000000, + 0x3fe780694fde5d38, 0xbcdd000000000000, + 0x3fe790b938ac1d00, 0x3ce3000000000000, + 0x3fe7a11473eb0178, 0xbced000000000000, + 0x3fe7b17b0976d060, 0x3d20400000000000, + 0x3fe7c1ed0130c133, 0x3ca0000000000000, + 0x3fe7d26a62ff8636, 0xbd26900000000000, + 0x3fe7e2f336cf4e3b, 0xbd02e00000000000, + 0x3fe7f3878491c3e8, 0xbd24580000000000, + 0x3fe80427543e1b4e, 0x3d33000000000000, + 0x3fe814d2add1071a, 0x3d0f000000000000, + 0x3fe82589994ccd7e, 0xbd21c00000000000, + 0x3fe8364c1eb942d0, 0x3d29d00000000000, + 0x3fe8471a4623cab5, 0x3d47100000000000, + 0x3fe857f4179f5bbc, 0x3d22600000000000, + 0x3fe868d99b4491af, 0xbd32c40000000000, + 0x3fe879cad931a395, 0xbd23000000000000, + 0x3fe88ac7d98a65b8, 0xbd2a800000000000, + 0x3fe89bd0a4785800, 0xbced000000000000, + 0x3fe8ace5422aa223, 0x3d33280000000000, + 0x3fe8be05bad619fa, 0x3d42b40000000000, + 0x3fe8cf3216b54383, 0xbd2ed00000000000, + 0x3fe8e06a5e08664c, 0xbd20500000000000, + 0x3fe8f1ae99157807, 0x3d28280000000000, + 0x3fe902fed0282c0e, 0xbd1cb00000000000, + 0x3fe9145b0b91ff96, 0xbd05e00000000000, + 0x3fe925c353aa2ff9, 0x3cf5400000000000, + 0x3fe93737b0cdc64a, 0x3d17200000000000, + 0x3fe948b82b5f98ae, 0xbd09000000000000, + 0x3fe95a44cbc852cb, 0x3d25680000000000, + 0x3fe96bdd9a766f21, 0xbd36d00000000000, + 0x3fe97d829fde4e2a, 0xbd01000000000000, + 0x3fe98f33e47a23a3, 0x3d2d000000000000, + 0x3fe9a0f170ca0604, 0xbd38a40000000000, + 0x3fe9b2bb4d53ff89, 0x3d355c0000000000, + 0x3fe9c49182a3f15b, 0x3d26b80000000000, + 0x3fe9d674194bb8c5, 0xbcec000000000000, + 0x3fe9e86319e3238e, 0x3d17d00000000000, + 0x3fe9fa5e8d07f302, 0x3d16400000000000, + 0x3fea0c667b5de54d, 0xbcf5000000000000, + 0x3fea1e7aed8eb8f6, 0x3d09e00000000000, + 0x3fea309bec4a2e27, 0x3d2ad80000000000, + 0x3fea42c980460a5d, 0xbd1af00000000000, + 0x3fea5503b23e259b, 0x3d0b600000000000, + 0x3fea674a8af46213, 0x3d38880000000000, + 0x3fea799e1330b3a7, 0x3d11200000000000, + 0x3fea8bfe53c12e8d, 0x3d06c00000000000, + 0x3fea9e6b5579fcd2, 0xbd29b80000000000, + 0x3feab0e521356fb8, 0x3d2b700000000000, + 0x3feac36bbfd3f381, 0x3cd9000000000000, + 0x3fead5ff3a3c2780, 0x3ce4000000000000, + 0x3feae89f995ad2a3, 0xbd2c900000000000, + 0x3feafb4ce622f367, 0x3d16500000000000, + 0x3feb0e07298db790, 0x3d2fd40000000000, + 0x3feb20ce6c9a89a9, 0x3d12700000000000, + 0x3feb33a2b84f1a4b, 0x3d4d470000000000, + 0x3feb468415b747e7, 0xbd38380000000000, + 0x3feb59728de5593a, 0x3c98000000000000, + 0x3feb6c6e29f1c56a, 0x3d0ad00000000000, + 0x3feb7f76f2fb5e50, 0x3cde800000000000, + 0x3feb928cf22749b2, 0xbd04c00000000000, + 0x3feba5b030a10603, 0xbd0d700000000000, + 0x3febb8e0b79a6f66, 0x3d0d900000000000, + 0x3febcc1e904bc1ff, 0x3d02a00000000000, + 0x3febdf69c3f3a16f, 0xbd1f780000000000, + 0x3febf2c25bd71db8, 0xbd10a00000000000, + 0x3fec06286141b2e9, 0xbd11400000000000, + 0x3fec199bdd8552e0, 0x3d0be00000000000, + 0x3fec2d1cd9fa64ee, 0xbd09400000000000, + 0x3fec40ab5fffd02f, 0xbd0ed00000000000, + 0x3fec544778fafd15, 0x3d39660000000000, + 0x3fec67f12e57d0cb, 0xbd1a100000000000, + 0x3fec7ba88988c1b6, 0xbd58458000000000, + 0x3fec8f6d9406e733, 0xbd1a480000000000, + 0x3feca3405751c4df, 0x3ccb000000000000, + 0x3fecb720dcef9094, 0x3d01400000000000, + 0x3feccb0f2e6d1689, 0x3cf0200000000000, + 0x3fecdf0b555dc412, 0x3cf3600000000000, + 0x3fecf3155b5bab3b, 0xbd06900000000000, + 0x3fed072d4a0789bc, 0x3d09a00000000000, + 0x3fed1b532b08c8fa, 0xbd15e00000000000, + 0x3fed2f87080d8a85, 0x3d1d280000000000, + 0x3fed43c8eacaa203, 0x3d01a00000000000, + 0x3fed5818dcfba491, 0x3cdf000000000000, + 0x3fed6c76e862e6a1, 0xbd03a00000000000, + 0x3fed80e316c9834e, 0xbd0cd80000000000, + 0x3fed955d71ff6090, 0x3cf4c00000000000, + 0x3feda9e603db32ae, 0x3cff900000000000, + 0x3fedbe7cd63a8325, 0x3ce9800000000000, + 0x3fedd321f301b445, 0xbcf5200000000000, + 0x3fede7d5641c05bf, 0xbd1d700000000000, + 0x3fedfc97337b9aec, 0xbd16140000000000, + 0x3fee11676b197d5e, 0x3d0b480000000000, + 0x3fee264614f5a3e7, 0x3d40ce0000000000, + 0x3fee3b333b16ee5c, 0x3d0c680000000000, + 0x3fee502ee78b3fb4, 0xbd09300000000000, + 0x3fee653924676d68, 0xbce5000000000000, + 0x3fee7a51fbc74c44, 0xbd07f80000000000, + 0x3fee8f7977cdb726, 0xbcf3700000000000, + 0x3feea4afa2a490e8, 0x3ce5d00000000000, + 0x3feeb9f4867ccae4, 0x3d161a0000000000, + 0x3feecf482d8e680d, 0x3cf5500000000000, + 0x3feee4aaa2188514, 0x3cc6400000000000, + 0x3feefa1bee615a13, 0xbcee800000000000, + 0x3fef0f9c1cb64106, 0xbcfa880000000000, + 0x3fef252b376bb963, 0xbd2c900000000000, + 0x3fef3ac948dd7275, 0x3caa000000000000, + 0x3fef50765b6e4524, 0xbcf4f00000000000, + 0x3fef6632798844fd, 0x3cca800000000000, + 0x3fef7bfdad9cbe38, 0x3cfabc0000000000, + 0x3fef91d802243c82, 0xbcd4600000000000, + 0x3fefa7c1819e908e, 0xbd0b0c0000000000, + 0x3fefbdba3692d511, 0xbcc0e00000000000, + 0x3fefd3c22b8f7194, 0xbd10de8000000000, + 0x3fefe9d96b2a23ee, 0x3cee430000000000, + 0x3ff0000000000000, 0x0, + 0x3ff00b1afa5abcbe, 0xbcb3400000000000, + 0x3ff0163da9fb3303, 0xbd12170000000000, + 0x3ff02168143b0282, 0x3cba400000000000, + 0x3ff02c9a3e77806c, 0x3cef980000000000, + 0x3ff037d42e11bbca, 0xbcc7400000000000, + 0x3ff04315e86e7f89, 0x3cd8300000000000, + 0x3ff04e5f72f65467, 0xbd1a3f0000000000, + 0x3ff059b0d315855a, 0xbd02840000000000, + 0x3ff0650a0e3c1f95, 0x3cf1600000000000, + 0x3ff0706b29ddf71a, 0x3d15240000000000, + 0x3ff07bd42b72a82d, 0xbce9a00000000000, + 0x3ff0874518759bd0, 0x3ce6400000000000, + 0x3ff092bdf66607c8, 0xbd00780000000000, + 0x3ff09e3ecac6f383, 0xbc98000000000000, + 0x3ff0a9c79b1f3930, 0x3cffa00000000000, + 0x3ff0b5586cf988fc, 0xbcfac80000000000, + 0x3ff0c0f145e46c8a, 0x3cd9c00000000000, + 0x3ff0cc922b724816, 0x3d05200000000000, + 0x3ff0d83b23395dd8, 0xbcfad00000000000, + 0x3ff0e3ec32d3d1f3, 0x3d1bac0000000000, + 0x3ff0efa55fdfa9a6, 0xbd04e80000000000, + 0x3ff0fb66affed2f0, 0xbd0d300000000000, + 0x3ff1073028d7234b, 0x3cf1500000000000, + 0x3ff11301d0125b5b, 0x3cec000000000000, + 0x3ff11edbab5e2af9, 0x3d16bc0000000000, + 0x3ff12abdc06c31d5, 0x3ce8400000000000, + 0x3ff136a814f2047d, 0xbd0ed00000000000, + 0x3ff1429aaea92de9, 0x3ce8e00000000000, + 0x3ff14e95934f3138, 0x3ceb400000000000, + 0x3ff15a98c8a58e71, 0x3d05300000000000, + 0x3ff166a45471c3df, 0x3d03380000000000, + 0x3ff172b83c7d5211, 0x3d28d40000000000, + 0x3ff17ed48695bb9f, 0xbd05d00000000000, + 0x3ff18af9388c8d93, 0xbd1c880000000000, + 0x3ff1972658375d66, 0x3d11f00000000000, + 0x3ff1a35beb6fcba7, 0x3d10480000000000, + 0x3ff1af99f81387e3, 0xbd47390000000000, + 0x3ff1bbe084045d54, 0x3d24e40000000000, + 0x3ff1c82f95281c43, 0xbd0a200000000000, + 0x3ff1d4873168b9b2, 0x3ce3800000000000, + 0x3ff1e0e75eb44031, 0x3ceac00000000000, + 0x3ff1ed5022fcd938, 0x3d01900000000000, + 0x3ff1f9c18438cdf7, 0xbd1b780000000000, + 0x3ff2063b88628d8f, 0x3d2d940000000000, + 0x3ff212be3578a81e, 0x3cd8000000000000, + 0x3ff21f49917ddd41, 0x3d2b340000000000, + 0x3ff22bdda2791323, 0x3d19f80000000000, + 0x3ff2387a6e7561e7, 0xbd19c80000000000, + 0x3ff2451ffb821427, 0x3d02300000000000, + 0x3ff251ce4fb2a602, 0xbd13480000000000, + 0x3ff25e85711eceb0, 0x3d12700000000000, + 0x3ff26b4565e27d16, 0x3d11d00000000000, + 0x3ff2780e341de00f, 0x3d31ee0000000000, + 0x3ff284dfe1f5633e, 0xbd14c00000000000, + 0x3ff291ba7591bb30, 0xbd13d80000000000, + 0x3ff29e9df51fdf09, 0x3d08b00000000000, + 0x3ff2ab8a66d10e9b, 0xbd227c0000000000, + 0x3ff2b87fd0dada3a, 0x3d2a340000000000, + 0x3ff2c57e39771af9, 0xbd10800000000000, + 0x3ff2d285a6e402d9, 0xbd0ed00000000000, + 0x3ff2df961f641579, 0xbcf4200000000000, + 0x3ff2ecafa93e2ecf, 0xbd24980000000000, + 0x3ff2f9d24abd8822, 0xbd16300000000000, + 0x3ff306fe0a31b625, 0xbd32360000000000, + 0x3ff31432edeea50b, 0xbd70df8000000000, + 0x3ff32170fc4cd7b8, 0xbd22480000000000, + 0x3ff32eb83ba8e9a2, 0xbd25980000000000, + 0x3ff33c08b2641766, 0x3d1ed00000000000, + 0x3ff3496266e3fa27, 0xbcdc000000000000, + 0x3ff356c55f929f0f, 0xbd30d80000000000, + 0x3ff36431a2de88b9, 0x3d22c80000000000, + 0x3ff371a7373aaa39, 0x3d20600000000000, + 0x3ff37f26231e74fe, 0xbd16600000000000, + 0x3ff38cae6d05d838, 0xbd0ae00000000000, + 0x3ff39a401b713ec3, 0xbd44720000000000, + 0x3ff3a7db34e5a020, 0x3d08200000000000, + 0x3ff3b57fbfec6e95, 0x3d3e800000000000, + 0x3ff3c32dc313a8f2, 0x3cef800000000000, + 0x3ff3d0e544ede122, 0xbd17a00000000000, + 0x3ff3dea64c1234bb, 0x3d26300000000000, + 0x3ff3ec70df1c4ecc, 0xbd48a60000000000, + 0x3ff3fa4504ac7e8c, 0xbd3cdc0000000000, + 0x3ff40822c367a0bb, 0x3d25b80000000000, + 0x3ff4160a21f72e95, 0x3d1ec00000000000, + 0x3ff423fb27094646, 0xbd13600000000000, + 0x3ff431f5d950a920, 0x3d23980000000000, + 0x3ff43ffa3f84b9eb, 0x3cfa000000000000, + 0x3ff44e0860618919, 0xbcf6c00000000000, + 0x3ff45c2042a7d201, 0xbd0bc00000000000, + 0x3ff46a41ed1d0016, 0xbd12800000000000, + 0x3ff4786d668b3326, 0x3d30e00000000000, + 0x3ff486a2b5c13c00, 0xbd2d400000000000, + 0x3ff494e1e192af04, 0x3d0c200000000000, + 0x3ff4a32af0d7d372, 0xbd1e500000000000, + 0x3ff4b17dea6db801, 0x3d07800000000000, + 0x3ff4bfdad53629e1, 0xbd13800000000000, + 0x3ff4ce41b817c132, 0x3d00800000000000, + 0x3ff4dcb299fddddb, 0x3d2c700000000000, + 0x3ff4eb2d81d8ab96, 0xbd1ce00000000000, + 0x3ff4f9b2769d2d02, 0x3d19200000000000, + 0x3ff508417f4531c1, 0xbd08c00000000000, + 0x3ff516daa2cf662a, 0xbcfa000000000000, + 0x3ff5257de83f51ea, 0x3d4a080000000000, + 0x3ff5342b569d4eda, 0xbd26d80000000000, + 0x3ff542e2f4f6ac1a, 0xbd32440000000000, + 0x3ff551a4ca5d94db, 0x3d483c0000000000, + 0x3ff56070dde9116b, 0x3d24b00000000000, + 0x3ff56f4736b529de, 0x3d415a0000000000, + 0x3ff57e27dbe2c40e, 0xbd29e00000000000, + 0x3ff58d12d497c76f, 0xbd23080000000000, + 0x3ff59c0827ff0b4c, 0x3d4dec0000000000, + 0x3ff5ab07dd485427, 0xbcc4000000000000, + 0x3ff5ba11fba87af4, 0x3d30080000000000, + 0x3ff5c9268a59460b, 0xbd26c80000000000, + 0x3ff5d84590998e3f, 0x3d469a0000000000, + 0x3ff5e76f15ad20e1, 0xbd1b400000000000, + 0x3ff5f6a320dcebca, 0x3d17700000000000, + 0x3ff605e1b976dcb8, 0x3d26f80000000000, + 0x3ff6152ae6cdf715, 0x3d01000000000000, + 0x3ff6247eb03a5531, 0xbd15d00000000000, + 0x3ff633dd1d1929b5, 0xbd12d00000000000, + 0x3ff6434634ccc313, 0xbcea800000000000, + 0x3ff652b9febc8efa, 0xbd28600000000000, + 0x3ff6623882553397, 0x3d71fe0000000000, + 0x3ff671c1c708328e, 0xbd37200000000000, + 0x3ff68155d44ca97e, 0x3ce6800000000000, + 0x3ff690f4b19e9471, 0xbd29780000000000, +]; + +// exp2(x): compute the base 2 exponential of x +// +// Accuracy: Peak error < 0.503 ulp for normalized results. +// +// Method: (accurate tables) +// +// Reduce x: +// x = k + y, for integer k and |y| <= 1/2. +// Thus we have exp2(x) = 2**k * exp2(y). +// +// Reduce y: +// y = i/TBLSIZE + z - eps[i] for integer i near y * TBLSIZE. +// Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z - eps[i]), +// with |z - eps[i]| <= 2**-9 + 2**-39 for the table used. +// +// We compute exp2(i/TBLSIZE) via table lookup and exp2(z - eps[i]) via +// a degree-5 minimax polynomial with maximum error under 1.3 * 2**-61. +// The values in exp2t[] and eps[] are chosen such that +// exp2t[i] = exp2(i/TBLSIZE + eps[i]), and eps[i] is a small offset such +// that exp2t[i] is accurate to 2**-64. +// +// Note that the range of i is +-TBLSIZE/2, so we actually index the tables +// by i0 = i + TBLSIZE/2. For cache efficiency, exp2t[] and eps[] are +// virtual tables, interleaved in the real table tbl[]. +// +// This method is due to Gal, with many details due to Gal and Bachelis: +// +// Gal, S. and Bachelis, B. An Accurate Elementary Mathematical Library +// for the IEEE Floating Point Standard. TOMS 17(1), 26-46 (1991). + +/// Exponential, base 2 (f64) +/// +/// Calculate `2^x`, that is, 2 raised to the power `x`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn exp2(mut x: f64) -> f64 { + let redux = f64::from_bits(0x4338000000000000) / TBLSIZE as f64; + let p1 = f64::from_bits(0x3fe62e42fefa39ef); + let p2 = f64::from_bits(0x3fcebfbdff82c575); + let p3 = f64::from_bits(0x3fac6b08d704a0a6); + let p4 = f64::from_bits(0x3f83b2ab88f70400); + let p5 = f64::from_bits(0x3f55d88003875c74); + + // double_t r, t, z; + // uint32_t ix, i0; + // union {double f; uint64_t i;} u = {x}; + // union {uint32_t u; int32_t i;} k; + let x1p1023 = f64::from_bits(0x7fe0000000000000); + let x1p52 = f64::from_bits(0x4330000000000000); + let _0x1p_149 = f64::from_bits(0xb6a0000000000000); + + /* Filter out exceptional cases. */ + let ui = f64::to_bits(x); + let ix = (ui >> 32) & 0x7fffffff; + if ix >= 0x408ff000 { + /* |x| >= 1022 or nan */ + if ix >= 0x40900000 && ui >> 63 == 0 { + /* x >= 1024 or nan */ + /* overflow */ + x *= x1p1023; + return x; + } + if ix >= 0x7ff00000 { + /* -inf or -nan */ + return -1.0 / x; + } + if ui >> 63 != 0 { + /* x <= -1022 */ + /* underflow */ + if x <= -1075.0 || x - x1p52 + x1p52 != x { + force_eval!((_0x1p_149 / x) as f32); + } + if x <= -1075.0 { + return 0.0; + } + } + } else if ix < 0x3c900000 { + /* |x| < 0x1p-54 */ + return 1.0 + x; + } + + /* Reduce x, computing z, i0, and k. */ + let ui = f64::to_bits(x + redux); + let mut i0 = ui as u32; + i0 = i0.wrapping_add(TBLSIZE as u32 / 2); + let ku = i0 / TBLSIZE as u32 * TBLSIZE as u32; + let ki = div!(ku as i32, TBLSIZE as i32); + i0 %= TBLSIZE as u32; + let uf = f64::from_bits(ui) - redux; + let mut z = x - uf; + + /* Compute r = exp2(y) = exp2t[i0] * p(z - eps[i]). */ + let t = f64::from_bits(i!(TBL, 2 * i0 as usize)); /* exp2t[i0] */ + z -= f64::from_bits(i!(TBL, 2 * i0 as usize + 1)); /* eps[i0] */ + let r = t + t * z * (p1 + z * (p2 + z * (p3 + z * (p4 + z * p5)))); + + scalbn(r, ki) +} + +#[test] +fn i0_wrap_test() { + let x = -3.0 / 256.0; + assert_eq!(exp2(x), f64::from_bits(0x3fefbdba3692d514)); +} diff --git a/library/compiler-builtins/libm/src/math/exp2f.rs b/library/compiler-builtins/libm/src/math/exp2f.rs new file mode 100644 index 00000000000..f452b6a20f8 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/exp2f.rs @@ -0,0 +1,135 @@ +// origin: FreeBSD /usr/src/lib/msun/src/s_exp2f.c +//- +// Copyright (c) 2005 David Schultz <das@FreeBSD.ORG> +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions +// are met: +// 1. Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// 2. Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// +// THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS +// OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) +// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY +// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF +// SUCH DAMAGE. + +const TBLSIZE: usize = 16; + +static EXP2FT: [u64; TBLSIZE] = [ + 0x3fe6a09e667f3bcd, + 0x3fe7a11473eb0187, + 0x3fe8ace5422aa0db, + 0x3fe9c49182a3f090, + 0x3feae89f995ad3ad, + 0x3fec199bdd85529c, + 0x3fed5818dcfba487, + 0x3feea4afa2a490da, + 0x3ff0000000000000, + 0x3ff0b5586cf9890f, + 0x3ff172b83c7d517b, + 0x3ff2387a6e756238, + 0x3ff306fe0a31b715, + 0x3ff3dea64c123422, + 0x3ff4bfdad5362a27, + 0x3ff5ab07dd485429, +]; + +// exp2f(x): compute the base 2 exponential of x +// +// Accuracy: Peak error < 0.501 ulp; location of peak: -0.030110927. +// +// Method: (equally-spaced tables) +// +// Reduce x: +// x = k + y, for integer k and |y| <= 1/2. +// Thus we have exp2f(x) = 2**k * exp2(y). +// +// Reduce y: +// y = i/TBLSIZE + z for integer i near y * TBLSIZE. +// Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z), +// with |z| <= 2**-(TBLSIZE+1). +// +// We compute exp2(i/TBLSIZE) via table lookup and exp2(z) via a +// degree-4 minimax polynomial with maximum error under 1.4 * 2**-33. +// Using double precision for everything except the reduction makes +// roundoff error insignificant and simplifies the scaling step. +// +// This method is due to Tang, but I do not use his suggested parameters: +// +// Tang, P. Table-driven Implementation of the Exponential Function +// in IEEE Floating-Point Arithmetic. TOMS 15(2), 144-157 (1989). + +/// Exponential, base 2 (f32) +/// +/// Calculate `2^x`, that is, 2 raised to the power `x`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn exp2f(mut x: f32) -> f32 { + let redux = f32::from_bits(0x4b400000) / TBLSIZE as f32; + let p1 = f32::from_bits(0x3f317218); + let p2 = f32::from_bits(0x3e75fdf0); + let p3 = f32::from_bits(0x3d6359a4); + let p4 = f32::from_bits(0x3c1d964e); + + // double_t t, r, z; + // uint32_t ix, i0, k; + + let x1p127 = f32::from_bits(0x7f000000); + + /* Filter out exceptional cases. */ + let ui = f32::to_bits(x); + let ix = ui & 0x7fffffff; + if ix > 0x42fc0000 { + /* |x| > 126 */ + if ix > 0x7f800000 { + /* NaN */ + return x; + } + if (0x43000000..0x80000000).contains(&ui) { + /* x >= 128 */ + x *= x1p127; + return x; + } + if ui >= 0x80000000 { + /* x < -126 */ + if ui >= 0xc3160000 || (ui & 0x0000ffff != 0) { + force_eval!(f32::from_bits(0x80000001) / x); + } + if ui >= 0xc3160000 { + /* x <= -150 */ + return 0.0; + } + } + } else if ix <= 0x33000000 { + /* |x| <= 0x1p-25 */ + return 1.0 + x; + } + + /* Reduce x, computing z, i0, and k. */ + let ui = f32::to_bits(x + redux); + let mut i0 = ui; + i0 += TBLSIZE as u32 / 2; + let k = i0 / TBLSIZE as u32; + let ukf = f64::from_bits(((0x3ff + k) as u64) << 52); + i0 &= TBLSIZE as u32 - 1; + let mut uf = f32::from_bits(ui); + uf -= redux; + let z: f64 = (x - uf) as f64; + /* Compute r = exp2(y) = exp2ft[i0] * p(z). */ + let r: f64 = f64::from_bits(i!(EXP2FT, i0 as usize)); + let t: f64 = r * z; + let r: f64 = r + t * (p1 as f64 + z * p2 as f64) + t * (z * z) * (p3 as f64 + z * p4 as f64); + + /* Scale by 2**k */ + (r * ukf) as f32 +} diff --git a/library/compiler-builtins/libm/src/math/expf.rs b/library/compiler-builtins/libm/src/math/expf.rs new file mode 100644 index 00000000000..8dc067ab084 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/expf.rs @@ -0,0 +1,97 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_expf.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +use super::scalbnf; + +const HALF: [f32; 2] = [0.5, -0.5]; +const LN2_HI: f32 = 6.9314575195e-01; /* 0x3f317200 */ +const LN2_LO: f32 = 1.4286067653e-06; /* 0x35bfbe8e */ +const INV_LN2: f32 = 1.4426950216e+00; /* 0x3fb8aa3b */ +/* + * Domain [-0.34568, 0.34568], range ~[-4.278e-9, 4.447e-9]: + * |x*(exp(x)+1)/(exp(x)-1) - p(x)| < 2**-27.74 + */ +const P1: f32 = 1.6666625440e-1; /* 0xaaaa8f.0p-26 */ +const P2: f32 = -2.7667332906e-3; /* -0xb55215.0p-32 */ + +/// Exponential, base *e* (f32) +/// +/// Calculate the exponential of `x`, that is, *e* raised to the power `x` +/// (where *e* is the base of the natural system of logarithms, approximately 2.71828). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn expf(mut x: f32) -> f32 { + let x1p127 = f32::from_bits(0x7f000000); // 0x1p127f === 2 ^ 127 + let x1p_126 = f32::from_bits(0x800000); // 0x1p-126f === 2 ^ -126 /*original 0x1p-149f ??????????? */ + let mut hx = x.to_bits(); + let sign = (hx >> 31) as i32; /* sign bit of x */ + let signb: bool = sign != 0; + hx &= 0x7fffffff; /* high word of |x| */ + + /* special cases */ + if hx >= 0x42aeac50 { + /* if |x| >= -87.33655f or NaN */ + if hx > 0x7f800000 { + /* NaN */ + return x; + } + if (hx >= 0x42b17218) && (!signb) { + /* x >= 88.722839f */ + /* overflow */ + x *= x1p127; + return x; + } + if signb { + /* underflow */ + force_eval!(-x1p_126 / x); + if hx >= 0x42cff1b5 { + /* x <= -103.972084f */ + return 0.; + } + } + } + + /* argument reduction */ + let k: i32; + let hi: f32; + let lo: f32; + if hx > 0x3eb17218 { + /* if |x| > 0.5 ln2 */ + if hx > 0x3f851592 { + /* if |x| > 1.5 ln2 */ + k = (INV_LN2 * x + i!(HALF, sign as usize)) as i32; + } else { + k = 1 - sign - sign; + } + let kf = k as f32; + hi = x - kf * LN2_HI; /* k*ln2hi is exact here */ + lo = kf * LN2_LO; + x = hi - lo; + } else if hx > 0x39000000 { + /* |x| > 2**-14 */ + k = 0; + hi = x; + lo = 0.; + } else { + /* raise inexact */ + force_eval!(x1p127 + x); + return 1. + x; + } + + /* x is now in primary range */ + let xx = x * x; + let c = x - xx * (P1 + xx * P2); + let y = 1. + (x * c / (2. - c) - lo + hi); + if k == 0 { y } else { scalbnf(y, k) } +} diff --git a/library/compiler-builtins/libm/src/math/expm1.rs b/library/compiler-builtins/libm/src/math/expm1.rs new file mode 100644 index 00000000000..f25153f32a3 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/expm1.rs @@ -0,0 +1,144 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/s_expm1.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +use core::f64; + +const O_THRESHOLD: f64 = 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */ +const LN2_HI: f64 = 6.93147180369123816490e-01; /* 0x3fe62e42, 0xfee00000 */ +const LN2_LO: f64 = 1.90821492927058770002e-10; /* 0x3dea39ef, 0x35793c76 */ +const INVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */ +/* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */ +const Q1: f64 = -3.33333333333331316428e-02; /* BFA11111 111110F4 */ +const Q2: f64 = 1.58730158725481460165e-03; /* 3F5A01A0 19FE5585 */ +const Q3: f64 = -7.93650757867487942473e-05; /* BF14CE19 9EAADBB7 */ +const Q4: f64 = 4.00821782732936239552e-06; /* 3ED0CFCA 86E65239 */ +const Q5: f64 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */ + +/// Exponential, base *e*, of x-1 (f64) +/// +/// Calculates the exponential of `x` and subtract 1, that is, *e* raised +/// to the power `x` minus 1 (where *e* is the base of the natural +/// system of logarithms, approximately 2.71828). +/// The result is accurate even for small values of `x`, +/// where using `exp(x)-1` would lose many significant digits. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn expm1(mut x: f64) -> f64 { + let hi: f64; + let lo: f64; + let k: i32; + let c: f64; + let mut t: f64; + let mut y: f64; + + let mut ui = x.to_bits(); + let hx = ((ui >> 32) & 0x7fffffff) as u32; + let sign = (ui >> 63) as i32; + + /* filter out huge and non-finite argument */ + if hx >= 0x4043687A { + /* if |x|>=56*ln2 */ + if x.is_nan() { + return x; + } + if sign != 0 { + return -1.0; + } + if x > O_THRESHOLD { + x *= f64::from_bits(0x7fe0000000000000); + return x; + } + } + + /* argument reduction */ + if hx > 0x3fd62e42 { + /* if |x| > 0.5 ln2 */ + if hx < 0x3FF0A2B2 { + /* and |x| < 1.5 ln2 */ + if sign == 0 { + hi = x - LN2_HI; + lo = LN2_LO; + k = 1; + } else { + hi = x + LN2_HI; + lo = -LN2_LO; + k = -1; + } + } else { + k = (INVLN2 * x + if sign != 0 { -0.5 } else { 0.5 }) as i32; + t = k as f64; + hi = x - t * LN2_HI; /* t*ln2_hi is exact here */ + lo = t * LN2_LO; + } + x = hi - lo; + c = (hi - x) - lo; + } else if hx < 0x3c900000 { + /* |x| < 2**-54, return x */ + if hx < 0x00100000 { + force_eval!(x); + } + return x; + } else { + c = 0.0; + k = 0; + } + + /* x is now in primary range */ + let hfx = 0.5 * x; + let hxs = x * hfx; + let r1 = 1.0 + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5)))); + t = 3.0 - r1 * hfx; + let mut e = hxs * ((r1 - t) / (6.0 - x * t)); + if k == 0 { + /* c is 0 */ + return x - (x * e - hxs); + } + e = x * (e - c) - c; + e -= hxs; + /* exp(x) ~ 2^k (x_reduced - e + 1) */ + if k == -1 { + return 0.5 * (x - e) - 0.5; + } + if k == 1 { + if x < -0.25 { + return -2.0 * (e - (x + 0.5)); + } + return 1.0 + 2.0 * (x - e); + } + ui = ((0x3ff + k) as u64) << 52; /* 2^k */ + let twopk = f64::from_bits(ui); + if !(0..=56).contains(&k) { + /* suffice to return exp(x)-1 */ + y = x - e + 1.0; + if k == 1024 { + y = y * 2.0 * f64::from_bits(0x7fe0000000000000); + } else { + y = y * twopk; + } + return y - 1.0; + } + ui = ((0x3ff - k) as u64) << 52; /* 2^-k */ + let uf = f64::from_bits(ui); + if k < 20 { + y = (x - e + (1.0 - uf)) * twopk; + } else { + y = (x - (e + uf) + 1.0) * twopk; + } + y +} + +#[cfg(test)] +mod tests { + #[test] + fn sanity_check() { + assert_eq!(super::expm1(1.1), 2.0041660239464334); + } +} diff --git a/library/compiler-builtins/libm/src/math/expm1f.rs b/library/compiler-builtins/libm/src/math/expm1f.rs new file mode 100644 index 00000000000..12c6f532b96 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/expm1f.rs @@ -0,0 +1,130 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/s_expm1f.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +const O_THRESHOLD: f32 = 8.8721679688e+01; /* 0x42b17180 */ +const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */ +const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */ +const INV_LN2: f32 = 1.4426950216e+00; /* 0x3fb8aa3b */ +/* + * Domain [-0.34568, 0.34568], range ~[-6.694e-10, 6.696e-10]: + * |6 / x * (1 + 2 * (1 / (exp(x) - 1) - 1 / x)) - q(x)| < 2**-30.04 + * Scaled coefficients: Qn_here = 2**n * Qn_for_q (see s_expm1.c): + */ +const Q1: f32 = -3.3333212137e-2; /* -0x888868.0p-28 */ +const Q2: f32 = 1.5807170421e-3; /* 0xcf3010.0p-33 */ + +/// Exponential, base *e*, of x-1 (f32) +/// +/// Calculates the exponential of `x` and subtract 1, that is, *e* raised +/// to the power `x` minus 1 (where *e* is the base of the natural +/// system of logarithms, approximately 2.71828). +/// The result is accurate even for small values of `x`, +/// where using `exp(x)-1` would lose many significant digits. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn expm1f(mut x: f32) -> f32 { + let x1p127 = f32::from_bits(0x7f000000); // 0x1p127f === 2 ^ 127 + + let mut hx = x.to_bits(); + let sign = (hx >> 31) != 0; + hx &= 0x7fffffff; + + /* filter out huge and non-finite argument */ + if hx >= 0x4195b844 { + /* if |x|>=27*ln2 */ + if hx > 0x7f800000 { + /* NaN */ + return x; + } + if sign { + return -1.; + } + if x > O_THRESHOLD { + x *= x1p127; + return x; + } + } + + let k: i32; + let hi: f32; + let lo: f32; + let mut c = 0f32; + /* argument reduction */ + if hx > 0x3eb17218 { + /* if |x| > 0.5 ln2 */ + if hx < 0x3F851592 { + /* and |x| < 1.5 ln2 */ + if !sign { + hi = x - LN2_HI; + lo = LN2_LO; + k = 1; + } else { + hi = x + LN2_HI; + lo = -LN2_LO; + k = -1; + } + } else { + k = (INV_LN2 * x + (if sign { -0.5 } else { 0.5 })) as i32; + let t = k as f32; + hi = x - t * LN2_HI; /* t*ln2_hi is exact here */ + lo = t * LN2_LO; + } + x = hi - lo; + c = (hi - x) - lo; + } else if hx < 0x33000000 { + /* when |x|<2**-25, return x */ + if hx < 0x00800000 { + force_eval!(x * x); + } + return x; + } else { + k = 0; + } + + /* x is now in primary range */ + let hfx = 0.5 * x; + let hxs = x * hfx; + let r1 = 1. + hxs * (Q1 + hxs * Q2); + let t = 3. - r1 * hfx; + let mut e = hxs * ((r1 - t) / (6. - x * t)); + if k == 0 { + /* c is 0 */ + return x - (x * e - hxs); + } + e = x * (e - c) - c; + e -= hxs; + /* exp(x) ~ 2^k (x_reduced - e + 1) */ + if k == -1 { + return 0.5 * (x - e) - 0.5; + } + if k == 1 { + if x < -0.25 { + return -2. * (e - (x + 0.5)); + } + return 1. + 2. * (x - e); + } + let twopk = f32::from_bits(((0x7f + k) << 23) as u32); /* 2^k */ + if !(0..=56).contains(&k) { + /* suffice to return exp(x)-1 */ + let mut y = x - e + 1.; + if k == 128 { + y = y * 2. * x1p127; + } else { + y = y * twopk; + } + return y - 1.; + } + let uf = f32::from_bits(((0x7f - k) << 23) as u32); /* 2^-k */ + if k < 23 { (x - e + (1. - uf)) * twopk } else { (x - (e + uf) + 1.) * twopk } +} diff --git a/library/compiler-builtins/libm/src/math/expo2.rs b/library/compiler-builtins/libm/src/math/expo2.rs new file mode 100644 index 00000000000..82e9b360a76 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/expo2.rs @@ -0,0 +1,14 @@ +use super::{combine_words, exp}; + +/* exp(x)/2 for x >= log(DBL_MAX), slightly better than 0.5*exp(x/2)*exp(x/2) */ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub(crate) fn expo2(x: f64) -> f64 { + /* k is such that k*ln2 has minimal relative error and x - kln2 > log(DBL_MIN) */ + const K: i32 = 2043; + let kln2 = f64::from_bits(0x40962066151add8b); + + /* note that k is odd and scale*scale overflows */ + let scale = combine_words(((0x3ff + K / 2) as u32) << 20, 0); + /* exp(x - k ln2) * 2**(k-1) */ + exp(x - kln2) * scale * scale +} diff --git a/library/compiler-builtins/libm/src/math/fabs.rs b/library/compiler-builtins/libm/src/math/fabs.rs new file mode 100644 index 00000000000..0050a309fee --- /dev/null +++ b/library/compiler-builtins/libm/src/math/fabs.rs @@ -0,0 +1,116 @@ +/// Absolute value (magnitude) (f16) +/// +/// Calculates the absolute value (magnitude) of the argument `x`, +/// by direct manipulation of the bit representation of `x`. +#[cfg(f16_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fabsf16(x: f16) -> f16 { + super::generic::fabs(x) +} + +/// Absolute value (magnitude) (f32) +/// +/// Calculates the absolute value (magnitude) of the argument `x`, +/// by direct manipulation of the bit representation of `x`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fabsf(x: f32) -> f32 { + select_implementation! { + name: fabsf, + use_arch: all(target_arch = "wasm32", intrinsics_enabled), + args: x, + } + + super::generic::fabs(x) +} + +/// Absolute value (magnitude) (f64) +/// +/// Calculates the absolute value (magnitude) of the argument `x`, +/// by direct manipulation of the bit representation of `x`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fabs(x: f64) -> f64 { + select_implementation! { + name: fabs, + use_arch: all(target_arch = "wasm32", intrinsics_enabled), + args: x, + } + + super::generic::fabs(x) +} + +/// Absolute value (magnitude) (f128) +/// +/// Calculates the absolute value (magnitude) of the argument `x`, +/// by direct manipulation of the bit representation of `x`. +#[cfg(f128_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fabsf128(x: f128) -> f128 { + super::generic::fabs(x) +} + +#[cfg(test)] +mod tests { + use super::*; + use crate::support::Float; + + /// Based on https://en.cppreference.com/w/cpp/numeric/math/fabs + fn spec_test<F: Float>(f: impl Fn(F) -> F) { + assert_biteq!(f(F::ZERO), F::ZERO); + assert_biteq!(f(F::NEG_ZERO), F::ZERO); + assert_biteq!(f(F::INFINITY), F::INFINITY); + assert_biteq!(f(F::NEG_INFINITY), F::INFINITY); + assert!(f(F::NAN).is_nan()); + + // Not spec rewquired but we expect it + assert!(f(F::NAN).is_sign_positive()); + assert!(f(F::from_bits(F::NAN.to_bits() | F::SIGN_MASK)).is_sign_positive()); + } + + #[test] + #[cfg(f16_enabled)] + fn sanity_check_f16() { + assert_eq!(fabsf16(-1.0f16), 1.0); + assert_eq!(fabsf16(2.8f16), 2.8); + } + + #[test] + #[cfg(f16_enabled)] + fn spec_tests_f16() { + spec_test::<f16>(fabsf16); + } + + #[test] + fn sanity_check_f32() { + assert_eq!(fabsf(-1.0f32), 1.0); + assert_eq!(fabsf(2.8f32), 2.8); + } + + #[test] + fn spec_tests_f32() { + spec_test::<f32>(fabsf); + } + + #[test] + fn sanity_check_f64() { + assert_eq!(fabs(-1.0f64), 1.0); + assert_eq!(fabs(2.8f64), 2.8); + } + + #[test] + fn spec_tests_f64() { + spec_test::<f64>(fabs); + } + + #[test] + #[cfg(f128_enabled)] + fn sanity_check_f128() { + assert_eq!(fabsf128(-1.0f128), 1.0); + assert_eq!(fabsf128(2.8f128), 2.8); + } + + #[test] + #[cfg(f128_enabled)] + fn spec_tests_f128() { + spec_test::<f128>(fabsf128); + } +} diff --git a/library/compiler-builtins/libm/src/math/fabsf.rs b/library/compiler-builtins/libm/src/math/fabsf.rs new file mode 100644 index 00000000000..e5820a26c52 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/fabsf.rs @@ -0,0 +1,39 @@ +/// Absolute value (magnitude) (f32) +/// +/// Calculates the absolute value (magnitude) of the argument `x`, +/// by direct manipulation of the bit representation of `x`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fabsf(x: f32) -> f32 { + select_implementation! { + name: fabsf, + use_arch: all(target_arch = "wasm32", intrinsics_enabled), + args: x, + } + + super::generic::fabs(x) +} + +// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520 +#[cfg(not(target_arch = "powerpc64"))] +#[cfg(test)] +mod tests { + use super::*; + + #[test] + fn sanity_check() { + assert_eq!(fabsf(-1.0), 1.0); + assert_eq!(fabsf(2.8), 2.8); + } + + /// The spec: https://en.cppreference.com/w/cpp/numeric/math/fabs + #[test] + fn spec_tests() { + assert!(fabsf(f32::NAN).is_nan()); + for f in [0.0, -0.0].iter().copied() { + assert_eq!(fabsf(f), 0.0); + } + for f in [f32::INFINITY, f32::NEG_INFINITY].iter().copied() { + assert_eq!(fabsf(f), f32::INFINITY); + } + } +} diff --git a/library/compiler-builtins/libm/src/math/fabsf128.rs b/library/compiler-builtins/libm/src/math/fabsf128.rs new file mode 100644 index 00000000000..46429ca4940 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/fabsf128.rs @@ -0,0 +1,31 @@ +/// Absolute value (magnitude) (f128) +/// +/// Calculates the absolute value (magnitude) of the argument `x`, +/// by direct manipulation of the bit representation of `x`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fabsf128(x: f128) -> f128 { + super::generic::fabs(x) +} + +#[cfg(test)] +mod tests { + use super::*; + + #[test] + fn sanity_check() { + assert_eq!(fabsf128(-1.0), 1.0); + assert_eq!(fabsf128(2.8), 2.8); + } + + /// The spec: https://en.cppreference.com/w/cpp/numeric/math/fabs + #[test] + fn spec_tests() { + assert!(fabsf128(f128::NAN).is_nan()); + for f in [0.0, -0.0].iter().copied() { + assert_eq!(fabsf128(f), 0.0); + } + for f in [f128::INFINITY, f128::NEG_INFINITY].iter().copied() { + assert_eq!(fabsf128(f), f128::INFINITY); + } + } +} diff --git a/library/compiler-builtins/libm/src/math/fabsf16.rs b/library/compiler-builtins/libm/src/math/fabsf16.rs new file mode 100644 index 00000000000..eee42ac6a3c --- /dev/null +++ b/library/compiler-builtins/libm/src/math/fabsf16.rs @@ -0,0 +1,31 @@ +/// Absolute value (magnitude) (f16) +/// +/// Calculates the absolute value (magnitude) of the argument `x`, +/// by direct manipulation of the bit representation of `x`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fabsf16(x: f16) -> f16 { + super::generic::fabs(x) +} + +#[cfg(test)] +mod tests { + use super::*; + + #[test] + fn sanity_check() { + assert_eq!(fabsf16(-1.0), 1.0); + assert_eq!(fabsf16(2.8), 2.8); + } + + /// The spec: https://en.cppreference.com/w/cpp/numeric/math/fabs + #[test] + fn spec_tests() { + assert!(fabsf16(f16::NAN).is_nan()); + for f in [0.0, -0.0].iter().copied() { + assert_eq!(fabsf16(f), 0.0); + } + for f in [f16::INFINITY, f16::NEG_INFINITY].iter().copied() { + assert_eq!(fabsf16(f), f16::INFINITY); + } + } +} diff --git a/library/compiler-builtins/libm/src/math/fdim.rs b/library/compiler-builtins/libm/src/math/fdim.rs new file mode 100644 index 00000000000..082c5478b2a --- /dev/null +++ b/library/compiler-builtins/libm/src/math/fdim.rs @@ -0,0 +1,53 @@ +/// Positive difference (f16) +/// +/// Determines the positive difference between arguments, returning: +/// * x - y if x > y, or +/// * +0 if x <= y, or +/// * NAN if either argument is NAN. +/// +/// A range error may occur. +#[cfg(f16_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fdimf16(x: f16, y: f16) -> f16 { + super::generic::fdim(x, y) +} + +/// Positive difference (f32) +/// +/// Determines the positive difference between arguments, returning: +/// * x - y if x > y, or +/// * +0 if x <= y, or +/// * NAN if either argument is NAN. +/// +/// A range error may occur. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fdimf(x: f32, y: f32) -> f32 { + super::generic::fdim(x, y) +} + +/// Positive difference (f64) +/// +/// Determines the positive difference between arguments, returning: +/// * x - y if x > y, or +/// * +0 if x <= y, or +/// * NAN if either argument is NAN. +/// +/// A range error may occur. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fdim(x: f64, y: f64) -> f64 { + super::generic::fdim(x, y) +} + +/// Positive difference (f128) +/// +/// Determines the positive difference between arguments, returning: +/// * x - y if x > y, or +/// * +0 if x <= y, or +/// * NAN if either argument is NAN. +/// +/// A range error may occur. +#[cfg(f128_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fdimf128(x: f128, y: f128) -> f128 { + super::generic::fdim(x, y) +} diff --git a/library/compiler-builtins/libm/src/math/fdimf.rs b/library/compiler-builtins/libm/src/math/fdimf.rs new file mode 100644 index 00000000000..367ef517c63 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/fdimf.rs @@ -0,0 +1,12 @@ +/// Positive difference (f32) +/// +/// Determines the positive difference between arguments, returning: +/// * x - y if x > y, or +/// * +0 if x <= y, or +/// * NAN if either argument is NAN. +/// +/// A range error may occur. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fdimf(x: f32, y: f32) -> f32 { + super::generic::fdim(x, y) +} diff --git a/library/compiler-builtins/libm/src/math/fdimf128.rs b/library/compiler-builtins/libm/src/math/fdimf128.rs new file mode 100644 index 00000000000..6f3d1d0ff1d --- /dev/null +++ b/library/compiler-builtins/libm/src/math/fdimf128.rs @@ -0,0 +1,12 @@ +/// Positive difference (f128) +/// +/// Determines the positive difference between arguments, returning: +/// * x - y if x > y, or +/// * +0 if x <= y, or +/// * NAN if either argument is NAN. +/// +/// A range error may occur. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fdimf128(x: f128, y: f128) -> f128 { + super::generic::fdim(x, y) +} diff --git a/library/compiler-builtins/libm/src/math/fdimf16.rs b/library/compiler-builtins/libm/src/math/fdimf16.rs new file mode 100644 index 00000000000..37bd6885817 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/fdimf16.rs @@ -0,0 +1,12 @@ +/// Positive difference (f16) +/// +/// Determines the positive difference between arguments, returning: +/// * x - y if x > y, or +/// * +0 if x <= y, or +/// * NAN if either argument is NAN. +/// +/// A range error may occur. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fdimf16(x: f16, y: f16) -> f16 { + super::generic::fdim(x, y) +} diff --git a/library/compiler-builtins/libm/src/math/floor.rs b/library/compiler-builtins/libm/src/math/floor.rs new file mode 100644 index 00000000000..3c5eab101d1 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/floor.rs @@ -0,0 +1,46 @@ +/// Floor (f16) +/// +/// Finds the nearest integer less than or equal to `x`. +#[cfg(f16_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn floorf16(x: f16) -> f16 { + return super::generic::floor(x); +} + +/// Floor (f64) +/// +/// Finds the nearest integer less than or equal to `x`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn floor(x: f64) -> f64 { + select_implementation! { + name: floor, + use_arch: all(target_arch = "wasm32", intrinsics_enabled), + use_arch_required: all(target_arch = "x86", not(target_feature = "sse2")), + args: x, + } + + return super::generic::floor(x); +} + +/// Floor (f32) +/// +/// Finds the nearest integer less than or equal to `x`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn floorf(x: f32) -> f32 { + select_implementation! { + name: floorf, + use_arch: all(target_arch = "wasm32", intrinsics_enabled), + args: x, + } + + return super::generic::floor(x); +} + +/// Floor (f128) +/// +/// Finds the nearest integer less than or equal to `x`. +#[cfg(f128_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn floorf128(x: f128) -> f128 { + return super::generic::floor(x); +} diff --git a/library/compiler-builtins/libm/src/math/floorf.rs b/library/compiler-builtins/libm/src/math/floorf.rs new file mode 100644 index 00000000000..16957b7f355 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/floorf.rs @@ -0,0 +1,13 @@ +/// Floor (f32) +/// +/// Finds the nearest integer less than or equal to `x`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn floorf(x: f32) -> f32 { + select_implementation! { + name: floorf, + use_arch: all(target_arch = "wasm32", intrinsics_enabled), + args: x, + } + + return super::generic::floor(x); +} diff --git a/library/compiler-builtins/libm/src/math/floorf128.rs b/library/compiler-builtins/libm/src/math/floorf128.rs new file mode 100644 index 00000000000..9a9fe415115 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/floorf128.rs @@ -0,0 +1,7 @@ +/// Floor (f128) +/// +/// Finds the nearest integer less than or equal to `x`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn floorf128(x: f128) -> f128 { + return super::generic::floor(x); +} diff --git a/library/compiler-builtins/libm/src/math/floorf16.rs b/library/compiler-builtins/libm/src/math/floorf16.rs new file mode 100644 index 00000000000..f9b868e0410 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/floorf16.rs @@ -0,0 +1,7 @@ +/// Floor (f16) +/// +/// Finds the nearest integer less than or equal to `x`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn floorf16(x: f16) -> f16 { + return super::generic::floor(x); +} diff --git a/library/compiler-builtins/libm/src/math/fma.rs b/library/compiler-builtins/libm/src/math/fma.rs new file mode 100644 index 00000000000..e0b3347acf8 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/fma.rs @@ -0,0 +1,397 @@ +/* SPDX-License-Identifier: MIT */ +/* origin: musl src/math/fma.c. Ported to generic Rust algorithm in 2025, TG. */ + +use super::support::{DInt, FpResult, HInt, IntTy, Round, Status}; +use super::{CastFrom, CastInto, Float, Int, MinInt}; + +/// Fused multiply add (f64) +/// +/// Computes `(x*y)+z`, rounded as one ternary operation (i.e. calculated with infinite precision). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fma(x: f64, y: f64, z: f64) -> f64 { + select_implementation! { + name: fma, + use_arch: all(target_arch = "aarch64", target_feature = "neon"), + args: x, y, z, + } + + fma_round(x, y, z, Round::Nearest).val +} + +/// Fused multiply add (f128) +/// +/// Computes `(x*y)+z`, rounded as one ternary operation (i.e. calculated with infinite precision). +#[cfg(f128_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmaf128(x: f128, y: f128, z: f128) -> f128 { + fma_round(x, y, z, Round::Nearest).val +} + +/// Fused multiply-add that works when there is not a larger float size available. Computes +/// `(x * y) + z`. +#[inline] +pub fn fma_round<F>(x: F, y: F, z: F, _round: Round) -> FpResult<F> +where + F: Float, + F: CastFrom<F::SignedInt>, + F: CastFrom<i8>, + F::Int: HInt, + u32: CastInto<F::Int>, +{ + let one = IntTy::<F>::ONE; + let zero = IntTy::<F>::ZERO; + + // Normalize such that the top of the mantissa is zero and we have a guard bit. + let nx = Norm::from_float(x); + let ny = Norm::from_float(y); + let nz = Norm::from_float(z); + + if nx.is_zero_nan_inf() || ny.is_zero_nan_inf() { + // Value will overflow, defer to non-fused operations. + return FpResult::ok(x * y + z); + } + + if nz.is_zero_nan_inf() { + if nz.is_zero() { + // Empty add component means we only need to multiply. + return FpResult::ok(x * y); + } + // `z` is NaN or infinity, which sets the result. + return FpResult::ok(z); + } + + // multiply: r = x * y + let zhi: F::Int; + let zlo: F::Int; + let (mut rlo, mut rhi) = nx.m.widen_mul(ny.m).lo_hi(); + + // Exponent result of multiplication + let mut e: i32 = nx.e + ny.e; + // Needed shift to align `z` to the multiplication result + let mut d: i32 = nz.e - e; + let sbits = F::BITS as i32; + + // Scale `z`. Shift `z <<= kz`, `r >>= kr`, so `kz+kr == d`, set `e = e+kr` (== ez-kz) + if d > 0 { + // The magnitude of `z` is larger than `x * y` + if d < sbits { + // Maximum shift of one `F::BITS` means shifted `z` will fit into `2 * F::BITS`. Shift + // it into `(zhi, zlo)`. No exponent adjustment necessary. + zlo = nz.m << d; + zhi = nz.m >> (sbits - d); + } else { + // Shift larger than `sbits`, `z` only needs the top half `zhi`. Place it there (acts + // as a shift by `sbits`). + zlo = zero; + zhi = nz.m; + d -= sbits; + + // `z`'s exponent is large enough that it now needs to be taken into account. + e = nz.e - sbits; + + if d == 0 { + // Exactly `sbits`, nothing to do + } else if d < sbits { + // Remaining shift fits within `sbits`. Leave `z` in place, shift `x * y` + rlo = (rhi << (sbits - d)) | (rlo >> d); + // Set the sticky bit + rlo |= IntTy::<F>::from((rlo << (sbits - d)) != zero); + rhi = rhi >> d; + } else { + // `z`'s magnitude is enough that `x * y` is irrelevant. It was nonzero, so set + // the sticky bit. + rlo = one; + rhi = zero; + } + } + } else { + // `z`'s magnitude once shifted fits entirely within `zlo` + zhi = zero; + d = -d; + if d == 0 { + // No shift needed + zlo = nz.m; + } else if d < sbits { + // Shift s.t. `nz.m` fits into `zlo` + let sticky = IntTy::<F>::from((nz.m << (sbits - d)) != zero); + zlo = (nz.m >> d) | sticky; + } else { + // Would be entirely shifted out, only set the sticky bit + zlo = one; + } + } + + /* addition */ + + let mut neg = nx.neg ^ ny.neg; + let samesign: bool = !neg ^ nz.neg; + let mut rhi_nonzero = true; + + if samesign { + // r += z + rlo = rlo.wrapping_add(zlo); + rhi += zhi + IntTy::<F>::from(rlo < zlo); + } else { + // r -= z + let (res, borrow) = rlo.overflowing_sub(zlo); + rlo = res; + rhi = rhi.wrapping_sub(zhi.wrapping_add(IntTy::<F>::from(borrow))); + if (rhi >> (F::BITS - 1)) != zero { + rlo = rlo.signed().wrapping_neg().unsigned(); + rhi = rhi.signed().wrapping_neg().unsigned() - IntTy::<F>::from(rlo != zero); + neg = !neg; + } + rhi_nonzero = rhi != zero; + } + + /* Construct result */ + + // Shift result into `rhi`, left-aligned. Last bit is sticky + if rhi_nonzero { + // `d` > 0, need to shift both `rhi` and `rlo` into result + e += sbits; + d = rhi.leading_zeros() as i32 - 1; + rhi = (rhi << d) | (rlo >> (sbits - d)); + // Update sticky + rhi |= IntTy::<F>::from((rlo << d) != zero); + } else if rlo != zero { + // `rhi` is zero, `rlo` is the entire result and needs to be shifted + d = rlo.leading_zeros() as i32 - 1; + if d < 0 { + // Shift and set sticky + rhi = (rlo >> 1) | (rlo & one); + } else { + rhi = rlo << d; + } + } else { + // exact +/- 0.0 + return FpResult::ok(x * y + z); + } + + e -= d; + + // Use int->float conversion to populate the significand. + // i is in [1 << (BITS - 2), (1 << (BITS - 1)) - 1] + let mut i: F::SignedInt = rhi.signed(); + + if neg { + i = -i; + } + + // `|r|` is in `[0x1p62,0x1p63]` for `f64` + let mut r: F = F::cast_from_lossy(i); + + /* Account for subnormal and rounding */ + + // Unbiased exponent for the maximum value of `r` + let max_pow = F::BITS - 1 + F::EXP_BIAS; + + let mut status = Status::OK; + + if e < -(max_pow as i32 - 2) { + // Result is subnormal before rounding + if e == -(max_pow as i32 - 1) { + let mut c = F::from_parts(false, max_pow, zero); + if neg { + c = -c; + } + + if r == c { + // Min normal after rounding, + status.set_underflow(true); + r = F::MIN_POSITIVE_NORMAL.copysign(r); + return FpResult::new(r, status); + } + + if (rhi << (F::SIG_BITS + 1)) != zero { + // Account for truncated bits. One bit will be lost in the `scalbn` call, add + // another top bit to avoid double rounding if inexact. + let iu: F::Int = (rhi >> 1) | (rhi & one) | (one << (F::BITS - 2)); + i = iu.signed(); + + if neg { + i = -i; + } + + r = F::cast_from_lossy(i); + + // Remove the top bit + r = F::cast_from(2i8) * r - c; + status.set_underflow(true); + } + } else { + // Only round once when scaled + d = F::EXP_BITS as i32 - 1; + let sticky = IntTy::<F>::from(rhi << (F::BITS as i32 - d) != zero); + i = (((rhi >> d) | sticky) << d).signed(); + + if neg { + i = -i; + } + + r = F::cast_from_lossy(i); + } + } + + // Use our exponent to scale the final value. + FpResult::new(super::generic::scalbn(r, e), status) +} + +/// Representation of `F` that has handled subnormals. +#[derive(Clone, Copy, Debug)] +struct Norm<F: Float> { + /// Normalized significand with one guard bit, unsigned. + m: F::Int, + /// Exponent of the mantissa such that `m * 2^e = x`. Accounts for the shift in the mantissa + /// and the guard bit; that is, 1.0 will normalize as `m = 1 << 53` and `e = -53`. + e: i32, + neg: bool, +} + +impl<F: Float> Norm<F> { + /// Unbias the exponent and account for the mantissa's precision, including the guard bit. + const EXP_UNBIAS: u32 = F::EXP_BIAS + F::SIG_BITS + 1; + + /// Values greater than this had a saturated exponent (infinity or NaN), OR were zero and we + /// adjusted the exponent such that it exceeds this threashold. + const ZERO_INF_NAN: u32 = F::EXP_SAT - Self::EXP_UNBIAS; + + fn from_float(x: F) -> Self { + let mut ix = x.to_bits(); + let mut e = x.ex() as i32; + let neg = x.is_sign_negative(); + if e == 0 { + // Normalize subnormals by multiplication + let scale_i = F::BITS - 1; + let scale_f = F::from_parts(false, scale_i + F::EXP_BIAS, F::Int::ZERO); + let scaled = x * scale_f; + ix = scaled.to_bits(); + e = scaled.ex() as i32; + e = if e == 0 { + // If the exponent is still zero, the input was zero. Artifically set this value + // such that the final `e` will exceed `ZERO_INF_NAN`. + 1 << F::EXP_BITS + } else { + // Otherwise, account for the scaling we just did. + e - scale_i as i32 + }; + } + + e -= Self::EXP_UNBIAS as i32; + + // Absolute value, set the implicit bit, and shift to create a guard bit + ix &= F::SIG_MASK; + ix |= F::IMPLICIT_BIT; + ix <<= 1; + + Self { m: ix, e, neg } + } + + /// True if the value was zero, infinity, or NaN. + fn is_zero_nan_inf(self) -> bool { + self.e >= Self::ZERO_INF_NAN as i32 + } + + /// The only value we have + fn is_zero(self) -> bool { + // The only exponent that strictly exceeds this value is our sentinel value for zero. + self.e > Self::ZERO_INF_NAN as i32 + } +} + +#[cfg(test)] +mod tests { + use super::*; + + /// Test the generic `fma_round` algorithm for a given float. + fn spec_test<F>() + where + F: Float, + F: CastFrom<F::SignedInt>, + F: CastFrom<i8>, + F::Int: HInt, + u32: CastInto<F::Int>, + { + let x = F::from_bits(F::Int::ONE); + let y = F::from_bits(F::Int::ONE); + let z = F::ZERO; + + let fma = |x, y, z| fma_round(x, y, z, Round::Nearest).val; + + // 754-2020 says "When the exact result of (a × b) + c is non-zero yet the result of + // fusedMultiplyAdd is zero because of rounding, the zero result takes the sign of the + // exact result" + assert_biteq!(fma(x, y, z), F::ZERO); + assert_biteq!(fma(x, -y, z), F::NEG_ZERO); + assert_biteq!(fma(-x, y, z), F::NEG_ZERO); + assert_biteq!(fma(-x, -y, z), F::ZERO); + } + + #[test] + fn spec_test_f32() { + spec_test::<f32>(); + } + + #[test] + fn spec_test_f64() { + spec_test::<f64>(); + + let expect_underflow = [ + ( + hf64!("0x1.0p-1070"), + hf64!("0x1.0p-1070"), + hf64!("0x1.ffffffffffffp-1023"), + hf64!("0x0.ffffffffffff8p-1022"), + ), + ( + // FIXME: we raise underflow but this should only be inexact (based on C and + // `rustc_apfloat`). + hf64!("0x1.0p-1070"), + hf64!("0x1.0p-1070"), + hf64!("-0x1.0p-1022"), + hf64!("-0x1.0p-1022"), + ), + ]; + + for (x, y, z, res) in expect_underflow { + let FpResult { val, status } = fma_round(x, y, z, Round::Nearest); + assert_biteq!(val, res); + assert_eq!(status, Status::UNDERFLOW); + } + } + + #[test] + #[cfg(f128_enabled)] + fn spec_test_f128() { + spec_test::<f128>(); + } + + #[test] + fn fma_segfault() { + // These two inputs cause fma to segfault on release due to overflow: + assert_eq!( + fma( + -0.0000000000000002220446049250313, + -0.0000000000000002220446049250313, + -0.0000000000000002220446049250313 + ), + -0.00000000000000022204460492503126, + ); + + let result = fma(-0.992, -0.992, -0.992); + //force rounding to storage format on x87 to prevent superious errors. + #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))] + let result = force_eval!(result); + assert_eq!(result, -0.007936000000000007,); + } + + #[test] + fn fma_sbb() { + assert_eq!(fma(-(1.0 - f64::EPSILON), f64::MIN, f64::MIN), -3991680619069439e277); + } + + #[test] + fn fma_underflow() { + assert_eq!(fma(1.1102230246251565e-16, -9.812526705433188e-305, 1.0894e-320), 0.0,); + } +} diff --git a/library/compiler-builtins/libm/src/math/fma_wide.rs b/library/compiler-builtins/libm/src/math/fma_wide.rs new file mode 100644 index 00000000000..08b78b02264 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/fma_wide.rs @@ -0,0 +1,104 @@ +/* SPDX-License-Identifier: MIT */ +/* origin: musl src/math/fmaf.c. Ported to generic Rust algorithm in 2025, TG. */ + +use super::support::{FpResult, IntTy, Round, Status}; +use super::{CastFrom, CastInto, DFloat, Float, HFloat, MinInt}; + +// Placeholder so we can have `fmaf16` in the `Float` trait. +#[allow(unused)] +#[cfg(f16_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub(crate) fn fmaf16(_x: f16, _y: f16, _z: f16) -> f16 { + unimplemented!() +} + +/// Floating multiply add (f32) +/// +/// Computes `(x*y)+z`, rounded as one ternary operation (i.e. calculated with infinite precision). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmaf(x: f32, y: f32, z: f32) -> f32 { + select_implementation! { + name: fmaf, + use_arch: all(target_arch = "aarch64", target_feature = "neon"), + args: x, y, z, + } + + fma_wide_round(x, y, z, Round::Nearest).val +} + +/// Fma implementation when a hardware-backed larger float type is available. For `f32` and `f64`, +/// `f64` has enough precision to represent the `f32` in its entirety, except for double rounding. +#[inline] +pub fn fma_wide_round<F, B>(x: F, y: F, z: F, round: Round) -> FpResult<F> +where + F: Float + HFloat<D = B>, + B: Float + DFloat<H = F>, + B::Int: CastInto<i32>, + i32: CastFrom<i32>, +{ + let one = IntTy::<B>::ONE; + + let xy: B = x.widen() * y.widen(); + let mut result: B = xy + z.widen(); + let mut ui: B::Int = result.to_bits(); + let re = result.ex(); + let zb: B = z.widen(); + + let prec_diff = B::SIG_BITS - F::SIG_BITS; + let excess_prec = ui & ((one << prec_diff) - one); + let halfway = one << (prec_diff - 1); + + // Common case: the larger precision is fine if... + // This is not a halfway case + if excess_prec != halfway + // Or the result is NaN + || re == B::EXP_SAT + // Or the result is exact + || (result - xy == zb && result - zb == xy) + // Or the mode is something other than round to nearest + || round != Round::Nearest + { + let min_inexact_exp = (B::EXP_BIAS as i32 + F::EXP_MIN_SUBNORM) as u32; + let max_inexact_exp = (B::EXP_BIAS as i32 + F::EXP_MIN) as u32; + + let mut status = Status::OK; + + if (min_inexact_exp..max_inexact_exp).contains(&re) && status.inexact() { + // This branch is never hit; requires previous operations to set a status + status.set_inexact(false); + + result = xy + z.widen(); + if status.inexact() { + status.set_underflow(true); + } else { + status.set_inexact(true); + } + } + + return FpResult { val: result.narrow(), status }; + } + + let neg = ui >> (B::BITS - 1) != IntTy::<B>::ZERO; + let err = if neg == (zb > xy) { xy - result + zb } else { zb - result + xy }; + if neg == (err < B::ZERO) { + ui += one; + } else { + ui -= one; + } + + FpResult::ok(B::from_bits(ui).narrow()) +} + +#[cfg(test)] +mod tests { + use super::*; + + #[test] + fn issue_263() { + let a = f32::from_bits(1266679807); + let b = f32::from_bits(1300234242); + let c = f32::from_bits(1115553792); + let expected = f32::from_bits(1501560833); + assert_eq!(fmaf(a, b, c), expected); + } +} diff --git a/library/compiler-builtins/libm/src/math/fmin_fmax.rs b/library/compiler-builtins/libm/src/math/fmin_fmax.rs new file mode 100644 index 00000000000..2947b783e2f --- /dev/null +++ b/library/compiler-builtins/libm/src/math/fmin_fmax.rs @@ -0,0 +1,167 @@ +/// Return the lesser of two arguments or, if either argument is NaN, the other argument. +/// +/// This coincides with IEEE 754-2011 `minNum`. The result disregards signed zero (meaning if +/// the inputs are -0.0 and +0.0, either may be returned). +#[cfg(f16_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fminf16(x: f16, y: f16) -> f16 { + super::generic::fmin(x, y) +} + +/// Return the lesser of two arguments or, if either argument is NaN, the other argument. +/// +/// This coincides with IEEE 754-2011 `minNum`. The result disregards signed zero (meaning if +/// the inputs are -0.0 and +0.0, either may be returned). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fminf(x: f32, y: f32) -> f32 { + super::generic::fmin(x, y) +} + +/// Return the lesser of two arguments or, if either argument is NaN, the other argument. +/// +/// This coincides with IEEE 754-2011 `minNum`. The result disregards signed zero (meaning if +/// the inputs are -0.0 and +0.0, either may be returned). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmin(x: f64, y: f64) -> f64 { + super::generic::fmin(x, y) +} + +/// Return the lesser of two arguments or, if either argument is NaN, the other argument. +/// +/// This coincides with IEEE 754-2011 `minNum`. The result disregards signed zero (meaning if +/// the inputs are -0.0 and +0.0, either may be returned). +#[cfg(f128_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fminf128(x: f128, y: f128) -> f128 { + super::generic::fmin(x, y) +} + +/// Return the greater of two arguments or, if either argument is NaN, the other argument. +/// +/// This coincides with IEEE 754-2011 `maxNum`. The result disregards signed zero (meaning if +/// the inputs are -0.0 and +0.0, either may be returned). +#[cfg(f16_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmaxf16(x: f16, y: f16) -> f16 { + super::generic::fmax(x, y) +} + +/// Return the greater of two arguments or, if either argument is NaN, the other argument. +/// +/// This coincides with IEEE 754-2011 `maxNum`. The result disregards signed zero (meaning if +/// the inputs are -0.0 and +0.0, either may be returned). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmaxf(x: f32, y: f32) -> f32 { + super::generic::fmax(x, y) +} + +/// Return the greater of two arguments or, if either argument is NaN, the other argument. +/// +/// This coincides with IEEE 754-2011 `maxNum`. The result disregards signed zero (meaning if +/// the inputs are -0.0 and +0.0, either may be returned). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmax(x: f64, y: f64) -> f64 { + super::generic::fmax(x, y) +} + +/// Return the greater of two arguments or, if either argument is NaN, the other argument. +/// +/// This coincides with IEEE 754-2011 `maxNum`. The result disregards signed zero (meaning if +/// the inputs are -0.0 and +0.0, either may be returned). +#[cfg(f128_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmaxf128(x: f128, y: f128) -> f128 { + super::generic::fmax(x, y) +} + +#[cfg(test)] +mod tests { + use super::*; + use crate::support::{Float, Hexf}; + + fn fmin_spec_test<F: Float>(f: impl Fn(F, F) -> F) { + let cases = [ + (F::ZERO, F::ZERO, F::ZERO), + (F::ONE, F::ONE, F::ONE), + (F::ZERO, F::ONE, F::ZERO), + (F::ONE, F::ZERO, F::ZERO), + (F::ZERO, F::NEG_ONE, F::NEG_ONE), + (F::NEG_ONE, F::ZERO, F::NEG_ONE), + (F::INFINITY, F::ZERO, F::ZERO), + (F::NEG_INFINITY, F::ZERO, F::NEG_INFINITY), + (F::NAN, F::ZERO, F::ZERO), + (F::ZERO, F::NAN, F::ZERO), + (F::NAN, F::NAN, F::NAN), + ]; + + for (x, y, res) in cases { + let val = f(x, y); + assert_biteq!(val, res, "fmin({}, {})", Hexf(x), Hexf(y)); + } + } + + #[test] + #[cfg(f16_enabled)] + fn fmin_spec_tests_f16() { + fmin_spec_test::<f16>(fminf16); + } + + #[test] + fn fmin_spec_tests_f32() { + fmin_spec_test::<f32>(fminf); + } + + #[test] + fn fmin_spec_tests_f64() { + fmin_spec_test::<f64>(fmin); + } + + #[test] + #[cfg(f128_enabled)] + fn fmin_spec_tests_f128() { + fmin_spec_test::<f128>(fminf128); + } + + fn fmax_spec_test<F: Float>(f: impl Fn(F, F) -> F) { + let cases = [ + (F::ZERO, F::ZERO, F::ZERO), + (F::ONE, F::ONE, F::ONE), + (F::ZERO, F::ONE, F::ONE), + (F::ONE, F::ZERO, F::ONE), + (F::ZERO, F::NEG_ONE, F::ZERO), + (F::NEG_ONE, F::ZERO, F::ZERO), + (F::INFINITY, F::ZERO, F::INFINITY), + (F::NEG_INFINITY, F::ZERO, F::ZERO), + (F::NAN, F::ZERO, F::ZERO), + (F::ZERO, F::NAN, F::ZERO), + (F::NAN, F::NAN, F::NAN), + ]; + + for (x, y, res) in cases { + let val = f(x, y); + assert_biteq!(val, res, "fmax({}, {})", Hexf(x), Hexf(y)); + } + } + + #[test] + #[cfg(f16_enabled)] + fn fmax_spec_tests_f16() { + fmax_spec_test::<f16>(fmaxf16); + } + + #[test] + fn fmax_spec_tests_f32() { + fmax_spec_test::<f32>(fmaxf); + } + + #[test] + fn fmax_spec_tests_f64() { + fmax_spec_test::<f64>(fmax); + } + + #[test] + #[cfg(f128_enabled)] + fn fmax_spec_tests_f128() { + fmax_spec_test::<f128>(fmaxf128); + } +} diff --git a/library/compiler-builtins/libm/src/math/fminimum_fmaximum.rs b/library/compiler-builtins/libm/src/math/fminimum_fmaximum.rs new file mode 100644 index 00000000000..b7999e27392 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/fminimum_fmaximum.rs @@ -0,0 +1,163 @@ +/// Return the lesser of two arguments or, if either argument is NaN, the other argument. +/// +/// This coincides with IEEE 754-2019 `minimum`. The result orders -0.0 < 0.0. +#[cfg(f16_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fminimumf16(x: f16, y: f16) -> f16 { + super::generic::fminimum(x, y) +} + +/// Return the lesser of two arguments or, if either argument is NaN, the other argument. +/// +/// This coincides with IEEE 754-2019 `minimum`. The result orders -0.0 < 0.0. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fminimum(x: f64, y: f64) -> f64 { + super::generic::fminimum(x, y) +} + +/// Return the lesser of two arguments or, if either argument is NaN, the other argument. +/// +/// This coincides with IEEE 754-2019 `minimum`. The result orders -0.0 < 0.0. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fminimumf(x: f32, y: f32) -> f32 { + super::generic::fminimum(x, y) +} + +/// Return the lesser of two arguments or, if either argument is NaN, the other argument. +/// +/// This coincides with IEEE 754-2019 `minimum`. The result orders -0.0 < 0.0. +#[cfg(f128_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fminimumf128(x: f128, y: f128) -> f128 { + super::generic::fminimum(x, y) +} + +/// Return the greater of two arguments or, if either argument is NaN, the other argument. +/// +/// This coincides with IEEE 754-2019 `maximum`. The result orders -0.0 < 0.0. +#[cfg(f16_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmaximumf16(x: f16, y: f16) -> f16 { + super::generic::fmaximum(x, y) +} + +/// Return the greater of two arguments or, if either argument is NaN, the other argument. +/// +/// This coincides with IEEE 754-2019 `maximum`. The result orders -0.0 < 0.0. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmaximumf(x: f32, y: f32) -> f32 { + super::generic::fmaximum(x, y) +} + +/// Return the greater of two arguments or, if either argument is NaN, the other argument. +/// +/// This coincides with IEEE 754-2019 `maximum`. The result orders -0.0 < 0.0. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmaximum(x: f64, y: f64) -> f64 { + super::generic::fmaximum(x, y) +} + +/// Return the greater of two arguments or, if either argument is NaN, the other argument. +/// +/// This coincides with IEEE 754-2019 `maximum`. The result orders -0.0 < 0.0. +#[cfg(f128_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmaximumf128(x: f128, y: f128) -> f128 { + super::generic::fmaximum(x, y) +} + +#[cfg(test)] +mod tests { + use super::*; + use crate::support::{Float, Hexf}; + + fn fminimum_spec_test<F: Float>(f: impl Fn(F, F) -> F) { + let cases = [ + (F::ZERO, F::ZERO, F::ZERO), + (F::ONE, F::ONE, F::ONE), + (F::ZERO, F::ONE, F::ZERO), + (F::ONE, F::ZERO, F::ZERO), + (F::ZERO, F::NEG_ONE, F::NEG_ONE), + (F::NEG_ONE, F::ZERO, F::NEG_ONE), + (F::INFINITY, F::ZERO, F::ZERO), + (F::NEG_INFINITY, F::ZERO, F::NEG_INFINITY), + (F::NAN, F::ZERO, F::NAN), + (F::ZERO, F::NAN, F::NAN), + (F::NAN, F::NAN, F::NAN), + (F::ZERO, F::NEG_ZERO, F::NEG_ZERO), + (F::NEG_ZERO, F::ZERO, F::NEG_ZERO), + ]; + + for (x, y, res) in cases { + let val = f(x, y); + assert_biteq!(val, res, "fminimum({}, {})", Hexf(x), Hexf(y)); + } + } + + #[test] + #[cfg(f16_enabled)] + fn fminimum_spec_tests_f16() { + fminimum_spec_test::<f16>(fminimumf16); + } + + #[test] + fn fminimum_spec_tests_f32() { + fminimum_spec_test::<f32>(fminimumf); + } + + #[test] + fn fminimum_spec_tests_f64() { + fminimum_spec_test::<f64>(fminimum); + } + + #[test] + #[cfg(f128_enabled)] + fn fminimum_spec_tests_f128() { + fminimum_spec_test::<f128>(fminimumf128); + } + + fn fmaximum_spec_test<F: Float>(f: impl Fn(F, F) -> F) { + let cases = [ + (F::ZERO, F::ZERO, F::ZERO), + (F::ONE, F::ONE, F::ONE), + (F::ZERO, F::ONE, F::ONE), + (F::ONE, F::ZERO, F::ONE), + (F::ZERO, F::NEG_ONE, F::ZERO), + (F::NEG_ONE, F::ZERO, F::ZERO), + (F::INFINITY, F::ZERO, F::INFINITY), + (F::NEG_INFINITY, F::ZERO, F::ZERO), + (F::NAN, F::ZERO, F::NAN), + (F::ZERO, F::NAN, F::NAN), + (F::NAN, F::NAN, F::NAN), + (F::ZERO, F::NEG_ZERO, F::ZERO), + (F::NEG_ZERO, F::ZERO, F::ZERO), + ]; + + for (x, y, res) in cases { + let val = f(x, y); + assert_biteq!(val, res, "fmaximum({}, {})", Hexf(x), Hexf(y)); + } + } + + #[test] + #[cfg(f16_enabled)] + fn fmaximum_spec_tests_f16() { + fmaximum_spec_test::<f16>(fmaximumf16); + } + + #[test] + fn fmaximum_spec_tests_f32() { + fmaximum_spec_test::<f32>(fmaximumf); + } + + #[test] + fn fmaximum_spec_tests_f64() { + fmaximum_spec_test::<f64>(fmaximum); + } + + #[test] + #[cfg(f128_enabled)] + fn fmaximum_spec_tests_f128() { + fmaximum_spec_test::<f128>(fmaximumf128); + } +} diff --git a/library/compiler-builtins/libm/src/math/fminimum_fmaximum_num.rs b/library/compiler-builtins/libm/src/math/fminimum_fmaximum_num.rs new file mode 100644 index 00000000000..180d21f72b7 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/fminimum_fmaximum_num.rs @@ -0,0 +1,163 @@ +/// Return the lesser of two arguments or, if either argument is NaN, NaN. +/// +/// This coincides with IEEE 754-2019 `minimumNumber`. The result orders -0.0 < 0.0. +#[cfg(f16_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fminimum_numf16(x: f16, y: f16) -> f16 { + super::generic::fminimum_num(x, y) +} + +/// Return the lesser of two arguments or, if either argument is NaN, NaN. +/// +/// This coincides with IEEE 754-2019 `minimumNumber`. The result orders -0.0 < 0.0. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fminimum_numf(x: f32, y: f32) -> f32 { + super::generic::fminimum_num(x, y) +} + +/// Return the lesser of two arguments or, if either argument is NaN, NaN. +/// +/// This coincides with IEEE 754-2019 `minimumNumber`. The result orders -0.0 < 0.0. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fminimum_num(x: f64, y: f64) -> f64 { + super::generic::fminimum_num(x, y) +} + +/// Return the lesser of two arguments or, if either argument is NaN, NaN. +/// +/// This coincides with IEEE 754-2019 `minimumNumber`. The result orders -0.0 < 0.0. +#[cfg(f128_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fminimum_numf128(x: f128, y: f128) -> f128 { + super::generic::fminimum_num(x, y) +} + +/// Return the greater of two arguments or, if either argument is NaN, NaN. +/// +/// This coincides with IEEE 754-2019 `maximumNumber`. The result orders -0.0 < 0.0. +#[cfg(f16_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmaximum_numf16(x: f16, y: f16) -> f16 { + super::generic::fmaximum_num(x, y) +} + +/// Return the greater of two arguments or, if either argument is NaN, NaN. +/// +/// This coincides with IEEE 754-2019 `maximumNumber`. The result orders -0.0 < 0.0. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmaximum_numf(x: f32, y: f32) -> f32 { + super::generic::fmaximum_num(x, y) +} + +/// Return the greater of two arguments or, if either argument is NaN, NaN. +/// +/// This coincides with IEEE 754-2019 `maximumNumber`. The result orders -0.0 < 0.0. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmaximum_num(x: f64, y: f64) -> f64 { + super::generic::fmaximum_num(x, y) +} + +/// Return the greater of two arguments or, if either argument is NaN, NaN. +/// +/// This coincides with IEEE 754-2019 `maximumNumber`. The result orders -0.0 < 0.0. +#[cfg(f128_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmaximum_numf128(x: f128, y: f128) -> f128 { + super::generic::fmaximum_num(x, y) +} + +#[cfg(test)] +mod tests { + use super::*; + use crate::support::{Float, Hexf}; + + fn fminimum_num_spec_test<F: Float>(f: impl Fn(F, F) -> F) { + let cases = [ + (F::ZERO, F::ZERO, F::ZERO), + (F::ONE, F::ONE, F::ONE), + (F::ZERO, F::ONE, F::ZERO), + (F::ONE, F::ZERO, F::ZERO), + (F::ZERO, F::NEG_ONE, F::NEG_ONE), + (F::NEG_ONE, F::ZERO, F::NEG_ONE), + (F::INFINITY, F::ZERO, F::ZERO), + (F::NEG_INFINITY, F::ZERO, F::NEG_INFINITY), + (F::NAN, F::ZERO, F::ZERO), + (F::ZERO, F::NAN, F::ZERO), + (F::NAN, F::NAN, F::NAN), + (F::ZERO, F::NEG_ZERO, F::NEG_ZERO), + (F::NEG_ZERO, F::ZERO, F::NEG_ZERO), + ]; + + for (x, y, res) in cases { + let val = f(x, y); + assert_biteq!(val, res, "fminimum_num({}, {})", Hexf(x), Hexf(y)); + } + } + + #[test] + #[cfg(f16_enabled)] + fn fminimum_num_spec_tests_f16() { + fminimum_num_spec_test::<f16>(fminimum_numf16); + } + + #[test] + fn fminimum_num_spec_tests_f32() { + fminimum_num_spec_test::<f32>(fminimum_numf); + } + + #[test] + fn fminimum_num_spec_tests_f64() { + fminimum_num_spec_test::<f64>(fminimum_num); + } + + #[test] + #[cfg(f128_enabled)] + fn fminimum_num_spec_tests_f128() { + fminimum_num_spec_test::<f128>(fminimum_numf128); + } + + fn fmaximum_num_spec_test<F: Float>(f: impl Fn(F, F) -> F) { + let cases = [ + (F::ZERO, F::ZERO, F::ZERO), + (F::ONE, F::ONE, F::ONE), + (F::ZERO, F::ONE, F::ONE), + (F::ONE, F::ZERO, F::ONE), + (F::ZERO, F::NEG_ONE, F::ZERO), + (F::NEG_ONE, F::ZERO, F::ZERO), + (F::INFINITY, F::ZERO, F::INFINITY), + (F::NEG_INFINITY, F::ZERO, F::ZERO), + (F::NAN, F::ZERO, F::ZERO), + (F::ZERO, F::NAN, F::ZERO), + (F::NAN, F::NAN, F::NAN), + (F::ZERO, F::NEG_ZERO, F::ZERO), + (F::NEG_ZERO, F::ZERO, F::ZERO), + ]; + + for (x, y, res) in cases { + let val = f(x, y); + assert_biteq!(val, res, "fmaximum_num({}, {})", Hexf(x), Hexf(y)); + } + } + + #[test] + #[cfg(f16_enabled)] + fn fmaximum_num_spec_tests_f16() { + fmaximum_num_spec_test::<f16>(fmaximum_numf16); + } + + #[test] + fn fmaximum_num_spec_tests_f32() { + fmaximum_num_spec_test::<f32>(fmaximum_numf); + } + + #[test] + fn fmaximum_num_spec_tests_f64() { + fmaximum_num_spec_test::<f64>(fmaximum_num); + } + + #[test] + #[cfg(f128_enabled)] + fn fmaximum_num_spec_tests_f128() { + fmaximum_num_spec_test::<f128>(fmaximum_numf128); + } +} diff --git a/library/compiler-builtins/libm/src/math/fmod.rs b/library/compiler-builtins/libm/src/math/fmod.rs new file mode 100644 index 00000000000..c4752b92578 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/fmod.rs @@ -0,0 +1,25 @@ +/// Calculate the remainder of `x / y`, the precise result of `x - trunc(x / y) * y`. +#[cfg(f16_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmodf16(x: f16, y: f16) -> f16 { + super::generic::fmod(x, y) +} + +/// Calculate the remainder of `x / y`, the precise result of `x - trunc(x / y) * y`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmodf(x: f32, y: f32) -> f32 { + super::generic::fmod(x, y) +} + +/// Calculate the remainder of `x / y`, the precise result of `x - trunc(x / y) * y`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmod(x: f64, y: f64) -> f64 { + super::generic::fmod(x, y) +} + +/// Calculate the remainder of `x / y`, the precise result of `x - trunc(x / y) * y`. +#[cfg(f128_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmodf128(x: f128, y: f128) -> f128 { + super::generic::fmod(x, y) +} diff --git a/library/compiler-builtins/libm/src/math/fmodf.rs b/library/compiler-builtins/libm/src/math/fmodf.rs new file mode 100644 index 00000000000..4e95696e20d --- /dev/null +++ b/library/compiler-builtins/libm/src/math/fmodf.rs @@ -0,0 +1,5 @@ +/// Calculate the remainder of `x / y`, the precise result of `x - trunc(x / y) * y`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmodf(x: f32, y: f32) -> f32 { + super::generic::fmod(x, y) +} diff --git a/library/compiler-builtins/libm/src/math/fmodf128.rs b/library/compiler-builtins/libm/src/math/fmodf128.rs new file mode 100644 index 00000000000..ff0e0493e26 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/fmodf128.rs @@ -0,0 +1,5 @@ +/// Calculate the remainder of `x / y`, the precise result of `x - trunc(x / y) * y`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmodf128(x: f128, y: f128) -> f128 { + super::generic::fmod(x, y) +} diff --git a/library/compiler-builtins/libm/src/math/fmodf16.rs b/library/compiler-builtins/libm/src/math/fmodf16.rs new file mode 100644 index 00000000000..11972a7de4f --- /dev/null +++ b/library/compiler-builtins/libm/src/math/fmodf16.rs @@ -0,0 +1,5 @@ +/// Calculate the remainder of `x / y`, the precise result of `x - trunc(x / y) * y`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn fmodf16(x: f16, y: f16) -> f16 { + super::generic::fmod(x, y) +} diff --git a/library/compiler-builtins/libm/src/math/frexp.rs b/library/compiler-builtins/libm/src/math/frexp.rs new file mode 100644 index 00000000000..de7a64fdae1 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/frexp.rs @@ -0,0 +1,21 @@ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn frexp(x: f64) -> (f64, i32) { + let mut y = x.to_bits(); + let ee = ((y >> 52) & 0x7ff) as i32; + + if ee == 0 { + if x != 0.0 { + let x1p64 = f64::from_bits(0x43f0000000000000); + let (x, e) = frexp(x * x1p64); + return (x, e - 64); + } + return (x, 0); + } else if ee == 0x7ff { + return (x, 0); + } + + let e = ee - 0x3fe; + y &= 0x800fffffffffffff; + y |= 0x3fe0000000000000; + return (f64::from_bits(y), e); +} diff --git a/library/compiler-builtins/libm/src/math/frexpf.rs b/library/compiler-builtins/libm/src/math/frexpf.rs new file mode 100644 index 00000000000..0ec91c2d350 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/frexpf.rs @@ -0,0 +1,22 @@ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn frexpf(x: f32) -> (f32, i32) { + let mut y = x.to_bits(); + let ee: i32 = ((y >> 23) & 0xff) as i32; + + if ee == 0 { + if x != 0.0 { + let x1p64 = f32::from_bits(0x5f800000); + let (x, e) = frexpf(x * x1p64); + return (x, e - 64); + } else { + return (x, 0); + } + } else if ee == 0xff { + return (x, 0); + } + + let e = ee - 0x7e; + y &= 0x807fffff; + y |= 0x3f000000; + (f32::from_bits(y), e) +} diff --git a/library/compiler-builtins/libm/src/math/generic/ceil.rs b/library/compiler-builtins/libm/src/math/generic/ceil.rs new file mode 100644 index 00000000000..5c5bb47638f --- /dev/null +++ b/library/compiler-builtins/libm/src/math/generic/ceil.rs @@ -0,0 +1,168 @@ +/* SPDX-License-Identifier: MIT */ +/* origin: musl src/math/ceilf.c */ + +//! Generic `ceil` algorithm. +//! +//! Note that this uses the algorithm from musl's `ceilf` rather than `ceil` or `ceill` because +//! performance seems to be better (based on icount) and it does not seem to experience rounding +//! errors on i386. + +use super::super::support::{FpResult, Status}; +use super::super::{Float, Int, IntTy, MinInt}; + +#[inline] +pub fn ceil<F: Float>(x: F) -> F { + ceil_status(x).val +} + +#[inline] +pub fn ceil_status<F: Float>(x: F) -> FpResult<F> { + let zero = IntTy::<F>::ZERO; + + let mut ix = x.to_bits(); + let e = x.exp_unbiased(); + + // If the represented value has no fractional part, no truncation is needed. + if e >= F::SIG_BITS as i32 { + return FpResult::ok(x); + } + + let status; + let res = if e >= 0 { + // |x| >= 1.0 + let m = F::SIG_MASK >> e.unsigned(); + if (ix & m) == zero { + // Portion to be masked is already zero; no adjustment needed. + return FpResult::ok(x); + } + + // Otherwise, raise an inexact exception. + status = Status::INEXACT; + + if x.is_sign_positive() { + ix += m; + } + + ix &= !m; + F::from_bits(ix) + } else { + // |x| < 1.0, raise an inexact exception since truncation will happen (unless x == 0). + if ix & F::SIG_MASK == F::Int::ZERO { + status = Status::OK; + } else { + status = Status::INEXACT; + } + + if x.is_sign_negative() { + // -1.0 < x <= -0.0; rounding up goes toward -0.0. + F::NEG_ZERO + } else if ix << 1 != zero { + // 0.0 < x < 1.0; rounding up goes toward +1.0. + F::ONE + } else { + // +0.0 remains unchanged + x + } + }; + + FpResult::new(res, status) +} + +#[cfg(test)] +mod tests { + use super::*; + use crate::support::Hexf; + + /// Test against https://en.cppreference.com/w/cpp/numeric/math/ceil + fn spec_test<F: Float>(cases: &[(F, F, Status)]) { + let roundtrip = [F::ZERO, F::ONE, F::NEG_ONE, F::NEG_ZERO, F::INFINITY, F::NEG_INFINITY]; + + for x in roundtrip { + let FpResult { val, status } = ceil_status(x); + assert_biteq!(val, x, "{}", Hexf(x)); + assert_eq!(status, Status::OK, "{}", Hexf(x)); + } + + for &(x, res, res_stat) in cases { + let FpResult { val, status } = ceil_status(x); + assert_biteq!(val, res, "{}", Hexf(x)); + assert_eq!(status, res_stat, "{}", Hexf(x)); + } + } + + /* Skipping f16 / f128 "sanity_check"s due to rejected literal lexing at MSRV */ + + #[test] + #[cfg(f16_enabled)] + fn spec_tests_f16() { + let cases = [ + (0.1, 1.0, Status::INEXACT), + (-0.1, -0.0, Status::INEXACT), + (0.9, 1.0, Status::INEXACT), + (-0.9, -0.0, Status::INEXACT), + (1.1, 2.0, Status::INEXACT), + (-1.1, -1.0, Status::INEXACT), + (1.9, 2.0, Status::INEXACT), + (-1.9, -1.0, Status::INEXACT), + ]; + spec_test::<f16>(&cases); + } + + #[test] + fn sanity_check_f32() { + assert_eq!(ceil(1.1f32), 2.0); + assert_eq!(ceil(2.9f32), 3.0); + } + + #[test] + fn spec_tests_f32() { + let cases = [ + (0.1, 1.0, Status::INEXACT), + (-0.1, -0.0, Status::INEXACT), + (0.9, 1.0, Status::INEXACT), + (-0.9, -0.0, Status::INEXACT), + (1.1, 2.0, Status::INEXACT), + (-1.1, -1.0, Status::INEXACT), + (1.9, 2.0, Status::INEXACT), + (-1.9, -1.0, Status::INEXACT), + ]; + spec_test::<f32>(&cases); + } + + #[test] + fn sanity_check_f64() { + assert_eq!(ceil(1.1f64), 2.0); + assert_eq!(ceil(2.9f64), 3.0); + } + + #[test] + fn spec_tests_f64() { + let cases = [ + (0.1, 1.0, Status::INEXACT), + (-0.1, -0.0, Status::INEXACT), + (0.9, 1.0, Status::INEXACT), + (-0.9, -0.0, Status::INEXACT), + (1.1, 2.0, Status::INEXACT), + (-1.1, -1.0, Status::INEXACT), + (1.9, 2.0, Status::INEXACT), + (-1.9, -1.0, Status::INEXACT), + ]; + spec_test::<f64>(&cases); + } + + #[test] + #[cfg(f128_enabled)] + fn spec_tests_f128() { + let cases = [ + (0.1, 1.0, Status::INEXACT), + (-0.1, -0.0, Status::INEXACT), + (0.9, 1.0, Status::INEXACT), + (-0.9, -0.0, Status::INEXACT), + (1.1, 2.0, Status::INEXACT), + (-1.1, -1.0, Status::INEXACT), + (1.9, 2.0, Status::INEXACT), + (-1.9, -1.0, Status::INEXACT), + ]; + spec_test::<f128>(&cases); + } +} diff --git a/library/compiler-builtins/libm/src/math/generic/copysign.rs b/library/compiler-builtins/libm/src/math/generic/copysign.rs new file mode 100644 index 00000000000..a61af22f04a --- /dev/null +++ b/library/compiler-builtins/libm/src/math/generic/copysign.rs @@ -0,0 +1,11 @@ +use super::super::Float; + +/// Copy the sign of `y` to `x`. +#[inline] +pub fn copysign<F: Float>(x: F, y: F) -> F { + let mut ux = x.to_bits(); + let uy = y.to_bits(); + ux &= !F::SIGN_MASK; + ux |= uy & F::SIGN_MASK; + F::from_bits(ux) +} diff --git a/library/compiler-builtins/libm/src/math/generic/fabs.rs b/library/compiler-builtins/libm/src/math/generic/fabs.rs new file mode 100644 index 00000000000..0fa0edf9b87 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/generic/fabs.rs @@ -0,0 +1,8 @@ +use super::super::Float; + +/// Absolute value. +#[inline] +pub fn fabs<F: Float>(x: F) -> F { + let abs_mask = !F::SIGN_MASK; + F::from_bits(x.to_bits() & abs_mask) +} diff --git a/library/compiler-builtins/libm/src/math/generic/fdim.rs b/library/compiler-builtins/libm/src/math/generic/fdim.rs new file mode 100644 index 00000000000..a63007b191c --- /dev/null +++ b/library/compiler-builtins/libm/src/math/generic/fdim.rs @@ -0,0 +1,6 @@ +use super::super::Float; + +#[inline] +pub fn fdim<F: Float>(x: F, y: F) -> F { + if x <= y { F::ZERO } else { x - y } +} diff --git a/library/compiler-builtins/libm/src/math/generic/floor.rs b/library/compiler-builtins/libm/src/math/generic/floor.rs new file mode 100644 index 00000000000..2438046254f --- /dev/null +++ b/library/compiler-builtins/libm/src/math/generic/floor.rs @@ -0,0 +1,151 @@ +/* SPDX-License-Identifier: MIT + * origin: musl src/math/floor.c */ + +//! Generic `floor` algorithm. +//! +//! Note that this uses the algorithm from musl's `floorf` rather than `floor` or `floorl` because +//! performance seems to be better (based on icount) and it does not seem to experience rounding +//! errors on i386. + +use super::super::support::{FpResult, Status}; +use super::super::{Float, Int, IntTy, MinInt}; + +#[inline] +pub fn floor<F: Float>(x: F) -> F { + floor_status(x).val +} + +#[inline] +pub fn floor_status<F: Float>(x: F) -> FpResult<F> { + let zero = IntTy::<F>::ZERO; + + let mut ix = x.to_bits(); + let e = x.exp_unbiased(); + + // If the represented value has no fractional part, no truncation is needed. + if e >= F::SIG_BITS as i32 { + return FpResult::ok(x); + } + + let status; + let res = if e >= 0 { + // |x| >= 1.0 + let m = F::SIG_MASK >> e.unsigned(); + if ix & m == zero { + // Portion to be masked is already zero; no adjustment needed. + return FpResult::ok(x); + } + + // Otherwise, raise an inexact exception. + status = Status::INEXACT; + + if x.is_sign_negative() { + ix += m; + } + + ix &= !m; + F::from_bits(ix) + } else { + // |x| < 1.0, raise an inexact exception since truncation will happen. + if ix & F::SIG_MASK == F::Int::ZERO { + status = Status::OK; + } else { + status = Status::INEXACT; + } + + if x.is_sign_positive() { + // 0.0 <= x < 1.0; rounding down goes toward +0.0. + F::ZERO + } else if ix << 1 != zero { + // -1.0 < x < 0.0; rounding down goes toward -1.0. + F::NEG_ONE + } else { + // -0.0 remains unchanged + x + } + }; + + FpResult::new(res, status) +} + +#[cfg(test)] +mod tests { + use super::*; + use crate::support::Hexf; + + /// Test against https://en.cppreference.com/w/cpp/numeric/math/floor + fn spec_test<F: Float>(cases: &[(F, F, Status)]) { + let roundtrip = [F::ZERO, F::ONE, F::NEG_ONE, F::NEG_ZERO, F::INFINITY, F::NEG_INFINITY]; + + for x in roundtrip { + let FpResult { val, status } = floor_status(x); + assert_biteq!(val, x, "{}", Hexf(x)); + assert_eq!(status, Status::OK, "{}", Hexf(x)); + } + + for &(x, res, res_stat) in cases { + let FpResult { val, status } = floor_status(x); + assert_biteq!(val, res, "{}", Hexf(x)); + assert_eq!(status, res_stat, "{}", Hexf(x)); + } + } + + /* Skipping f16 / f128 "sanity_check"s and spec cases due to rejected literal lexing at MSRV */ + + #[test] + #[cfg(f16_enabled)] + fn spec_tests_f16() { + let cases = []; + spec_test::<f16>(&cases); + } + + #[test] + fn sanity_check_f32() { + assert_eq!(floor(0.5f32), 0.0); + assert_eq!(floor(1.1f32), 1.0); + assert_eq!(floor(2.9f32), 2.0); + } + + #[test] + fn spec_tests_f32() { + let cases = [ + (0.1, 0.0, Status::INEXACT), + (-0.1, -1.0, Status::INEXACT), + (0.9, 0.0, Status::INEXACT), + (-0.9, -1.0, Status::INEXACT), + (1.1, 1.0, Status::INEXACT), + (-1.1, -2.0, Status::INEXACT), + (1.9, 1.0, Status::INEXACT), + (-1.9, -2.0, Status::INEXACT), + ]; + spec_test::<f32>(&cases); + } + + #[test] + fn sanity_check_f64() { + assert_eq!(floor(1.1f64), 1.0); + assert_eq!(floor(2.9f64), 2.0); + } + + #[test] + fn spec_tests_f64() { + let cases = [ + (0.1, 0.0, Status::INEXACT), + (-0.1, -1.0, Status::INEXACT), + (0.9, 0.0, Status::INEXACT), + (-0.9, -1.0, Status::INEXACT), + (1.1, 1.0, Status::INEXACT), + (-1.1, -2.0, Status::INEXACT), + (1.9, 1.0, Status::INEXACT), + (-1.9, -2.0, Status::INEXACT), + ]; + spec_test::<f64>(&cases); + } + + #[test] + #[cfg(f128_enabled)] + fn spec_tests_f128() { + let cases = []; + spec_test::<f128>(&cases); + } +} diff --git a/library/compiler-builtins/libm/src/math/generic/fmax.rs b/library/compiler-builtins/libm/src/math/generic/fmax.rs new file mode 100644 index 00000000000..bf3f847e89b --- /dev/null +++ b/library/compiler-builtins/libm/src/math/generic/fmax.rs @@ -0,0 +1,24 @@ +/* SPDX-License-Identifier: MIT OR Apache-2.0 */ +//! IEEE 754-2011 `maxNum`. This has been superseded by IEEE 754-2019 `maximumNumber`. +//! +//! Per the spec, returns the canonicalized result of: +//! - `x` if `x > y` +//! - `y` if `y > x` +//! - The other number if one is NaN +//! - Otherwise, either `x` or `y`, canonicalized +//! - -0.0 and +0.0 may be disregarded (unlike newer operations) +//! +//! Excluded from our implementation is sNaN handling. +//! +//! More on the differences: [link]. +//! +//! [link]: https://grouper.ieee.org/groups/msc/ANSI_IEEE-Std-754-2019/background/minNum_maxNum_Removal_Demotion_v3.pdf + +use super::super::Float; + +#[inline] +pub fn fmax<F: Float>(x: F, y: F) -> F { + let res = if x.is_nan() || x < y { y } else { x }; + // Canonicalize + res * F::ONE +} diff --git a/library/compiler-builtins/libm/src/math/generic/fmaximum.rs b/library/compiler-builtins/libm/src/math/generic/fmaximum.rs new file mode 100644 index 00000000000..387055af29c --- /dev/null +++ b/library/compiler-builtins/libm/src/math/generic/fmaximum.rs @@ -0,0 +1,28 @@ +/* SPDX-License-Identifier: MIT OR Apache-2.0 */ +//! IEEE 754-2019 `maximum`. +//! +//! Per the spec, returns the canonicalized result of: +//! - `x` if `x > y` +//! - `y` if `y > x` +//! - qNaN if either operation is NaN +//! - Logic following +0.0 > -0.0 +//! +//! Excluded from our implementation is sNaN handling. + +use super::super::Float; + +#[inline] +pub fn fmaximum<F: Float>(x: F, y: F) -> F { + let res = if x.is_nan() { + x + } else if y.is_nan() { + y + } else if x > y || (y.to_bits() == F::NEG_ZERO.to_bits() && x.is_sign_positive()) { + x + } else { + y + }; + + // Canonicalize + res * F::ONE +} diff --git a/library/compiler-builtins/libm/src/math/generic/fmaximum_num.rs b/library/compiler-builtins/libm/src/math/generic/fmaximum_num.rs new file mode 100644 index 00000000000..f7efdde80ea --- /dev/null +++ b/library/compiler-builtins/libm/src/math/generic/fmaximum_num.rs @@ -0,0 +1,27 @@ +/* SPDX-License-Identifier: MIT OR Apache-2.0 */ +//! IEEE 754-2019 `maximumNumber`. +//! +//! Per the spec, returns: +//! - `x` if `x > y` +//! - `y` if `y > x` +//! - Non-NaN if one operand is NaN +//! - Logic following +0.0 > -0.0 +//! - Either `x` or `y` if `x == y` and the signs are the same +//! - qNaN if either operand is a NaN +//! +//! Excluded from our implementation is sNaN handling. + +use super::super::Float; + +#[inline] +pub fn fmaximum_num<F: Float>(x: F, y: F) -> F { + let res = + if x.is_nan() || x < y || (x.to_bits() == F::NEG_ZERO.to_bits() && y.is_sign_positive()) { + y + } else { + x + }; + + // Canonicalize + res * F::ONE +} diff --git a/library/compiler-builtins/libm/src/math/generic/fmin.rs b/library/compiler-builtins/libm/src/math/generic/fmin.rs new file mode 100644 index 00000000000..cd3caeee4f2 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/generic/fmin.rs @@ -0,0 +1,24 @@ +/* SPDX-License-Identifier: MIT OR Apache-2.0 */ +//! IEEE 754-2008 `minNum`. This has been superseded by IEEE 754-2019 `minimumNumber`. +//! +//! Per the spec, returns the canonicalized result of: +//! - `x` if `x < y` +//! - `y` if `y < x` +//! - The other number if one is NaN +//! - Otherwise, either `x` or `y`, canonicalized +//! - -0.0 and +0.0 may be disregarded (unlike newer operations) +//! +//! Excluded from our implementation is sNaN handling. +//! +//! More on the differences: [link]. +//! +//! [link]: https://grouper.ieee.org/groups/msc/ANSI_IEEE-Std-754-2019/background/minNum_maxNum_Removal_Demotion_v3.pdf + +use super::super::Float; + +#[inline] +pub fn fmin<F: Float>(x: F, y: F) -> F { + let res = if y.is_nan() || x < y { x } else { y }; + // Canonicalize + res * F::ONE +} diff --git a/library/compiler-builtins/libm/src/math/generic/fminimum.rs b/library/compiler-builtins/libm/src/math/generic/fminimum.rs new file mode 100644 index 00000000000..4ddb3645506 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/generic/fminimum.rs @@ -0,0 +1,28 @@ +/* SPDX-License-Identifier: MIT OR Apache-2.0 */ +//! IEEE 754-2019 `minimum`. +//! +//! Per the spec, returns the canonicalized result of: +//! - `x` if `x < y` +//! - `y` if `y < x` +//! - qNaN if either operation is NaN +//! - Logic following +0.0 > -0.0 +//! +//! Excluded from our implementation is sNaN handling. + +use super::super::Float; + +#[inline] +pub fn fminimum<F: Float>(x: F, y: F) -> F { + let res = if x.is_nan() { + x + } else if y.is_nan() { + y + } else if x < y || (x.to_bits() == F::NEG_ZERO.to_bits() && y.is_sign_positive()) { + x + } else { + y + }; + + // Canonicalize + res * F::ONE +} diff --git a/library/compiler-builtins/libm/src/math/generic/fminimum_num.rs b/library/compiler-builtins/libm/src/math/generic/fminimum_num.rs new file mode 100644 index 00000000000..441c204a921 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/generic/fminimum_num.rs @@ -0,0 +1,27 @@ +/* SPDX-License-Identifier: MIT OR Apache-2.0 */ +//! IEEE 754-2019 `minimum`. +//! +//! Per the spec, returns: +//! - `x` if `x < y` +//! - `y` if `y < x` +//! - Non-NaN if one operand is NaN +//! - Logic following +0.0 > -0.0 +//! - Either `x` or `y` if `x == y` and the signs are the same +//! - qNaN if either operand is a NaN +//! +//! Excluded from our implementation is sNaN handling. + +use super::super::Float; + +#[inline] +pub fn fminimum_num<F: Float>(x: F, y: F) -> F { + let res = + if y.is_nan() || x < y || (x.to_bits() == F::NEG_ZERO.to_bits() && y.is_sign_positive()) { + x + } else { + y + }; + + // Canonicalize + res * F::ONE +} diff --git a/library/compiler-builtins/libm/src/math/generic/fmod.rs b/library/compiler-builtins/libm/src/math/generic/fmod.rs new file mode 100644 index 00000000000..6414bbd2508 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/generic/fmod.rs @@ -0,0 +1,84 @@ +/* SPDX-License-Identifier: MIT */ +/* origin: musl src/math/fmod.c. Ported to generic Rust algorithm in 2025, TG. */ + +use super::super::{CastFrom, Float, Int, MinInt}; + +#[inline] +pub fn fmod<F: Float>(x: F, y: F) -> F { + let zero = F::Int::ZERO; + let one = F::Int::ONE; + let mut ix = x.to_bits(); + let mut iy = y.to_bits(); + let mut ex = x.ex().signed(); + let mut ey = y.ex().signed(); + let sx = ix & F::SIGN_MASK; + + if iy << 1 == zero || y.is_nan() || ex == F::EXP_SAT as i32 { + return (x * y) / (x * y); + } + + if ix << 1 <= iy << 1 { + if ix << 1 == iy << 1 { + return F::ZERO * x; + } + return x; + } + + /* normalize x and y */ + if ex == 0 { + let i = ix << (F::EXP_BITS + 1); + ex -= i.leading_zeros() as i32; + ix <<= -ex + 1; + } else { + ix &= F::Int::MAX >> F::EXP_BITS; + ix |= one << F::SIG_BITS; + } + + if ey == 0 { + let i = iy << (F::EXP_BITS + 1); + ey -= i.leading_zeros() as i32; + iy <<= -ey + 1; + } else { + iy &= F::Int::MAX >> F::EXP_BITS; + iy |= one << F::SIG_BITS; + } + + /* x mod y */ + while ex > ey { + let i = ix.wrapping_sub(iy); + if i >> (F::BITS - 1) == zero { + if i == zero { + return F::ZERO * x; + } + ix = i; + } + + ix <<= 1; + ex -= 1; + } + + let i = ix.wrapping_sub(iy); + if i >> (F::BITS - 1) == zero { + if i == zero { + return F::ZERO * x; + } + + ix = i; + } + + let shift = ix.leading_zeros().saturating_sub(F::EXP_BITS); + ix <<= shift; + ex -= shift as i32; + + /* scale result */ + if ex > 0 { + ix -= one << F::SIG_BITS; + ix |= F::Int::cast_from(ex) << F::SIG_BITS; + } else { + ix >>= -ex + 1; + } + + ix |= sx; + + F::from_bits(ix) +} diff --git a/library/compiler-builtins/libm/src/math/generic/mod.rs b/library/compiler-builtins/libm/src/math/generic/mod.rs new file mode 100644 index 00000000000..35846351a6e --- /dev/null +++ b/library/compiler-builtins/libm/src/math/generic/mod.rs @@ -0,0 +1,38 @@ +// Note: generic functions are marked `#[inline]` because, even though generic functions are +// typically inlined, this does not seem to always be the case. + +mod ceil; +mod copysign; +mod fabs; +mod fdim; +mod floor; +mod fmax; +mod fmaximum; +mod fmaximum_num; +mod fmin; +mod fminimum; +mod fminimum_num; +mod fmod; +mod rint; +mod round; +mod scalbn; +mod sqrt; +mod trunc; + +pub use ceil::ceil; +pub use copysign::copysign; +pub use fabs::fabs; +pub use fdim::fdim; +pub use floor::floor; +pub use fmax::fmax; +pub use fmaximum::fmaximum; +pub use fmaximum_num::fmaximum_num; +pub use fmin::fmin; +pub use fminimum::fminimum; +pub use fminimum_num::fminimum_num; +pub use fmod::fmod; +pub use rint::rint_round; +pub use round::round; +pub use scalbn::scalbn; +pub use sqrt::sqrt; +pub use trunc::trunc; diff --git a/library/compiler-builtins/libm/src/math/generic/rint.rs b/library/compiler-builtins/libm/src/math/generic/rint.rs new file mode 100644 index 00000000000..9cdeb1185a8 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/generic/rint.rs @@ -0,0 +1,120 @@ +/* SPDX-License-Identifier: MIT */ +/* origin: musl src/math/rint.c */ + +use super::super::Float; +use super::super::support::{FpResult, Round}; + +/// IEEE 754-2019 `roundToIntegralExact`, which respects rounding mode and raises inexact if +/// applicable. +#[inline] +pub fn rint_round<F: Float>(x: F, _round: Round) -> FpResult<F> { + let toint = F::ONE / F::EPSILON; + let e = x.ex(); + let positive = x.is_sign_positive(); + + // On i386 `force_eval!` must be used to force rounding via storage to memory. Otherwise, + // the excess precission from x87 would cause an incorrect final result. + let force = |x| { + if cfg!(x86_no_sse) && (F::BITS == 32 || F::BITS == 64) { force_eval!(x) } else { x } + }; + + let res = if e >= F::EXP_BIAS + F::SIG_BITS { + // No fractional part; exact result can be returned. + x + } else { + // Apply a net-zero adjustment that nudges `y` in the direction of the rounding mode. For + // Rust this is always nearest, but ideally it would take `round` into account. + let y = if positive { + force(force(x) + toint) - toint + } else { + force(force(x) - toint) + toint + }; + + if y == F::ZERO { + // A zero result takes the sign of the input. + if positive { F::ZERO } else { F::NEG_ZERO } + } else { + y + } + }; + + FpResult::ok(res) +} + +#[cfg(test)] +mod tests { + use super::*; + use crate::support::{Hexf, Status}; + + fn spec_test<F: Float>(cases: &[(F, F, Status)]) { + let roundtrip = [F::ZERO, F::ONE, F::NEG_ONE, F::NEG_ZERO, F::INFINITY, F::NEG_INFINITY]; + + for x in roundtrip { + let FpResult { val, status } = rint_round(x, Round::Nearest); + assert_biteq!(val, x, "rint_round({})", Hexf(x)); + assert_eq!(status, Status::OK, "{}", Hexf(x)); + } + + for &(x, res, res_stat) in cases { + let FpResult { val, status } = rint_round(x, Round::Nearest); + assert_biteq!(val, res, "rint_round({})", Hexf(x)); + assert_eq!(status, res_stat, "{}", Hexf(x)); + } + } + + #[test] + #[cfg(f16_enabled)] + fn spec_tests_f16() { + let cases = []; + spec_test::<f16>(&cases); + } + + #[test] + fn spec_tests_f32() { + let cases = [ + (0.1, 0.0, Status::OK), + (-0.1, -0.0, Status::OK), + (0.5, 0.0, Status::OK), + (-0.5, -0.0, Status::OK), + (0.9, 1.0, Status::OK), + (-0.9, -1.0, Status::OK), + (1.1, 1.0, Status::OK), + (-1.1, -1.0, Status::OK), + (1.5, 2.0, Status::OK), + (-1.5, -2.0, Status::OK), + (1.9, 2.0, Status::OK), + (-1.9, -2.0, Status::OK), + (2.8, 3.0, Status::OK), + (-2.8, -3.0, Status::OK), + ]; + spec_test::<f32>(&cases); + } + + #[test] + fn spec_tests_f64() { + let cases = [ + (0.1, 0.0, Status::OK), + (-0.1, -0.0, Status::OK), + (0.5, 0.0, Status::OK), + (-0.5, -0.0, Status::OK), + (0.9, 1.0, Status::OK), + (-0.9, -1.0, Status::OK), + (1.1, 1.0, Status::OK), + (-1.1, -1.0, Status::OK), + (1.5, 2.0, Status::OK), + (-1.5, -2.0, Status::OK), + (1.9, 2.0, Status::OK), + (-1.9, -2.0, Status::OK), + (2.8, 3.0, Status::OK), + (-2.8, -3.0, Status::OK), + ]; + spec_test::<f64>(&cases); + } + + #[test] + #[cfg(f128_enabled)] + fn spec_tests_f128() { + let cases = []; + spec_test::<f128>(&cases); + } +} diff --git a/library/compiler-builtins/libm/src/math/generic/round.rs b/library/compiler-builtins/libm/src/math/generic/round.rs new file mode 100644 index 00000000000..01314ac70c2 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/generic/round.rs @@ -0,0 +1,83 @@ +use super::super::{Float, MinInt}; +use super::{copysign, trunc}; + +#[inline] +pub fn round<F: Float>(x: F) -> F { + let f0p5 = F::from_parts(false, F::EXP_BIAS - 1, F::Int::ZERO); // 0.5 + let f0p25 = F::from_parts(false, F::EXP_BIAS - 2, F::Int::ZERO); // 0.25 + + trunc(x + copysign(f0p5 - f0p25 * F::EPSILON, x)) +} + +#[cfg(test)] +mod tests { + use super::*; + + #[test] + #[cfg(f16_enabled)] + fn zeroes_f16() { + assert_biteq!(round(0.0_f16), 0.0_f16); + assert_biteq!(round(-0.0_f16), -0.0_f16); + } + + #[test] + #[cfg(f16_enabled)] + fn sanity_check_f16() { + assert_eq!(round(-1.0_f16), -1.0); + assert_eq!(round(2.8_f16), 3.0); + assert_eq!(round(-0.5_f16), -1.0); + assert_eq!(round(0.5_f16), 1.0); + assert_eq!(round(-1.5_f16), -2.0); + assert_eq!(round(1.5_f16), 2.0); + } + + #[test] + fn zeroes_f32() { + assert_biteq!(round(0.0_f32), 0.0_f32); + assert_biteq!(round(-0.0_f32), -0.0_f32); + } + + #[test] + fn sanity_check_f32() { + assert_eq!(round(-1.0_f32), -1.0); + assert_eq!(round(2.8_f32), 3.0); + assert_eq!(round(-0.5_f32), -1.0); + assert_eq!(round(0.5_f32), 1.0); + assert_eq!(round(-1.5_f32), -2.0); + assert_eq!(round(1.5_f32), 2.0); + } + + #[test] + fn zeroes_f64() { + assert_biteq!(round(0.0_f64), 0.0_f64); + assert_biteq!(round(-0.0_f64), -0.0_f64); + } + + #[test] + fn sanity_check_f64() { + assert_eq!(round(-1.0_f64), -1.0); + assert_eq!(round(2.8_f64), 3.0); + assert_eq!(round(-0.5_f64), -1.0); + assert_eq!(round(0.5_f64), 1.0); + assert_eq!(round(-1.5_f64), -2.0); + assert_eq!(round(1.5_f64), 2.0); + } + + #[test] + #[cfg(f128_enabled)] + fn zeroes_f128() { + assert_biteq!(round(0.0_f128), 0.0_f128); + assert_biteq!(round(-0.0_f128), -0.0_f128); + } + + #[test] + #[cfg(f128_enabled)] + fn sanity_check_f128() { + assert_eq!(round(-1.0_f128), -1.0); + assert_eq!(round(2.8_f128), 3.0); + assert_eq!(round(-0.5_f128), -1.0); + assert_eq!(round(0.5_f128), 1.0); + assert_eq!(round(-1.5_f128), -2.0); + assert_eq!(round(1.5_f128), 2.0); + } +} diff --git a/library/compiler-builtins/libm/src/math/generic/scalbn.rs b/library/compiler-builtins/libm/src/math/generic/scalbn.rs new file mode 100644 index 00000000000..a45db1b4a02 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/generic/scalbn.rs @@ -0,0 +1,121 @@ +use super::super::{CastFrom, CastInto, Float, IntTy, MinInt}; + +/// Scale the exponent. +/// +/// From N3220: +/// +/// > The scalbn and scalbln functions compute `x * b^n`, where `b = FLT_RADIX` if the return type +/// > of the function is a standard floating type, or `b = 10` if the return type of the function +/// > is a decimal floating type. A range error occurs for some finite x, depending on n. +/// > +/// > [...] +/// > +/// > * `scalbn(±0, n)` returns `±0`. +/// > * `scalbn(x, 0)` returns `x`. +/// > * `scalbn(±∞, n)` returns `±∞`. +/// > +/// > If the calculation does not overflow or underflow, the returned value is exact and +/// > independent of the current rounding direction mode. +#[inline] +pub fn scalbn<F: Float>(mut x: F, mut n: i32) -> F +where + u32: CastInto<F::Int>, + F::Int: CastFrom<i32>, + F::Int: CastFrom<u32>, +{ + let zero = IntTy::<F>::ZERO; + + // Bits including the implicit bit + let sig_total_bits = F::SIG_BITS + 1; + + // Maximum and minimum values when biased + let exp_max = F::EXP_MAX; + let exp_min = F::EXP_MIN; + + // 2 ^ Emax, maximum positive with null significand (0x1p1023 for f64) + let f_exp_max = F::from_parts(false, F::EXP_BIAS << 1, zero); + + // 2 ^ Emin, minimum positive normal with null significand (0x1p-1022 for f64) + let f_exp_min = F::from_parts(false, 1, zero); + + // 2 ^ sig_total_bits, moltiplier to normalize subnormals (0x1p53 for f64) + let f_pow_subnorm = F::from_parts(false, sig_total_bits + F::EXP_BIAS, zero); + + /* + * The goal is to multiply `x` by a scale factor that applies `n`. However, there are cases + * where `2^n` is not representable by `F` but the result should be, e.g. `x = 2^Emin` with + * `n = -EMin + 2` (one out of range of 2^Emax). To get around this, reduce the magnitude of + * the final scale operation by prescaling by the max/min power representable by `F`. + */ + + if n > exp_max { + // Worse case positive `n`: `x` is the minimum subnormal value, the result is `F::MAX`. + // This can be reached by three scaling multiplications (two here and one final). + debug_assert!(-exp_min + F::SIG_BITS as i32 + exp_max <= exp_max * 3); + + x *= f_exp_max; + n -= exp_max; + if n > exp_max { + x *= f_exp_max; + n -= exp_max; + if n > exp_max { + n = exp_max; + } + } + } else if n < exp_min { + // When scaling toward 0, the prescaling is limited to a value that does not allow `x` to + // go subnormal. This avoids double rounding. + if F::BITS > 16 { + // `mul` s.t. `!(x * mul).is_subnormal() ∀ x` + let mul = f_exp_min * f_pow_subnorm; + let add = -exp_min - sig_total_bits as i32; + + // Worse case negative `n`: `x` is the maximum positive value, the result is `F::MIN`. + // This must be reachable by three scaling multiplications (two here and one final). + debug_assert!(-exp_min + F::SIG_BITS as i32 + exp_max <= add * 2 + -exp_min); + + x *= mul; + n += add; + + if n < exp_min { + x *= mul; + n += add; + + if n < exp_min { + n = exp_min; + } + } + } else { + // `f16` is unique compared to other float types in that the difference between the + // minimum exponent and the significand bits (`add = -exp_min - sig_total_bits`) is + // small, only three. The above method depend on decrementing `n` by `add` two times; + // for other float types this works out because `add` is a substantial fraction of + // the exponent range. For `f16`, however, 3 is relatively small compared to the + // exponent range (which is 39), so that requires ~10 prescale rounds rather than two. + // + // Work aroudn this by using a different algorithm that calculates the prescale + // dynamically based on the maximum possible value. This adds more operations per round + // since it needs to construct the scale, but works better in the general case. + let add = -(n + sig_total_bits as i32).clamp(exp_min, sig_total_bits as i32); + let mul = F::from_parts(false, (F::EXP_BIAS as i32 - add) as u32, zero); + + x *= mul; + n += add; + + if n < exp_min { + let add = -(n + sig_total_bits as i32).clamp(exp_min, sig_total_bits as i32); + let mul = F::from_parts(false, (F::EXP_BIAS as i32 - add) as u32, zero); + + x *= mul; + n += add; + + if n < exp_min { + n = exp_min; + } + } + } + } + + let scale = F::from_parts(false, (F::EXP_BIAS as i32 + n) as u32, zero); + x * scale +} diff --git a/library/compiler-builtins/libm/src/math/generic/sqrt.rs b/library/compiler-builtins/libm/src/math/generic/sqrt.rs new file mode 100644 index 00000000000..ec9ff22df20 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/generic/sqrt.rs @@ -0,0 +1,537 @@ +/* SPDX-License-Identifier: MIT */ +/* origin: musl src/math/sqrt.c. Ported to generic Rust algorithm in 2025, TG. */ + +//! Generic square root algorithm. +//! +//! This routine operates around `m_u2`, a U.2 (fixed point with two integral bits) mantissa +//! within the range [1, 4). A table lookup provides an initial estimate, then goldschmidt +//! iterations at various widths are used to approach the real values. +//! +//! For the iterations, `r` is a U0 number that approaches `1/sqrt(m_u2)`, and `s` is a U2 number +//! that approaches `sqrt(m_u2)`. Recall that m_u2 ∈ [1, 4). +//! +//! With Newton-Raphson iterations, this would be: +//! +//! - `w = r * r w ~ 1 / m` +//! - `u = 3 - m * w u ~ 3 - m * w = 3 - m / m = 2` +//! - `r = r * u / 2 r ~ r` +//! +//! (Note that the righthand column does not show anything analytically meaningful (i.e. r ~ r), +//! since the value of performing one iteration is in reducing the error representable by `~`). +//! +//! Instead of Newton-Raphson iterations, Goldschmidt iterations are used to calculate +//! `s = m * r`: +//! +//! - `s = m * r s ~ m / sqrt(m)` +//! - `u = 3 - s * r u ~ 3 - (m / sqrt(m)) * (1 / sqrt(m)) = 3 - m / m = 2` +//! - `r = r * u / 2 r ~ r` +//! - `s = s * u / 2 s ~ s` +//! +//! The above is precise because it uses the original value `m`. There is also a faster version +//! that performs fewer steps but does not use `m`: +//! +//! - `u = 3 - s * r u ~ 3 - 1` +//! - `r = r * u / 2 r ~ r` +//! - `s = s * u / 2 s ~ s` +//! +//! Rounding errors accumulate faster with the second version, so it is only used for subsequent +//! iterations within the same width integer. The first version is always used for the first +//! iteration at a new width in order to avoid this accumulation. +//! +//! Goldschmidt has the advantage over Newton-Raphson that `sqrt(x)` and `1/sqrt(x)` are +//! computed at the same time, i.e. there is no need to calculate `1/sqrt(x)` and invert it. + +use super::super::support::{FpResult, IntTy, Round, Status, cold_path}; +use super::super::{CastFrom, CastInto, DInt, Float, HInt, Int, MinInt}; + +#[inline] +pub fn sqrt<F>(x: F) -> F +where + F: Float + SqrtHelper, + F::Int: HInt, + F::Int: From<u8>, + F::Int: From<F::ISet2>, + F::Int: CastInto<F::ISet1>, + F::Int: CastInto<F::ISet2>, + u32: CastInto<F::Int>, +{ + sqrt_round(x, Round::Nearest).val +} + +#[inline] +pub fn sqrt_round<F>(x: F, _round: Round) -> FpResult<F> +where + F: Float + SqrtHelper, + F::Int: HInt, + F::Int: From<u8>, + F::Int: From<F::ISet2>, + F::Int: CastInto<F::ISet1>, + F::Int: CastInto<F::ISet2>, + u32: CastInto<F::Int>, +{ + let zero = IntTy::<F>::ZERO; + let one = IntTy::<F>::ONE; + + let mut ix = x.to_bits(); + + // Top is the exponent and sign, which may or may not be shifted. If the float fits into a + // `u32`, we can get by without paying shifting costs. + let noshift = F::BITS <= u32::BITS; + let (mut top, special_case) = if noshift { + let exp_lsb = one << F::SIG_BITS; + let special_case = ix.wrapping_sub(exp_lsb) >= F::EXP_MASK - exp_lsb; + (Exp::NoShift(()), special_case) + } else { + let top = u32::cast_from(ix >> F::SIG_BITS); + let special_case = top.wrapping_sub(1) >= F::EXP_SAT - 1; + (Exp::Shifted(top), special_case) + }; + + // Handle NaN, zero, and out of domain (<= 0) + if special_case { + cold_path(); + + // +/-0 + if ix << 1 == zero { + return FpResult::ok(x); + } + + // Positive infinity + if ix == F::EXP_MASK { + return FpResult::ok(x); + } + + // NaN or negative + if ix > F::EXP_MASK { + return FpResult::new(F::NAN, Status::INVALID); + } + + // Normalize subnormals by multiplying by 1.0 << SIG_BITS (e.g. 0x1p52 for doubles). + let scaled = x * F::from_parts(false, F::SIG_BITS + F::EXP_BIAS, zero); + ix = scaled.to_bits(); + match top { + Exp::Shifted(ref mut v) => { + *v = scaled.ex(); + *v = (*v).wrapping_sub(F::SIG_BITS); + } + Exp::NoShift(()) => { + ix = ix.wrapping_sub((F::SIG_BITS << F::SIG_BITS).cast()); + } + } + } + + // Reduce arguments such that `x = 4^e * m`: + // + // - m_u2 ∈ [1, 4), a fixed point U2.BITS number + // - 2^e is the exponent part of the result + let (m_u2, exp) = match top { + Exp::Shifted(top) => { + // We now know `x` is positive, so `top` is just its (biased) exponent + let mut e = top; + // Construct a fixed point representation of the mantissa. + let mut m_u2 = (ix | F::IMPLICIT_BIT) << F::EXP_BITS; + let even = (e & 1) != 0; + if even { + m_u2 >>= 1; + } + e = (e.wrapping_add(F::EXP_SAT >> 1)) >> 1; + (m_u2, Exp::Shifted(e)) + } + Exp::NoShift(()) => { + let even = ix & (one << F::SIG_BITS) != zero; + + // Exponent part of the return value + let mut e_noshift = ix >> 1; + // ey &= (F::EXP_MASK << 2) >> 2; // clear the top exponent bit (result = 1.0) + e_noshift += (F::EXP_MASK ^ (F::SIGN_MASK >> 1)) >> 1; + e_noshift &= F::EXP_MASK; + + let m1 = (ix << F::EXP_BITS) | F::SIGN_MASK; + let m0 = (ix << (F::EXP_BITS - 1)) & !F::SIGN_MASK; + let m_u2 = if even { m0 } else { m1 }; + + (m_u2, Exp::NoShift(e_noshift)) + } + }; + + // Extract the top 6 bits of the significand with the lowest bit of the exponent. + let i = usize::cast_from(ix >> (F::SIG_BITS - 6)) & 0b1111111; + + // Start with an initial guess for `r = 1 / sqrt(m)` from the table, and shift `m` as an + // initial value for `s = sqrt(m)`. See the module documentation for details. + let r1_u0: F::ISet1 = F::ISet1::cast_from(RSQRT_TAB[i]) << (F::ISet1::BITS - 16); + let s1_u2: F::ISet1 = ((m_u2) >> (F::BITS - F::ISet1::BITS)).cast(); + + // Perform iterations, if any, at quarter width (used for `f128`). + let (r1_u0, _s1_u2) = goldschmidt::<F, F::ISet1>(r1_u0, s1_u2, F::SET1_ROUNDS, false); + + // Widen values and perform iterations at half width (used for `f64` and `f128`). + let r2_u0: F::ISet2 = F::ISet2::from(r1_u0) << (F::ISet2::BITS - F::ISet1::BITS); + let s2_u2: F::ISet2 = ((m_u2) >> (F::BITS - F::ISet2::BITS)).cast(); + let (r2_u0, _s2_u2) = goldschmidt::<F, F::ISet2>(r2_u0, s2_u2, F::SET2_ROUNDS, false); + + // Perform final iterations at full width (used for all float types). + let r_u0: F::Int = F::Int::from(r2_u0) << (F::BITS - F::ISet2::BITS); + let s_u2: F::Int = m_u2; + let (_r_u0, s_u2) = goldschmidt::<F, F::Int>(r_u0, s_u2, F::FINAL_ROUNDS, true); + + // Shift back to mantissa position. + let mut m = s_u2 >> (F::EXP_BITS - 2); + + // The musl source includes the following comment (with literals replaced): + // + // > s < sqrt(m) < s + 0x1.09p-SIG_BITS + // > compute nearest rounded result: the nearest result to SIG_BITS bits is either s or + // > s+0x1p-SIG_BITS, we can decide by comparing (2^SIG_BITS s + 0.5)^2 to 2^(2*SIG_BITS) m. + // + // Expanding this with , with `SIG_BITS = p` and adjusting based on the operations done to + // `d0` and `d1`: + // + // - `2^(2p)m ≟ ((2^p)m + 0.5)^2` + // - `2^(2p)m ≟ 2^(2p)m^2 + (2^p)m + 0.25` + // - `2^(2p)m - m^2 ≟ (2^(2p) - 1)m^2 + (2^p)m + 0.25` + // - `(1 - 2^(2p))m + m^2 ≟ (1 - 2^(2p))m^2 + (1 - 2^p)m + 0.25` (?) + // + // I do not follow how the rounding bit is extracted from this comparison with the below + // operations. In any case, the algorithm is well tested. + + // The value needed to shift `m_u2` by to create `m*2^(2p)`. `2p = 2 * F::SIG_BITS`, + // `F::BITS - 2` accounts for the offset that `m_u2` already has. + let shift = 2 * F::SIG_BITS - (F::BITS - 2); + + // `2^(2p)m - m^2` + let d0 = (m_u2 << shift).wrapping_sub(m.wrapping_mul(m)); + // `m - 2^(2p)m + m^2` + let d1 = m.wrapping_sub(d0); + m += d1 >> (F::BITS - 1); + m &= F::SIG_MASK; + + match exp { + Exp::Shifted(e) => m |= IntTy::<F>::cast_from(e) << F::SIG_BITS, + Exp::NoShift(e) => m |= e, + }; + + let mut y = F::from_bits(m); + + // FIXME(f16): the fenv math does not work for `f16` + if F::BITS > 16 { + // Handle rounding and inexact. `(m + 1)^2 == 2^shift m` is exact; for all other cases, add + // a tiny value to cause fenv effects. + let d2 = d1.wrapping_add(m).wrapping_add(one); + let mut tiny = if d2 == zero { + cold_path(); + zero + } else { + F::IMPLICIT_BIT + }; + + tiny |= (d1 ^ d2) & F::SIGN_MASK; + let t = F::from_bits(tiny); + y = y + t; + } + + FpResult::ok(y) +} + +/// Multiply at the wider integer size, returning the high half. +fn wmulh<I: HInt>(a: I, b: I) -> I { + a.widen_mul(b).hi() +} + +/// Perform `count` goldschmidt iterations, returning `(r_u0, s_u?)`. +/// +/// - `r_u0` is the reciprocal `r ~ 1 / sqrt(m)`, as U0. +/// - `s_u2` is the square root, `s ~ sqrt(m)`, as U2. +/// - `count` is the number of iterations to perform. +/// - `final_set` should be true if this is the last round (same-sized integer). If so, the +/// returned `s` will be U3, for later shifting. Otherwise, the returned `s` is U2. +/// +/// Note that performance relies on the optimizer being able to unroll these loops (reasonably +/// trivial, `count` is a constant when called). +#[inline] +fn goldschmidt<F, I>(mut r_u0: I, mut s_u2: I, count: u32, final_set: bool) -> (I, I) +where + F: SqrtHelper, + I: HInt + From<u8>, +{ + let three_u2 = I::from(0b11u8) << (I::BITS - 2); + let mut u_u0 = r_u0; + + for i in 0..count { + // First iteration: `s = m*r` (`u_u0 = r_u0` set above) + // Subsequent iterations: `s=s*u/2` + s_u2 = wmulh(s_u2, u_u0); + + // Perform `s /= 2` if: + // + // 1. This is not the first iteration (the first iteration is `s = m*r`)... + // 2. ... and this is not the last set of iterations + // 3. ... or, if this is the last set, it is not the last iteration + // + // This step is not performed for the final iteration because the shift is combined with + // a later shift (moving `s` into the mantissa). + if i > 0 && (!final_set || i + 1 < count) { + s_u2 <<= 1; + } + + // u = 3 - s*r + let d_u2 = wmulh(s_u2, r_u0); + u_u0 = three_u2.wrapping_sub(d_u2); + + // r = r*u/2 + r_u0 = wmulh(r_u0, u_u0) << 1; + } + + (r_u0, s_u2) +} + +/// Representation of whether we shift the exponent into a `u32`, or modify it in place to save +/// the shift operations. +enum Exp<T> { + /// The exponent has been shifted to a `u32` and is LSB-aligned. + Shifted(u32), + /// The exponent is in its natural position in integer repr. + NoShift(T), +} + +/// Size-specific constants related to the square root routine. +pub trait SqrtHelper: Float { + /// Integer for the first set of rounds. If unused, set to the same type as the next set. + type ISet1: HInt + Into<Self::ISet2> + CastFrom<Self::Int> + From<u8>; + /// Integer for the second set of rounds. If unused, set to the same type as the next set. + type ISet2: HInt + From<Self::ISet1> + From<u8>; + + /// Number of rounds at `ISet1`. + const SET1_ROUNDS: u32 = 0; + /// Number of rounds at `ISet2`. + const SET2_ROUNDS: u32 = 0; + /// Number of rounds at `Self::Int`. + const FINAL_ROUNDS: u32; +} + +#[cfg(f16_enabled)] +impl SqrtHelper for f16 { + type ISet1 = u16; // unused + type ISet2 = u16; // unused + + const FINAL_ROUNDS: u32 = 2; +} + +impl SqrtHelper for f32 { + type ISet1 = u32; // unused + type ISet2 = u32; // unused + + const FINAL_ROUNDS: u32 = 3; +} + +impl SqrtHelper for f64 { + type ISet1 = u32; // unused + type ISet2 = u32; + + const SET2_ROUNDS: u32 = 2; + const FINAL_ROUNDS: u32 = 2; +} + +#[cfg(f128_enabled)] +impl SqrtHelper for f128 { + type ISet1 = u32; + type ISet2 = u64; + + const SET1_ROUNDS: u32 = 1; + const SET2_ROUNDS: u32 = 2; + const FINAL_ROUNDS: u32 = 2; +} + +/// A U0.16 representation of `1/sqrt(x)`. +/// +/// The index is a 7-bit number consisting of a single exponent bit and 6 bits of significand. +#[rustfmt::skip] +static RSQRT_TAB: [u16; 128] = [ + 0xb451, 0xb2f0, 0xb196, 0xb044, 0xaef9, 0xadb6, 0xac79, 0xab43, + 0xaa14, 0xa8eb, 0xa7c8, 0xa6aa, 0xa592, 0xa480, 0xa373, 0xa26b, + 0xa168, 0xa06a, 0x9f70, 0x9e7b, 0x9d8a, 0x9c9d, 0x9bb5, 0x9ad1, + 0x99f0, 0x9913, 0x983a, 0x9765, 0x9693, 0x95c4, 0x94f8, 0x9430, + 0x936b, 0x92a9, 0x91ea, 0x912e, 0x9075, 0x8fbe, 0x8f0a, 0x8e59, + 0x8daa, 0x8cfe, 0x8c54, 0x8bac, 0x8b07, 0x8a64, 0x89c4, 0x8925, + 0x8889, 0x87ee, 0x8756, 0x86c0, 0x862b, 0x8599, 0x8508, 0x8479, + 0x83ec, 0x8361, 0x82d8, 0x8250, 0x81c9, 0x8145, 0x80c2, 0x8040, + 0xff02, 0xfd0e, 0xfb25, 0xf947, 0xf773, 0xf5aa, 0xf3ea, 0xf234, + 0xf087, 0xeee3, 0xed47, 0xebb3, 0xea27, 0xe8a3, 0xe727, 0xe5b2, + 0xe443, 0xe2dc, 0xe17a, 0xe020, 0xdecb, 0xdd7d, 0xdc34, 0xdaf1, + 0xd9b3, 0xd87b, 0xd748, 0xd61a, 0xd4f1, 0xd3cd, 0xd2ad, 0xd192, + 0xd07b, 0xcf69, 0xce5b, 0xcd51, 0xcc4a, 0xcb48, 0xca4a, 0xc94f, + 0xc858, 0xc764, 0xc674, 0xc587, 0xc49d, 0xc3b7, 0xc2d4, 0xc1f4, + 0xc116, 0xc03c, 0xbf65, 0xbe90, 0xbdbe, 0xbcef, 0xbc23, 0xbb59, + 0xba91, 0xb9cc, 0xb90a, 0xb84a, 0xb78c, 0xb6d0, 0xb617, 0xb560, +]; + +#[cfg(test)] +mod tests { + use super::*; + + /// Test behavior specified in IEEE 754 `squareRoot`. + fn spec_test<F>() + where + F: Float + SqrtHelper, + F::Int: HInt, + F::Int: From<u8>, + F::Int: From<F::ISet2>, + F::Int: CastInto<F::ISet1>, + F::Int: CastInto<F::ISet2>, + u32: CastInto<F::Int>, + { + // Values that should return a NaN and raise invalid + let nan = [F::NEG_INFINITY, F::NEG_ONE, F::NAN, F::MIN]; + + // Values that return unaltered + let roundtrip = [F::ZERO, F::NEG_ZERO, F::INFINITY]; + + for x in nan { + let FpResult { val, status } = sqrt_round(x, Round::Nearest); + assert!(val.is_nan()); + assert!(status == Status::INVALID); + } + + for x in roundtrip { + let FpResult { val, status } = sqrt_round(x, Round::Nearest); + assert_biteq!(val, x); + assert!(status == Status::OK); + } + } + + #[test] + #[cfg(f16_enabled)] + fn sanity_check_f16() { + assert_biteq!(sqrt(100.0f16), 10.0); + assert_biteq!(sqrt(4.0f16), 2.0); + } + + #[test] + #[cfg(f16_enabled)] + fn spec_tests_f16() { + spec_test::<f16>(); + } + + #[test] + #[cfg(f16_enabled)] + #[allow(clippy::approx_constant)] + fn conformance_tests_f16() { + let cases = [ + (f16::PI, 0x3f17_u16), + // 10_000.0, using a hex literal for MSRV hack (Rust < 1.67 checks literal widths as + // part of the AST, so the `cfg` is irrelevant here). + (f16::from_bits(0x70e2), 0x5640_u16), + (f16::from_bits(0x0000000f), 0x13bf_u16), + (f16::INFINITY, f16::INFINITY.to_bits()), + ]; + + for (input, output) in cases { + assert_biteq!( + sqrt(input), + f16::from_bits(output), + "input: {input:?} ({:#018x})", + input.to_bits() + ); + } + } + + #[test] + fn sanity_check_f32() { + assert_biteq!(sqrt(100.0f32), 10.0); + assert_biteq!(sqrt(4.0f32), 2.0); + } + + #[test] + fn spec_tests_f32() { + spec_test::<f32>(); + } + + #[test] + #[allow(clippy::approx_constant)] + fn conformance_tests_f32() { + let cases = [ + (f32::PI, 0x3fe2dfc5_u32), + (10000.0f32, 0x42c80000_u32), + (f32::from_bits(0x0000000f), 0x1b2f456f_u32), + (f32::INFINITY, f32::INFINITY.to_bits()), + ]; + + for (input, output) in cases { + assert_biteq!( + sqrt(input), + f32::from_bits(output), + "input: {input:?} ({:#018x})", + input.to_bits() + ); + } + } + + #[test] + fn sanity_check_f64() { + assert_biteq!(sqrt(100.0f64), 10.0); + assert_biteq!(sqrt(4.0f64), 2.0); + } + + #[test] + fn spec_tests_f64() { + spec_test::<f64>(); + } + + #[test] + #[allow(clippy::approx_constant)] + fn conformance_tests_f64() { + let cases = [ + (f64::PI, 0x3ffc5bf891b4ef6a_u64), + (10000.0, 0x4059000000000000_u64), + (f64::from_bits(0x0000000f), 0x1e7efbdeb14f4eda_u64), + (f64::INFINITY, f64::INFINITY.to_bits()), + ]; + + for (input, output) in cases { + assert_biteq!( + sqrt(input), + f64::from_bits(output), + "input: {input:?} ({:#018x})", + input.to_bits() + ); + } + } + + #[test] + #[cfg(f128_enabled)] + fn sanity_check_f128() { + assert_biteq!(sqrt(100.0f128), 10.0); + assert_biteq!(sqrt(4.0f128), 2.0); + } + + #[test] + #[cfg(f128_enabled)] + fn spec_tests_f128() { + spec_test::<f128>(); + } + + #[test] + #[cfg(f128_enabled)] + #[allow(clippy::approx_constant)] + fn conformance_tests_f128() { + let cases = [ + (f128::PI, 0x3fffc5bf891b4ef6aa79c3b0520d5db9_u128), + // 10_000.0, see `f16` for reasoning. + ( + f128::from_bits(0x400c3880000000000000000000000000), + 0x40059000000000000000000000000000_u128, + ), + (f128::from_bits(0x0000000f), 0x1fc9efbdeb14f4ed9b17ae807907e1e9_u128), + (f128::INFINITY, f128::INFINITY.to_bits()), + ]; + + for (input, output) in cases { + assert_biteq!( + sqrt(input), + f128::from_bits(output), + "input: {input:?} ({:#018x})", + input.to_bits() + ); + } + } +} diff --git a/library/compiler-builtins/libm/src/math/generic/trunc.rs b/library/compiler-builtins/libm/src/math/generic/trunc.rs new file mode 100644 index 00000000000..25414ecf426 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/generic/trunc.rs @@ -0,0 +1,138 @@ +/* SPDX-License-Identifier: MIT + * origin: musl src/math/trunc.c */ + +use super::super::support::{FpResult, Status}; +use super::super::{Float, Int, IntTy, MinInt}; + +#[inline] +pub fn trunc<F: Float>(x: F) -> F { + trunc_status(x).val +} + +#[inline] +pub fn trunc_status<F: Float>(x: F) -> FpResult<F> { + let mut xi: F::Int = x.to_bits(); + let e: i32 = x.exp_unbiased(); + + // C1: The represented value has no fractional part, so no truncation is needed + if e >= F::SIG_BITS as i32 { + return FpResult::ok(x); + } + + let mask = if e < 0 { + // C2: If the exponent is negative, the result will be zero so we mask out everything + // except the sign. + F::SIGN_MASK + } else { + // C3: Otherwise, we mask out the last `e` bits of the significand. + !(F::SIG_MASK >> e.unsigned()) + }; + + // C4: If the to-be-masked-out portion is already zero, we have an exact result + if (xi & !mask) == IntTy::<F>::ZERO { + return FpResult::ok(x); + } + + // C5: Otherwise the result is inexact and we will truncate. Raise `FE_INEXACT`, mask the + // result, and return. + + let status = if xi & F::SIG_MASK == F::Int::ZERO { Status::OK } else { Status::INEXACT }; + xi &= mask; + FpResult::new(F::from_bits(xi), status) +} + +#[cfg(test)] +mod tests { + use super::*; + use crate::support::Hexf; + + fn spec_test<F: Float>(cases: &[(F, F, Status)]) { + let roundtrip = [F::ZERO, F::ONE, F::NEG_ONE, F::NEG_ZERO, F::INFINITY, F::NEG_INFINITY]; + + for x in roundtrip { + let FpResult { val, status } = trunc_status(x); + assert_biteq!(val, x, "{}", Hexf(x)); + assert_eq!(status, Status::OK, "{}", Hexf(x)); + } + + for &(x, res, res_stat) in cases { + let FpResult { val, status } = trunc_status(x); + assert_biteq!(val, res, "{}", Hexf(x)); + assert_eq!(status, res_stat, "{}", Hexf(x)); + } + } + + /* Skipping f16 / f128 "sanity_check"s and spec cases due to rejected literal lexing at MSRV */ + + #[test] + #[cfg(f16_enabled)] + fn spec_tests_f16() { + let cases = []; + spec_test::<f16>(&cases); + } + + #[test] + fn sanity_check_f32() { + assert_eq!(trunc(0.5f32), 0.0); + assert_eq!(trunc(1.1f32), 1.0); + assert_eq!(trunc(2.9f32), 2.0); + } + + #[test] + fn spec_tests_f32() { + let cases = [ + (0.1, 0.0, Status::INEXACT), + (-0.1, -0.0, Status::INEXACT), + (0.9, 0.0, Status::INEXACT), + (-0.9, -0.0, Status::INEXACT), + (1.1, 1.0, Status::INEXACT), + (-1.1, -1.0, Status::INEXACT), + (1.9, 1.0, Status::INEXACT), + (-1.9, -1.0, Status::INEXACT), + ]; + spec_test::<f32>(&cases); + + assert_biteq!(trunc(1.1f32), 1.0); + assert_biteq!(trunc(1.1f64), 1.0); + + // C1 + assert_biteq!(trunc(hf32!("0x1p23")), hf32!("0x1p23")); + assert_biteq!(trunc(hf64!("0x1p52")), hf64!("0x1p52")); + assert_biteq!(trunc(hf32!("-0x1p23")), hf32!("-0x1p23")); + assert_biteq!(trunc(hf64!("-0x1p52")), hf64!("-0x1p52")); + + // C2 + assert_biteq!(trunc(hf32!("0x1p-1")), 0.0); + assert_biteq!(trunc(hf64!("0x1p-1")), 0.0); + assert_biteq!(trunc(hf32!("-0x1p-1")), -0.0); + assert_biteq!(trunc(hf64!("-0x1p-1")), -0.0); + } + + #[test] + fn sanity_check_f64() { + assert_eq!(trunc(1.1f64), 1.0); + assert_eq!(trunc(2.9f64), 2.0); + } + + #[test] + fn spec_tests_f64() { + let cases = [ + (0.1, 0.0, Status::INEXACT), + (-0.1, -0.0, Status::INEXACT), + (0.9, 0.0, Status::INEXACT), + (-0.9, -0.0, Status::INEXACT), + (1.1, 1.0, Status::INEXACT), + (-1.1, -1.0, Status::INEXACT), + (1.9, 1.0, Status::INEXACT), + (-1.9, -1.0, Status::INEXACT), + ]; + spec_test::<f64>(&cases); + } + + #[test] + #[cfg(f128_enabled)] + fn spec_tests_f128() { + let cases = []; + spec_test::<f128>(&cases); + } +} diff --git a/library/compiler-builtins/libm/src/math/hypot.rs b/library/compiler-builtins/libm/src/math/hypot.rs new file mode 100644 index 00000000000..da458ea1d05 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/hypot.rs @@ -0,0 +1,74 @@ +use core::f64; + +use super::sqrt; + +const SPLIT: f64 = 134217728. + 1.; // 0x1p27 + 1 === (2 ^ 27) + 1 + +fn sq(x: f64) -> (f64, f64) { + let xh: f64; + let xl: f64; + let xc: f64; + + xc = x * SPLIT; + xh = x - xc + xc; + xl = x - xh; + let hi = x * x; + let lo = xh * xh - hi + 2. * xh * xl + xl * xl; + (hi, lo) +} + +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn hypot(mut x: f64, mut y: f64) -> f64 { + let x1p700 = f64::from_bits(0x6bb0000000000000); // 0x1p700 === 2 ^ 700 + let x1p_700 = f64::from_bits(0x1430000000000000); // 0x1p-700 === 2 ^ -700 + + let mut uxi = x.to_bits(); + let mut uyi = y.to_bits(); + let uti; + let ex: i64; + let ey: i64; + let mut z: f64; + + /* arrange |x| >= |y| */ + uxi &= -1i64 as u64 >> 1; + uyi &= -1i64 as u64 >> 1; + if uxi < uyi { + uti = uxi; + uxi = uyi; + uyi = uti; + } + + /* special cases */ + ex = (uxi >> 52) as i64; + ey = (uyi >> 52) as i64; + x = f64::from_bits(uxi); + y = f64::from_bits(uyi); + /* note: hypot(inf,nan) == inf */ + if ey == 0x7ff { + return y; + } + if ex == 0x7ff || uyi == 0 { + return x; + } + /* note: hypot(x,y) ~= x + y*y/x/2 with inexact for small y/x */ + /* 64 difference is enough for ld80 double_t */ + if ex - ey > 64 { + return x + y; + } + + /* precise sqrt argument in nearest rounding mode without overflow */ + /* xh*xh must not overflow and xl*xl must not underflow in sq */ + z = 1.; + if ex > 0x3ff + 510 { + z = x1p700; + x *= x1p_700; + y *= x1p_700; + } else if ey < 0x3ff - 450 { + z = x1p_700; + x *= x1p700; + y *= x1p700; + } + let (hx, lx) = sq(x); + let (hy, ly) = sq(y); + z * sqrt(ly + lx + hy + hx) +} diff --git a/library/compiler-builtins/libm/src/math/hypotf.rs b/library/compiler-builtins/libm/src/math/hypotf.rs new file mode 100644 index 00000000000..576eebb3343 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/hypotf.rs @@ -0,0 +1,43 @@ +use core::f32; + +use super::sqrtf; + +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn hypotf(mut x: f32, mut y: f32) -> f32 { + let x1p90 = f32::from_bits(0x6c800000); // 0x1p90f === 2 ^ 90 + let x1p_90 = f32::from_bits(0x12800000); // 0x1p-90f === 2 ^ -90 + + let mut uxi = x.to_bits(); + let mut uyi = y.to_bits(); + let uti; + let mut z: f32; + + uxi &= -1i32 as u32 >> 1; + uyi &= -1i32 as u32 >> 1; + if uxi < uyi { + uti = uxi; + uxi = uyi; + uyi = uti; + } + + x = f32::from_bits(uxi); + y = f32::from_bits(uyi); + if uyi == 0xff << 23 { + return y; + } + if uxi >= 0xff << 23 || uyi == 0 || uxi - uyi >= 25 << 23 { + return x + y; + } + + z = 1.; + if uxi >= (0x7f + 60) << 23 { + z = x1p90; + x *= x1p_90; + y *= x1p_90; + } else if uyi < (0x7f - 60) << 23 { + z = x1p_90; + x *= x1p90; + y *= x1p90; + } + z * sqrtf((x as f64 * x as f64 + y as f64 * y as f64) as f32) +} diff --git a/library/compiler-builtins/libm/src/math/ilogb.rs b/library/compiler-builtins/libm/src/math/ilogb.rs new file mode 100644 index 00000000000..ccc4914be2b --- /dev/null +++ b/library/compiler-builtins/libm/src/math/ilogb.rs @@ -0,0 +1,28 @@ +const FP_ILOGBNAN: i32 = -1 - 0x7fffffff; +const FP_ILOGB0: i32 = FP_ILOGBNAN; + +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn ilogb(x: f64) -> i32 { + let mut i: u64 = x.to_bits(); + let e = ((i >> 52) & 0x7ff) as i32; + + if e == 0 { + i <<= 12; + if i == 0 { + force_eval!(0.0 / 0.0); + return FP_ILOGB0; + } + /* subnormal x */ + let mut e = -0x3ff; + while (i >> 63) == 0 { + e -= 1; + i <<= 1; + } + e + } else if e == 0x7ff { + force_eval!(0.0 / 0.0); + if (i << 12) != 0 { FP_ILOGBNAN } else { i32::MAX } + } else { + e - 0x3ff + } +} diff --git a/library/compiler-builtins/libm/src/math/ilogbf.rs b/library/compiler-builtins/libm/src/math/ilogbf.rs new file mode 100644 index 00000000000..3585d6d36f1 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/ilogbf.rs @@ -0,0 +1,28 @@ +const FP_ILOGBNAN: i32 = -1 - 0x7fffffff; +const FP_ILOGB0: i32 = FP_ILOGBNAN; + +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn ilogbf(x: f32) -> i32 { + let mut i = x.to_bits(); + let e = ((i >> 23) & 0xff) as i32; + + if e == 0 { + i <<= 9; + if i == 0 { + force_eval!(0.0 / 0.0); + return FP_ILOGB0; + } + /* subnormal x */ + let mut e = -0x7f; + while (i >> 31) == 0 { + e -= 1; + i <<= 1; + } + e + } else if e == 0xff { + force_eval!(0.0 / 0.0); + if (i << 9) != 0 { FP_ILOGBNAN } else { i32::MAX } + } else { + e - 0x7f + } +} diff --git a/library/compiler-builtins/libm/src/math/j0.rs b/library/compiler-builtins/libm/src/math/j0.rs new file mode 100644 index 00000000000..99d656f0d08 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/j0.rs @@ -0,0 +1,426 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_j0.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* j0(x), y0(x) + * Bessel function of the first and second kinds of order zero. + * Method -- j0(x): + * 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ... + * 2. Reduce x to |x| since j0(x)=j0(-x), and + * for x in (0,2) + * j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x; + * (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 ) + * for x in (2,inf) + * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0)) + * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) + * as follow: + * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) + * = 1/sqrt(2) * (cos(x) + sin(x)) + * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4) + * = 1/sqrt(2) * (sin(x) - cos(x)) + * (To avoid cancellation, use + * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) + * to compute the worse one.) + * + * 3 Special cases + * j0(nan)= nan + * j0(0) = 1 + * j0(inf) = 0 + * + * Method -- y0(x): + * 1. For x<2. + * Since + * y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...) + * therefore y0(x)-2/pi*j0(x)*ln(x) is an even function. + * We use the following function to approximate y0, + * y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2 + * where + * U(z) = u00 + u01*z + ... + u06*z^6 + * V(z) = 1 + v01*z + ... + v04*z^4 + * with absolute approximation error bounded by 2**-72. + * Note: For tiny x, U/V = u0 and j0(x)~1, hence + * y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27) + * 2. For x>=2. + * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0)) + * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) + * by the method mentioned above. + * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0. + */ + +use super::{cos, fabs, get_high_word, get_low_word, log, sin, sqrt}; +const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */ +const TPI: f64 = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */ + +/* common method when |x|>=2 */ +fn common(ix: u32, x: f64, y0: bool) -> f64 { + let s: f64; + let mut c: f64; + let mut ss: f64; + let mut cc: f64; + let z: f64; + + /* + * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x-pi/4)-q0(x)*sin(x-pi/4)) + * y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x-pi/4)+q0(x)*cos(x-pi/4)) + * + * sin(x-pi/4) = (sin(x) - cos(x))/sqrt(2) + * cos(x-pi/4) = (sin(x) + cos(x))/sqrt(2) + * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) + */ + s = sin(x); + c = cos(x); + if y0 { + c = -c; + } + cc = s + c; + /* avoid overflow in 2*x, big ulp error when x>=0x1p1023 */ + if ix < 0x7fe00000 { + ss = s - c; + z = -cos(2.0 * x); + if s * c < 0.0 { + cc = z / ss; + } else { + ss = z / cc; + } + if ix < 0x48000000 { + if y0 { + ss = -ss; + } + cc = pzero(x) * cc - qzero(x) * ss; + } + } + return INVSQRTPI * cc / sqrt(x); +} + +/* R0/S0 on [0, 2.00] */ +const R02: f64 = 1.56249999999999947958e-02; /* 0x3F8FFFFF, 0xFFFFFFFD */ +const R03: f64 = -1.89979294238854721751e-04; /* 0xBF28E6A5, 0xB61AC6E9 */ +const R04: f64 = 1.82954049532700665670e-06; /* 0x3EBEB1D1, 0x0C503919 */ +const R05: f64 = -4.61832688532103189199e-09; /* 0xBE33D5E7, 0x73D63FCE */ +const S01: f64 = 1.56191029464890010492e-02; /* 0x3F8FFCE8, 0x82C8C2A4 */ +const S02: f64 = 1.16926784663337450260e-04; /* 0x3F1EA6D2, 0xDD57DBF4 */ +const S03: f64 = 5.13546550207318111446e-07; /* 0x3EA13B54, 0xCE84D5A9 */ +const S04: f64 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */ + +/// Zeroth order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f64). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn j0(mut x: f64) -> f64 { + let z: f64; + let r: f64; + let s: f64; + let mut ix: u32; + + ix = get_high_word(x); + ix &= 0x7fffffff; + + /* j0(+-inf)=0, j0(nan)=nan */ + if ix >= 0x7ff00000 { + return 1.0 / (x * x); + } + x = fabs(x); + + if ix >= 0x40000000 { + /* |x| >= 2 */ + /* large ulp error near zeros: 2.4, 5.52, 8.6537,.. */ + return common(ix, x, false); + } + + /* 1 - x*x/4 + x*x*R(x^2)/S(x^2) */ + if ix >= 0x3f200000 { + /* |x| >= 2**-13 */ + /* up to 4ulp error close to 2 */ + z = x * x; + r = z * (R02 + z * (R03 + z * (R04 + z * R05))); + s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * S04))); + return (1.0 + x / 2.0) * (1.0 - x / 2.0) + z * (r / s); + } + + /* 1 - x*x/4 */ + /* prevent underflow */ + /* inexact should be raised when x!=0, this is not done correctly */ + if ix >= 0x38000000 { + /* |x| >= 2**-127 */ + x = 0.25 * x * x; + } + return 1.0 - x; +} + +const U00: f64 = -7.38042951086872317523e-02; /* 0xBFB2E4D6, 0x99CBD01F */ +const U01: f64 = 1.76666452509181115538e-01; /* 0x3FC69D01, 0x9DE9E3FC */ +const U02: f64 = -1.38185671945596898896e-02; /* 0xBF8C4CE8, 0xB16CFA97 */ +const U03: f64 = 3.47453432093683650238e-04; /* 0x3F36C54D, 0x20B29B6B */ +const U04: f64 = -3.81407053724364161125e-06; /* 0xBECFFEA7, 0x73D25CAD */ +const U05: f64 = 1.95590137035022920206e-08; /* 0x3E550057, 0x3B4EABD4 */ +const U06: f64 = -3.98205194132103398453e-11; /* 0xBDC5E43D, 0x693FB3C8 */ +const V01: f64 = 1.27304834834123699328e-02; /* 0x3F8A1270, 0x91C9C71A */ +const V02: f64 = 7.60068627350353253702e-05; /* 0x3F13ECBB, 0xF578C6C1 */ +const V03: f64 = 2.59150851840457805467e-07; /* 0x3E91642D, 0x7FF202FD */ +const V04: f64 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */ + +/// Zeroth order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f64). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn y0(x: f64) -> f64 { + let z: f64; + let u: f64; + let v: f64; + let ix: u32; + let lx: u32; + + ix = get_high_word(x); + lx = get_low_word(x); + + /* y0(nan)=nan, y0(<0)=nan, y0(0)=-inf, y0(inf)=0 */ + if ((ix << 1) | lx) == 0 { + return -1.0 / 0.0; + } + if (ix >> 31) != 0 { + return 0.0 / 0.0; + } + if ix >= 0x7ff00000 { + return 1.0 / x; + } + + if ix >= 0x40000000 { + /* x >= 2 */ + /* large ulp errors near zeros: 3.958, 7.086,.. */ + return common(ix, x, true); + } + + /* U(x^2)/V(x^2) + (2/pi)*j0(x)*log(x) */ + if ix >= 0x3e400000 { + /* x >= 2**-27 */ + /* large ulp error near the first zero, x ~= 0.89 */ + z = x * x; + u = U00 + z * (U01 + z * (U02 + z * (U03 + z * (U04 + z * (U05 + z * U06))))); + v = 1.0 + z * (V01 + z * (V02 + z * (V03 + z * V04))); + return u / v + TPI * (j0(x) * log(x)); + } + return U00 + TPI * log(x); +} + +/* The asymptotic expansions of pzero is + * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. + * For x >= 2, We approximate pzero by + * pzero(x) = 1 + (R/S) + * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 + * S = 1 + pS0*s^2 + ... + pS4*s^10 + * and + * | pzero(x)-1-R/S | <= 2 ** ( -60.26) + */ +const PR8: [f64; 6] = [ + /* for x in [inf, 8]=1/[0,0.125] */ + 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ + -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */ + -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */ + -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */ + -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */ + -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */ +]; +const PS8: [f64; 5] = [ + 1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */ + 3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */ + 4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */ + 1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */ + 4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */ +]; + +const PR5: [f64; 6] = [ + /* for x in [8,4.5454]=1/[0.125,0.22001] */ + -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */ + -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */ + -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */ + -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */ + -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */ + -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */ +]; +const PS5: [f64; 5] = [ + 6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */ + 1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */ + 5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */ + 9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */ + 2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */ +]; + +const PR3: [f64; 6] = [ + /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ + -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */ + -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */ + -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */ + -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */ + -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */ + -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */ +]; +const PS3: [f64; 5] = [ + 3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */ + 3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */ + 1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */ + 1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */ + 1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */ +]; + +const PR2: [f64; 6] = [ + /* for x in [2.8570,2]=1/[0.3499,0.5] */ + -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */ + -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */ + -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */ + -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */ + -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */ + -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */ +]; +const PS2: [f64; 5] = [ + 2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */ + 1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */ + 2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */ + 1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */ + 1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */ +]; + +fn pzero(x: f64) -> f64 { + let p: &[f64; 6]; + let q: &[f64; 5]; + let z: f64; + let r: f64; + let s: f64; + let mut ix: u32; + + ix = get_high_word(x); + ix &= 0x7fffffff; + if ix >= 0x40200000 { + p = &PR8; + q = &PS8; + } else if ix >= 0x40122E8B { + p = &PR5; + q = &PS5; + } else if ix >= 0x4006DB6D { + p = &PR3; + q = &PS3; + } else + /*ix >= 0x40000000*/ + { + p = &PR2; + q = &PS2; + } + z = 1.0 / (x * x); + r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5])))); + s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4])))); + return 1.0 + r / s; +} + +/* For x >= 8, the asymptotic expansions of qzero is + * -1/8 s + 75/1024 s^3 - ..., where s = 1/x. + * We approximate pzero by + * qzero(x) = s*(-1.25 + (R/S)) + * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 + * S = 1 + qS0*s^2 + ... + qS5*s^12 + * and + * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) + */ +const QR8: [f64; 6] = [ + /* for x in [inf, 8]=1/[0,0.125] */ + 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ + 7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */ + 1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */ + 5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */ + 8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */ + 3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */ +]; +const QS8: [f64; 6] = [ + 1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */ + 8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */ + 1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */ + 8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */ + 8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */ + -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */ +]; + +const QR5: [f64; 6] = [ + /* for x in [8,4.5454]=1/[0.125,0.22001] */ + 1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */ + 7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */ + 5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */ + 1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */ + 1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */ + 1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */ +]; +const QS5: [f64; 6] = [ + 8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */ + 2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */ + 1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */ + 5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */ + 3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */ + -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */ +]; + +const QR3: [f64; 6] = [ + /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ + 4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */ + 7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */ + 3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */ + 4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */ + 1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */ + 1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */ +]; +const QS3: [f64; 6] = [ + 4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */ + 7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */ + 3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */ + 6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */ + 2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */ + -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */ +]; + +const QR2: [f64; 6] = [ + /* for x in [2.8570,2]=1/[0.3499,0.5] */ + 1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */ + 7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */ + 1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */ + 1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */ + 3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */ + 1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */ +]; +const QS2: [f64; 6] = [ + 3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */ + 2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */ + 8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */ + 8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */ + 2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */ + -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */ +]; + +fn qzero(x: f64) -> f64 { + let p: &[f64; 6]; + let q: &[f64; 6]; + let s: f64; + let r: f64; + let z: f64; + let mut ix: u32; + + ix = get_high_word(x); + ix &= 0x7fffffff; + if ix >= 0x40200000 { + p = &QR8; + q = &QS8; + } else if ix >= 0x40122E8B { + p = &QR5; + q = &QS5; + } else if ix >= 0x4006DB6D { + p = &QR3; + q = &QS3; + } else + /*ix >= 0x40000000*/ + { + p = &QR2; + q = &QS2; + } + z = 1.0 / (x * x); + r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5])))); + s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5]))))); + return (-0.125 + r / s) / x; +} diff --git a/library/compiler-builtins/libm/src/math/j0f.rs b/library/compiler-builtins/libm/src/math/j0f.rs new file mode 100644 index 00000000000..25e5b325c8c --- /dev/null +++ b/library/compiler-builtins/libm/src/math/j0f.rs @@ -0,0 +1,363 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_j0f.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +use super::{cosf, fabsf, logf, sinf, sqrtf}; + +const INVSQRTPI: f32 = 5.6418961287e-01; /* 0x3f106ebb */ +const TPI: f32 = 6.3661974669e-01; /* 0x3f22f983 */ + +fn common(ix: u32, x: f32, y0: bool) -> f32 { + let z: f32; + let s: f32; + let mut c: f32; + let mut ss: f32; + let mut cc: f32; + /* + * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) + * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) + */ + s = sinf(x); + c = cosf(x); + if y0 { + c = -c; + } + cc = s + c; + if ix < 0x7f000000 { + ss = s - c; + z = -cosf(2.0 * x); + if s * c < 0.0 { + cc = z / ss; + } else { + ss = z / cc; + } + if ix < 0x58800000 { + if y0 { + ss = -ss; + } + cc = pzerof(x) * cc - qzerof(x) * ss; + } + } + return INVSQRTPI * cc / sqrtf(x); +} + +/* R0/S0 on [0, 2.00] */ +const R02: f32 = 1.5625000000e-02; /* 0x3c800000 */ +const R03: f32 = -1.8997929874e-04; /* 0xb947352e */ +const R04: f32 = 1.8295404516e-06; /* 0x35f58e88 */ +const R05: f32 = -4.6183270541e-09; /* 0xb19eaf3c */ +const S01: f32 = 1.5619102865e-02; /* 0x3c7fe744 */ +const S02: f32 = 1.1692678527e-04; /* 0x38f53697 */ +const S03: f32 = 5.1354652442e-07; /* 0x3509daa6 */ +const S04: f32 = 1.1661400734e-09; /* 0x30a045e8 */ + +/// Zeroth order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f32). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn j0f(mut x: f32) -> f32 { + let z: f32; + let r: f32; + let s: f32; + let mut ix: u32; + + ix = x.to_bits(); + ix &= 0x7fffffff; + if ix >= 0x7f800000 { + return 1.0 / (x * x); + } + x = fabsf(x); + + if ix >= 0x40000000 { + /* |x| >= 2 */ + /* large ulp error near zeros */ + return common(ix, x, false); + } + if ix >= 0x3a000000 { + /* |x| >= 2**-11 */ + /* up to 4ulp error near 2 */ + z = x * x; + r = z * (R02 + z * (R03 + z * (R04 + z * R05))); + s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * S04))); + return (1.0 + x / 2.0) * (1.0 - x / 2.0) + z * (r / s); + } + if ix >= 0x21800000 { + /* |x| >= 2**-60 */ + x = 0.25 * x * x; + } + return 1.0 - x; +} + +const U00: f32 = -7.3804296553e-02; /* 0xbd9726b5 */ +const U01: f32 = 1.7666645348e-01; /* 0x3e34e80d */ +const U02: f32 = -1.3818567619e-02; /* 0xbc626746 */ +const U03: f32 = 3.4745343146e-04; /* 0x39b62a69 */ +const U04: f32 = -3.8140706238e-06; /* 0xb67ff53c */ +const U05: f32 = 1.9559013964e-08; /* 0x32a802ba */ +const U06: f32 = -3.9820518410e-11; /* 0xae2f21eb */ +const V01: f32 = 1.2730483897e-02; /* 0x3c509385 */ +const V02: f32 = 7.6006865129e-05; /* 0x389f65e0 */ +const V03: f32 = 2.5915085189e-07; /* 0x348b216c */ +const V04: f32 = 4.4111031494e-10; /* 0x2ff280c2 */ + +/// Zeroth order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f32). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn y0f(x: f32) -> f32 { + let z: f32; + let u: f32; + let v: f32; + let ix: u32; + + ix = x.to_bits(); + if (ix & 0x7fffffff) == 0 { + return -1.0 / 0.0; + } + if (ix >> 31) != 0 { + return 0.0 / 0.0; + } + if ix >= 0x7f800000 { + return 1.0 / x; + } + if ix >= 0x40000000 { + /* |x| >= 2.0 */ + /* large ulp error near zeros */ + return common(ix, x, true); + } + if ix >= 0x39000000 { + /* x >= 2**-13 */ + /* large ulp error at x ~= 0.89 */ + z = x * x; + u = U00 + z * (U01 + z * (U02 + z * (U03 + z * (U04 + z * (U05 + z * U06))))); + v = 1.0 + z * (V01 + z * (V02 + z * (V03 + z * V04))); + return u / v + TPI * (j0f(x) * logf(x)); + } + return U00 + TPI * logf(x); +} + +/* The asymptotic expansions of pzero is + * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. + * For x >= 2, We approximate pzero by + * pzero(x) = 1 + (R/S) + * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 + * S = 1 + pS0*s^2 + ... + pS4*s^10 + * and + * | pzero(x)-1-R/S | <= 2 ** ( -60.26) + */ +const PR8: [f32; 6] = [ + /* for x in [inf, 8]=1/[0,0.125] */ + 0.0000000000e+00, /* 0x00000000 */ + -7.0312500000e-02, /* 0xbd900000 */ + -8.0816707611e+00, /* 0xc1014e86 */ + -2.5706311035e+02, /* 0xc3808814 */ + -2.4852163086e+03, /* 0xc51b5376 */ + -5.2530439453e+03, /* 0xc5a4285a */ +]; +const PS8: [f32; 5] = [ + 1.1653436279e+02, /* 0x42e91198 */ + 3.8337448730e+03, /* 0x456f9beb */ + 4.0597855469e+04, /* 0x471e95db */ + 1.1675296875e+05, /* 0x47e4087c */ + 4.7627726562e+04, /* 0x473a0bba */ +]; +const PR5: [f32; 6] = [ + /* for x in [8,4.5454]=1/[0.125,0.22001] */ + -1.1412546255e-11, /* 0xad48c58a */ + -7.0312492549e-02, /* 0xbd8fffff */ + -4.1596107483e+00, /* 0xc0851b88 */ + -6.7674766541e+01, /* 0xc287597b */ + -3.3123129272e+02, /* 0xc3a59d9b */ + -3.4643338013e+02, /* 0xc3ad3779 */ +]; +const PS5: [f32; 5] = [ + 6.0753936768e+01, /* 0x42730408 */ + 1.0512523193e+03, /* 0x44836813 */ + 5.9789707031e+03, /* 0x45bad7c4 */ + 9.6254453125e+03, /* 0x461665c8 */ + 2.4060581055e+03, /* 0x451660ee */ +]; + +const PR3: [f32; 6] = [ + /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ + -2.5470459075e-09, /* 0xb12f081b */ + -7.0311963558e-02, /* 0xbd8fffb8 */ + -2.4090321064e+00, /* 0xc01a2d95 */ + -2.1965976715e+01, /* 0xc1afba52 */ + -5.8079170227e+01, /* 0xc2685112 */ + -3.1447946548e+01, /* 0xc1fb9565 */ +]; +const PS3: [f32; 5] = [ + 3.5856033325e+01, /* 0x420f6c94 */ + 3.6151397705e+02, /* 0x43b4c1ca */ + 1.1936077881e+03, /* 0x44953373 */ + 1.1279968262e+03, /* 0x448cffe6 */ + 1.7358093262e+02, /* 0x432d94b8 */ +]; + +const PR2: [f32; 6] = [ + /* for x in [2.8570,2]=1/[0.3499,0.5] */ + -8.8753431271e-08, /* 0xb3be98b7 */ + -7.0303097367e-02, /* 0xbd8ffb12 */ + -1.4507384300e+00, /* 0xbfb9b1cc */ + -7.6356959343e+00, /* 0xc0f4579f */ + -1.1193166733e+01, /* 0xc1331736 */ + -3.2336456776e+00, /* 0xc04ef40d */ +]; +const PS2: [f32; 5] = [ + 2.2220300674e+01, /* 0x41b1c32d */ + 1.3620678711e+02, /* 0x430834f0 */ + 2.7047027588e+02, /* 0x43873c32 */ + 1.5387539673e+02, /* 0x4319e01a */ + 1.4657617569e+01, /* 0x416a859a */ +]; + +fn pzerof(x: f32) -> f32 { + let p: &[f32; 6]; + let q: &[f32; 5]; + let z: f32; + let r: f32; + let s: f32; + let mut ix: u32; + + ix = x.to_bits(); + ix &= 0x7fffffff; + if ix >= 0x41000000 { + p = &PR8; + q = &PS8; + } else if ix >= 0x409173eb { + p = &PR5; + q = &PS5; + } else if ix >= 0x4036d917 { + p = &PR3; + q = &PS3; + } else + /*ix >= 0x40000000*/ + { + p = &PR2; + q = &PS2; + } + z = 1.0 / (x * x); + r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5])))); + s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4])))); + return 1.0 + r / s; +} + +/* For x >= 8, the asymptotic expansions of qzero is + * -1/8 s + 75/1024 s^3 - ..., where s = 1/x. + * We approximate pzero by + * qzero(x) = s*(-1.25 + (R/S)) + * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 + * S = 1 + qS0*s^2 + ... + qS5*s^12 + * and + * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) + */ +const QR8: [f32; 6] = [ + /* for x in [inf, 8]=1/[0,0.125] */ + 0.0000000000e+00, /* 0x00000000 */ + 7.3242187500e-02, /* 0x3d960000 */ + 1.1768206596e+01, /* 0x413c4a93 */ + 5.5767340088e+02, /* 0x440b6b19 */ + 8.8591972656e+03, /* 0x460a6cca */ + 3.7014625000e+04, /* 0x471096a0 */ +]; +const QS8: [f32; 6] = [ + 1.6377603149e+02, /* 0x4323c6aa */ + 8.0983447266e+03, /* 0x45fd12c2 */ + 1.4253829688e+05, /* 0x480b3293 */ + 8.0330925000e+05, /* 0x49441ed4 */ + 8.4050156250e+05, /* 0x494d3359 */ + -3.4389928125e+05, /* 0xc8a7eb69 */ +]; + +const QR5: [f32; 6] = [ + /* for x in [8,4.5454]=1/[0.125,0.22001] */ + 1.8408595828e-11, /* 0x2da1ec79 */ + 7.3242180049e-02, /* 0x3d95ffff */ + 5.8356351852e+00, /* 0x40babd86 */ + 1.3511157227e+02, /* 0x43071c90 */ + 1.0272437744e+03, /* 0x448067cd */ + 1.9899779053e+03, /* 0x44f8bf4b */ +]; +const QS5: [f32; 6] = [ + 8.2776611328e+01, /* 0x42a58da0 */ + 2.0778142090e+03, /* 0x4501dd07 */ + 1.8847289062e+04, /* 0x46933e94 */ + 5.6751113281e+04, /* 0x475daf1d */ + 3.5976753906e+04, /* 0x470c88c1 */ + -5.3543427734e+03, /* 0xc5a752be */ +]; + +const QR3: [f32; 6] = [ + /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ + 4.3774099900e-09, /* 0x3196681b */ + 7.3241114616e-02, /* 0x3d95ff70 */ + 3.3442313671e+00, /* 0x405607e3 */ + 4.2621845245e+01, /* 0x422a7cc5 */ + 1.7080809021e+02, /* 0x432acedf */ + 1.6673394775e+02, /* 0x4326bbe4 */ +]; +const QS3: [f32; 6] = [ + 4.8758872986e+01, /* 0x42430916 */ + 7.0968920898e+02, /* 0x44316c1c */ + 3.7041481934e+03, /* 0x4567825f */ + 6.4604252930e+03, /* 0x45c9e367 */ + 2.5163337402e+03, /* 0x451d4557 */ + -1.4924745178e+02, /* 0xc3153f59 */ +]; + +const QR2: [f32; 6] = [ + /* for x in [2.8570,2]=1/[0.3499,0.5] */ + 1.5044444979e-07, /* 0x342189db */ + 7.3223426938e-02, /* 0x3d95f62a */ + 1.9981917143e+00, /* 0x3fffc4bf */ + 1.4495602608e+01, /* 0x4167edfd */ + 3.1666231155e+01, /* 0x41fd5471 */ + 1.6252708435e+01, /* 0x4182058c */ +]; +const QS2: [f32; 6] = [ + 3.0365585327e+01, /* 0x41f2ecb8 */ + 2.6934811401e+02, /* 0x4386ac8f */ + 8.4478375244e+02, /* 0x44533229 */ + 8.8293585205e+02, /* 0x445cbbe5 */ + 2.1266638184e+02, /* 0x4354aa98 */ + -5.3109550476e+00, /* 0xc0a9f358 */ +]; + +fn qzerof(x: f32) -> f32 { + let p: &[f32; 6]; + let q: &[f32; 6]; + let s: f32; + let r: f32; + let z: f32; + let mut ix: u32; + + ix = x.to_bits(); + ix &= 0x7fffffff; + if ix >= 0x41000000 { + p = &QR8; + q = &QS8; + } else if ix >= 0x409173eb { + p = &QR5; + q = &QS5; + } else if ix >= 0x4036d917 { + p = &QR3; + q = &QS3; + } else + /*ix >= 0x40000000*/ + { + p = &QR2; + q = &QS2; + } + z = 1.0 / (x * x); + r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5])))); + s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5]))))); + return (-0.125 + r / s) / x; +} diff --git a/library/compiler-builtins/libm/src/math/j1.rs b/library/compiler-builtins/libm/src/math/j1.rs new file mode 100644 index 00000000000..9b604d9e46e --- /dev/null +++ b/library/compiler-builtins/libm/src/math/j1.rs @@ -0,0 +1,418 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_j1.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* j1(x), y1(x) + * Bessel function of the first and second kinds of order zero. + * Method -- j1(x): + * 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ... + * 2. Reduce x to |x| since j1(x)=-j1(-x), and + * for x in (0,2) + * j1(x) = x/2 + x*z*R0/S0, where z = x*x; + * (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 ) + * for x in (2,inf) + * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1)) + * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) + * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) + * as follow: + * cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) + * = 1/sqrt(2) * (sin(x) - cos(x)) + * sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) + * = -1/sqrt(2) * (sin(x) + cos(x)) + * (To avoid cancellation, use + * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) + * to compute the worse one.) + * + * 3 Special cases + * j1(nan)= nan + * j1(0) = 0 + * j1(inf) = 0 + * + * Method -- y1(x): + * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN + * 2. For x<2. + * Since + * y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...) + * therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function. + * We use the following function to approximate y1, + * y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2 + * where for x in [0,2] (abs err less than 2**-65.89) + * U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4 + * V(z) = 1 + v0[0]*z + ... + v0[4]*z^5 + * Note: For tiny x, 1/x dominate y1 and hence + * y1(tiny) = -2/pi/tiny, (choose tiny<2**-54) + * 3. For x>=2. + * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) + * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) + * by method mentioned above. + */ + +use super::{cos, fabs, get_high_word, get_low_word, log, sin, sqrt}; + +const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */ +const TPI: f64 = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */ + +fn common(ix: u32, x: f64, y1: bool, sign: bool) -> f64 { + let z: f64; + let mut s: f64; + let c: f64; + let mut ss: f64; + let mut cc: f64; + + /* + * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x-3pi/4)-q1(x)*sin(x-3pi/4)) + * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x-3pi/4)+q1(x)*cos(x-3pi/4)) + * + * sin(x-3pi/4) = -(sin(x) + cos(x))/sqrt(2) + * cos(x-3pi/4) = (sin(x) - cos(x))/sqrt(2) + * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) + */ + s = sin(x); + if y1 { + s = -s; + } + c = cos(x); + cc = s - c; + if ix < 0x7fe00000 { + /* avoid overflow in 2*x */ + ss = -s - c; + z = cos(2.0 * x); + if s * c > 0.0 { + cc = z / ss; + } else { + ss = z / cc; + } + if ix < 0x48000000 { + if y1 { + ss = -ss; + } + cc = pone(x) * cc - qone(x) * ss; + } + } + if sign { + cc = -cc; + } + return INVSQRTPI * cc / sqrt(x); +} + +/* R0/S0 on [0,2] */ +const R00: f64 = -6.25000000000000000000e-02; /* 0xBFB00000, 0x00000000 */ +const R01: f64 = 1.40705666955189706048e-03; /* 0x3F570D9F, 0x98472C61 */ +const R02: f64 = -1.59955631084035597520e-05; /* 0xBEF0C5C6, 0xBA169668 */ +const R03: f64 = 4.96727999609584448412e-08; /* 0x3E6AAAFA, 0x46CA0BD9 */ +const S01: f64 = 1.91537599538363460805e-02; /* 0x3F939D0B, 0x12637E53 */ +const S02: f64 = 1.85946785588630915560e-04; /* 0x3F285F56, 0xB9CDF664 */ +const S03: f64 = 1.17718464042623683263e-06; /* 0x3EB3BFF8, 0x333F8498 */ +const S04: f64 = 5.04636257076217042715e-09; /* 0x3E35AC88, 0xC97DFF2C */ +const S05: f64 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */ + +/// First order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f64). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn j1(x: f64) -> f64 { + let mut z: f64; + let r: f64; + let s: f64; + let mut ix: u32; + let sign: bool; + + ix = get_high_word(x); + sign = (ix >> 31) != 0; + ix &= 0x7fffffff; + if ix >= 0x7ff00000 { + return 1.0 / (x * x); + } + if ix >= 0x40000000 { + /* |x| >= 2 */ + return common(ix, fabs(x), false, sign); + } + if ix >= 0x38000000 { + /* |x| >= 2**-127 */ + z = x * x; + r = z * (R00 + z * (R01 + z * (R02 + z * R03))); + s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * (S04 + z * S05)))); + z = r / s; + } else { + /* avoid underflow, raise inexact if x!=0 */ + z = x; + } + return (0.5 + z) * x; +} + +const U0: [f64; 5] = [ + -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */ + 5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */ + -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */ + 2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */ + -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */ +]; +const V0: [f64; 5] = [ + 1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */ + 2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */ + 1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */ + 6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */ + 1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */ +]; + +/// First order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f64). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn y1(x: f64) -> f64 { + let z: f64; + let u: f64; + let v: f64; + let ix: u32; + let lx: u32; + + ix = get_high_word(x); + lx = get_low_word(x); + + /* y1(nan)=nan, y1(<0)=nan, y1(0)=-inf, y1(inf)=0 */ + if (ix << 1) | lx == 0 { + return -1.0 / 0.0; + } + if ix >> 31 != 0 { + return 0.0 / 0.0; + } + if ix >= 0x7ff00000 { + return 1.0 / x; + } + + if ix >= 0x40000000 { + /* x >= 2 */ + return common(ix, x, true, false); + } + if ix < 0x3c900000 { + /* x < 2**-54 */ + return -TPI / x; + } + z = x * x; + u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * U0[4]))); + v = 1.0 + z * (V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * V0[4])))); + return x * (u / v) + TPI * (j1(x) * log(x) - 1.0 / x); +} + +/* For x >= 8, the asymptotic expansions of pone is + * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. + * We approximate pone by + * pone(x) = 1 + (R/S) + * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 + * S = 1 + ps0*s^2 + ... + ps4*s^10 + * and + * | pone(x)-1-R/S | <= 2 ** ( -60.06) + */ + +const PR8: [f64; 6] = [ + /* for x in [inf, 8]=1/[0,0.125] */ + 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ + 1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */ + 1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */ + 4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */ + 3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */ + 7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */ +]; +const PS8: [f64; 5] = [ + 1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */ + 3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */ + 3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */ + 9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */ + 3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */ +]; + +const PR5: [f64; 6] = [ + /* for x in [8,4.5454]=1/[0.125,0.22001] */ + 1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */ + 1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */ + 6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */ + 1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */ + 5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */ + 5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */ +]; +const PS5: [f64; 5] = [ + 5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */ + 9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */ + 5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */ + 7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */ + 1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */ +]; + +const PR3: [f64; 6] = [ + 3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */ + 1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */ + 3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */ + 3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */ + 9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */ + 4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */ +]; +const PS3: [f64; 5] = [ + 3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */ + 3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */ + 1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */ + 8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */ + 1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */ +]; + +const PR2: [f64; 6] = [ + /* for x in [2.8570,2]=1/[0.3499,0.5] */ + 1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */ + 1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */ + 2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */ + 1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */ + 1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */ + 5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */ +]; +const PS2: [f64; 5] = [ + 2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */ + 1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */ + 2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */ + 1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */ + 8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */ +]; + +fn pone(x: f64) -> f64 { + let p: &[f64; 6]; + let q: &[f64; 5]; + let z: f64; + let r: f64; + let s: f64; + let mut ix: u32; + + ix = get_high_word(x); + ix &= 0x7fffffff; + if ix >= 0x40200000 { + p = &PR8; + q = &PS8; + } else if ix >= 0x40122E8B { + p = &PR5; + q = &PS5; + } else if ix >= 0x4006DB6D { + p = &PR3; + q = &PS3; + } else + /*ix >= 0x40000000*/ + { + p = &PR2; + q = &PS2; + } + z = 1.0 / (x * x); + r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5])))); + s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4])))); + return 1.0 + r / s; +} + +/* For x >= 8, the asymptotic expansions of qone is + * 3/8 s - 105/1024 s^3 - ..., where s = 1/x. + * We approximate pone by + * qone(x) = s*(0.375 + (R/S)) + * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 + * S = 1 + qs1*s^2 + ... + qs6*s^12 + * and + * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13) + */ + +const QR8: [f64; 6] = [ + /* for x in [inf, 8]=1/[0,0.125] */ + 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ + -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */ + -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */ + -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */ + -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */ + -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */ +]; +const QS8: [f64; 6] = [ + 1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */ + 7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */ + 1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */ + 7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */ + 6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */ + -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */ +]; + +const QR5: [f64; 6] = [ + /* for x in [8,4.5454]=1/[0.125,0.22001] */ + -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */ + -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */ + -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */ + -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */ + -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */ + -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */ +]; +const QS5: [f64; 6] = [ + 8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */ + 1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */ + 1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */ + 4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */ + 2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */ + -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */ +]; + +const QR3: [f64; 6] = [ + -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */ + -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */ + -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */ + -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */ + -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */ + -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */ +]; +const QS3: [f64; 6] = [ + 4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */ + 6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */ + 3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */ + 5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */ + 1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */ + -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */ +]; + +const QR2: [f64; 6] = [ + /* for x in [2.8570,2]=1/[0.3499,0.5] */ + -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */ + -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */ + -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */ + -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */ + -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */ + -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */ +]; +const QS2: [f64; 6] = [ + 2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */ + 2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */ + 7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */ + 7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */ + 1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */ + -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */ +]; + +fn qone(x: f64) -> f64 { + let p: &[f64; 6]; + let q: &[f64; 6]; + let s: f64; + let r: f64; + let z: f64; + let mut ix: u32; + + ix = get_high_word(x); + ix &= 0x7fffffff; + if ix >= 0x40200000 { + p = &QR8; + q = &QS8; + } else if ix >= 0x40122E8B { + p = &QR5; + q = &QS5; + } else if ix >= 0x4006DB6D { + p = &QR3; + q = &QS3; + } else + /*ix >= 0x40000000*/ + { + p = &QR2; + q = &QS2; + } + z = 1.0 / (x * x); + r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5])))); + s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5]))))); + return (0.375 + r / s) / x; +} diff --git a/library/compiler-builtins/libm/src/math/j1f.rs b/library/compiler-builtins/libm/src/math/j1f.rs new file mode 100644 index 00000000000..a47472401ee --- /dev/null +++ b/library/compiler-builtins/libm/src/math/j1f.rs @@ -0,0 +1,384 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_j1f.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +use super::{cosf, fabsf, logf, sinf, sqrtf}; + +const INVSQRTPI: f32 = 5.6418961287e-01; /* 0x3f106ebb */ +const TPI: f32 = 6.3661974669e-01; /* 0x3f22f983 */ + +fn common(ix: u32, x: f32, y1: bool, sign: bool) -> f32 { + let z: f64; + let mut s: f64; + let c: f64; + let mut ss: f64; + let mut cc: f64; + + s = sinf(x) as f64; + if y1 { + s = -s; + } + c = cosf(x) as f64; + cc = s - c; + if ix < 0x7f000000 { + ss = -s - c; + z = cosf(2.0 * x) as f64; + if s * c > 0.0 { + cc = z / ss; + } else { + ss = z / cc; + } + if ix < 0x58800000 { + if y1 { + ss = -ss; + } + cc = (ponef(x) as f64) * cc - (qonef(x) as f64) * ss; + } + } + if sign { + cc = -cc; + } + return (((INVSQRTPI as f64) * cc) / (sqrtf(x) as f64)) as f32; +} + +/* R0/S0 on [0,2] */ +const R00: f32 = -6.2500000000e-02; /* 0xbd800000 */ +const R01: f32 = 1.4070566976e-03; /* 0x3ab86cfd */ +const R02: f32 = -1.5995563444e-05; /* 0xb7862e36 */ +const R03: f32 = 4.9672799207e-08; /* 0x335557d2 */ +const S01: f32 = 1.9153760746e-02; /* 0x3c9ce859 */ +const S02: f32 = 1.8594678841e-04; /* 0x3942fab6 */ +const S03: f32 = 1.1771846857e-06; /* 0x359dffc2 */ +const S04: f32 = 5.0463624390e-09; /* 0x31ad6446 */ +const S05: f32 = 1.2354227016e-11; /* 0x2d59567e */ + +/// First order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f32). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn j1f(x: f32) -> f32 { + let mut z: f32; + let r: f32; + let s: f32; + let mut ix: u32; + let sign: bool; + + ix = x.to_bits(); + sign = (ix >> 31) != 0; + ix &= 0x7fffffff; + if ix >= 0x7f800000 { + return 1.0 / (x * x); + } + if ix >= 0x40000000 { + /* |x| >= 2 */ + return common(ix, fabsf(x), false, sign); + } + if ix >= 0x39000000 { + /* |x| >= 2**-13 */ + z = x * x; + r = z * (R00 + z * (R01 + z * (R02 + z * R03))); + s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * (S04 + z * S05)))); + z = 0.5 + r / s; + } else { + z = 0.5; + } + return z * x; +} + +const U0: [f32; 5] = [ + -1.9605709612e-01, /* 0xbe48c331 */ + 5.0443872809e-02, /* 0x3d4e9e3c */ + -1.9125689287e-03, /* 0xbafaaf2a */ + 2.3525259166e-05, /* 0x37c5581c */ + -9.1909917899e-08, /* 0xb3c56003 */ +]; +const V0: [f32; 5] = [ + 1.9916731864e-02, /* 0x3ca3286a */ + 2.0255257550e-04, /* 0x3954644b */ + 1.3560879779e-06, /* 0x35b602d4 */ + 6.2274145840e-09, /* 0x31d5f8eb */ + 1.6655924903e-11, /* 0x2d9281cf */ +]; + +/// First order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f32). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn y1f(x: f32) -> f32 { + let z: f32; + let u: f32; + let v: f32; + let ix: u32; + + ix = x.to_bits(); + if (ix & 0x7fffffff) == 0 { + return -1.0 / 0.0; + } + if (ix >> 31) != 0 { + return 0.0 / 0.0; + } + if ix >= 0x7f800000 { + return 1.0 / x; + } + if ix >= 0x40000000 { + /* |x| >= 2.0 */ + return common(ix, x, true, false); + } + if ix < 0x33000000 { + /* x < 2**-25 */ + return -TPI / x; + } + z = x * x; + u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * U0[4]))); + v = 1.0 + z * (V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * V0[4])))); + return x * (u / v) + TPI * (j1f(x) * logf(x) - 1.0 / x); +} + +/* For x >= 8, the asymptotic expansions of pone is + * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. + * We approximate pone by + * pone(x) = 1 + (R/S) + * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 + * S = 1 + ps0*s^2 + ... + ps4*s^10 + * and + * | pone(x)-1-R/S | <= 2 ** ( -60.06) + */ + +const PR8: [f32; 6] = [ + /* for x in [inf, 8]=1/[0,0.125] */ + 0.0000000000e+00, /* 0x00000000 */ + 1.1718750000e-01, /* 0x3df00000 */ + 1.3239480972e+01, /* 0x4153d4ea */ + 4.1205184937e+02, /* 0x43ce06a3 */ + 3.8747453613e+03, /* 0x45722bed */ + 7.9144794922e+03, /* 0x45f753d6 */ +]; +const PS8: [f32; 5] = [ + 1.1420736694e+02, /* 0x42e46a2c */ + 3.6509309082e+03, /* 0x45642ee5 */ + 3.6956207031e+04, /* 0x47105c35 */ + 9.7602796875e+04, /* 0x47bea166 */ + 3.0804271484e+04, /* 0x46f0a88b */ +]; + +const PR5: [f32; 6] = [ + /* for x in [8,4.5454]=1/[0.125,0.22001] */ + 1.3199052094e-11, /* 0x2d68333f */ + 1.1718749255e-01, /* 0x3defffff */ + 6.8027510643e+00, /* 0x40d9b023 */ + 1.0830818176e+02, /* 0x42d89dca */ + 5.1763616943e+02, /* 0x440168b7 */ + 5.2871520996e+02, /* 0x44042dc6 */ +]; +const PS5: [f32; 5] = [ + 5.9280597687e+01, /* 0x426d1f55 */ + 9.9140142822e+02, /* 0x4477d9b1 */ + 5.3532670898e+03, /* 0x45a74a23 */ + 7.8446904297e+03, /* 0x45f52586 */ + 1.5040468750e+03, /* 0x44bc0180 */ +]; + +const PR3: [f32; 6] = [ + 3.0250391081e-09, /* 0x314fe10d */ + 1.1718686670e-01, /* 0x3defffab */ + 3.9329774380e+00, /* 0x407bb5e7 */ + 3.5119403839e+01, /* 0x420c7a45 */ + 9.1055007935e+01, /* 0x42b61c2a */ + 4.8559066772e+01, /* 0x42423c7c */ +]; +const PS3: [f32; 5] = [ + 3.4791309357e+01, /* 0x420b2a4d */ + 3.3676245117e+02, /* 0x43a86198 */ + 1.0468714600e+03, /* 0x4482dbe3 */ + 8.9081134033e+02, /* 0x445eb3ed */ + 1.0378793335e+02, /* 0x42cf936c */ +]; + +const PR2: [f32; 6] = [ + /* for x in [2.8570,2]=1/[0.3499,0.5] */ + 1.0771083225e-07, /* 0x33e74ea8 */ + 1.1717621982e-01, /* 0x3deffa16 */ + 2.3685150146e+00, /* 0x401795c0 */ + 1.2242610931e+01, /* 0x4143e1bc */ + 1.7693971634e+01, /* 0x418d8d41 */ + 5.0735230446e+00, /* 0x40a25a4d */ +]; +const PS2: [f32; 5] = [ + 2.1436485291e+01, /* 0x41ab7dec */ + 1.2529022980e+02, /* 0x42fa9499 */ + 2.3227647400e+02, /* 0x436846c7 */ + 1.1767937469e+02, /* 0x42eb5bd7 */ + 8.3646392822e+00, /* 0x4105d590 */ +]; + +fn ponef(x: f32) -> f32 { + let p: &[f32; 6]; + let q: &[f32; 5]; + let z: f32; + let r: f32; + let s: f32; + let mut ix: u32; + + ix = x.to_bits(); + ix &= 0x7fffffff; + if ix >= 0x41000000 { + p = &PR8; + q = &PS8; + } else if ix >= 0x409173eb { + p = &PR5; + q = &PS5; + } else if ix >= 0x4036d917 { + p = &PR3; + q = &PS3; + } else + /*ix >= 0x40000000*/ + { + p = &PR2; + q = &PS2; + } + z = 1.0 / (x * x); + r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5])))); + s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4])))); + return 1.0 + r / s; +} + +/* For x >= 8, the asymptotic expansions of qone is + * 3/8 s - 105/1024 s^3 - ..., where s = 1/x. + * We approximate pone by + * qone(x) = s*(0.375 + (R/S)) + * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 + * S = 1 + qs1*s^2 + ... + qs6*s^12 + * and + * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13) + */ + +const QR8: [f32; 6] = [ + /* for x in [inf, 8]=1/[0,0.125] */ + 0.0000000000e+00, /* 0x00000000 */ + -1.0253906250e-01, /* 0xbdd20000 */ + -1.6271753311e+01, /* 0xc1822c8d */ + -7.5960174561e+02, /* 0xc43de683 */ + -1.1849806641e+04, /* 0xc639273a */ + -4.8438511719e+04, /* 0xc73d3683 */ +]; +const QS8: [f32; 6] = [ + 1.6139537048e+02, /* 0x43216537 */ + 7.8253862305e+03, /* 0x45f48b17 */ + 1.3387534375e+05, /* 0x4802bcd6 */ + 7.1965775000e+05, /* 0x492fb29c */ + 6.6660125000e+05, /* 0x4922be94 */ + -2.9449025000e+05, /* 0xc88fcb48 */ +]; + +const QR5: [f32; 6] = [ + /* for x in [8,4.5454]=1/[0.125,0.22001] */ + -2.0897993405e-11, /* 0xadb7d219 */ + -1.0253904760e-01, /* 0xbdd1fffe */ + -8.0564479828e+00, /* 0xc100e736 */ + -1.8366960144e+02, /* 0xc337ab6b */ + -1.3731937256e+03, /* 0xc4aba633 */ + -2.6124443359e+03, /* 0xc523471c */ +]; +const QS5: [f32; 6] = [ + 8.1276550293e+01, /* 0x42a28d98 */ + 1.9917987061e+03, /* 0x44f8f98f */ + 1.7468484375e+04, /* 0x468878f8 */ + 4.9851425781e+04, /* 0x4742bb6d */ + 2.7948074219e+04, /* 0x46da5826 */ + -4.7191835938e+03, /* 0xc5937978 */ +]; + +const QR3: [f32; 6] = [ + -5.0783124372e-09, /* 0xb1ae7d4f */ + -1.0253783315e-01, /* 0xbdd1ff5b */ + -4.6101160049e+00, /* 0xc0938612 */ + -5.7847221375e+01, /* 0xc267638e */ + -2.2824453735e+02, /* 0xc3643e9a */ + -2.1921012878e+02, /* 0xc35b35cb */ +]; +const QS3: [f32; 6] = [ + 4.7665153503e+01, /* 0x423ea91e */ + 6.7386511230e+02, /* 0x4428775e */ + 3.3801528320e+03, /* 0x45534272 */ + 5.5477290039e+03, /* 0x45ad5dd5 */ + 1.9031191406e+03, /* 0x44ede3d0 */ + -1.3520118713e+02, /* 0xc3073381 */ +]; + +const QR2: [f32; 6] = [ + /* for x in [2.8570,2]=1/[0.3499,0.5] */ + -1.7838172539e-07, /* 0xb43f8932 */ + -1.0251704603e-01, /* 0xbdd1f475 */ + -2.7522056103e+00, /* 0xc0302423 */ + -1.9663616180e+01, /* 0xc19d4f16 */ + -4.2325313568e+01, /* 0xc2294d1f */ + -2.1371921539e+01, /* 0xc1aaf9b2 */ +]; +const QS2: [f32; 6] = [ + 2.9533363342e+01, /* 0x41ec4454 */ + 2.5298155212e+02, /* 0x437cfb47 */ + 7.5750280762e+02, /* 0x443d602e */ + 7.3939318848e+02, /* 0x4438d92a */ + 1.5594900513e+02, /* 0x431bf2f2 */ + -4.9594988823e+00, /* 0xc09eb437 */ +]; + +fn qonef(x: f32) -> f32 { + let p: &[f32; 6]; + let q: &[f32; 6]; + let s: f32; + let r: f32; + let z: f32; + let mut ix: u32; + + ix = x.to_bits(); + ix &= 0x7fffffff; + if ix >= 0x41000000 { + p = &QR8; + q = &QS8; + } else if ix >= 0x409173eb { + p = &QR5; + q = &QS5; + } else if ix >= 0x4036d917 { + p = &QR3; + q = &QS3; + } else + /*ix >= 0x40000000*/ + { + p = &QR2; + q = &QS2; + } + z = 1.0 / (x * x); + r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5])))); + s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5]))))); + return (0.375 + r / s) / x; +} + +// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520 +#[cfg(not(target_arch = "powerpc64"))] +#[cfg(test)] +mod tests { + use super::{j1f, y1f}; + #[test] + fn test_j1f_2488() { + // 0x401F3E49 + assert_eq!(j1f(2.4881766_f32), 0.49999475_f32); + } + #[test] + fn test_y1f_2002() { + //allow slightly different result on x87 + let res = y1f(2.0000002_f32); + if cfg!(all(target_arch = "x86", not(target_feature = "sse2"))) && (res == -0.10703231_f32) + { + return; + } + assert_eq!(res, -0.10703229_f32); + } +} diff --git a/library/compiler-builtins/libm/src/math/jn.rs b/library/compiler-builtins/libm/src/math/jn.rs new file mode 100644 index 00000000000..31f8d9c5382 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/jn.rs @@ -0,0 +1,339 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* + * jn(n, x), yn(n, x) + * floating point Bessel's function of the 1st and 2nd kind + * of order n + * + * Special cases: + * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; + * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. + * Note 2. About jn(n,x), yn(n,x) + * For n=0, j0(x) is called, + * for n=1, j1(x) is called, + * for n<=x, forward recursion is used starting + * from values of j0(x) and j1(x). + * for n>x, a continued fraction approximation to + * j(n,x)/j(n-1,x) is evaluated and then backward + * recursion is used starting from a supposed value + * for j(n,x). The resulting value of j(0,x) is + * compared with the actual value to correct the + * supposed value of j(n,x). + * + * yn(n,x) is similar in all respects, except + * that forward recursion is used for all + * values of n>1. + */ + +use super::{cos, fabs, get_high_word, get_low_word, j0, j1, log, sin, sqrt, y0, y1}; + +const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */ + +/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f64). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn jn(n: i32, mut x: f64) -> f64 { + let mut ix: u32; + let lx: u32; + let nm1: i32; + let mut i: i32; + let mut sign: bool; + let mut a: f64; + let mut b: f64; + let mut temp: f64; + + ix = get_high_word(x); + lx = get_low_word(x); + sign = (ix >> 31) != 0; + ix &= 0x7fffffff; + + // -lx == !lx + 1 + if ix | ((lx | (!lx).wrapping_add(1)) >> 31) > 0x7ff00000 { + /* nan */ + return x; + } + + /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) + * Thus, J(-n,x) = J(n,-x) + */ + /* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */ + if n == 0 { + return j0(x); + } + if n < 0 { + nm1 = -(n + 1); + x = -x; + sign = !sign; + } else { + nm1 = n - 1; + } + if nm1 == 0 { + return j1(x); + } + + sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */ + x = fabs(x); + if (ix | lx) == 0 || ix == 0x7ff00000 { + /* if x is 0 or inf */ + b = 0.0; + } else if (nm1 as f64) < x { + /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ + if ix >= 0x52d00000 { + /* x > 2**302 */ + /* (x >> n**2) + * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) + * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) + * Let s=sin(x), c=cos(x), + * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then + * + * n sin(xn)*sqt2 cos(xn)*sqt2 + * ---------------------------------- + * 0 s-c c+s + * 1 -s-c -c+s + * 2 -s+c -c-s + * 3 s+c c-s + */ + temp = match nm1 & 3 { + 0 => -cos(x) + sin(x), + 1 => -cos(x) - sin(x), + 2 => cos(x) - sin(x), + // 3 + _ => cos(x) + sin(x), + }; + b = INVSQRTPI * temp / sqrt(x); + } else { + a = j0(x); + b = j1(x); + i = 0; + while i < nm1 { + i += 1; + temp = b; + b = b * (2.0 * (i as f64) / x) - a; /* avoid underflow */ + a = temp; + } + } + } else if ix < 0x3e100000 { + /* x < 2**-29 */ + /* x is tiny, return the first Taylor expansion of J(n,x) + * J(n,x) = 1/n!*(x/2)^n - ... + */ + if nm1 > 32 { + /* underflow */ + b = 0.0; + } else { + temp = x * 0.5; + b = temp; + a = 1.0; + i = 2; + while i <= nm1 + 1 { + a *= i as f64; /* a = n! */ + b *= temp; /* b = (x/2)^n */ + i += 1; + } + b = b / a; + } + } else { + /* use backward recurrence */ + /* x x^2 x^2 + * J(n,x)/J(n-1,x) = ---- ------ ------ ..... + * 2n - 2(n+1) - 2(n+2) + * + * 1 1 1 + * (for large x) = ---- ------ ------ ..... + * 2n 2(n+1) 2(n+2) + * -- - ------ - ------ - + * x x x + * + * Let w = 2n/x and h=2/x, then the above quotient + * is equal to the continued fraction: + * 1 + * = ----------------------- + * 1 + * w - ----------------- + * 1 + * w+h - --------- + * w+2h - ... + * + * To determine how many terms needed, let + * Q(0) = w, Q(1) = w(w+h) - 1, + * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), + * When Q(k) > 1e4 good for single + * When Q(k) > 1e9 good for double + * When Q(k) > 1e17 good for quadruple + */ + /* determine k */ + let mut t: f64; + let mut q0: f64; + let mut q1: f64; + let mut w: f64; + let h: f64; + let mut z: f64; + let mut tmp: f64; + let nf: f64; + + let mut k: i32; + + nf = (nm1 as f64) + 1.0; + w = 2.0 * nf / x; + h = 2.0 / x; + z = w + h; + q0 = w; + q1 = w * z - 1.0; + k = 1; + while q1 < 1.0e9 { + k += 1; + z += h; + tmp = z * q1 - q0; + q0 = q1; + q1 = tmp; + } + t = 0.0; + i = k; + while i >= 0 { + t = 1.0 / (2.0 * ((i as f64) + nf) / x - t); + i -= 1; + } + a = t; + b = 1.0; + /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) + * Hence, if n*(log(2n/x)) > ... + * single 8.8722839355e+01 + * double 7.09782712893383973096e+02 + * long double 1.1356523406294143949491931077970765006170e+04 + * then recurrent value may overflow and the result is + * likely underflow to zero + */ + tmp = nf * log(fabs(w)); + if tmp < 7.09782712893383973096e+02 { + i = nm1; + while i > 0 { + temp = b; + b = b * (2.0 * (i as f64)) / x - a; + a = temp; + i -= 1; + } + } else { + i = nm1; + while i > 0 { + temp = b; + b = b * (2.0 * (i as f64)) / x - a; + a = temp; + /* scale b to avoid spurious overflow */ + let x1p500 = f64::from_bits(0x5f30000000000000); // 0x1p500 == 2^500 + if b > x1p500 { + a /= b; + t /= b; + b = 1.0; + } + i -= 1; + } + } + z = j0(x); + w = j1(x); + if fabs(z) >= fabs(w) { + b = t * z / b; + } else { + b = t * w / a; + } + } + + if sign { -b } else { b } +} + +/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f64). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn yn(n: i32, x: f64) -> f64 { + let mut ix: u32; + let lx: u32; + let mut ib: u32; + let nm1: i32; + let mut sign: bool; + let mut i: i32; + let mut a: f64; + let mut b: f64; + let mut temp: f64; + + ix = get_high_word(x); + lx = get_low_word(x); + sign = (ix >> 31) != 0; + ix &= 0x7fffffff; + + // -lx == !lx + 1 + if ix | ((lx | (!lx).wrapping_add(1)) >> 31) > 0x7ff00000 { + /* nan */ + return x; + } + if sign && (ix | lx) != 0 { + /* x < 0 */ + return 0.0 / 0.0; + } + if ix == 0x7ff00000 { + return 0.0; + } + + if n == 0 { + return y0(x); + } + if n < 0 { + nm1 = -(n + 1); + sign = (n & 1) != 0; + } else { + nm1 = n - 1; + sign = false; + } + if nm1 == 0 { + if sign { + return -y1(x); + } else { + return y1(x); + } + } + + if ix >= 0x52d00000 { + /* x > 2**302 */ + /* (x >> n**2) + * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) + * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) + * Let s=sin(x), c=cos(x), + * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then + * + * n sin(xn)*sqt2 cos(xn)*sqt2 + * ---------------------------------- + * 0 s-c c+s + * 1 -s-c -c+s + * 2 -s+c -c-s + * 3 s+c c-s + */ + temp = match nm1 & 3 { + 0 => -sin(x) - cos(x), + 1 => -sin(x) + cos(x), + 2 => sin(x) + cos(x), + // 3 + _ => sin(x) - cos(x), + }; + b = INVSQRTPI * temp / sqrt(x); + } else { + a = y0(x); + b = y1(x); + /* quit if b is -inf */ + ib = get_high_word(b); + i = 0; + while i < nm1 && ib != 0xfff00000 { + i += 1; + temp = b; + b = (2.0 * (i as f64) / x) * b - a; + ib = get_high_word(b); + a = temp; + } + } + + if sign { -b } else { b } +} diff --git a/library/compiler-builtins/libm/src/math/jnf.rs b/library/compiler-builtins/libm/src/math/jnf.rs new file mode 100644 index 00000000000..52cf7d8a8bd --- /dev/null +++ b/library/compiler-builtins/libm/src/math/jnf.rs @@ -0,0 +1,253 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +use super::{fabsf, j0f, j1f, logf, y0f, y1f}; + +/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f32). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn jnf(n: i32, mut x: f32) -> f32 { + let mut ix: u32; + let mut nm1: i32; + let mut sign: bool; + let mut i: i32; + let mut a: f32; + let mut b: f32; + let mut temp: f32; + + ix = x.to_bits(); + sign = (ix >> 31) != 0; + ix &= 0x7fffffff; + if ix > 0x7f800000 { + /* nan */ + return x; + } + + /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */ + if n == 0 { + return j0f(x); + } + if n < 0 { + nm1 = -(n + 1); + x = -x; + sign = !sign; + } else { + nm1 = n - 1; + } + if nm1 == 0 { + return j1f(x); + } + + sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */ + x = fabsf(x); + if ix == 0 || ix == 0x7f800000 { + /* if x is 0 or inf */ + b = 0.0; + } else if (nm1 as f32) < x { + /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ + a = j0f(x); + b = j1f(x); + i = 0; + while i < nm1 { + i += 1; + temp = b; + b = b * (2.0 * (i as f32) / x) - a; + a = temp; + } + } else if ix < 0x35800000 { + /* x < 2**-20 */ + /* x is tiny, return the first Taylor expansion of J(n,x) + * J(n,x) = 1/n!*(x/2)^n - ... + */ + if nm1 > 8 { + /* underflow */ + nm1 = 8; + } + temp = 0.5 * x; + b = temp; + a = 1.0; + i = 2; + while i <= nm1 + 1 { + a *= i as f32; /* a = n! */ + b *= temp; /* b = (x/2)^n */ + i += 1; + } + b = b / a; + } else { + /* use backward recurrence */ + /* x x^2 x^2 + * J(n,x)/J(n-1,x) = ---- ------ ------ ..... + * 2n - 2(n+1) - 2(n+2) + * + * 1 1 1 + * (for large x) = ---- ------ ------ ..... + * 2n 2(n+1) 2(n+2) + * -- - ------ - ------ - + * x x x + * + * Let w = 2n/x and h=2/x, then the above quotient + * is equal to the continued fraction: + * 1 + * = ----------------------- + * 1 + * w - ----------------- + * 1 + * w+h - --------- + * w+2h - ... + * + * To determine how many terms needed, let + * Q(0) = w, Q(1) = w(w+h) - 1, + * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), + * When Q(k) > 1e4 good for single + * When Q(k) > 1e9 good for double + * When Q(k) > 1e17 good for quadruple + */ + /* determine k */ + let mut t: f32; + let mut q0: f32; + let mut q1: f32; + let mut w: f32; + let h: f32; + let mut z: f32; + let mut tmp: f32; + let nf: f32; + let mut k: i32; + + nf = (nm1 as f32) + 1.0; + w = 2.0 * nf / x; + h = 2.0 / x; + z = w + h; + q0 = w; + q1 = w * z - 1.0; + k = 1; + while q1 < 1.0e4 { + k += 1; + z += h; + tmp = z * q1 - q0; + q0 = q1; + q1 = tmp; + } + t = 0.0; + i = k; + while i >= 0 { + t = 1.0 / (2.0 * ((i as f32) + nf) / x - t); + i -= 1; + } + a = t; + b = 1.0; + /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) + * Hence, if n*(log(2n/x)) > ... + * single 8.8722839355e+01 + * double 7.09782712893383973096e+02 + * long double 1.1356523406294143949491931077970765006170e+04 + * then recurrent value may overflow and the result is + * likely underflow to zero + */ + tmp = nf * logf(fabsf(w)); + if tmp < 88.721679688 { + i = nm1; + while i > 0 { + temp = b; + b = 2.0 * (i as f32) * b / x - a; + a = temp; + i -= 1; + } + } else { + i = nm1; + while i > 0 { + temp = b; + b = 2.0 * (i as f32) * b / x - a; + a = temp; + /* scale b to avoid spurious overflow */ + let x1p60 = f32::from_bits(0x5d800000); // 0x1p60 == 2^60 + if b > x1p60 { + a /= b; + t /= b; + b = 1.0; + } + i -= 1; + } + } + z = j0f(x); + w = j1f(x); + if fabsf(z) >= fabsf(w) { + b = t * z / b; + } else { + b = t * w / a; + } + } + + if sign { -b } else { b } +} + +/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f32). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn ynf(n: i32, x: f32) -> f32 { + let mut ix: u32; + let mut ib: u32; + let nm1: i32; + let mut sign: bool; + let mut i: i32; + let mut a: f32; + let mut b: f32; + let mut temp: f32; + + ix = x.to_bits(); + sign = (ix >> 31) != 0; + ix &= 0x7fffffff; + if ix > 0x7f800000 { + /* nan */ + return x; + } + if sign && ix != 0 { + /* x < 0 */ + return 0.0 / 0.0; + } + if ix == 0x7f800000 { + return 0.0; + } + + if n == 0 { + return y0f(x); + } + if n < 0 { + nm1 = -(n + 1); + sign = (n & 1) != 0; + } else { + nm1 = n - 1; + sign = false; + } + if nm1 == 0 { + if sign { + return -y1f(x); + } else { + return y1f(x); + } + } + + a = y0f(x); + b = y1f(x); + /* quit if b is -inf */ + ib = b.to_bits(); + i = 0; + while i < nm1 && ib != 0xff800000 { + i += 1; + temp = b; + b = (2.0 * (i as f32) / x) * b - a; + ib = b.to_bits(); + a = temp; + } + + if sign { -b } else { b } +} diff --git a/library/compiler-builtins/libm/src/math/k_cos.rs b/library/compiler-builtins/libm/src/math/k_cos.rs new file mode 100644 index 00000000000..49b2fc64d86 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/k_cos.rs @@ -0,0 +1,62 @@ +// origin: FreeBSD /usr/src/lib/msun/src/k_cos.c +// +// ==================================================== +// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. +// +// Developed at SunSoft, a Sun Microsystems, Inc. business. +// Permission to use, copy, modify, and distribute this +// software is freely granted, provided that this notice +// is preserved. +// ==================================================== + +const C1: f64 = 4.16666666666666019037e-02; /* 0x3FA55555, 0x5555554C */ +const C2: f64 = -1.38888888888741095749e-03; /* 0xBF56C16C, 0x16C15177 */ +const C3: f64 = 2.48015872894767294178e-05; /* 0x3EFA01A0, 0x19CB1590 */ +const C4: f64 = -2.75573143513906633035e-07; /* 0xBE927E4F, 0x809C52AD */ +const C5: f64 = 2.08757232129817482790e-09; /* 0x3E21EE9E, 0xBDB4B1C4 */ +const C6: f64 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ + +// kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 +// Input x is assumed to be bounded by ~pi/4 in magnitude. +// Input y is the tail of x. +// +// Algorithm +// 1. Since cos(-x) = cos(x), we need only to consider positive x. +// 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. +// 3. cos(x) is approximated by a polynomial of degree 14 on +// [0,pi/4] +// 4 14 +// cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x +// where the remez error is +// +// | 2 4 6 8 10 12 14 | -58 +// |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 +// | | +// +// 4 6 8 10 12 14 +// 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then +// cos(x) ~ 1 - x*x/2 + r +// since cos(x+y) ~ cos(x) - sin(x)*y +// ~ cos(x) - x*y, +// a correction term is necessary in cos(x) and hence +// cos(x+y) = 1 - (x*x/2 - (r - x*y)) +// For better accuracy, rearrange to +// cos(x+y) ~ w + (tmp + (r-x*y)) +// where w = 1 - x*x/2 and tmp is a tiny correction term +// (1 - x*x/2 == w + tmp exactly in infinite precision). +// The exactness of w + tmp in infinite precision depends on w +// and tmp having the same precision as x. If they have extra +// precision due to compiler bugs, then the extra precision is +// only good provided it is retained in all terms of the final +// expression for cos(). Retention happens in all cases tested +// under FreeBSD, so don't pessimize things by forcibly clipping +// any extra precision in w. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub(crate) fn k_cos(x: f64, y: f64) -> f64 { + let z = x * x; + let w = z * z; + let r = z * (C1 + z * (C2 + z * C3)) + w * w * (C4 + z * (C5 + z * C6)); + let hz = 0.5 * z; + let w = 1.0 - hz; + w + (((1.0 - w) - hz) + (z * r - x * y)) +} diff --git a/library/compiler-builtins/libm/src/math/k_cosf.rs b/library/compiler-builtins/libm/src/math/k_cosf.rs new file mode 100644 index 00000000000..e99f2348c00 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/k_cosf.rs @@ -0,0 +1,29 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/k_cosf.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + * Debugged and optimized by Bruce D. Evans. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* |cos(x) - c(x)| < 2**-34.1 (~[-5.37e-11, 5.295e-11]). */ +const C0: f64 = -0.499999997251031003120; /* -0x1ffffffd0c5e81.0p-54 */ +const C1: f64 = 0.0416666233237390631894; /* 0x155553e1053a42.0p-57 */ +const C2: f64 = -0.00138867637746099294692; /* -0x16c087e80f1e27.0p-62 */ +const C3: f64 = 0.0000243904487962774090654; /* 0x199342e0ee5069.0p-68 */ + +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub(crate) fn k_cosf(x: f64) -> f32 { + let z = x * x; + let w = z * z; + let r = C2 + z * C3; + (((1.0 + z * C0) + w * C1) + (w * z) * r) as f32 +} diff --git a/library/compiler-builtins/libm/src/math/k_expo2.rs b/library/compiler-builtins/libm/src/math/k_expo2.rs new file mode 100644 index 00000000000..7345075f376 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/k_expo2.rs @@ -0,0 +1,14 @@ +use super::exp; + +/* k is such that k*ln2 has minimal relative error and x - kln2 > log(FLT_MIN) */ +const K: i32 = 2043; + +/* expf(x)/2 for x >= log(FLT_MAX), slightly better than 0.5f*expf(x/2)*expf(x/2) */ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub(crate) fn k_expo2(x: f64) -> f64 { + let k_ln2 = f64::from_bits(0x40962066151add8b); + /* note that k is odd and scale*scale overflows */ + let scale = f64::from_bits(((((0x3ff + K / 2) as u32) << 20) as u64) << 32); + /* exp(x - k ln2) * 2**(k-1) */ + exp(x - k_ln2) * scale * scale +} diff --git a/library/compiler-builtins/libm/src/math/k_expo2f.rs b/library/compiler-builtins/libm/src/math/k_expo2f.rs new file mode 100644 index 00000000000..fbd7b27d583 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/k_expo2f.rs @@ -0,0 +1,14 @@ +use super::expf; + +/* k is such that k*ln2 has minimal relative error and x - kln2 > log(FLT_MIN) */ +const K: i32 = 235; + +/* expf(x)/2 for x >= log(FLT_MAX), slightly better than 0.5f*expf(x/2)*expf(x/2) */ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub(crate) fn k_expo2f(x: f32) -> f32 { + let k_ln2 = f32::from_bits(0x4322e3bc); + /* note that k is odd and scale*scale overflows */ + let scale = f32::from_bits(((0x7f + K / 2) as u32) << 23); + /* exp(x - k ln2) * 2**(k-1) */ + expf(x - k_ln2) * scale * scale +} diff --git a/library/compiler-builtins/libm/src/math/k_sin.rs b/library/compiler-builtins/libm/src/math/k_sin.rs new file mode 100644 index 00000000000..42441455ff3 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/k_sin.rs @@ -0,0 +1,53 @@ +// origin: FreeBSD /usr/src/lib/msun/src/k_sin.c +// +// ==================================================== +// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. +// +// Developed at SunSoft, a Sun Microsystems, Inc. business. +// Permission to use, copy, modify, and distribute this +// software is freely granted, provided that this notice +// is preserved. +// ==================================================== + +const S1: f64 = -1.66666666666666324348e-01; /* 0xBFC55555, 0x55555549 */ +const S2: f64 = 8.33333333332248946124e-03; /* 0x3F811111, 0x1110F8A6 */ +const S3: f64 = -1.98412698298579493134e-04; /* 0xBF2A01A0, 0x19C161D5 */ +const S4: f64 = 2.75573137070700676789e-06; /* 0x3EC71DE3, 0x57B1FE7D */ +const S5: f64 = -2.50507602534068634195e-08; /* 0xBE5AE5E6, 0x8A2B9CEB */ +const S6: f64 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */ + +// kernel sin function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854 +// Input x is assumed to be bounded by ~pi/4 in magnitude. +// Input y is the tail of x. +// Input iy indicates whether y is 0. (if iy=0, y assume to be 0). +// +// Algorithm +// 1. Since sin(-x) = -sin(x), we need only to consider positive x. +// 2. Callers must return sin(-0) = -0 without calling here since our +// odd polynomial is not evaluated in a way that preserves -0. +// Callers may do the optimization sin(x) ~ x for tiny x. +// 3. sin(x) is approximated by a polynomial of degree 13 on +// [0,pi/4] +// 3 13 +// sin(x) ~ x + S1*x + ... + S6*x +// where +// +// |sin(x) 2 4 6 8 10 12 | -58 +// |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 +// | x | +// +// 4. sin(x+y) = sin(x) + sin'(x')*y +// ~ sin(x) + (1-x*x/2)*y +// For better accuracy, let +// 3 2 2 2 2 +// r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) +// then 3 2 +// sin(x) = x + (S1*x + (x *(r-y/2)+y)) +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub(crate) fn k_sin(x: f64, y: f64, iy: i32) -> f64 { + let z = x * x; + let w = z * z; + let r = S2 + z * (S3 + z * S4) + z * w * (S5 + z * S6); + let v = z * x; + if iy == 0 { x + v * (S1 + z * r) } else { x - ((z * (0.5 * y - v * r) - y) - v * S1) } +} diff --git a/library/compiler-builtins/libm/src/math/k_sinf.rs b/library/compiler-builtins/libm/src/math/k_sinf.rs new file mode 100644 index 00000000000..88d10cababc --- /dev/null +++ b/library/compiler-builtins/libm/src/math/k_sinf.rs @@ -0,0 +1,30 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/k_sinf.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + * Optimized by Bruce D. Evans. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* |sin(x)/x - s(x)| < 2**-37.5 (~[-4.89e-12, 4.824e-12]). */ +const S1: f64 = -0.166666666416265235595; /* -0x15555554cbac77.0p-55 */ +const S2: f64 = 0.0083333293858894631756; /* 0x111110896efbb2.0p-59 */ +const S3: f64 = -0.000198393348360966317347; /* -0x1a00f9e2cae774.0p-65 */ +const S4: f64 = 0.0000027183114939898219064; /* 0x16cd878c3b46a7.0p-71 */ + +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub(crate) fn k_sinf(x: f64) -> f32 { + let z = x * x; + let w = z * z; + let r = S3 + z * S4; + let s = z * x; + ((x + s * (S1 + z * S2)) + s * w * r) as f32 +} diff --git a/library/compiler-builtins/libm/src/math/k_tan.rs b/library/compiler-builtins/libm/src/math/k_tan.rs new file mode 100644 index 00000000000..d177010bb0a --- /dev/null +++ b/library/compiler-builtins/libm/src/math/k_tan.rs @@ -0,0 +1,105 @@ +// origin: FreeBSD /usr/src/lib/msun/src/k_tan.c */ +// +// ==================================================== +// Copyright 2004 Sun Microsystems, Inc. All Rights Reserved. +// +// Permission to use, copy, modify, and distribute this +// software is freely granted, provided that this notice +// is preserved. +// ==================================================== + +// kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854 +// Input x is assumed to be bounded by ~pi/4 in magnitude. +// Input y is the tail of x. +// Input odd indicates whether tan (if odd = 0) or -1/tan (if odd = 1) is returned. +// +// Algorithm +// 1. Since tan(-x) = -tan(x), we need only to consider positive x. +// 2. Callers must return tan(-0) = -0 without calling here since our +// odd polynomial is not evaluated in a way that preserves -0. +// Callers may do the optimization tan(x) ~ x for tiny x. +// 3. tan(x) is approximated by a odd polynomial of degree 27 on +// [0,0.67434] +// 3 27 +// tan(x) ~ x + T1*x + ... + T13*x +// where +// +// |tan(x) 2 4 26 | -59.2 +// |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 +// | x | +// +// Note: tan(x+y) = tan(x) + tan'(x)*y +// ~ tan(x) + (1+x*x)*y +// Therefore, for better accuracy in computing tan(x+y), let +// 3 2 2 2 2 +// r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) +// then +// 3 2 +// tan(x+y) = x + (T1*x + (x *(r+y)+y)) +// +// 4. For x in [0.67434,pi/4], let y = pi/4 - x, then +// tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) +// = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) +static T: [f64; 13] = [ + 3.33333333333334091986e-01, /* 3FD55555, 55555563 */ + 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */ + 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */ + 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */ + 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */ + 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */ + 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */ + 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */ + 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */ + 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */ + 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */ + -1.85586374855275456654e-05, /* BEF375CB, DB605373 */ + 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */ +]; +const PIO4: f64 = 7.85398163397448278999e-01; /* 3FE921FB, 54442D18 */ +const PIO4_LO: f64 = 3.06161699786838301793e-17; /* 3C81A626, 33145C07 */ + +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub(crate) fn k_tan(mut x: f64, mut y: f64, odd: i32) -> f64 { + let hx = (f64::to_bits(x) >> 32) as u32; + let big = (hx & 0x7fffffff) >= 0x3FE59428; /* |x| >= 0.6744 */ + if big { + let sign = hx >> 31; + if sign != 0 { + x = -x; + y = -y; + } + x = (PIO4 - x) + (PIO4_LO - y); + y = 0.0; + } + let z = x * x; + let w = z * z; + /* + * Break x^5*(T[1]+x^2*T[2]+...) into + * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + + * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) + */ + let r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + w * T[11])))); + let v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + w * T[12]))))); + let s = z * x; + let r = y + z * (s * (r + v) + y) + s * T[0]; + let w = x + r; + if big { + let sign = hx >> 31; + let s = 1.0 - 2.0 * odd as f64; + let v = s - 2.0 * (x + (r - w * w / (w + s))); + return if sign != 0 { -v } else { v }; + } + if odd == 0 { + return w; + } + /* -1.0/(x+r) has up to 2ulp error, so compute it accurately */ + let w0 = zero_low_word(w); + let v = r - (w0 - x); /* w0+v = r+x */ + let a = -1.0 / w; + let a0 = zero_low_word(a); + a0 + a * (1.0 + a0 * w0 + a0 * v) +} + +fn zero_low_word(x: f64) -> f64 { + f64::from_bits(f64::to_bits(x) & 0xFFFF_FFFF_0000_0000) +} diff --git a/library/compiler-builtins/libm/src/math/k_tanf.rs b/library/compiler-builtins/libm/src/math/k_tanf.rs new file mode 100644 index 00000000000..af8db539dad --- /dev/null +++ b/library/compiler-builtins/libm/src/math/k_tanf.rs @@ -0,0 +1,46 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/k_tan.c */ +/* + * ==================================================== + * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved. + * + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */ +const T: [f64; 6] = [ + 0.333331395030791399758, /* 0x15554d3418c99f.0p-54 */ + 0.133392002712976742718, /* 0x1112fd38999f72.0p-55 */ + 0.0533812378445670393523, /* 0x1b54c91d865afe.0p-57 */ + 0.0245283181166547278873, /* 0x191df3908c33ce.0p-58 */ + 0.00297435743359967304927, /* 0x185dadfcecf44e.0p-61 */ + 0.00946564784943673166728, /* 0x1362b9bf971bcd.0p-59 */ +]; + +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub(crate) fn k_tanf(x: f64, odd: bool) -> f32 { + let z = x * x; + /* + * Split up the polynomial into small independent terms to give + * opportunities for parallel evaluation. The chosen splitting is + * micro-optimized for Athlons (XP, X64). It costs 2 multiplications + * relative to Horner's method on sequential machines. + * + * We add the small terms from lowest degree up for efficiency on + * non-sequential machines (the lowest degree terms tend to be ready + * earlier). Apart from this, we don't care about order of + * operations, and don't need to to care since we have precision to + * spare. However, the chosen splitting is good for accuracy too, + * and would give results as accurate as Horner's method if the + * small terms were added from highest degree down. + */ + let mut r = T[4] + z * T[5]; + let t = T[2] + z * T[3]; + let w = z * z; + let s = z * x; + let u = T[0] + z * T[1]; + r = (x + s * u) + (s * w) * (t + w * r); + (if odd { -1. / r } else { r }) as f32 +} diff --git a/library/compiler-builtins/libm/src/math/ldexp.rs b/library/compiler-builtins/libm/src/math/ldexp.rs new file mode 100644 index 00000000000..24899ba306a --- /dev/null +++ b/library/compiler-builtins/libm/src/math/ldexp.rs @@ -0,0 +1,21 @@ +#[cfg(f16_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn ldexpf16(x: f16, n: i32) -> f16 { + super::scalbnf16(x, n) +} + +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn ldexpf(x: f32, n: i32) -> f32 { + super::scalbnf(x, n) +} + +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn ldexp(x: f64, n: i32) -> f64 { + super::scalbn(x, n) +} + +#[cfg(f128_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn ldexpf128(x: f128, n: i32) -> f128 { + super::scalbnf128(x, n) +} diff --git a/library/compiler-builtins/libm/src/math/ldexpf.rs b/library/compiler-builtins/libm/src/math/ldexpf.rs new file mode 100644 index 00000000000..95b27fc49d2 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/ldexpf.rs @@ -0,0 +1,4 @@ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn ldexpf(x: f32, n: i32) -> f32 { + super::scalbnf(x, n) +} diff --git a/library/compiler-builtins/libm/src/math/ldexpf128.rs b/library/compiler-builtins/libm/src/math/ldexpf128.rs new file mode 100644 index 00000000000..b35277d15fb --- /dev/null +++ b/library/compiler-builtins/libm/src/math/ldexpf128.rs @@ -0,0 +1,4 @@ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn ldexpf128(x: f128, n: i32) -> f128 { + super::scalbnf128(x, n) +} diff --git a/library/compiler-builtins/libm/src/math/ldexpf16.rs b/library/compiler-builtins/libm/src/math/ldexpf16.rs new file mode 100644 index 00000000000..8de6cffd699 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/ldexpf16.rs @@ -0,0 +1,4 @@ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn ldexpf16(x: f16, n: i32) -> f16 { + super::scalbnf16(x, n) +} diff --git a/library/compiler-builtins/libm/src/math/lgamma.rs b/library/compiler-builtins/libm/src/math/lgamma.rs new file mode 100644 index 00000000000..8312dc18648 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/lgamma.rs @@ -0,0 +1,8 @@ +use super::lgamma_r; + +/// The natural logarithm of the +/// [Gamma function](https://en.wikipedia.org/wiki/Gamma_function) (f64). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn lgamma(x: f64) -> f64 { + lgamma_r(x).0 +} diff --git a/library/compiler-builtins/libm/src/math/lgamma_r.rs b/library/compiler-builtins/libm/src/math/lgamma_r.rs new file mode 100644 index 00000000000..6becaad2ce9 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/lgamma_r.rs @@ -0,0 +1,321 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_lgamma_r.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + * + */ +/* lgamma_r(x, signgamp) + * Reentrant version of the logarithm of the Gamma function + * with user provide pointer for the sign of Gamma(x). + * + * Method: + * 1. Argument Reduction for 0 < x <= 8 + * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may + * reduce x to a number in [1.5,2.5] by + * lgamma(1+s) = log(s) + lgamma(s) + * for example, + * lgamma(7.3) = log(6.3) + lgamma(6.3) + * = log(6.3*5.3) + lgamma(5.3) + * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3) + * 2. Polynomial approximation of lgamma around its + * minimun ymin=1.461632144968362245 to maintain monotonicity. + * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use + * Let z = x-ymin; + * lgamma(x) = -1.214862905358496078218 + z^2*poly(z) + * where + * poly(z) is a 14 degree polynomial. + * 2. Rational approximation in the primary interval [2,3] + * We use the following approximation: + * s = x-2.0; + * lgamma(x) = 0.5*s + s*P(s)/Q(s) + * with accuracy + * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71 + * Our algorithms are based on the following observation + * + * zeta(2)-1 2 zeta(3)-1 3 + * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ... + * 2 3 + * + * where Euler = 0.5771... is the Euler constant, which is very + * close to 0.5. + * + * 3. For x>=8, we have + * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+.... + * (better formula: + * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...) + * Let z = 1/x, then we approximation + * f(z) = lgamma(x) - (x-0.5)(log(x)-1) + * by + * 3 5 11 + * w = w0 + w1*z + w2*z + w3*z + ... + w6*z + * where + * |w - f(z)| < 2**-58.74 + * + * 4. For negative x, since (G is gamma function) + * -x*G(-x)*G(x) = PI/sin(PI*x), + * we have + * G(x) = PI/(sin(PI*x)*(-x)*G(-x)) + * since G(-x) is positive, sign(G(x)) = sign(sin(PI*x)) for x<0 + * Hence, for x<0, signgam = sign(sin(PI*x)) and + * lgamma(x) = log(|Gamma(x)|) + * = log(PI/(|x*sin(PI*x)|)) - lgamma(-x); + * Note: one should avoid compute PI*(-x) directly in the + * computation of sin(PI*(-x)). + * + * 5. Special Cases + * lgamma(2+s) ~ s*(1-Euler) for tiny s + * lgamma(1) = lgamma(2) = 0 + * lgamma(x) ~ -log(|x|) for tiny x + * lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero + * lgamma(inf) = inf + * lgamma(-inf) = inf (bug for bug compatible with C99!?) + * + */ + +use super::{floor, k_cos, k_sin, log}; + +const PI: f64 = 3.14159265358979311600e+00; /* 0x400921FB, 0x54442D18 */ +const A0: f64 = 7.72156649015328655494e-02; /* 0x3FB3C467, 0xE37DB0C8 */ +const A1: f64 = 3.22467033424113591611e-01; /* 0x3FD4A34C, 0xC4A60FAD */ +const A2: f64 = 6.73523010531292681824e-02; /* 0x3FB13E00, 0x1A5562A7 */ +const A3: f64 = 2.05808084325167332806e-02; /* 0x3F951322, 0xAC92547B */ +const A4: f64 = 7.38555086081402883957e-03; /* 0x3F7E404F, 0xB68FEFE8 */ +const A5: f64 = 2.89051383673415629091e-03; /* 0x3F67ADD8, 0xCCB7926B */ +const A6: f64 = 1.19270763183362067845e-03; /* 0x3F538A94, 0x116F3F5D */ +const A7: f64 = 5.10069792153511336608e-04; /* 0x3F40B6C6, 0x89B99C00 */ +const A8: f64 = 2.20862790713908385557e-04; /* 0x3F2CF2EC, 0xED10E54D */ +const A9: f64 = 1.08011567247583939954e-04; /* 0x3F1C5088, 0x987DFB07 */ +const A10: f64 = 2.52144565451257326939e-05; /* 0x3EFA7074, 0x428CFA52 */ +const A11: f64 = 4.48640949618915160150e-05; /* 0x3F07858E, 0x90A45837 */ +const TC: f64 = 1.46163214496836224576e+00; /* 0x3FF762D8, 0x6356BE3F */ +const TF: f64 = -1.21486290535849611461e-01; /* 0xBFBF19B9, 0xBCC38A42 */ +/* tt = -(tail of TF) */ +const TT: f64 = -3.63867699703950536541e-18; /* 0xBC50C7CA, 0xA48A971F */ +const T0: f64 = 4.83836122723810047042e-01; /* 0x3FDEF72B, 0xC8EE38A2 */ +const T1: f64 = -1.47587722994593911752e-01; /* 0xBFC2E427, 0x8DC6C509 */ +const T2: f64 = 6.46249402391333854778e-02; /* 0x3FB08B42, 0x94D5419B */ +const T3: f64 = -3.27885410759859649565e-02; /* 0xBFA0C9A8, 0xDF35B713 */ +const T4: f64 = 1.79706750811820387126e-02; /* 0x3F9266E7, 0x970AF9EC */ +const T5: f64 = -1.03142241298341437450e-02; /* 0xBF851F9F, 0xBA91EC6A */ +const T6: f64 = 6.10053870246291332635e-03; /* 0x3F78FCE0, 0xE370E344 */ +const T7: f64 = -3.68452016781138256760e-03; /* 0xBF6E2EFF, 0xB3E914D7 */ +const T8: f64 = 2.25964780900612472250e-03; /* 0x3F6282D3, 0x2E15C915 */ +const T9: f64 = -1.40346469989232843813e-03; /* 0xBF56FE8E, 0xBF2D1AF1 */ +const T10: f64 = 8.81081882437654011382e-04; /* 0x3F4CDF0C, 0xEF61A8E9 */ +const T11: f64 = -5.38595305356740546715e-04; /* 0xBF41A610, 0x9C73E0EC */ +const T12: f64 = 3.15632070903625950361e-04; /* 0x3F34AF6D, 0x6C0EBBF7 */ +const T13: f64 = -3.12754168375120860518e-04; /* 0xBF347F24, 0xECC38C38 */ +const T14: f64 = 3.35529192635519073543e-04; /* 0x3F35FD3E, 0xE8C2D3F4 */ +const U0: f64 = -7.72156649015328655494e-02; /* 0xBFB3C467, 0xE37DB0C8 */ +const U1: f64 = 6.32827064025093366517e-01; /* 0x3FE4401E, 0x8B005DFF */ +const U2: f64 = 1.45492250137234768737e+00; /* 0x3FF7475C, 0xD119BD6F */ +const U3: f64 = 9.77717527963372745603e-01; /* 0x3FEF4976, 0x44EA8450 */ +const U4: f64 = 2.28963728064692451092e-01; /* 0x3FCD4EAE, 0xF6010924 */ +const U5: f64 = 1.33810918536787660377e-02; /* 0x3F8B678B, 0xBF2BAB09 */ +const V1: f64 = 2.45597793713041134822e+00; /* 0x4003A5D7, 0xC2BD619C */ +const V2: f64 = 2.12848976379893395361e+00; /* 0x40010725, 0xA42B18F5 */ +const V3: f64 = 7.69285150456672783825e-01; /* 0x3FE89DFB, 0xE45050AF */ +const V4: f64 = 1.04222645593369134254e-01; /* 0x3FBAAE55, 0xD6537C88 */ +const V5: f64 = 3.21709242282423911810e-03; /* 0x3F6A5ABB, 0x57D0CF61 */ +const S0: f64 = -7.72156649015328655494e-02; /* 0xBFB3C467, 0xE37DB0C8 */ +const S1: f64 = 2.14982415960608852501e-01; /* 0x3FCB848B, 0x36E20878 */ +const S2: f64 = 3.25778796408930981787e-01; /* 0x3FD4D98F, 0x4F139F59 */ +const S3: f64 = 1.46350472652464452805e-01; /* 0x3FC2BB9C, 0xBEE5F2F7 */ +const S4: f64 = 2.66422703033638609560e-02; /* 0x3F9B481C, 0x7E939961 */ +const S5: f64 = 1.84028451407337715652e-03; /* 0x3F5E26B6, 0x7368F239 */ +const S6: f64 = 3.19475326584100867617e-05; /* 0x3F00BFEC, 0xDD17E945 */ +const R1: f64 = 1.39200533467621045958e+00; /* 0x3FF645A7, 0x62C4AB74 */ +const R2: f64 = 7.21935547567138069525e-01; /* 0x3FE71A18, 0x93D3DCDC */ +const R3: f64 = 1.71933865632803078993e-01; /* 0x3FC601ED, 0xCCFBDF27 */ +const R4: f64 = 1.86459191715652901344e-02; /* 0x3F9317EA, 0x742ED475 */ +const R5: f64 = 7.77942496381893596434e-04; /* 0x3F497DDA, 0xCA41A95B */ +const R6: f64 = 7.32668430744625636189e-06; /* 0x3EDEBAF7, 0xA5B38140 */ +const W0: f64 = 4.18938533204672725052e-01; /* 0x3FDACFE3, 0x90C97D69 */ +const W1: f64 = 8.33333333333329678849e-02; /* 0x3FB55555, 0x5555553B */ +const W2: f64 = -2.77777777728775536470e-03; /* 0xBF66C16C, 0x16B02E5C */ +const W3: f64 = 7.93650558643019558500e-04; /* 0x3F4A019F, 0x98CF38B6 */ +const W4: f64 = -5.95187557450339963135e-04; /* 0xBF4380CB, 0x8C0FE741 */ +const W5: f64 = 8.36339918996282139126e-04; /* 0x3F4B67BA, 0x4CDAD5D1 */ +const W6: f64 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */ + +/* sin(PI*x) assuming x > 2^-100, if sin(PI*x)==0 the sign is arbitrary */ +fn sin_pi(mut x: f64) -> f64 { + let mut n: i32; + + /* spurious inexact if odd int */ + x = 2.0 * (x * 0.5 - floor(x * 0.5)); /* x mod 2.0 */ + + n = (x * 4.0) as i32; + n = div!(n + 1, 2); + x -= (n as f64) * 0.5; + x *= PI; + + match n { + 1 => k_cos(x, 0.0), + 2 => k_sin(-x, 0.0, 0), + 3 => -k_cos(x, 0.0), + // 0 + _ => k_sin(x, 0.0, 0), + } +} + +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn lgamma_r(mut x: f64) -> (f64, i32) { + let u: u64 = x.to_bits(); + let mut t: f64; + let y: f64; + let mut z: f64; + let nadj: f64; + let p: f64; + let p1: f64; + let p2: f64; + let p3: f64; + let q: f64; + let mut r: f64; + let w: f64; + let ix: u32; + let sign: bool; + let i: i32; + let mut signgam: i32; + + /* purge off +-inf, NaN, +-0, tiny and negative arguments */ + signgam = 1; + sign = (u >> 63) != 0; + ix = ((u >> 32) as u32) & 0x7fffffff; + if ix >= 0x7ff00000 { + return (x * x, signgam); + } + if ix < (0x3ff - 70) << 20 { + /* |x|<2**-70, return -log(|x|) */ + if sign { + x = -x; + signgam = -1; + } + return (-log(x), signgam); + } + if sign { + x = -x; + t = sin_pi(x); + if t == 0.0 { + /* -integer */ + return (1.0 / (x - x), signgam); + } + if t > 0.0 { + signgam = -1; + } else { + t = -t; + } + nadj = log(PI / (t * x)); + } else { + nadj = 0.0; + } + + /* purge off 1 and 2 */ + if (ix == 0x3ff00000 || ix == 0x40000000) && (u & 0xffffffff) == 0 { + r = 0.0; + } + /* for x < 2.0 */ + else if ix < 0x40000000 { + if ix <= 0x3feccccc { + /* lgamma(x) = lgamma(x+1)-log(x) */ + r = -log(x); + if ix >= 0x3FE76944 { + y = 1.0 - x; + i = 0; + } else if ix >= 0x3FCDA661 { + y = x - (TC - 1.0); + i = 1; + } else { + y = x; + i = 2; + } + } else { + r = 0.0; + if ix >= 0x3FFBB4C3 { + /* [1.7316,2] */ + y = 2.0 - x; + i = 0; + } else if ix >= 0x3FF3B4C4 { + /* [1.23,1.73] */ + y = x - TC; + i = 1; + } else { + y = x - 1.0; + i = 2; + } + } + match i { + 0 => { + z = y * y; + p1 = A0 + z * (A2 + z * (A4 + z * (A6 + z * (A8 + z * A10)))); + p2 = z * (A1 + z * (A3 + z * (A5 + z * (A7 + z * (A9 + z * A11))))); + p = y * p1 + p2; + r += p - 0.5 * y; + } + 1 => { + z = y * y; + w = z * y; + p1 = T0 + w * (T3 + w * (T6 + w * (T9 + w * T12))); /* parallel comp */ + p2 = T1 + w * (T4 + w * (T7 + w * (T10 + w * T13))); + p3 = T2 + w * (T5 + w * (T8 + w * (T11 + w * T14))); + p = z * p1 - (TT - w * (p2 + y * p3)); + r += TF + p; + } + 2 => { + p1 = y * (U0 + y * (U1 + y * (U2 + y * (U3 + y * (U4 + y * U5))))); + p2 = 1.0 + y * (V1 + y * (V2 + y * (V3 + y * (V4 + y * V5)))); + r += -0.5 * y + p1 / p2; + } + #[cfg(debug_assertions)] + _ => unreachable!(), + #[cfg(not(debug_assertions))] + _ => {} + } + } else if ix < 0x40200000 { + /* x < 8.0 */ + i = x as i32; + y = x - (i as f64); + p = y * (S0 + y * (S1 + y * (S2 + y * (S3 + y * (S4 + y * (S5 + y * S6)))))); + q = 1.0 + y * (R1 + y * (R2 + y * (R3 + y * (R4 + y * (R5 + y * R6))))); + r = 0.5 * y + p / q; + z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */ + // TODO: In C, this was implemented using switch jumps with fallthrough. + // Does this implementation have performance problems? + if i >= 7 { + z *= y + 6.0; + } + if i >= 6 { + z *= y + 5.0; + } + if i >= 5 { + z *= y + 4.0; + } + if i >= 4 { + z *= y + 3.0; + } + if i >= 3 { + z *= y + 2.0; + r += log(z); + } + } else if ix < 0x43900000 { + /* 8.0 <= x < 2**58 */ + t = log(x); + z = 1.0 / x; + y = z * z; + w = W0 + z * (W1 + y * (W2 + y * (W3 + y * (W4 + y * (W5 + y * W6))))); + r = (x - 0.5) * (t - 1.0) + w; + } else { + /* 2**58 <= x <= inf */ + r = x * (log(x) - 1.0); + } + if sign { + r = nadj - r; + } + return (r, signgam); +} diff --git a/library/compiler-builtins/libm/src/math/lgammaf.rs b/library/compiler-builtins/libm/src/math/lgammaf.rs new file mode 100644 index 00000000000..d37512397cb --- /dev/null +++ b/library/compiler-builtins/libm/src/math/lgammaf.rs @@ -0,0 +1,8 @@ +use super::lgammaf_r; + +/// The natural logarithm of the +/// [Gamma function](https://en.wikipedia.org/wiki/Gamma_function) (f32). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn lgammaf(x: f32) -> f32 { + lgammaf_r(x).0 +} diff --git a/library/compiler-builtins/libm/src/math/lgammaf_r.rs b/library/compiler-builtins/libm/src/math/lgammaf_r.rs new file mode 100644 index 00000000000..10cecee541c --- /dev/null +++ b/library/compiler-builtins/libm/src/math/lgammaf_r.rs @@ -0,0 +1,256 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_lgammaf_r.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +use super::{floorf, k_cosf, k_sinf, logf}; + +const PI: f32 = 3.1415927410e+00; /* 0x40490fdb */ +const A0: f32 = 7.7215664089e-02; /* 0x3d9e233f */ +const A1: f32 = 3.2246702909e-01; /* 0x3ea51a66 */ +const A2: f32 = 6.7352302372e-02; /* 0x3d89f001 */ +const A3: f32 = 2.0580807701e-02; /* 0x3ca89915 */ +const A4: f32 = 7.3855509982e-03; /* 0x3bf2027e */ +const A5: f32 = 2.8905137442e-03; /* 0x3b3d6ec6 */ +const A6: f32 = 1.1927076848e-03; /* 0x3a9c54a1 */ +const A7: f32 = 5.1006977446e-04; /* 0x3a05b634 */ +const A8: f32 = 2.2086278477e-04; /* 0x39679767 */ +const A9: f32 = 1.0801156895e-04; /* 0x38e28445 */ +const A10: f32 = 2.5214456400e-05; /* 0x37d383a2 */ +const A11: f32 = 4.4864096708e-05; /* 0x383c2c75 */ +const TC: f32 = 1.4616321325e+00; /* 0x3fbb16c3 */ +const TF: f32 = -1.2148628384e-01; /* 0xbdf8cdcd */ +/* TT = -(tail of TF) */ +const TT: f32 = 6.6971006518e-09; /* 0x31e61c52 */ +const T0: f32 = 4.8383611441e-01; /* 0x3ef7b95e */ +const T1: f32 = -1.4758771658e-01; /* 0xbe17213c */ +const T2: f32 = 6.4624942839e-02; /* 0x3d845a15 */ +const T3: f32 = -3.2788541168e-02; /* 0xbd064d47 */ +const T4: f32 = 1.7970675603e-02; /* 0x3c93373d */ +const T5: f32 = -1.0314224288e-02; /* 0xbc28fcfe */ +const T6: f32 = 6.1005386524e-03; /* 0x3bc7e707 */ +const T7: f32 = -3.6845202558e-03; /* 0xbb7177fe */ +const T8: f32 = 2.2596477065e-03; /* 0x3b141699 */ +const T9: f32 = -1.4034647029e-03; /* 0xbab7f476 */ +const T10: f32 = 8.8108185446e-04; /* 0x3a66f867 */ +const T11: f32 = -5.3859531181e-04; /* 0xba0d3085 */ +const T12: f32 = 3.1563205994e-04; /* 0x39a57b6b */ +const T13: f32 = -3.1275415677e-04; /* 0xb9a3f927 */ +const T14: f32 = 3.3552918467e-04; /* 0x39afe9f7 */ +const U0: f32 = -7.7215664089e-02; /* 0xbd9e233f */ +const U1: f32 = 6.3282704353e-01; /* 0x3f2200f4 */ +const U2: f32 = 1.4549225569e+00; /* 0x3fba3ae7 */ +const U3: f32 = 9.7771751881e-01; /* 0x3f7a4bb2 */ +const U4: f32 = 2.2896373272e-01; /* 0x3e6a7578 */ +const U5: f32 = 1.3381091878e-02; /* 0x3c5b3c5e */ +const V1: f32 = 2.4559779167e+00; /* 0x401d2ebe */ +const V2: f32 = 2.1284897327e+00; /* 0x4008392d */ +const V3: f32 = 7.6928514242e-01; /* 0x3f44efdf */ +const V4: f32 = 1.0422264785e-01; /* 0x3dd572af */ +const V5: f32 = 3.2170924824e-03; /* 0x3b52d5db */ +const S0: f32 = -7.7215664089e-02; /* 0xbd9e233f */ +const S1: f32 = 2.1498242021e-01; /* 0x3e5c245a */ +const S2: f32 = 3.2577878237e-01; /* 0x3ea6cc7a */ +const S3: f32 = 1.4635047317e-01; /* 0x3e15dce6 */ +const S4: f32 = 2.6642270386e-02; /* 0x3cda40e4 */ +const S5: f32 = 1.8402845599e-03; /* 0x3af135b4 */ +const S6: f32 = 3.1947532989e-05; /* 0x3805ff67 */ +const R1: f32 = 1.3920053244e+00; /* 0x3fb22d3b */ +const R2: f32 = 7.2193557024e-01; /* 0x3f38d0c5 */ +const R3: f32 = 1.7193385959e-01; /* 0x3e300f6e */ +const R4: f32 = 1.8645919859e-02; /* 0x3c98bf54 */ +const R5: f32 = 7.7794247773e-04; /* 0x3a4beed6 */ +const R6: f32 = 7.3266842264e-06; /* 0x36f5d7bd */ +const W0: f32 = 4.1893854737e-01; /* 0x3ed67f1d */ +const W1: f32 = 8.3333335817e-02; /* 0x3daaaaab */ +const W2: f32 = -2.7777778450e-03; /* 0xbb360b61 */ +const W3: f32 = 7.9365057172e-04; /* 0x3a500cfd */ +const W4: f32 = -5.9518753551e-04; /* 0xba1c065c */ +const W5: f32 = 8.3633989561e-04; /* 0x3a5b3dd2 */ +const W6: f32 = -1.6309292987e-03; /* 0xbad5c4e8 */ + +/* sin(PI*x) assuming x > 2^-100, if sin(PI*x)==0 the sign is arbitrary */ +fn sin_pi(mut x: f32) -> f32 { + let mut y: f64; + let mut n: isize; + + /* spurious inexact if odd int */ + x = 2.0 * (x * 0.5 - floorf(x * 0.5)); /* x mod 2.0 */ + + n = (x * 4.0) as isize; + n = div!(n + 1, 2); + y = (x as f64) - (n as f64) * 0.5; + y *= 3.14159265358979323846; + match n { + 1 => k_cosf(y), + 2 => k_sinf(-y), + 3 => -k_cosf(y), + // 0 + _ => k_sinf(y), + } +} + +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn lgammaf_r(mut x: f32) -> (f32, i32) { + let u = x.to_bits(); + let mut t: f32; + let y: f32; + let mut z: f32; + let nadj: f32; + let p: f32; + let p1: f32; + let p2: f32; + let p3: f32; + let q: f32; + let mut r: f32; + let w: f32; + let ix: u32; + let i: i32; + let sign: bool; + let mut signgam: i32; + + /* purge off +-inf, NaN, +-0, tiny and negative arguments */ + signgam = 1; + sign = (u >> 31) != 0; + ix = u & 0x7fffffff; + if ix >= 0x7f800000 { + return (x * x, signgam); + } + if ix < 0x35000000 { + /* |x| < 2**-21, return -log(|x|) */ + if sign { + signgam = -1; + x = -x; + } + return (-logf(x), signgam); + } + if sign { + x = -x; + t = sin_pi(x); + if t == 0.0 { + /* -integer */ + return (1.0 / (x - x), signgam); + } + if t > 0.0 { + signgam = -1; + } else { + t = -t; + } + nadj = logf(PI / (t * x)); + } else { + nadj = 0.0; + } + + /* purge off 1 and 2 */ + if ix == 0x3f800000 || ix == 0x40000000 { + r = 0.0; + } + /* for x < 2.0 */ + else if ix < 0x40000000 { + if ix <= 0x3f666666 { + /* lgamma(x) = lgamma(x+1)-log(x) */ + r = -logf(x); + if ix >= 0x3f3b4a20 { + y = 1.0 - x; + i = 0; + } else if ix >= 0x3e6d3308 { + y = x - (TC - 1.0); + i = 1; + } else { + y = x; + i = 2; + } + } else { + r = 0.0; + if ix >= 0x3fdda618 { + /* [1.7316,2] */ + y = 2.0 - x; + i = 0; + } else if ix >= 0x3F9da620 { + /* [1.23,1.73] */ + y = x - TC; + i = 1; + } else { + y = x - 1.0; + i = 2; + } + } + match i { + 0 => { + z = y * y; + p1 = A0 + z * (A2 + z * (A4 + z * (A6 + z * (A8 + z * A10)))); + p2 = z * (A1 + z * (A3 + z * (A5 + z * (A7 + z * (A9 + z * A11))))); + p = y * p1 + p2; + r += p - 0.5 * y; + } + 1 => { + z = y * y; + w = z * y; + p1 = T0 + w * (T3 + w * (T6 + w * (T9 + w * T12))); /* parallel comp */ + p2 = T1 + w * (T4 + w * (T7 + w * (T10 + w * T13))); + p3 = T2 + w * (T5 + w * (T8 + w * (T11 + w * T14))); + p = z * p1 - (TT - w * (p2 + y * p3)); + r += TF + p; + } + 2 => { + p1 = y * (U0 + y * (U1 + y * (U2 + y * (U3 + y * (U4 + y * U5))))); + p2 = 1.0 + y * (V1 + y * (V2 + y * (V3 + y * (V4 + y * V5)))); + r += -0.5 * y + p1 / p2; + } + #[cfg(debug_assertions)] + _ => unreachable!(), + #[cfg(not(debug_assertions))] + _ => {} + } + } else if ix < 0x41000000 { + /* x < 8.0 */ + i = x as i32; + y = x - (i as f32); + p = y * (S0 + y * (S1 + y * (S2 + y * (S3 + y * (S4 + y * (S5 + y * S6)))))); + q = 1.0 + y * (R1 + y * (R2 + y * (R3 + y * (R4 + y * (R5 + y * R6))))); + r = 0.5 * y + p / q; + z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */ + // TODO: In C, this was implemented using switch jumps with fallthrough. + // Does this implementation have performance problems? + if i >= 7 { + z *= y + 6.0; + } + if i >= 6 { + z *= y + 5.0; + } + if i >= 5 { + z *= y + 4.0; + } + if i >= 4 { + z *= y + 3.0; + } + if i >= 3 { + z *= y + 2.0; + r += logf(z); + } + } else if ix < 0x5c800000 { + /* 8.0 <= x < 2**58 */ + t = logf(x); + z = 1.0 / x; + y = z * z; + w = W0 + z * (W1 + y * (W2 + y * (W3 + y * (W4 + y * (W5 + y * W6))))); + r = (x - 0.5) * (t - 1.0) + w; + } else { + /* 2**58 <= x <= inf */ + r = x * (logf(x) - 1.0); + } + if sign { + r = nadj - r; + } + return (r, signgam); +} diff --git a/library/compiler-builtins/libm/src/math/log.rs b/library/compiler-builtins/libm/src/math/log.rs new file mode 100644 index 00000000000..f2dc47ec5cc --- /dev/null +++ b/library/compiler-builtins/libm/src/math/log.rs @@ -0,0 +1,118 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* log(x) + * Return the logarithm of x + * + * Method : + * 1. Argument Reduction: find k and f such that + * x = 2^k * (1+f), + * where sqrt(2)/2 < 1+f < sqrt(2) . + * + * 2. Approximation of log(1+f). + * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) + * = 2s + 2/3 s**3 + 2/5 s**5 + ....., + * = 2s + s*R + * We use a special Remez algorithm on [0,0.1716] to generate + * a polynomial of degree 14 to approximate R The maximum error + * of this polynomial approximation is bounded by 2**-58.45. In + * other words, + * 2 4 6 8 10 12 14 + * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s + * (the values of Lg1 to Lg7 are listed in the program) + * and + * | 2 14 | -58.45 + * | Lg1*s +...+Lg7*s - R(z) | <= 2 + * | | + * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. + * In order to guarantee error in log below 1ulp, we compute log + * by + * log(1+f) = f - s*(f - R) (if f is not too large) + * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) + * + * 3. Finally, log(x) = k*ln2 + log(1+f). + * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) + * Here ln2 is split into two floating point number: + * ln2_hi + ln2_lo, + * where n*ln2_hi is always exact for |n| < 2000. + * + * Special cases: + * log(x) is NaN with signal if x < 0 (including -INF) ; + * log(+INF) is +INF; log(0) is -INF with signal; + * log(NaN) is that NaN with no signal. + * + * Accuracy: + * according to an error analysis, the error is always less than + * 1 ulp (unit in the last place). + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */ +const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */ +const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */ +const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */ +const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */ +const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */ +const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */ +const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */ +const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ + +/// The natural logarithm of `x` (f64). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn log(mut x: f64) -> f64 { + let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54 + + let mut ui = x.to_bits(); + let mut hx: u32 = (ui >> 32) as u32; + let mut k: i32 = 0; + + if (hx < 0x00100000) || ((hx >> 31) != 0) { + /* x < 2**-126 */ + if ui << 1 == 0 { + return -1. / (x * x); /* log(+-0)=-inf */ + } + if hx >> 31 != 0 { + return (x - x) / 0.0; /* log(-#) = NaN */ + } + /* subnormal number, scale x up */ + k -= 54; + x *= x1p54; + ui = x.to_bits(); + hx = (ui >> 32) as u32; + } else if hx >= 0x7ff00000 { + return x; + } else if hx == 0x3ff00000 && ui << 32 == 0 { + return 0.; + } + + /* reduce x into [sqrt(2)/2, sqrt(2)] */ + hx += 0x3ff00000 - 0x3fe6a09e; + k += ((hx >> 20) as i32) - 0x3ff; + hx = (hx & 0x000fffff) + 0x3fe6a09e; + ui = ((hx as u64) << 32) | (ui & 0xffffffff); + x = f64::from_bits(ui); + + let f: f64 = x - 1.0; + let hfsq: f64 = 0.5 * f * f; + let s: f64 = f / (2.0 + f); + let z: f64 = s * s; + let w: f64 = z * z; + let t1: f64 = w * (LG2 + w * (LG4 + w * LG6)); + let t2: f64 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7))); + let r: f64 = t2 + t1; + let dk: f64 = k as f64; + s * (hfsq + r) + dk * LN2_LO - hfsq + f + dk * LN2_HI +} diff --git a/library/compiler-builtins/libm/src/math/log10.rs b/library/compiler-builtins/libm/src/math/log10.rs new file mode 100644 index 00000000000..8c9d68c492d --- /dev/null +++ b/library/compiler-builtins/libm/src/math/log10.rs @@ -0,0 +1,118 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_log10.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* + * Return the base 10 logarithm of x. See log.c for most comments. + * + * Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2 + * as in log.c, then combine and scale in extra precision: + * log10(x) = (f - f*f/2 + r)/log(10) + k*log10(2) + */ + +use core::f64; + +const IVLN10HI: f64 = 4.34294481878168880939e-01; /* 0x3fdbcb7b, 0x15200000 */ +const IVLN10LO: f64 = 2.50829467116452752298e-11; /* 0x3dbb9438, 0xca9aadd5 */ +const LOG10_2HI: f64 = 3.01029995663611771306e-01; /* 0x3FD34413, 0x509F6000 */ +const LOG10_2LO: f64 = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */ +const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */ +const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */ +const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */ +const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */ +const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */ +const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */ +const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ + +/// The base 10 logarithm of `x` (f64). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn log10(mut x: f64) -> f64 { + let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54 + + let mut ui: u64 = x.to_bits(); + let hfsq: f64; + let f: f64; + let s: f64; + let z: f64; + let r: f64; + let mut w: f64; + let t1: f64; + let t2: f64; + let dk: f64; + let y: f64; + let mut hi: f64; + let lo: f64; + let mut val_hi: f64; + let mut val_lo: f64; + let mut hx: u32; + let mut k: i32; + + hx = (ui >> 32) as u32; + k = 0; + if hx < 0x00100000 || (hx >> 31) > 0 { + if ui << 1 == 0 { + return -1. / (x * x); /* log(+-0)=-inf */ + } + if (hx >> 31) > 0 { + return (x - x) / 0.0; /* log(-#) = NaN */ + } + /* subnormal number, scale x up */ + k -= 54; + x *= x1p54; + ui = x.to_bits(); + hx = (ui >> 32) as u32; + } else if hx >= 0x7ff00000 { + return x; + } else if hx == 0x3ff00000 && ui << 32 == 0 { + return 0.; + } + + /* reduce x into [sqrt(2)/2, sqrt(2)] */ + hx += 0x3ff00000 - 0x3fe6a09e; + k += (hx >> 20) as i32 - 0x3ff; + hx = (hx & 0x000fffff) + 0x3fe6a09e; + ui = ((hx as u64) << 32) | (ui & 0xffffffff); + x = f64::from_bits(ui); + + f = x - 1.0; + hfsq = 0.5 * f * f; + s = f / (2.0 + f); + z = s * s; + w = z * z; + t1 = w * (LG2 + w * (LG4 + w * LG6)); + t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7))); + r = t2 + t1; + + /* See log2.c for details. */ + /* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */ + hi = f - hfsq; + ui = hi.to_bits(); + ui &= (-1i64 as u64) << 32; + hi = f64::from_bits(ui); + lo = f - hi - hfsq + s * (hfsq + r); + + /* val_hi+val_lo ~ log10(1+f) + k*log10(2) */ + val_hi = hi * IVLN10HI; + dk = k as f64; + y = dk * LOG10_2HI; + val_lo = dk * LOG10_2LO + (lo + hi) * IVLN10LO + lo * IVLN10HI; + + /* + * Extra precision in for adding y is not strictly needed + * since there is no very large cancellation near x = sqrt(2) or + * x = 1/sqrt(2), but we do it anyway since it costs little on CPUs + * with some parallelism and it reduces the error for many args. + */ + w = y + val_hi; + val_lo += (y - w) + val_hi; + val_hi = w; + + val_lo + val_hi +} diff --git a/library/compiler-builtins/libm/src/math/log10f.rs b/library/compiler-builtins/libm/src/math/log10f.rs new file mode 100644 index 00000000000..18bf8fcc832 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/log10f.rs @@ -0,0 +1,92 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_log10f.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* + * See comments in log10.c. + */ + +use core::f32; + +const IVLN10HI: f32 = 4.3432617188e-01; /* 0x3ede6000 */ +const IVLN10LO: f32 = -3.1689971365e-05; /* 0xb804ead9 */ +const LOG10_2HI: f32 = 3.0102920532e-01; /* 0x3e9a2080 */ +const LOG10_2LO: f32 = 7.9034151668e-07; /* 0x355427db */ +/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */ +const LG1: f32 = 0.66666662693; /* 0xaaaaaa.0p-24 */ +const LG2: f32 = 0.40000972152; /* 0xccce13.0p-25 */ +const LG3: f32 = 0.28498786688; /* 0x91e9ee.0p-25 */ +const LG4: f32 = 0.24279078841; /* 0xf89e26.0p-26 */ + +/// The base 10 logarithm of `x` (f32). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn log10f(mut x: f32) -> f32 { + let x1p25f = f32::from_bits(0x4c000000); // 0x1p25f === 2 ^ 25 + + let mut ui: u32 = x.to_bits(); + let hfsq: f32; + let f: f32; + let s: f32; + let z: f32; + let r: f32; + let w: f32; + let t1: f32; + let t2: f32; + let dk: f32; + let mut hi: f32; + let lo: f32; + let mut ix: u32; + let mut k: i32; + + ix = ui; + k = 0; + if ix < 0x00800000 || (ix >> 31) > 0 { + /* x < 2**-126 */ + if ix << 1 == 0 { + return -1. / (x * x); /* log(+-0)=-inf */ + } + if (ix >> 31) > 0 { + return (x - x) / 0.0; /* log(-#) = NaN */ + } + /* subnormal number, scale up x */ + k -= 25; + x *= x1p25f; + ui = x.to_bits(); + ix = ui; + } else if ix >= 0x7f800000 { + return x; + } else if ix == 0x3f800000 { + return 0.; + } + + /* reduce x into [sqrt(2)/2, sqrt(2)] */ + ix += 0x3f800000 - 0x3f3504f3; + k += (ix >> 23) as i32 - 0x7f; + ix = (ix & 0x007fffff) + 0x3f3504f3; + ui = ix; + x = f32::from_bits(ui); + + f = x - 1.0; + s = f / (2.0 + f); + z = s * s; + w = z * z; + t1 = w * (LG2 + w * LG4); + t2 = z * (LG1 + w * LG3); + r = t2 + t1; + hfsq = 0.5 * f * f; + + hi = f - hfsq; + ui = hi.to_bits(); + ui &= 0xfffff000; + hi = f32::from_bits(ui); + lo = f - hi - hfsq + s * (hfsq + r); + dk = k as f32; + dk * LOG10_2LO + (lo + hi) * IVLN10LO + lo * IVLN10HI + hi * IVLN10HI + dk * LOG10_2HI +} diff --git a/library/compiler-builtins/libm/src/math/log1p.rs b/library/compiler-builtins/libm/src/math/log1p.rs new file mode 100644 index 00000000000..b7f3fb09e15 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/log1p.rs @@ -0,0 +1,140 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* double log1p(double x) + * Return the natural logarithm of 1+x. + * + * Method : + * 1. Argument Reduction: find k and f such that + * 1+x = 2^k * (1+f), + * where sqrt(2)/2 < 1+f < sqrt(2) . + * + * Note. If k=0, then f=x is exact. However, if k!=0, then f + * may not be representable exactly. In that case, a correction + * term is need. Let u=1+x rounded. Let c = (1+x)-u, then + * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), + * and add back the correction term c/u. + * (Note: when x > 2**53, one can simply return log(x)) + * + * 2. Approximation of log(1+f): See log.c + * + * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c + * + * Special cases: + * log1p(x) is NaN with signal if x < -1 (including -INF) ; + * log1p(+INF) is +INF; log1p(-1) is -INF with signal; + * log1p(NaN) is that NaN with no signal. + * + * Accuracy: + * according to an error analysis, the error is always less than + * 1 ulp (unit in the last place). + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + * + * Note: Assuming log() return accurate answer, the following + * algorithm can be used to compute log1p(x) to within a few ULP: + * + * u = 1+x; + * if(u==1.0) return x ; else + * return log(u)*(x/(u-1.0)); + * + * See HP-15C Advanced Functions Handbook, p.193. + */ + +use core::f64; + +const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */ +const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */ +const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */ +const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */ +const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */ +const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */ +const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */ +const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */ +const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ + +/// The natural logarithm of 1+`x` (f64). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn log1p(x: f64) -> f64 { + let mut ui: u64 = x.to_bits(); + let hfsq: f64; + let mut f: f64 = 0.; + let mut c: f64 = 0.; + let s: f64; + let z: f64; + let r: f64; + let w: f64; + let t1: f64; + let t2: f64; + let dk: f64; + let hx: u32; + let mut hu: u32; + let mut k: i32; + + hx = (ui >> 32) as u32; + k = 1; + if hx < 0x3fda827a || (hx >> 31) > 0 { + /* 1+x < sqrt(2)+ */ + if hx >= 0xbff00000 { + /* x <= -1.0 */ + if x == -1. { + return x / 0.0; /* log1p(-1) = -inf */ + } + return (x - x) / 0.0; /* log1p(x<-1) = NaN */ + } + if hx << 1 < 0x3ca00000 << 1 { + /* |x| < 2**-53 */ + /* underflow if subnormal */ + if (hx & 0x7ff00000) == 0 { + force_eval!(x as f32); + } + return x; + } + if hx <= 0xbfd2bec4 { + /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ + k = 0; + c = 0.; + f = x; + } + } else if hx >= 0x7ff00000 { + return x; + } + if k > 0 { + ui = (1. + x).to_bits(); + hu = (ui >> 32) as u32; + hu += 0x3ff00000 - 0x3fe6a09e; + k = (hu >> 20) as i32 - 0x3ff; + /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */ + if k < 54 { + c = if k >= 2 { 1. - (f64::from_bits(ui) - x) } else { x - (f64::from_bits(ui) - 1.) }; + c /= f64::from_bits(ui); + } else { + c = 0.; + } + /* reduce u into [sqrt(2)/2, sqrt(2)] */ + hu = (hu & 0x000fffff) + 0x3fe6a09e; + ui = ((hu as u64) << 32) | (ui & 0xffffffff); + f = f64::from_bits(ui) - 1.; + } + hfsq = 0.5 * f * f; + s = f / (2.0 + f); + z = s * s; + w = z * z; + t1 = w * (LG2 + w * (LG4 + w * LG6)); + t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7))); + r = t2 + t1; + dk = k as f64; + s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI +} diff --git a/library/compiler-builtins/libm/src/math/log1pf.rs b/library/compiler-builtins/libm/src/math/log1pf.rs new file mode 100644 index 00000000000..bba5b8a2f21 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/log1pf.rs @@ -0,0 +1,95 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/s_log1pf.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +use core::f32; + +const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */ +const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */ +/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */ +const LG1: f32 = 0.66666662693; /* 0xaaaaaa.0p-24 */ +const LG2: f32 = 0.40000972152; /* 0xccce13.0p-25 */ +const LG3: f32 = 0.28498786688; /* 0x91e9ee.0p-25 */ +const LG4: f32 = 0.24279078841; /* 0xf89e26.0p-26 */ + +/// The natural logarithm of 1+`x` (f32). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn log1pf(x: f32) -> f32 { + let mut ui: u32 = x.to_bits(); + let hfsq: f32; + let mut f: f32 = 0.; + let mut c: f32 = 0.; + let s: f32; + let z: f32; + let r: f32; + let w: f32; + let t1: f32; + let t2: f32; + let dk: f32; + let ix: u32; + let mut iu: u32; + let mut k: i32; + + ix = ui; + k = 1; + if ix < 0x3ed413d0 || (ix >> 31) > 0 { + /* 1+x < sqrt(2)+ */ + if ix >= 0xbf800000 { + /* x <= -1.0 */ + if x == -1. { + return x / 0.0; /* log1p(-1)=+inf */ + } + return (x - x) / 0.0; /* log1p(x<-1)=NaN */ + } + if ix << 1 < 0x33800000 << 1 { + /* |x| < 2**-24 */ + /* underflow if subnormal */ + if (ix & 0x7f800000) == 0 { + force_eval!(x * x); + } + return x; + } + if ix <= 0xbe95f619 { + /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ + k = 0; + c = 0.; + f = x; + } + } else if ix >= 0x7f800000 { + return x; + } + if k > 0 { + ui = (1. + x).to_bits(); + iu = ui; + iu += 0x3f800000 - 0x3f3504f3; + k = (iu >> 23) as i32 - 0x7f; + /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */ + if k < 25 { + c = if k >= 2 { 1. - (f32::from_bits(ui) - x) } else { x - (f32::from_bits(ui) - 1.) }; + c /= f32::from_bits(ui); + } else { + c = 0.; + } + /* reduce u into [sqrt(2)/2, sqrt(2)] */ + iu = (iu & 0x007fffff) + 0x3f3504f3; + ui = iu; + f = f32::from_bits(ui) - 1.; + } + s = f / (2.0 + f); + z = s * s; + w = z * z; + t1 = w * (LG2 + w * LG4); + t2 = z * (LG1 + w * LG3); + r = t2 + t1; + hfsq = 0.5 * f * f; + dk = k as f32; + s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI +} diff --git a/library/compiler-builtins/libm/src/math/log2.rs b/library/compiler-builtins/libm/src/math/log2.rs new file mode 100644 index 00000000000..701f63c25e7 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/log2.rs @@ -0,0 +1,107 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_log2.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* + * Return the base 2 logarithm of x. See log.c for most comments. + * + * Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2 + * as in log.c, then combine and scale in extra precision: + * log2(x) = (f - f*f/2 + r)/log(2) + k + */ + +use core::f64; + +const IVLN2HI: f64 = 1.44269504072144627571e+00; /* 0x3ff71547, 0x65200000 */ +const IVLN2LO: f64 = 1.67517131648865118353e-10; /* 0x3de705fc, 0x2eefa200 */ +const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */ +const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */ +const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */ +const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */ +const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */ +const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */ +const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ + +/// The base 2 logarithm of `x` (f64). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn log2(mut x: f64) -> f64 { + let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54 + + let mut ui: u64 = x.to_bits(); + let hfsq: f64; + let f: f64; + let s: f64; + let z: f64; + let r: f64; + let mut w: f64; + let t1: f64; + let t2: f64; + let y: f64; + let mut hi: f64; + let lo: f64; + let mut val_hi: f64; + let mut val_lo: f64; + let mut hx: u32; + let mut k: i32; + + hx = (ui >> 32) as u32; + k = 0; + if hx < 0x00100000 || (hx >> 31) > 0 { + if ui << 1 == 0 { + return -1. / (x * x); /* log(+-0)=-inf */ + } + if (hx >> 31) > 0 { + return (x - x) / 0.0; /* log(-#) = NaN */ + } + /* subnormal number, scale x up */ + k -= 54; + x *= x1p54; + ui = x.to_bits(); + hx = (ui >> 32) as u32; + } else if hx >= 0x7ff00000 { + return x; + } else if hx == 0x3ff00000 && ui << 32 == 0 { + return 0.; + } + + /* reduce x into [sqrt(2)/2, sqrt(2)] */ + hx += 0x3ff00000 - 0x3fe6a09e; + k += (hx >> 20) as i32 - 0x3ff; + hx = (hx & 0x000fffff) + 0x3fe6a09e; + ui = ((hx as u64) << 32) | (ui & 0xffffffff); + x = f64::from_bits(ui); + + f = x - 1.0; + hfsq = 0.5 * f * f; + s = f / (2.0 + f); + z = s * s; + w = z * z; + t1 = w * (LG2 + w * (LG4 + w * LG6)); + t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7))); + r = t2 + t1; + + /* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */ + hi = f - hfsq; + ui = hi.to_bits(); + ui &= (-1i64 as u64) << 32; + hi = f64::from_bits(ui); + lo = f - hi - hfsq + s * (hfsq + r); + + val_hi = hi * IVLN2HI; + val_lo = (lo + hi) * IVLN2LO + lo * IVLN2HI; + + /* spadd(val_hi, val_lo, y), except for not using double_t: */ + y = k.into(); + w = y + val_hi; + val_lo += (y - w) + val_hi; + val_hi = w; + + val_lo + val_hi +} diff --git a/library/compiler-builtins/libm/src/math/log2f.rs b/library/compiler-builtins/libm/src/math/log2f.rs new file mode 100644 index 00000000000..5ba2427d1d4 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/log2f.rs @@ -0,0 +1,88 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_log2f.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* + * See comments in log2.c. + */ + +use core::f32; + +const IVLN2HI: f32 = 1.4428710938e+00; /* 0x3fb8b000 */ +const IVLN2LO: f32 = -1.7605285393e-04; /* 0xb9389ad4 */ +/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */ +const LG1: f32 = 0.66666662693; /* 0xaaaaaa.0p-24 */ +const LG2: f32 = 0.40000972152; /* 0xccce13.0p-25 */ +const LG3: f32 = 0.28498786688; /* 0x91e9ee.0p-25 */ +const LG4: f32 = 0.24279078841; /* 0xf89e26.0p-26 */ + +/// The base 2 logarithm of `x` (f32). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn log2f(mut x: f32) -> f32 { + let x1p25f = f32::from_bits(0x4c000000); // 0x1p25f === 2 ^ 25 + + let mut ui: u32 = x.to_bits(); + let hfsq: f32; + let f: f32; + let s: f32; + let z: f32; + let r: f32; + let w: f32; + let t1: f32; + let t2: f32; + let mut hi: f32; + let lo: f32; + let mut ix: u32; + let mut k: i32; + + ix = ui; + k = 0; + if ix < 0x00800000 || (ix >> 31) > 0 { + /* x < 2**-126 */ + if ix << 1 == 0 { + return -1. / (x * x); /* log(+-0)=-inf */ + } + if (ix >> 31) > 0 { + return (x - x) / 0.0; /* log(-#) = NaN */ + } + /* subnormal number, scale up x */ + k -= 25; + x *= x1p25f; + ui = x.to_bits(); + ix = ui; + } else if ix >= 0x7f800000 { + return x; + } else if ix == 0x3f800000 { + return 0.; + } + + /* reduce x into [sqrt(2)/2, sqrt(2)] */ + ix += 0x3f800000 - 0x3f3504f3; + k += (ix >> 23) as i32 - 0x7f; + ix = (ix & 0x007fffff) + 0x3f3504f3; + ui = ix; + x = f32::from_bits(ui); + + f = x - 1.0; + s = f / (2.0 + f); + z = s * s; + w = z * z; + t1 = w * (LG2 + w * LG4); + t2 = z * (LG1 + w * LG3); + r = t2 + t1; + hfsq = 0.5 * f * f; + + hi = f - hfsq; + ui = hi.to_bits(); + ui &= 0xfffff000; + hi = f32::from_bits(ui); + lo = f - hi - hfsq + s * (hfsq + r); + (lo + hi) * IVLN2LO + lo * IVLN2HI + hi * IVLN2HI + k as f32 +} diff --git a/library/compiler-builtins/libm/src/math/logf.rs b/library/compiler-builtins/libm/src/math/logf.rs new file mode 100644 index 00000000000..68d1943025e --- /dev/null +++ b/library/compiler-builtins/libm/src/math/logf.rs @@ -0,0 +1,66 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_logf.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */ +const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */ +/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */ +const LG1: f32 = 0.66666662693; /* 0xaaaaaa.0p-24*/ +const LG2: f32 = 0.40000972152; /* 0xccce13.0p-25 */ +const LG3: f32 = 0.28498786688; /* 0x91e9ee.0p-25 */ +const LG4: f32 = 0.24279078841; /* 0xf89e26.0p-26 */ + +/// The natural logarithm of `x` (f32). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn logf(mut x: f32) -> f32 { + let x1p25 = f32::from_bits(0x4c000000); // 0x1p25f === 2 ^ 25 + + let mut ix = x.to_bits(); + let mut k = 0i32; + + if (ix < 0x00800000) || ((ix >> 31) != 0) { + /* x < 2**-126 */ + if ix << 1 == 0 { + return -1. / (x * x); /* log(+-0)=-inf */ + } + if (ix >> 31) != 0 { + return (x - x) / 0.; /* log(-#) = NaN */ + } + /* subnormal number, scale up x */ + k -= 25; + x *= x1p25; + ix = x.to_bits(); + } else if ix >= 0x7f800000 { + return x; + } else if ix == 0x3f800000 { + return 0.; + } + + /* reduce x into [sqrt(2)/2, sqrt(2)] */ + ix += 0x3f800000 - 0x3f3504f3; + k += ((ix >> 23) as i32) - 0x7f; + ix = (ix & 0x007fffff) + 0x3f3504f3; + x = f32::from_bits(ix); + + let f = x - 1.; + let s = f / (2. + f); + let z = s * s; + let w = z * z; + let t1 = w * (LG2 + w * LG4); + let t2 = z * (LG1 + w * LG3); + let r = t2 + t1; + let hfsq = 0.5 * f * f; + let dk = k as f32; + s * (hfsq + r) + dk * LN2_LO - hfsq + f + dk * LN2_HI +} diff --git a/library/compiler-builtins/libm/src/math/mod.rs b/library/compiler-builtins/libm/src/math/mod.rs new file mode 100644 index 00000000000..949c18b4000 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/mod.rs @@ -0,0 +1,396 @@ +macro_rules! force_eval { + ($e:expr) => { + unsafe { ::core::ptr::read_volatile(&$e) } + }; +} + +#[cfg(not(debug_assertions))] +macro_rules! i { + ($array:expr, $index:expr) => { + unsafe { *$array.get_unchecked($index) } + }; + ($array:expr, $index:expr, = , $rhs:expr) => { + unsafe { + *$array.get_unchecked_mut($index) = $rhs; + } + }; + ($array:expr, $index:expr, += , $rhs:expr) => { + unsafe { + *$array.get_unchecked_mut($index) += $rhs; + } + }; + ($array:expr, $index:expr, -= , $rhs:expr) => { + unsafe { + *$array.get_unchecked_mut($index) -= $rhs; + } + }; + ($array:expr, $index:expr, &= , $rhs:expr) => { + unsafe { + *$array.get_unchecked_mut($index) &= $rhs; + } + }; + ($array:expr, $index:expr, == , $rhs:expr) => { + unsafe { *$array.get_unchecked_mut($index) == $rhs } + }; +} + +#[cfg(debug_assertions)] +macro_rules! i { + ($array:expr, $index:expr) => { + *$array.get($index).unwrap() + }; + ($array:expr, $index:expr, = , $rhs:expr) => { + *$array.get_mut($index).unwrap() = $rhs; + }; + ($array:expr, $index:expr, -= , $rhs:expr) => { + *$array.get_mut($index).unwrap() -= $rhs; + }; + ($array:expr, $index:expr, += , $rhs:expr) => { + *$array.get_mut($index).unwrap() += $rhs; + }; + ($array:expr, $index:expr, &= , $rhs:expr) => { + *$array.get_mut($index).unwrap() &= $rhs; + }; + ($array:expr, $index:expr, == , $rhs:expr) => { + *$array.get_mut($index).unwrap() == $rhs + }; +} + +// Temporary macro to avoid panic codegen for division (in debug mode too). At +// the time of this writing this is only used in a few places, and once +// rust-lang/rust#72751 is fixed then this macro will no longer be necessary and +// the native `/` operator can be used and panics won't be codegen'd. +#[cfg(any(debug_assertions, not(intrinsics_enabled)))] +macro_rules! div { + ($a:expr, $b:expr) => { + $a / $b + }; +} + +#[cfg(all(not(debug_assertions), intrinsics_enabled))] +macro_rules! div { + ($a:expr, $b:expr) => { + unsafe { core::intrinsics::unchecked_div($a, $b) } + }; +} + +// `support` may be public for testing +#[macro_use] +#[cfg(feature = "unstable-public-internals")] +pub mod support; + +#[macro_use] +#[cfg(not(feature = "unstable-public-internals"))] +pub(crate) mod support; + +cfg_if! { + if #[cfg(feature = "unstable-public-internals")] { + pub mod generic; + } else { + mod generic; + } +} + +// Private modules +mod arch; +mod expo2; +mod k_cos; +mod k_cosf; +mod k_expo2; +mod k_expo2f; +mod k_sin; +mod k_sinf; +mod k_tan; +mod k_tanf; +mod rem_pio2; +mod rem_pio2_large; +mod rem_pio2f; + +// Private re-imports +use self::expo2::expo2; +use self::k_cos::k_cos; +use self::k_cosf::k_cosf; +use self::k_expo2::k_expo2; +use self::k_expo2f::k_expo2f; +use self::k_sin::k_sin; +use self::k_sinf::k_sinf; +use self::k_tan::k_tan; +use self::k_tanf::k_tanf; +use self::rem_pio2::rem_pio2; +use self::rem_pio2_large::rem_pio2_large; +use self::rem_pio2f::rem_pio2f; +#[allow(unused_imports)] +use self::support::{CastFrom, CastInto, DFloat, DInt, Float, HFloat, HInt, Int, IntTy, MinInt}; + +// Public modules +mod acos; +mod acosf; +mod acosh; +mod acoshf; +mod asin; +mod asinf; +mod asinh; +mod asinhf; +mod atan; +mod atan2; +mod atan2f; +mod atanf; +mod atanh; +mod atanhf; +mod cbrt; +mod cbrtf; +mod ceil; +mod copysign; +mod cos; +mod cosf; +mod cosh; +mod coshf; +mod erf; +mod erff; +mod exp; +mod exp10; +mod exp10f; +mod exp2; +mod exp2f; +mod expf; +mod expm1; +mod expm1f; +mod fabs; +mod fdim; +mod floor; +mod fma; +mod fma_wide; +mod fmin_fmax; +mod fminimum_fmaximum; +mod fminimum_fmaximum_num; +mod fmod; +mod frexp; +mod frexpf; +mod hypot; +mod hypotf; +mod ilogb; +mod ilogbf; +mod j0; +mod j0f; +mod j1; +mod j1f; +mod jn; +mod jnf; +mod ldexp; +mod lgamma; +mod lgamma_r; +mod lgammaf; +mod lgammaf_r; +mod log; +mod log10; +mod log10f; +mod log1p; +mod log1pf; +mod log2; +mod log2f; +mod logf; +mod modf; +mod modff; +mod nextafter; +mod nextafterf; +mod pow; +mod powf; +mod remainder; +mod remainderf; +mod remquo; +mod remquof; +mod rint; +mod round; +mod roundeven; +mod scalbn; +mod sin; +mod sincos; +mod sincosf; +mod sinf; +mod sinh; +mod sinhf; +mod sqrt; +mod tan; +mod tanf; +mod tanh; +mod tanhf; +mod tgamma; +mod tgammaf; +mod trunc; + +// Use separated imports instead of {}-grouped imports for easier merging. +pub use self::acos::acos; +pub use self::acosf::acosf; +pub use self::acosh::acosh; +pub use self::acoshf::acoshf; +pub use self::asin::asin; +pub use self::asinf::asinf; +pub use self::asinh::asinh; +pub use self::asinhf::asinhf; +pub use self::atan::atan; +pub use self::atan2::atan2; +pub use self::atan2f::atan2f; +pub use self::atanf::atanf; +pub use self::atanh::atanh; +pub use self::atanhf::atanhf; +pub use self::cbrt::cbrt; +pub use self::cbrtf::cbrtf; +pub use self::ceil::{ceil, ceilf}; +pub use self::copysign::{copysign, copysignf}; +pub use self::cos::cos; +pub use self::cosf::cosf; +pub use self::cosh::cosh; +pub use self::coshf::coshf; +pub use self::erf::{erf, erfc}; +pub use self::erff::{erfcf, erff}; +pub use self::exp::exp; +pub use self::exp2::exp2; +pub use self::exp2f::exp2f; +pub use self::exp10::exp10; +pub use self::exp10f::exp10f; +pub use self::expf::expf; +pub use self::expm1::expm1; +pub use self::expm1f::expm1f; +pub use self::fabs::{fabs, fabsf}; +pub use self::fdim::{fdim, fdimf}; +pub use self::floor::{floor, floorf}; +pub use self::fma::fma; +pub use self::fma_wide::fmaf; +pub use self::fmin_fmax::{fmax, fmaxf, fmin, fminf}; +pub use self::fminimum_fmaximum::{fmaximum, fmaximumf, fminimum, fminimumf}; +pub use self::fminimum_fmaximum_num::{fmaximum_num, fmaximum_numf, fminimum_num, fminimum_numf}; +pub use self::fmod::{fmod, fmodf}; +pub use self::frexp::frexp; +pub use self::frexpf::frexpf; +pub use self::hypot::hypot; +pub use self::hypotf::hypotf; +pub use self::ilogb::ilogb; +pub use self::ilogbf::ilogbf; +pub use self::j0::{j0, y0}; +pub use self::j0f::{j0f, y0f}; +pub use self::j1::{j1, y1}; +pub use self::j1f::{j1f, y1f}; +pub use self::jn::{jn, yn}; +pub use self::jnf::{jnf, ynf}; +pub use self::ldexp::{ldexp, ldexpf}; +pub use self::lgamma::lgamma; +pub use self::lgamma_r::lgamma_r; +pub use self::lgammaf::lgammaf; +pub use self::lgammaf_r::lgammaf_r; +pub use self::log::log; +pub use self::log1p::log1p; +pub use self::log1pf::log1pf; +pub use self::log2::log2; +pub use self::log2f::log2f; +pub use self::log10::log10; +pub use self::log10f::log10f; +pub use self::logf::logf; +pub use self::modf::modf; +pub use self::modff::modff; +pub use self::nextafter::nextafter; +pub use self::nextafterf::nextafterf; +pub use self::pow::pow; +pub use self::powf::powf; +pub use self::remainder::remainder; +pub use self::remainderf::remainderf; +pub use self::remquo::remquo; +pub use self::remquof::remquof; +pub use self::rint::{rint, rintf}; +pub use self::round::{round, roundf}; +pub use self::roundeven::{roundeven, roundevenf}; +pub use self::scalbn::{scalbn, scalbnf}; +pub use self::sin::sin; +pub use self::sincos::sincos; +pub use self::sincosf::sincosf; +pub use self::sinf::sinf; +pub use self::sinh::sinh; +pub use self::sinhf::sinhf; +pub use self::sqrt::{sqrt, sqrtf}; +pub use self::tan::tan; +pub use self::tanf::tanf; +pub use self::tanh::tanh; +pub use self::tanhf::tanhf; +pub use self::tgamma::tgamma; +pub use self::tgammaf::tgammaf; +pub use self::trunc::{trunc, truncf}; + +cfg_if! { + if #[cfg(f16_enabled)] { + // verify-sorted-start + pub use self::ceil::ceilf16; + pub use self::copysign::copysignf16; + pub use self::fabs::fabsf16; + pub use self::fdim::fdimf16; + pub use self::floor::floorf16; + pub use self::fmin_fmax::{fmaxf16, fminf16}; + pub use self::fminimum_fmaximum::{fmaximumf16, fminimumf16}; + pub use self::fminimum_fmaximum_num::{fmaximum_numf16, fminimum_numf16}; + pub use self::fmod::fmodf16; + pub use self::ldexp::ldexpf16; + pub use self::rint::rintf16; + pub use self::round::roundf16; + pub use self::roundeven::roundevenf16; + pub use self::scalbn::scalbnf16; + pub use self::sqrt::sqrtf16; + pub use self::trunc::truncf16; + // verify-sorted-end + + #[allow(unused_imports)] + pub(crate) use self::fma_wide::fmaf16; + } +} + +cfg_if! { + if #[cfg(f128_enabled)] { + // verify-sorted-start + pub use self::ceil::ceilf128; + pub use self::copysign::copysignf128; + pub use self::fabs::fabsf128; + pub use self::fdim::fdimf128; + pub use self::floor::floorf128; + pub use self::fma::fmaf128; + pub use self::fmin_fmax::{fmaxf128, fminf128}; + pub use self::fminimum_fmaximum::{fmaximumf128, fminimumf128}; + pub use self::fminimum_fmaximum_num::{fmaximum_numf128, fminimum_numf128}; + pub use self::fmod::fmodf128; + pub use self::ldexp::ldexpf128; + pub use self::rint::rintf128; + pub use self::round::roundf128; + pub use self::roundeven::roundevenf128; + pub use self::scalbn::scalbnf128; + pub use self::sqrt::sqrtf128; + pub use self::trunc::truncf128; + // verify-sorted-end + } +} + +#[inline] +fn get_high_word(x: f64) -> u32 { + (x.to_bits() >> 32) as u32 +} + +#[inline] +fn get_low_word(x: f64) -> u32 { + x.to_bits() as u32 +} + +#[inline] +fn with_set_high_word(f: f64, hi: u32) -> f64 { + let mut tmp = f.to_bits(); + tmp &= 0x00000000_ffffffff; + tmp |= (hi as u64) << 32; + f64::from_bits(tmp) +} + +#[inline] +fn with_set_low_word(f: f64, lo: u32) -> f64 { + let mut tmp = f.to_bits(); + tmp &= 0xffffffff_00000000; + tmp |= lo as u64; + f64::from_bits(tmp) +} + +#[inline] +fn combine_words(hi: u32, lo: u32) -> f64 { + f64::from_bits(((hi as u64) << 32) | lo as u64) +} diff --git a/library/compiler-builtins/libm/src/math/modf.rs b/library/compiler-builtins/libm/src/math/modf.rs new file mode 100644 index 00000000000..6541862cdd9 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/modf.rs @@ -0,0 +1,35 @@ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn modf(x: f64) -> (f64, f64) { + let rv2: f64; + let mut u = x.to_bits(); + let mask: u64; + let e = (((u >> 52) & 0x7ff) as i32) - 0x3ff; + + /* no fractional part */ + if e >= 52 { + rv2 = x; + if e == 0x400 && (u << 12) != 0 { + /* nan */ + return (x, rv2); + } + u &= 1 << 63; + return (f64::from_bits(u), rv2); + } + + /* no integral part*/ + if e < 0 { + u &= 1 << 63; + rv2 = f64::from_bits(u); + return (x, rv2); + } + + mask = ((!0) >> 12) >> e; + if (u & mask) == 0 { + rv2 = x; + u &= 1 << 63; + return (f64::from_bits(u), rv2); + } + u &= !mask; + rv2 = f64::from_bits(u); + return (x - rv2, rv2); +} diff --git a/library/compiler-builtins/libm/src/math/modff.rs b/library/compiler-builtins/libm/src/math/modff.rs new file mode 100644 index 00000000000..90c6bca7d8d --- /dev/null +++ b/library/compiler-builtins/libm/src/math/modff.rs @@ -0,0 +1,34 @@ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn modff(x: f32) -> (f32, f32) { + let rv2: f32; + let mut u: u32 = x.to_bits(); + let mask: u32; + let e = (((u >> 23) & 0xff) as i32) - 0x7f; + + /* no fractional part */ + if e >= 23 { + rv2 = x; + if e == 0x80 && (u << 9) != 0 { + /* nan */ + return (x, rv2); + } + u &= 0x80000000; + return (f32::from_bits(u), rv2); + } + /* no integral part */ + if e < 0 { + u &= 0x80000000; + rv2 = f32::from_bits(u); + return (x, rv2); + } + + mask = 0x007fffff >> e; + if (u & mask) == 0 { + rv2 = x; + u &= 0x80000000; + return (f32::from_bits(u), rv2); + } + u &= !mask; + rv2 = f32::from_bits(u); + return (x - rv2, rv2); +} diff --git a/library/compiler-builtins/libm/src/math/nextafter.rs b/library/compiler-builtins/libm/src/math/nextafter.rs new file mode 100644 index 00000000000..c991ff6f233 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/nextafter.rs @@ -0,0 +1,37 @@ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn nextafter(x: f64, y: f64) -> f64 { + if x.is_nan() || y.is_nan() { + return x + y; + } + + let mut ux_i = x.to_bits(); + let uy_i = y.to_bits(); + if ux_i == uy_i { + return y; + } + + let ax = ux_i & (!1_u64 / 2); + let ay = uy_i & (!1_u64 / 2); + if ax == 0 { + if ay == 0 { + return y; + } + ux_i = (uy_i & (1_u64 << 63)) | 1; + } else if ax > ay || ((ux_i ^ uy_i) & (1_u64 << 63)) != 0 { + ux_i -= 1; + } else { + ux_i += 1; + } + + let e = (ux_i >> 52) & 0x7ff; + // raise overflow if ux.f is infinite and x is finite + if e == 0x7ff { + force_eval!(x + x); + } + let ux_f = f64::from_bits(ux_i); + // raise underflow if ux.f is subnormal or zero + if e == 0 { + force_eval!(x * x + ux_f * ux_f); + } + ux_f +} diff --git a/library/compiler-builtins/libm/src/math/nextafterf.rs b/library/compiler-builtins/libm/src/math/nextafterf.rs new file mode 100644 index 00000000000..8ba3833562f --- /dev/null +++ b/library/compiler-builtins/libm/src/math/nextafterf.rs @@ -0,0 +1,37 @@ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn nextafterf(x: f32, y: f32) -> f32 { + if x.is_nan() || y.is_nan() { + return x + y; + } + + let mut ux_i = x.to_bits(); + let uy_i = y.to_bits(); + if ux_i == uy_i { + return y; + } + + let ax = ux_i & 0x7fff_ffff_u32; + let ay = uy_i & 0x7fff_ffff_u32; + if ax == 0 { + if ay == 0 { + return y; + } + ux_i = (uy_i & 0x8000_0000_u32) | 1; + } else if ax > ay || ((ux_i ^ uy_i) & 0x8000_0000_u32) != 0 { + ux_i -= 1; + } else { + ux_i += 1; + } + + let e = ux_i & 0x7f80_0000_u32; + // raise overflow if ux_f is infinite and x is finite + if e == 0x7f80_0000_u32 { + force_eval!(x + x); + } + let ux_f = f32::from_bits(ux_i); + // raise underflow if ux_f is subnormal or zero + if e == 0 { + force_eval!(x * x + ux_f * ux_f); + } + ux_f +} diff --git a/library/compiler-builtins/libm/src/math/pow.rs b/library/compiler-builtins/libm/src/math/pow.rs new file mode 100644 index 00000000000..80b2a24999c --- /dev/null +++ b/library/compiler-builtins/libm/src/math/pow.rs @@ -0,0 +1,607 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */ +/* + * ==================================================== + * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. + * + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +// pow(x,y) return x**y +// +// n +// Method: Let x = 2 * (1+f) +// 1. Compute and return log2(x) in two pieces: +// log2(x) = w1 + w2, +// where w1 has 53-24 = 29 bit trailing zeros. +// 2. Perform y*log2(x) = n+y' by simulating multi-precision +// arithmetic, where |y'|<=0.5. +// 3. Return x**y = 2**n*exp(y'*log2) +// +// Special cases: +// 1. (anything) ** 0 is 1 +// 2. 1 ** (anything) is 1 +// 3. (anything except 1) ** NAN is NAN +// 4. NAN ** (anything except 0) is NAN +// 5. +-(|x| > 1) ** +INF is +INF +// 6. +-(|x| > 1) ** -INF is +0 +// 7. +-(|x| < 1) ** +INF is +0 +// 8. +-(|x| < 1) ** -INF is +INF +// 9. -1 ** +-INF is 1 +// 10. +0 ** (+anything except 0, NAN) is +0 +// 11. -0 ** (+anything except 0, NAN, odd integer) is +0 +// 12. +0 ** (-anything except 0, NAN) is +INF, raise divbyzero +// 13. -0 ** (-anything except 0, NAN, odd integer) is +INF, raise divbyzero +// 14. -0 ** (+odd integer) is -0 +// 15. -0 ** (-odd integer) is -INF, raise divbyzero +// 16. +INF ** (+anything except 0,NAN) is +INF +// 17. +INF ** (-anything except 0,NAN) is +0 +// 18. -INF ** (+odd integer) is -INF +// 19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer) +// 20. (anything) ** 1 is (anything) +// 21. (anything) ** -1 is 1/(anything) +// 22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) +// 23. (-anything except 0 and inf) ** (non-integer) is NAN +// +// Accuracy: +// pow(x,y) returns x**y nearly rounded. In particular +// pow(integer,integer) +// always returns the correct integer provided it is +// representable. +// +// Constants : +// The hexadecimal values are the intended ones for the following +// constants. The decimal values may be used, provided that the +// compiler will convert from decimal to binary accurately enough +// to produce the hexadecimal values shown. +// +use super::{fabs, get_high_word, scalbn, sqrt, with_set_high_word, with_set_low_word}; + +const BP: [f64; 2] = [1.0, 1.5]; +const DP_H: [f64; 2] = [0.0, 5.84962487220764160156e-01]; /* 0x3fe2b803_40000000 */ +const DP_L: [f64; 2] = [0.0, 1.35003920212974897128e-08]; /* 0x3E4CFDEB, 0x43CFD006 */ +const TWO53: f64 = 9007199254740992.0; /* 0x43400000_00000000 */ +const HUGE: f64 = 1.0e300; +const TINY: f64 = 1.0e-300; + +// poly coefs for (3/2)*(log(x)-2s-2/3*s**3: +const L1: f64 = 5.99999999999994648725e-01; /* 0x3fe33333_33333303 */ +const L2: f64 = 4.28571428578550184252e-01; /* 0x3fdb6db6_db6fabff */ +const L3: f64 = 3.33333329818377432918e-01; /* 0x3fd55555_518f264d */ +const L4: f64 = 2.72728123808534006489e-01; /* 0x3fd17460_a91d4101 */ +const L5: f64 = 2.30660745775561754067e-01; /* 0x3fcd864a_93c9db65 */ +const L6: f64 = 2.06975017800338417784e-01; /* 0x3fca7e28_4a454eef */ +const P1: f64 = 1.66666666666666019037e-01; /* 0x3fc55555_5555553e */ +const P2: f64 = -2.77777777770155933842e-03; /* 0xbf66c16c_16bebd93 */ +const P3: f64 = 6.61375632143793436117e-05; /* 0x3f11566a_af25de2c */ +const P4: f64 = -1.65339022054652515390e-06; /* 0xbebbbd41_c5d26bf1 */ +const P5: f64 = 4.13813679705723846039e-08; /* 0x3e663769_72bea4d0 */ +const LG2: f64 = 6.93147180559945286227e-01; /* 0x3fe62e42_fefa39ef */ +const LG2_H: f64 = 6.93147182464599609375e-01; /* 0x3fe62e43_00000000 */ +const LG2_L: f64 = -1.90465429995776804525e-09; /* 0xbe205c61_0ca86c39 */ +const OVT: f64 = 8.0085662595372944372e-017; /* -(1024-log2(ovfl+.5ulp)) */ +const CP: f64 = 9.61796693925975554329e-01; /* 0x3feec709_dc3a03fd =2/(3ln2) */ +const CP_H: f64 = 9.61796700954437255859e-01; /* 0x3feec709_e0000000 =(float)cp */ +const CP_L: f64 = -7.02846165095275826516e-09; /* 0xbe3e2fe0_145b01f5 =tail of cp_h*/ +const IVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547_652b82fe =1/ln2 */ +const IVLN2_H: f64 = 1.44269502162933349609e+00; /* 0x3ff71547_60000000 =24b 1/ln2*/ +const IVLN2_L: f64 = 1.92596299112661746887e-08; /* 0x3e54ae0b_f85ddf44 =1/ln2 tail*/ + +/// Returns `x` to the power of `y` (f64). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn pow(x: f64, y: f64) -> f64 { + let t1: f64; + let t2: f64; + + let (hx, lx): (i32, u32) = ((x.to_bits() >> 32) as i32, x.to_bits() as u32); + let (hy, ly): (i32, u32) = ((y.to_bits() >> 32) as i32, y.to_bits() as u32); + + let mut ix: i32 = hx & 0x7fffffff_i32; + let iy: i32 = hy & 0x7fffffff_i32; + + /* x**0 = 1, even if x is NaN */ + if ((iy as u32) | ly) == 0 { + return 1.0; + } + + /* 1**y = 1, even if y is NaN */ + if hx == 0x3ff00000 && lx == 0 { + return 1.0; + } + + /* NaN if either arg is NaN */ + if ix > 0x7ff00000 + || (ix == 0x7ff00000 && lx != 0) + || iy > 0x7ff00000 + || (iy == 0x7ff00000 && ly != 0) + { + return x + y; + } + + /* determine if y is an odd int when x < 0 + * yisint = 0 ... y is not an integer + * yisint = 1 ... y is an odd int + * yisint = 2 ... y is an even int + */ + let mut yisint: i32 = 0; + let mut k: i32; + let mut j: i32; + if hx < 0 { + if iy >= 0x43400000 { + yisint = 2; /* even integer y */ + } else if iy >= 0x3ff00000 { + k = (iy >> 20) - 0x3ff; /* exponent */ + + if k > 20 { + j = (ly >> (52 - k)) as i32; + + if (j << (52 - k)) == (ly as i32) { + yisint = 2 - (j & 1); + } + } else if ly == 0 { + j = iy >> (20 - k); + + if (j << (20 - k)) == iy { + yisint = 2 - (j & 1); + } + } + } + } + + if ly == 0 { + /* special value of y */ + if iy == 0x7ff00000 { + /* y is +-inf */ + + return if ((ix - 0x3ff00000) | (lx as i32)) == 0 { + /* (-1)**+-inf is 1 */ + 1.0 + } else if ix >= 0x3ff00000 { + /* (|x|>1)**+-inf = inf,0 */ + if hy >= 0 { y } else { 0.0 } + } else { + /* (|x|<1)**+-inf = 0,inf */ + if hy >= 0 { 0.0 } else { -y } + }; + } + + if iy == 0x3ff00000 { + /* y is +-1 */ + return if hy >= 0 { x } else { 1.0 / x }; + } + + if hy == 0x40000000 { + /* y is 2 */ + return x * x; + } + + if hy == 0x3fe00000 { + /* y is 0.5 */ + if hx >= 0 { + /* x >= +0 */ + return sqrt(x); + } + } + } + + let mut ax: f64 = fabs(x); + if lx == 0 { + /* special value of x */ + if ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000 { + /* x is +-0,+-inf,+-1 */ + let mut z: f64 = ax; + + if hy < 0 { + /* z = (1/|x|) */ + z = 1.0 / z; + } + + if hx < 0 { + if ((ix - 0x3ff00000) | yisint) == 0 { + z = (z - z) / (z - z); /* (-1)**non-int is NaN */ + } else if yisint == 1 { + z = -z; /* (x<0)**odd = -(|x|**odd) */ + } + } + + return z; + } + } + + let mut s: f64 = 1.0; /* sign of result */ + if hx < 0 { + if yisint == 0 { + /* (x<0)**(non-int) is NaN */ + return (x - x) / (x - x); + } + + if yisint == 1 { + /* (x<0)**(odd int) */ + s = -1.0; + } + } + + /* |y| is HUGE */ + if iy > 0x41e00000 { + /* if |y| > 2**31 */ + if iy > 0x43f00000 { + /* if |y| > 2**64, must o/uflow */ + if ix <= 0x3fefffff { + return if hy < 0 { HUGE * HUGE } else { TINY * TINY }; + } + + if ix >= 0x3ff00000 { + return if hy > 0 { HUGE * HUGE } else { TINY * TINY }; + } + } + + /* over/underflow if x is not close to one */ + if ix < 0x3fefffff { + return if hy < 0 { s * HUGE * HUGE } else { s * TINY * TINY }; + } + if ix > 0x3ff00000 { + return if hy > 0 { s * HUGE * HUGE } else { s * TINY * TINY }; + } + + /* now |1-x| is TINY <= 2**-20, suffice to compute + log(x) by x-x^2/2+x^3/3-x^4/4 */ + let t: f64 = ax - 1.0; /* t has 20 trailing zeros */ + let w: f64 = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25)); + let u: f64 = IVLN2_H * t; /* ivln2_h has 21 sig. bits */ + let v: f64 = t * IVLN2_L - w * IVLN2; + t1 = with_set_low_word(u + v, 0); + t2 = v - (t1 - u); + } else { + // double ss,s2,s_h,s_l,t_h,t_l; + let mut n: i32 = 0; + + if ix < 0x00100000 { + /* take care subnormal number */ + ax *= TWO53; + n -= 53; + ix = get_high_word(ax) as i32; + } + + n += (ix >> 20) - 0x3ff; + j = ix & 0x000fffff; + + /* determine interval */ + let k: i32; + ix = j | 0x3ff00000; /* normalize ix */ + if j <= 0x3988E { + /* |x|<sqrt(3/2) */ + k = 0; + } else if j < 0xBB67A { + /* |x|<sqrt(3) */ + k = 1; + } else { + k = 0; + n += 1; + ix -= 0x00100000; + } + ax = with_set_high_word(ax, ix as u32); + + /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ + let u: f64 = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */ + let v: f64 = 1.0 / (ax + i!(BP, k as usize)); + let ss: f64 = u * v; + let s_h = with_set_low_word(ss, 0); + + /* t_h=ax+bp[k] High */ + let t_h: f64 = with_set_high_word( + 0.0, + ((ix as u32 >> 1) | 0x20000000) + 0x00080000 + ((k as u32) << 18), + ); + let t_l: f64 = ax - (t_h - i!(BP, k as usize)); + let s_l: f64 = v * ((u - s_h * t_h) - s_h * t_l); + + /* compute log(ax) */ + let s2: f64 = ss * ss; + let mut r: f64 = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); + r += s_l * (s_h + ss); + let s2: f64 = s_h * s_h; + let t_h: f64 = with_set_low_word(3.0 + s2 + r, 0); + let t_l: f64 = r - ((t_h - 3.0) - s2); + + /* u+v = ss*(1+...) */ + let u: f64 = s_h * t_h; + let v: f64 = s_l * t_h + t_l * ss; + + /* 2/(3log2)*(ss+...) */ + let p_h: f64 = with_set_low_word(u + v, 0); + let p_l = v - (p_h - u); + let z_h: f64 = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */ + let z_l: f64 = CP_L * p_h + p_l * CP + i!(DP_L, k as usize); + + /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ + let t: f64 = n as f64; + t1 = with_set_low_word(((z_h + z_l) + i!(DP_H, k as usize)) + t, 0); + t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h); + } + + /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ + let y1: f64 = with_set_low_word(y, 0); + let p_l: f64 = (y - y1) * t1 + y * t2; + let mut p_h: f64 = y1 * t1; + let z: f64 = p_l + p_h; + let mut j: i32 = (z.to_bits() >> 32) as i32; + let i: i32 = z.to_bits() as i32; + // let (j, i): (i32, i32) = ((z.to_bits() >> 32) as i32, z.to_bits() as i32); + + if j >= 0x40900000 { + /* z >= 1024 */ + if (j - 0x40900000) | i != 0 { + /* if z > 1024 */ + return s * HUGE * HUGE; /* overflow */ + } + + if p_l + OVT > z - p_h { + return s * HUGE * HUGE; /* overflow */ + } + } else if (j & 0x7fffffff) >= 0x4090cc00 { + /* z <= -1075 */ + // FIXME: instead of abs(j) use unsigned j + + if (((j as u32) - 0xc090cc00) | (i as u32)) != 0 { + /* z < -1075 */ + return s * TINY * TINY; /* underflow */ + } + + if p_l <= z - p_h { + return s * TINY * TINY; /* underflow */ + } + } + + /* compute 2**(p_h+p_l) */ + let i: i32 = j & 0x7fffffff_i32; + k = (i >> 20) - 0x3ff; + let mut n: i32 = 0; + + if i > 0x3fe00000 { + /* if |z| > 0.5, set n = [z+0.5] */ + n = j + (0x00100000 >> (k + 1)); + k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */ + let t: f64 = with_set_high_word(0.0, (n & !(0x000fffff >> k)) as u32); + n = ((n & 0x000fffff) | 0x00100000) >> (20 - k); + if j < 0 { + n = -n; + } + p_h -= t; + } + + let t: f64 = with_set_low_word(p_l + p_h, 0); + let u: f64 = t * LG2_H; + let v: f64 = (p_l - (t - p_h)) * LG2 + t * LG2_L; + let mut z: f64 = u + v; + let w: f64 = v - (z - u); + let t: f64 = z * z; + let t1: f64 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); + let r: f64 = (z * t1) / (t1 - 2.0) - (w + z * w); + z = 1.0 - (r - z); + j = get_high_word(z) as i32; + j += n << 20; + + if (j >> 20) <= 0 { + /* subnormal output */ + z = scalbn(z, n); + } else { + z = with_set_high_word(z, j as u32); + } + + s * z +} + +#[cfg(test)] +mod tests { + extern crate core; + + use self::core::f64::consts::{E, PI}; + use super::pow; + + const POS_ZERO: &[f64] = &[0.0]; + const NEG_ZERO: &[f64] = &[-0.0]; + const POS_ONE: &[f64] = &[1.0]; + const NEG_ONE: &[f64] = &[-1.0]; + const POS_FLOATS: &[f64] = &[99.0 / 70.0, E, PI]; + const NEG_FLOATS: &[f64] = &[-99.0 / 70.0, -E, -PI]; + const POS_SMALL_FLOATS: &[f64] = &[(1.0 / 2.0), f64::MIN_POSITIVE, f64::EPSILON]; + const NEG_SMALL_FLOATS: &[f64] = &[-(1.0 / 2.0), -f64::MIN_POSITIVE, -f64::EPSILON]; + const POS_EVENS: &[f64] = &[2.0, 6.0, 8.0, 10.0, 22.0, 100.0, f64::MAX]; + const NEG_EVENS: &[f64] = &[f64::MIN, -100.0, -22.0, -10.0, -8.0, -6.0, -2.0]; + const POS_ODDS: &[f64] = &[3.0, 7.0]; + const NEG_ODDS: &[f64] = &[-7.0, -3.0]; + const NANS: &[f64] = &[f64::NAN]; + const POS_INF: &[f64] = &[f64::INFINITY]; + const NEG_INF: &[f64] = &[f64::NEG_INFINITY]; + + const ALL: &[&[f64]] = &[ + POS_ZERO, + NEG_ZERO, + NANS, + NEG_SMALL_FLOATS, + POS_SMALL_FLOATS, + NEG_FLOATS, + POS_FLOATS, + NEG_EVENS, + POS_EVENS, + NEG_ODDS, + POS_ODDS, + NEG_INF, + POS_INF, + NEG_ONE, + POS_ONE, + ]; + const POS: &[&[f64]] = &[POS_ZERO, POS_ODDS, POS_ONE, POS_FLOATS, POS_EVENS, POS_INF]; + const NEG: &[&[f64]] = &[NEG_ZERO, NEG_ODDS, NEG_ONE, NEG_FLOATS, NEG_EVENS, NEG_INF]; + + fn pow_test(base: f64, exponent: f64, expected: f64) { + let res = pow(base, exponent); + assert!( + if expected.is_nan() { res.is_nan() } else { pow(base, exponent) == expected }, + "{} ** {} was {} instead of {}", + base, + exponent, + res, + expected + ); + } + + fn test_sets_as_base(sets: &[&[f64]], exponent: f64, expected: f64) { + sets.iter().for_each(|s| s.iter().for_each(|val| pow_test(*val, exponent, expected))); + } + + fn test_sets_as_exponent(base: f64, sets: &[&[f64]], expected: f64) { + sets.iter().for_each(|s| s.iter().for_each(|val| pow_test(base, *val, expected))); + } + + fn test_sets(sets: &[&[f64]], computed: &dyn Fn(f64) -> f64, expected: &dyn Fn(f64) -> f64) { + sets.iter().for_each(|s| { + s.iter().for_each(|val| { + let exp = expected(*val); + let res = computed(*val); + + #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))] + let exp = force_eval!(exp); + #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))] + let res = force_eval!(res); + assert!( + if exp.is_nan() { res.is_nan() } else { exp == res }, + "test for {} was {} instead of {}", + val, + res, + exp + ); + }) + }); + } + + #[test] + fn zero_as_exponent() { + test_sets_as_base(ALL, 0.0, 1.0); + test_sets_as_base(ALL, -0.0, 1.0); + } + + #[test] + fn one_as_base() { + test_sets_as_exponent(1.0, ALL, 1.0); + } + + #[test] + fn nan_inputs() { + // NAN as the base: + // (f64::NAN ^ anything *but 0* should be f64::NAN) + test_sets_as_exponent(f64::NAN, &ALL[2..], f64::NAN); + + // f64::NAN as the exponent: + // (anything *but 1* ^ f64::NAN should be f64::NAN) + test_sets_as_base(&ALL[..(ALL.len() - 2)], f64::NAN, f64::NAN); + } + + #[test] + fn infinity_as_base() { + // Positive Infinity as the base: + // (+Infinity ^ positive anything but 0 and f64::NAN should be +Infinity) + test_sets_as_exponent(f64::INFINITY, &POS[1..], f64::INFINITY); + + // (+Infinity ^ negative anything except 0 and f64::NAN should be 0.0) + test_sets_as_exponent(f64::INFINITY, &NEG[1..], 0.0); + + // Negative Infinity as the base: + // (-Infinity ^ positive odd ints should be -Infinity) + test_sets_as_exponent(f64::NEG_INFINITY, &[POS_ODDS], f64::NEG_INFINITY); + + // (-Infinity ^ anything but odd ints should be == -0 ^ (-anything)) + // We can lump in pos/neg odd ints here because they don't seem to + // cause panics (div by zero) in release mode (I think). + test_sets(ALL, &|v: f64| pow(f64::NEG_INFINITY, v), &|v: f64| pow(-0.0, -v)); + } + + #[test] + fn infinity_as_exponent() { + // Positive/Negative base greater than 1: + // (pos/neg > 1 ^ Infinity should be Infinity - note this excludes f64::NAN as the base) + test_sets_as_base(&ALL[5..(ALL.len() - 2)], f64::INFINITY, f64::INFINITY); + + // (pos/neg > 1 ^ -Infinity should be 0.0) + test_sets_as_base(&ALL[5..ALL.len() - 2], f64::NEG_INFINITY, 0.0); + + // Positive/Negative base less than 1: + let base_below_one = &[POS_ZERO, NEG_ZERO, NEG_SMALL_FLOATS, POS_SMALL_FLOATS]; + + // (pos/neg < 1 ^ Infinity should be 0.0 - this also excludes f64::NAN as the base) + test_sets_as_base(base_below_one, f64::INFINITY, 0.0); + + // (pos/neg < 1 ^ -Infinity should be Infinity) + test_sets_as_base(base_below_one, f64::NEG_INFINITY, f64::INFINITY); + + // Positive/Negative 1 as the base: + // (pos/neg 1 ^ Infinity should be 1) + test_sets_as_base(&[NEG_ONE, POS_ONE], f64::INFINITY, 1.0); + + // (pos/neg 1 ^ -Infinity should be 1) + test_sets_as_base(&[NEG_ONE, POS_ONE], f64::NEG_INFINITY, 1.0); + } + + #[test] + fn zero_as_base() { + // Positive Zero as the base: + // (+0 ^ anything positive but 0 and f64::NAN should be +0) + test_sets_as_exponent(0.0, &POS[1..], 0.0); + + // (+0 ^ anything negative but 0 and f64::NAN should be Infinity) + // (this should panic because we're dividing by zero) + test_sets_as_exponent(0.0, &NEG[1..], f64::INFINITY); + + // Negative Zero as the base: + // (-0 ^ anything positive but 0, f64::NAN, and odd ints should be +0) + test_sets_as_exponent(-0.0, &POS[3..], 0.0); + + // (-0 ^ anything negative but 0, f64::NAN, and odd ints should be Infinity) + // (should panic because of divide by zero) + test_sets_as_exponent(-0.0, &NEG[3..], f64::INFINITY); + + // (-0 ^ positive odd ints should be -0) + test_sets_as_exponent(-0.0, &[POS_ODDS], -0.0); + + // (-0 ^ negative odd ints should be -Infinity) + // (should panic because of divide by zero) + test_sets_as_exponent(-0.0, &[NEG_ODDS], f64::NEG_INFINITY); + } + + #[test] + fn special_cases() { + // One as the exponent: + // (anything ^ 1 should be anything - i.e. the base) + test_sets(ALL, &|v: f64| pow(v, 1.0), &|v: f64| v); + + // Negative One as the exponent: + // (anything ^ -1 should be 1/anything) + test_sets(ALL, &|v: f64| pow(v, -1.0), &|v: f64| 1.0 / v); + + // Factoring -1 out: + // (negative anything ^ integer should be (-1 ^ integer) * (positive anything ^ integer)) + [POS_ZERO, NEG_ZERO, POS_ONE, NEG_ONE, POS_EVENS, NEG_EVENS].iter().for_each(|int_set| { + int_set.iter().for_each(|int| { + test_sets(ALL, &|v: f64| pow(-v, *int), &|v: f64| pow(-1.0, *int) * pow(v, *int)); + }) + }); + + // Negative base (imaginary results): + // (-anything except 0 and Infinity ^ non-integer should be NAN) + NEG[1..(NEG.len() - 1)].iter().for_each(|set| { + set.iter().for_each(|val| { + test_sets(&ALL[3..7], &|v: f64| pow(*val, v), &|_| f64::NAN); + }) + }); + } + + #[test] + fn normal_cases() { + assert_eq!(pow(2.0, 20.0), (1 << 20) as f64); + assert_eq!(pow(-1.0, 9.0), -1.0); + assert!(pow(-1.0, 2.2).is_nan()); + assert!(pow(-1.0, -1.14).is_nan()); + } +} diff --git a/library/compiler-builtins/libm/src/math/powf.rs b/library/compiler-builtins/libm/src/math/powf.rs new file mode 100644 index 00000000000..839c6c23d43 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/powf.rs @@ -0,0 +1,335 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_powf.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +use core::cmp::Ordering; + +use super::{fabsf, scalbnf, sqrtf}; + +const BP: [f32; 2] = [1.0, 1.5]; +const DP_H: [f32; 2] = [0.0, 5.84960938e-01]; /* 0x3f15c000 */ +const DP_L: [f32; 2] = [0.0, 1.56322085e-06]; /* 0x35d1cfdc */ +const TWO24: f32 = 16777216.0; /* 0x4b800000 */ +const HUGE: f32 = 1.0e30; +const TINY: f32 = 1.0e-30; +const L1: f32 = 6.0000002384e-01; /* 0x3f19999a */ +const L2: f32 = 4.2857143283e-01; /* 0x3edb6db7 */ +const L3: f32 = 3.3333334327e-01; /* 0x3eaaaaab */ +const L4: f32 = 2.7272811532e-01; /* 0x3e8ba305 */ +const L5: f32 = 2.3066075146e-01; /* 0x3e6c3255 */ +const L6: f32 = 2.0697501302e-01; /* 0x3e53f142 */ +const P1: f32 = 1.6666667163e-01; /* 0x3e2aaaab */ +const P2: f32 = -2.7777778450e-03; /* 0xbb360b61 */ +const P3: f32 = 6.6137559770e-05; /* 0x388ab355 */ +const P4: f32 = -1.6533901999e-06; /* 0xb5ddea0e */ +const P5: f32 = 4.1381369442e-08; /* 0x3331bb4c */ +const LG2: f32 = 6.9314718246e-01; /* 0x3f317218 */ +const LG2_H: f32 = 6.93145752e-01; /* 0x3f317200 */ +const LG2_L: f32 = 1.42860654e-06; /* 0x35bfbe8c */ +const OVT: f32 = 4.2995665694e-08; /* -(128-log2(ovfl+.5ulp)) */ +const CP: f32 = 9.6179670095e-01; /* 0x3f76384f =2/(3ln2) */ +const CP_H: f32 = 9.6191406250e-01; /* 0x3f764000 =12b cp */ +const CP_L: f32 = -1.1736857402e-04; /* 0xb8f623c6 =tail of cp_h */ +const IVLN2: f32 = 1.4426950216e+00; +const IVLN2_H: f32 = 1.4426879883e+00; +const IVLN2_L: f32 = 7.0526075433e-06; + +/// Returns `x` to the power of `y` (f32). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn powf(x: f32, y: f32) -> f32 { + let mut z: f32; + let mut ax: f32; + let z_h: f32; + let z_l: f32; + let mut p_h: f32; + let mut p_l: f32; + let y1: f32; + let mut t1: f32; + let t2: f32; + let mut r: f32; + let s: f32; + let mut sn: f32; + let mut t: f32; + let mut u: f32; + let mut v: f32; + let mut w: f32; + let i: i32; + let mut j: i32; + let mut k: i32; + let mut yisint: i32; + let mut n: i32; + let hx: i32; + let hy: i32; + let mut ix: i32; + let iy: i32; + let mut is: i32; + + hx = x.to_bits() as i32; + hy = y.to_bits() as i32; + + ix = hx & 0x7fffffff; + iy = hy & 0x7fffffff; + + /* x**0 = 1, even if x is NaN */ + if iy == 0 { + return 1.0; + } + + /* 1**y = 1, even if y is NaN */ + if hx == 0x3f800000 { + return 1.0; + } + + /* NaN if either arg is NaN */ + if ix > 0x7f800000 || iy > 0x7f800000 { + return x + y; + } + + /* determine if y is an odd int when x < 0 + * yisint = 0 ... y is not an integer + * yisint = 1 ... y is an odd int + * yisint = 2 ... y is an even int + */ + yisint = 0; + if hx < 0 { + if iy >= 0x4b800000 { + yisint = 2; /* even integer y */ + } else if iy >= 0x3f800000 { + k = (iy >> 23) - 0x7f; /* exponent */ + j = iy >> (23 - k); + if (j << (23 - k)) == iy { + yisint = 2 - (j & 1); + } + } + } + + /* special value of y */ + if iy == 0x7f800000 { + /* y is +-inf */ + match ix.cmp(&0x3f800000) { + /* (-1)**+-inf is 1 */ + Ordering::Equal => return 1.0, + /* (|x|>1)**+-inf = inf,0 */ + Ordering::Greater => return if hy >= 0 { y } else { 0.0 }, + /* (|x|<1)**+-inf = 0,inf */ + Ordering::Less => return if hy >= 0 { 0.0 } else { -y }, + } + } + if iy == 0x3f800000 { + /* y is +-1 */ + return if hy >= 0 { x } else { 1.0 / x }; + } + + if hy == 0x40000000 { + /* y is 2 */ + return x * x; + } + + if hy == 0x3f000000 + /* y is 0.5 */ + && hx >= 0 + { + /* x >= +0 */ + return sqrtf(x); + } + + ax = fabsf(x); + /* special value of x */ + if ix == 0x7f800000 || ix == 0 || ix == 0x3f800000 { + /* x is +-0,+-inf,+-1 */ + z = ax; + if hy < 0 { + /* z = (1/|x|) */ + z = 1.0 / z; + } + + if hx < 0 { + if ((ix - 0x3f800000) | yisint) == 0 { + z = (z - z) / (z - z); /* (-1)**non-int is NaN */ + } else if yisint == 1 { + z = -z; /* (x<0)**odd = -(|x|**odd) */ + } + } + return z; + } + + sn = 1.0; /* sign of result */ + if hx < 0 { + if yisint == 0 { + /* (x<0)**(non-int) is NaN */ + return (x - x) / (x - x); + } + + if yisint == 1 { + /* (x<0)**(odd int) */ + sn = -1.0; + } + } + + /* |y| is HUGE */ + if iy > 0x4d000000 { + /* if |y| > 2**27 */ + /* over/underflow if x is not close to one */ + if ix < 0x3f7ffff8 { + return if hy < 0 { sn * HUGE * HUGE } else { sn * TINY * TINY }; + } + + if ix > 0x3f800007 { + return if hy > 0 { sn * HUGE * HUGE } else { sn * TINY * TINY }; + } + + /* now |1-x| is TINY <= 2**-20, suffice to compute + log(x) by x-x^2/2+x^3/3-x^4/4 */ + t = ax - 1.; /* t has 20 trailing zeros */ + w = (t * t) * (0.5 - t * (0.333333333333 - t * 0.25)); + u = IVLN2_H * t; /* IVLN2_H has 16 sig. bits */ + v = t * IVLN2_L - w * IVLN2; + t1 = u + v; + is = t1.to_bits() as i32; + t1 = f32::from_bits(is as u32 & 0xfffff000); + t2 = v - (t1 - u); + } else { + let mut s2: f32; + let mut s_h: f32; + let s_l: f32; + let mut t_h: f32; + let mut t_l: f32; + + n = 0; + /* take care subnormal number */ + if ix < 0x00800000 { + ax *= TWO24; + n -= 24; + ix = ax.to_bits() as i32; + } + n += ((ix) >> 23) - 0x7f; + j = ix & 0x007fffff; + /* determine interval */ + ix = j | 0x3f800000; /* normalize ix */ + if j <= 0x1cc471 { + /* |x|<sqrt(3/2) */ + k = 0; + } else if j < 0x5db3d7 { + /* |x|<sqrt(3) */ + k = 1; + } else { + k = 0; + n += 1; + ix -= 0x00800000; + } + ax = f32::from_bits(ix as u32); + + /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ + u = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */ + v = 1.0 / (ax + i!(BP, k as usize)); + s = u * v; + s_h = s; + is = s_h.to_bits() as i32; + s_h = f32::from_bits(is as u32 & 0xfffff000); + /* t_h=ax+bp[k] High */ + is = (((ix as u32 >> 1) & 0xfffff000) | 0x20000000) as i32; + t_h = f32::from_bits(is as u32 + 0x00400000 + ((k as u32) << 21)); + t_l = ax - (t_h - i!(BP, k as usize)); + s_l = v * ((u - s_h * t_h) - s_h * t_l); + /* compute log(ax) */ + s2 = s * s; + r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); + r += s_l * (s_h + s); + s2 = s_h * s_h; + t_h = 3.0 + s2 + r; + is = t_h.to_bits() as i32; + t_h = f32::from_bits(is as u32 & 0xfffff000); + t_l = r - ((t_h - 3.0) - s2); + /* u+v = s*(1+...) */ + u = s_h * t_h; + v = s_l * t_h + t_l * s; + /* 2/(3log2)*(s+...) */ + p_h = u + v; + is = p_h.to_bits() as i32; + p_h = f32::from_bits(is as u32 & 0xfffff000); + p_l = v - (p_h - u); + z_h = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */ + z_l = CP_L * p_h + p_l * CP + i!(DP_L, k as usize); + /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ + t = n as f32; + t1 = ((z_h + z_l) + i!(DP_H, k as usize)) + t; + is = t1.to_bits() as i32; + t1 = f32::from_bits(is as u32 & 0xfffff000); + t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h); + }; + + /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ + is = y.to_bits() as i32; + y1 = f32::from_bits(is as u32 & 0xfffff000); + p_l = (y - y1) * t1 + y * t2; + p_h = y1 * t1; + z = p_l + p_h; + j = z.to_bits() as i32; + if j > 0x43000000 { + /* if z > 128 */ + return sn * HUGE * HUGE; /* overflow */ + } else if j == 0x43000000 { + /* if z == 128 */ + if p_l + OVT > z - p_h { + return sn * HUGE * HUGE; /* overflow */ + } + } else if (j & 0x7fffffff) > 0x43160000 { + /* z < -150 */ + // FIXME: check should be (uint32_t)j > 0xc3160000 + return sn * TINY * TINY; /* underflow */ + } else if j as u32 == 0xc3160000 + /* z == -150 */ + && p_l <= z - p_h + { + return sn * TINY * TINY; /* underflow */ + } + + /* + * compute 2**(p_h+p_l) + */ + i = j & 0x7fffffff; + k = (i >> 23) - 0x7f; + n = 0; + if i > 0x3f000000 { + /* if |z| > 0.5, set n = [z+0.5] */ + n = j + (0x00800000 >> (k + 1)); + k = ((n & 0x7fffffff) >> 23) - 0x7f; /* new k for n */ + t = f32::from_bits(n as u32 & !(0x007fffff >> k)); + n = ((n & 0x007fffff) | 0x00800000) >> (23 - k); + if j < 0 { + n = -n; + } + p_h -= t; + } + t = p_l + p_h; + is = t.to_bits() as i32; + t = f32::from_bits(is as u32 & 0xffff8000); + u = t * LG2_H; + v = (p_l - (t - p_h)) * LG2 + t * LG2_L; + z = u + v; + w = v - (z - u); + t = z * z; + t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); + r = (z * t1) / (t1 - 2.0) - (w + z * w); + z = 1.0 - (r - z); + j = z.to_bits() as i32; + j += n << 23; + if (j >> 23) <= 0 { + /* subnormal output */ + z = scalbnf(z, n); + } else { + z = f32::from_bits(j as u32); + } + sn * z +} diff --git a/library/compiler-builtins/libm/src/math/rem_pio2.rs b/library/compiler-builtins/libm/src/math/rem_pio2.rs new file mode 100644 index 00000000000..917e90819a5 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/rem_pio2.rs @@ -0,0 +1,223 @@ +// origin: FreeBSD /usr/src/lib/msun/src/e_rem_pio2.c +// +// ==================================================== +// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. +// +// Developed at SunPro, a Sun Microsystems, Inc. business. +// Permission to use, copy, modify, and distribute this +// software is freely granted, provided that this notice +// is preserved. +// ==================================================== +// +// Optimized by Bruce D. Evans. */ +use super::rem_pio2_large; + +// #if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1 +// #define EPS DBL_EPSILON +const EPS: f64 = 2.2204460492503131e-16; +// #elif FLT_EVAL_METHOD==2 +// #define EPS LDBL_EPSILON +// #endif + +// TODO: Support FLT_EVAL_METHOD? + +const TO_INT: f64 = 1.5 / EPS; +/// 53 bits of 2/pi +const INV_PIO2: f64 = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */ +/// first 33 bits of pi/2 +const PIO2_1: f64 = 1.57079632673412561417e+00; /* 0x3FF921FB, 0x54400000 */ +/// pi/2 - PIO2_1 +const PIO2_1T: f64 = 6.07710050650619224932e-11; /* 0x3DD0B461, 0x1A626331 */ +/// second 33 bits of pi/2 +const PIO2_2: f64 = 6.07710050630396597660e-11; /* 0x3DD0B461, 0x1A600000 */ +/// pi/2 - (PIO2_1+PIO2_2) +const PIO2_2T: f64 = 2.02226624879595063154e-21; /* 0x3BA3198A, 0x2E037073 */ +/// third 33 bits of pi/2 +const PIO2_3: f64 = 2.02226624871116645580e-21; /* 0x3BA3198A, 0x2E000000 */ +/// pi/2 - (PIO2_1+PIO2_2+PIO2_3) +const PIO2_3T: f64 = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */ + +// return the remainder of x rem pi/2 in y[0]+y[1] +// use rem_pio2_large() for large x +// +// caller must handle the case when reduction is not needed: |x| ~<= pi/4 */ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub(crate) fn rem_pio2(x: f64) -> (i32, f64, f64) { + let x1p24 = f64::from_bits(0x4170000000000000); + + let sign = (f64::to_bits(x) >> 63) as i32; + let ix = (f64::to_bits(x) >> 32) as u32 & 0x7fffffff; + + fn medium(x: f64, ix: u32) -> (i32, f64, f64) { + /* rint(x/(pi/2)), Assume round-to-nearest. */ + let tmp = x * INV_PIO2 + TO_INT; + // force rounding of tmp to it's storage format on x87 to avoid + // excess precision issues. + #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))] + let tmp = force_eval!(tmp); + let f_n = tmp - TO_INT; + let n = f_n as i32; + let mut r = x - f_n * PIO2_1; + let mut w = f_n * PIO2_1T; /* 1st round, good to 85 bits */ + let mut y0 = r - w; + let ui = f64::to_bits(y0); + let ey = (ui >> 52) as i32 & 0x7ff; + let ex = (ix >> 20) as i32; + if ex - ey > 16 { + /* 2nd round, good to 118 bits */ + let t = r; + w = f_n * PIO2_2; + r = t - w; + w = f_n * PIO2_2T - ((t - r) - w); + y0 = r - w; + let ey = (f64::to_bits(y0) >> 52) as i32 & 0x7ff; + if ex - ey > 49 { + /* 3rd round, good to 151 bits, covers all cases */ + let t = r; + w = f_n * PIO2_3; + r = t - w; + w = f_n * PIO2_3T - ((t - r) - w); + y0 = r - w; + } + } + let y1 = (r - y0) - w; + (n, y0, y1) + } + + if ix <= 0x400f6a7a { + /* |x| ~<= 5pi/4 */ + if (ix & 0xfffff) == 0x921fb { + /* |x| ~= pi/2 or 2pi/2 */ + return medium(x, ix); /* cancellation -- use medium case */ + } + if ix <= 0x4002d97c { + /* |x| ~<= 3pi/4 */ + if sign == 0 { + let z = x - PIO2_1; /* one round good to 85 bits */ + let y0 = z - PIO2_1T; + let y1 = (z - y0) - PIO2_1T; + return (1, y0, y1); + } else { + let z = x + PIO2_1; + let y0 = z + PIO2_1T; + let y1 = (z - y0) + PIO2_1T; + return (-1, y0, y1); + } + } else if sign == 0 { + let z = x - 2.0 * PIO2_1; + let y0 = z - 2.0 * PIO2_1T; + let y1 = (z - y0) - 2.0 * PIO2_1T; + return (2, y0, y1); + } else { + let z = x + 2.0 * PIO2_1; + let y0 = z + 2.0 * PIO2_1T; + let y1 = (z - y0) + 2.0 * PIO2_1T; + return (-2, y0, y1); + } + } + if ix <= 0x401c463b { + /* |x| ~<= 9pi/4 */ + if ix <= 0x4015fdbc { + /* |x| ~<= 7pi/4 */ + if ix == 0x4012d97c { + /* |x| ~= 3pi/2 */ + return medium(x, ix); + } + if sign == 0 { + let z = x - 3.0 * PIO2_1; + let y0 = z - 3.0 * PIO2_1T; + let y1 = (z - y0) - 3.0 * PIO2_1T; + return (3, y0, y1); + } else { + let z = x + 3.0 * PIO2_1; + let y0 = z + 3.0 * PIO2_1T; + let y1 = (z - y0) + 3.0 * PIO2_1T; + return (-3, y0, y1); + } + } else { + if ix == 0x401921fb { + /* |x| ~= 4pi/2 */ + return medium(x, ix); + } + if sign == 0 { + let z = x - 4.0 * PIO2_1; + let y0 = z - 4.0 * PIO2_1T; + let y1 = (z - y0) - 4.0 * PIO2_1T; + return (4, y0, y1); + } else { + let z = x + 4.0 * PIO2_1; + let y0 = z + 4.0 * PIO2_1T; + let y1 = (z - y0) + 4.0 * PIO2_1T; + return (-4, y0, y1); + } + } + } + if ix < 0x413921fb { + /* |x| ~< 2^20*(pi/2), medium size */ + return medium(x, ix); + } + /* + * all other (large) arguments + */ + if ix >= 0x7ff00000 { + /* x is inf or NaN */ + let y0 = x - x; + let y1 = y0; + return (0, y0, y1); + } + /* set z = scalbn(|x|,-ilogb(x)+23) */ + let mut ui = f64::to_bits(x); + ui &= (!1) >> 12; + ui |= (0x3ff + 23) << 52; + let mut z = f64::from_bits(ui); + let mut tx = [0.0; 3]; + for i in 0..2 { + i!(tx,i, =, z as i32 as f64); + z = (z - i!(tx, i)) * x1p24; + } + i!(tx,2, =, z); + /* skip zero terms, first term is non-zero */ + let mut i = 2; + while i != 0 && i!(tx, i) == 0.0 { + i -= 1; + } + let mut ty = [0.0; 3]; + let n = rem_pio2_large(&tx[..=i], &mut ty, ((ix as i32) >> 20) - (0x3ff + 23), 1); + if sign != 0 { + return (-n, -i!(ty, 0), -i!(ty, 1)); + } + (n, i!(ty, 0), i!(ty, 1)) +} + +#[cfg(test)] +mod tests { + use super::rem_pio2; + + #[test] + // FIXME(correctness): inaccurate results on i586 + #[cfg_attr(all(target_arch = "x86", not(target_feature = "sse")), ignore)] + fn test_near_pi() { + let arg = 3.141592025756836; + let arg = force_eval!(arg); + assert_eq!(rem_pio2(arg), (2, -6.278329573009626e-7, -2.1125998133974653e-23)); + let arg = 3.141592033207416; + let arg = force_eval!(arg); + assert_eq!(rem_pio2(arg), (2, -6.20382377148128e-7, -2.1125998133974653e-23)); + let arg = 3.141592144966125; + let arg = force_eval!(arg); + assert_eq!(rem_pio2(arg), (2, -5.086236681942706e-7, -2.1125998133974653e-23)); + let arg = 3.141592979431152; + let arg = force_eval!(arg); + assert_eq!(rem_pio2(arg), (2, 3.2584135866119817e-7, -2.1125998133974653e-23)); + } + + #[test] + fn test_overflow_b9b847() { + let _ = rem_pio2(-3054214.5490637687); + } + + #[test] + fn test_overflow_4747b9() { + let _ = rem_pio2(917340800458.2274); + } +} diff --git a/library/compiler-builtins/libm/src/math/rem_pio2_large.rs b/library/compiler-builtins/libm/src/math/rem_pio2_large.rs new file mode 100644 index 00000000000..6d679bbe98c --- /dev/null +++ b/library/compiler-builtins/libm/src/math/rem_pio2_large.rs @@ -0,0 +1,468 @@ +#![allow(unused_unsafe)] +/* origin: FreeBSD /usr/src/lib/msun/src/k_rem_pio2.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +use super::{floor, scalbn}; + +// initial value for jk +const INIT_JK: [usize; 4] = [3, 4, 4, 6]; + +// Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi +// +// integer array, contains the (24*i)-th to (24*i+23)-th +// bit of 2/pi after binary point. The corresponding +// floating value is +// +// ipio2[i] * 2^(-24(i+1)). +// +// NB: This table must have at least (e0-3)/24 + jk terms. +// For quad precision (e0 <= 16360, jk = 6), this is 686. +#[cfg(any(target_pointer_width = "32", target_pointer_width = "16"))] +const IPIO2: [i32; 66] = [ + 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, 0x439041, 0xFE5163, + 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, + 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C, + 0x845F8B, 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, + 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 0xF17B3D, 0x0739F7, 0x8A5292, + 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, + 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA, + 0x73A8C9, 0x60E27B, 0xC08C6B, +]; + +#[cfg(target_pointer_width = "64")] +const IPIO2: [i32; 690] = [ + 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, 0x439041, 0xFE5163, + 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, + 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C, + 0x845F8B, 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, + 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 0xF17B3D, 0x0739F7, 0x8A5292, + 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, + 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA, + 0x73A8C9, 0x60E27B, 0xC08C6B, 0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6, + 0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2, 0xDE4F98, 0x327DBB, 0xC33D26, + 0xEF6B1E, 0x5EF89F, 0x3A1F35, 0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30, + 0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C, 0x467D86, 0x2D71E3, 0x9AC69B, + 0x006233, 0x7CD2B4, 0x97A7B4, 0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770, + 0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7, 0xCB2324, 0x778AD6, 0x23545A, + 0xB91F00, 0x1B0AF1, 0xDFCE19, 0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522, + 0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16, 0xDE3B58, 0x929BDE, 0x2822D2, + 0xE88628, 0x4D58E2, 0x32CAC6, 0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E, + 0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48, 0xD36710, 0xD8DDAA, 0x425FAE, + 0xCE616A, 0xA4280A, 0xB499D3, 0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF, + 0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55, 0x36D9CA, 0xD2A828, 0x8D61C2, + 0x77C912, 0x142604, 0x9B4612, 0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929, + 0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC, 0xC3E7B3, 0x28F8C7, 0x940593, + 0x3E71C1, 0xB3092E, 0xF3450B, 0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C, + 0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4, 0x9794E8, 0x84E6E2, 0x973199, + 0x6BED88, 0x365F5F, 0x0EFDBB, 0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC, + 0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C, 0x90AA47, 0x02E774, 0x24D6BD, + 0xA67DF7, 0x72486E, 0xEF169F, 0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5, + 0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437, 0x10D86D, 0x324832, 0x754C5B, + 0xD4714E, 0x6E5445, 0xC1090B, 0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA, + 0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD, 0x6AE290, 0x89D988, 0x50722C, + 0xBEA404, 0x940777, 0x7030F3, 0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3, + 0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717, 0x3BDF08, 0x2B3715, 0xA0805C, + 0x93805A, 0x921110, 0xD8E80F, 0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61, + 0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB, 0xAA140A, 0x2F2689, 0x768364, + 0x333B09, 0x1A940E, 0xAA3A51, 0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0, + 0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C, 0x5BC3D8, 0xC492F5, 0x4BADC6, + 0xA5CA4E, 0xCD37A7, 0x36A9E6, 0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC, + 0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED, 0x306529, 0xBF5657, 0x3AFF47, + 0xB9F96A, 0xF3BE75, 0xDF9328, 0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D, + 0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0, 0xA8654F, 0xA5C1D2, 0x0F3F0B, + 0xCD785B, 0x76F923, 0x048B7B, 0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4, + 0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3, 0xDA4886, 0xA05DF7, 0xF480C6, + 0x2FF0AC, 0x9AECDD, 0xBC5C3F, 0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD, + 0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B, 0x2A1216, 0x2DB7DC, 0xFDE5FA, + 0xFEDB89, 0xFDBE89, 0x6C76E4, 0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761, + 0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31, 0x48D784, 0x16DF30, 0x432DC7, + 0x356125, 0xCE70C9, 0xB8CB30, 0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262, + 0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E, 0xC4F133, 0x5F6E13, 0xE4305D, + 0xA92E85, 0xC3B21D, 0x3632A1, 0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C, + 0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4, 0xCBDA11, 0xD0BE7D, 0xC1DB9B, + 0xBD17AB, 0x81A2CA, 0x5C6A08, 0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196, + 0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9, 0x4F6A68, 0xA82A4A, 0x5AC44F, + 0xBCF82D, 0x985AD7, 0x95C7F4, 0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC, + 0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C, 0xD0C0B2, 0x485551, 0x0EFB1E, + 0xC37295, 0x3B06A3, 0x3540C0, 0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C, + 0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0, 0x3C3ABA, 0x461846, 0x5F7555, + 0xF5BDD2, 0xC6926E, 0x5D2EAC, 0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22, + 0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893, 0x745D7C, 0xB2AD6B, 0x9D6ECD, + 0x7B723E, 0x6A11C6, 0xA9CFF7, 0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5, + 0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F, 0xBEFDFD, 0xEF4556, 0x367ED9, + 0x13D9EC, 0xB9BA8B, 0xFC97C4, 0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF, + 0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B, 0x9C2A3E, 0xCC5F11, 0x4A0BFD, + 0xFBF4E1, 0x6D3B8E, 0x2C86E2, 0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138, + 0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E, 0xCC2254, 0xDC552A, 0xD6C6C0, + 0x96190B, 0xB8701A, 0x649569, 0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34, + 0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9, 0x9B5861, 0xBC57E1, 0xC68351, + 0x103ED8, 0x4871DD, 0xDD1C2D, 0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F, + 0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855, 0x382682, 0x9BE7CA, 0xA40D51, + 0xB13399, 0x0ED7A9, 0x480569, 0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B, + 0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE, 0x5FD45E, 0xA4677B, 0x7AACBA, + 0xA2F655, 0x23882B, 0x55BA41, 0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49, + 0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F, 0xAE5ADB, 0x86C547, 0x624385, + 0x3B8621, 0x94792C, 0x876110, 0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8, + 0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365, 0xB1933D, 0x0B7CBD, 0xDC51A4, + 0x63DD27, 0xDDE169, 0x19949A, 0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270, + 0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5, 0x4D7E6F, 0x5119A5, 0xABF9B5, + 0xD6DF82, 0x61DD96, 0x023616, 0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B, + 0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0, +]; + +const PIO2: [f64; 8] = [ + 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ + 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ + 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ + 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ + 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ + 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ + 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ + 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ +]; + +// fn rem_pio2_large(x : &[f64], y : &mut [f64], e0 : i32, prec : usize) -> i32 +// +// Input parameters: +// x[] The input value (must be positive) is broken into nx +// pieces of 24-bit integers in double precision format. +// x[i] will be the i-th 24 bit of x. The scaled exponent +// of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 +// match x's up to 24 bits. +// +// Example of breaking a double positive z into x[0]+x[1]+x[2]: +// e0 = ilogb(z)-23 +// z = scalbn(z,-e0) +// for i = 0,1,2 +// x[i] = floor(z) +// z = (z-x[i])*2**24 +// +// y[] ouput result in an array of double precision numbers. +// The dimension of y[] is: +// 24-bit precision 1 +// 53-bit precision 2 +// 64-bit precision 2 +// 113-bit precision 3 +// The actual value is the sum of them. Thus for 113-bit +// precison, one may have to do something like: +// +// long double t,w,r_head, r_tail; +// t = (long double)y[2] + (long double)y[1]; +// w = (long double)y[0]; +// r_head = t+w; +// r_tail = w - (r_head - t); +// +// e0 The exponent of x[0]. Must be <= 16360 or you need to +// expand the ipio2 table. +// +// prec an integer indicating the precision: +// 0 24 bits (single) +// 1 53 bits (double) +// 2 64 bits (extended) +// 3 113 bits (quad) +// +// Here is the description of some local variables: +// +// jk jk+1 is the initial number of terms of ipio2[] needed +// in the computation. The minimum and recommended value +// for jk is 3,4,4,6 for single, double, extended, and quad. +// jk+1 must be 2 larger than you might expect so that our +// recomputation test works. (Up to 24 bits in the integer +// part (the 24 bits of it that we compute) and 23 bits in +// the fraction part may be lost to cancelation before we +// recompute.) +// +// jz local integer variable indicating the number of +// terms of ipio2[] used. +// +// jx nx - 1 +// +// jv index for pointing to the suitable ipio2[] for the +// computation. In general, we want +// ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 +// is an integer. Thus +// e0-3-24*jv >= 0 or (e0-3)/24 >= jv +// Hence jv = max(0,(e0-3)/24). +// +// jp jp+1 is the number of terms in PIo2[] needed, jp = jk. +// +// q[] double array with integral value, representing the +// 24-bits chunk of the product of x and 2/pi. +// +// q0 the corresponding exponent of q[0]. Note that the +// exponent for q[i] would be q0-24*i. +// +// PIo2[] double precision array, obtained by cutting pi/2 +// into 24 bits chunks. +// +// f[] ipio2[] in floating point +// +// iq[] integer array by breaking up q[] in 24-bits chunk. +// +// fq[] final product of x*(2/pi) in fq[0],..,fq[jk] +// +// ih integer. If >0 it indicates q[] is >= 0.5, hence +// it also indicates the *sign* of the result. + +/// Return the last three digits of N with y = x - N*pi/2 +/// so that |y| < pi/2. +/// +/// The method is to compute the integer (mod 8) and fraction parts of +/// (2/pi)*x without doing the full multiplication. In general we +/// skip the part of the product that are known to be a huge integer ( +/// more accurately, = 0 mod 8 ). Thus the number of operations are +/// independent of the exponent of the input. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub(crate) fn rem_pio2_large(x: &[f64], y: &mut [f64], e0: i32, prec: usize) -> i32 { + let x1p24 = f64::from_bits(0x4170000000000000); // 0x1p24 === 2 ^ 24 + let x1p_24 = f64::from_bits(0x3e70000000000000); // 0x1p_24 === 2 ^ (-24) + + if cfg!(target_pointer_width = "64") { + debug_assert!(e0 <= 16360); + } + + let nx = x.len(); + + let mut fw: f64; + let mut n: i32; + let mut ih: i32; + let mut z: f64; + let mut f: [f64; 20] = [0.; 20]; + let mut fq: [f64; 20] = [0.; 20]; + let mut q: [f64; 20] = [0.; 20]; + let mut iq: [i32; 20] = [0; 20]; + + /* initialize jk*/ + let jk = i!(INIT_JK, prec); + let jp = jk; + + /* determine jx,jv,q0, note that 3>q0 */ + let jx = nx - 1; + let mut jv = div!(e0 - 3, 24); + if jv < 0 { + jv = 0; + } + let mut q0 = e0 - 24 * (jv + 1); + let jv = jv as usize; + + /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ + let mut j = (jv as i32) - (jx as i32); + let m = jx + jk; + for i in 0..=m { + i!(f, i, =, if j < 0 { + 0. + } else { + i!(IPIO2, j as usize) as f64 + }); + j += 1; + } + + /* compute q[0],q[1],...q[jk] */ + for i in 0..=jk { + fw = 0f64; + for j in 0..=jx { + fw += i!(x, j) * i!(f, jx + i - j); + } + i!(q, i, =, fw); + } + + let mut jz = jk; + + 'recompute: loop { + /* distill q[] into iq[] reversingly */ + let mut i = 0i32; + z = i!(q, jz); + for j in (1..=jz).rev() { + fw = (x1p_24 * z) as i32 as f64; + i!(iq, i as usize, =, (z - x1p24 * fw) as i32); + z = i!(q, j - 1) + fw; + i += 1; + } + + /* compute n */ + z = scalbn(z, q0); /* actual value of z */ + z -= 8.0 * floor(z * 0.125); /* trim off integer >= 8 */ + n = z as i32; + z -= n as f64; + ih = 0; + if q0 > 0 { + /* need iq[jz-1] to determine n */ + i = i!(iq, jz - 1) >> (24 - q0); + n += i; + i!(iq, jz - 1, -=, i << (24 - q0)); + ih = i!(iq, jz - 1) >> (23 - q0); + } else if q0 == 0 { + ih = i!(iq, jz - 1) >> 23; + } else if z >= 0.5 { + ih = 2; + } + + if ih > 0 { + /* q > 0.5 */ + n += 1; + let mut carry = 0i32; + for i in 0..jz { + /* compute 1-q */ + let j = i!(iq, i); + if carry == 0 { + if j != 0 { + carry = 1; + i!(iq, i, =, 0x1000000 - j); + } + } else { + i!(iq, i, =, 0xffffff - j); + } + } + if q0 > 0 { + /* rare case: chance is 1 in 12 */ + match q0 { + 1 => { + i!(iq, jz - 1, &=, 0x7fffff); + } + 2 => { + i!(iq, jz - 1, &=, 0x3fffff); + } + _ => {} + } + } + if ih == 2 { + z = 1. - z; + if carry != 0 { + z -= scalbn(1., q0); + } + } + } + + /* check if recomputation is needed */ + if z == 0. { + let mut j = 0; + for i in (jk..=jz - 1).rev() { + j |= i!(iq, i); + } + if j == 0 { + /* need recomputation */ + let mut k = 1; + while i!(iq, jk - k, ==, 0) { + k += 1; /* k = no. of terms needed */ + } + + for i in (jz + 1)..=(jz + k) { + /* add q[jz+1] to q[jz+k] */ + i!(f, jx + i, =, i!(IPIO2, jv + i) as f64); + fw = 0f64; + for j in 0..=jx { + fw += i!(x, j) * i!(f, jx + i - j); + } + i!(q, i, =, fw); + } + jz += k; + continue 'recompute; + } + } + + break; + } + + /* chop off zero terms */ + if z == 0. { + jz -= 1; + q0 -= 24; + while i!(iq, jz) == 0 { + jz -= 1; + q0 -= 24; + } + } else { + /* break z into 24-bit if necessary */ + z = scalbn(z, -q0); + if z >= x1p24 { + fw = (x1p_24 * z) as i32 as f64; + i!(iq, jz, =, (z - x1p24 * fw) as i32); + jz += 1; + q0 += 24; + i!(iq, jz, =, fw as i32); + } else { + i!(iq, jz, =, z as i32); + } + } + + /* convert integer "bit" chunk to floating-point value */ + fw = scalbn(1., q0); + for i in (0..=jz).rev() { + i!(q, i, =, fw * (i!(iq, i) as f64)); + fw *= x1p_24; + } + + /* compute PIo2[0,...,jp]*q[jz,...,0] */ + for i in (0..=jz).rev() { + fw = 0f64; + let mut k = 0; + while (k <= jp) && (k <= jz - i) { + fw += i!(PIO2, k) * i!(q, i + k); + k += 1; + } + i!(fq, jz - i, =, fw); + } + + /* compress fq[] into y[] */ + match prec { + 0 => { + fw = 0f64; + for i in (0..=jz).rev() { + fw += i!(fq, i); + } + i!(y, 0, =, if ih == 0 { fw } else { -fw }); + } + 1 | 2 => { + fw = 0f64; + for i in (0..=jz).rev() { + fw += i!(fq, i); + } + i!(y, 0, =, if ih == 0 { fw } else { -fw }); + fw = i!(fq, 0) - fw; + for i in 1..=jz { + fw += i!(fq, i); + } + i!(y, 1, =, if ih == 0 { fw } else { -fw }); + } + 3 => { + /* painful */ + for i in (1..=jz).rev() { + fw = i!(fq, i - 1) + i!(fq, i); + i!(fq, i, +=, i!(fq, i - 1) - fw); + i!(fq, i - 1, =, fw); + } + for i in (2..=jz).rev() { + fw = i!(fq, i - 1) + i!(fq, i); + i!(fq, i, +=, i!(fq, i - 1) - fw); + i!(fq, i - 1, =, fw); + } + fw = 0f64; + for i in (2..=jz).rev() { + fw += i!(fq, i); + } + if ih == 0 { + i!(y, 0, =, i!(fq, 0)); + i!(y, 1, =, i!(fq, 1)); + i!(y, 2, =, fw); + } else { + i!(y, 0, =, -i!(fq, 0)); + i!(y, 1, =, -i!(fq, 1)); + i!(y, 2, =, -fw); + } + } + #[cfg(debug_assertions)] + _ => unreachable!(), + #[cfg(not(debug_assertions))] + _ => {} + } + n & 7 +} diff --git a/library/compiler-builtins/libm/src/math/rem_pio2f.rs b/library/compiler-builtins/libm/src/math/rem_pio2f.rs new file mode 100644 index 00000000000..3c658fe3dbc --- /dev/null +++ b/library/compiler-builtins/libm/src/math/rem_pio2f.rs @@ -0,0 +1,67 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_rem_pio2f.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + * Debugged and optimized by Bruce D. Evans. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +use core::f64; + +use super::rem_pio2_large; + +const TOINT: f64 = 1.5 / f64::EPSILON; + +/// 53 bits of 2/pi +const INV_PIO2: f64 = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */ +/// first 25 bits of pi/2 +const PIO2_1: f64 = 1.57079631090164184570e+00; /* 0x3FF921FB, 0x50000000 */ +/// pi/2 - pio2_1 +const PIO2_1T: f64 = 1.58932547735281966916e-08; /* 0x3E5110b4, 0x611A6263 */ + +/// Return the remainder of x rem pi/2 in *y +/// +/// use double precision for everything except passing x +/// use __rem_pio2_large() for large x +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub(crate) fn rem_pio2f(x: f32) -> (i32, f64) { + let x64 = x as f64; + + let mut tx: [f64; 1] = [0.]; + let mut ty: [f64; 1] = [0.]; + + let ix = x.to_bits() & 0x7fffffff; + /* 25+53 bit pi is good enough for medium size */ + if ix < 0x4dc90fdb { + /* |x| ~< 2^28*(pi/2), medium size */ + /* Use a specialized rint() to get fn. Assume round-to-nearest. */ + let tmp = x64 * INV_PIO2 + TOINT; + // force rounding of tmp to it's storage format on x87 to avoid + // excess precision issues. + #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))] + let tmp = force_eval!(tmp); + let f_n = tmp - TOINT; + return (f_n as i32, x64 - f_n * PIO2_1 - f_n * PIO2_1T); + } + if ix >= 0x7f800000 { + /* x is inf or NaN */ + return (0, x64 - x64); + } + /* scale x into [2^23, 2^24-1] */ + let sign = (x.to_bits() >> 31) != 0; + let e0 = ((ix >> 23) - (0x7f + 23)) as i32; /* e0 = ilogb(|x|)-23, positive */ + tx[0] = f32::from_bits(ix - (e0 << 23) as u32) as f64; + let n = rem_pio2_large(&tx, &mut ty, e0, 0); + if sign { + return (-n, -ty[0]); + } + (n, ty[0]) +} diff --git a/library/compiler-builtins/libm/src/math/remainder.rs b/library/compiler-builtins/libm/src/math/remainder.rs new file mode 100644 index 00000000000..9e966c9ed7f --- /dev/null +++ b/library/compiler-builtins/libm/src/math/remainder.rs @@ -0,0 +1,5 @@ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn remainder(x: f64, y: f64) -> f64 { + let (result, _) = super::remquo(x, y); + result +} diff --git a/library/compiler-builtins/libm/src/math/remainderf.rs b/library/compiler-builtins/libm/src/math/remainderf.rs new file mode 100644 index 00000000000..b1407cf2ace --- /dev/null +++ b/library/compiler-builtins/libm/src/math/remainderf.rs @@ -0,0 +1,5 @@ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn remainderf(x: f32, y: f32) -> f32 { + let (result, _) = super::remquof(x, y); + result +} diff --git a/library/compiler-builtins/libm/src/math/remquo.rs b/library/compiler-builtins/libm/src/math/remquo.rs new file mode 100644 index 00000000000..4c11e848746 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/remquo.rs @@ -0,0 +1,106 @@ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn remquo(mut x: f64, mut y: f64) -> (f64, i32) { + let ux: u64 = x.to_bits(); + let mut uy: u64 = y.to_bits(); + let mut ex = ((ux >> 52) & 0x7ff) as i32; + let mut ey = ((uy >> 52) & 0x7ff) as i32; + let sx = (ux >> 63) != 0; + let sy = (uy >> 63) != 0; + let mut q: u32; + let mut i: u64; + let mut uxi: u64 = ux; + + if (uy << 1) == 0 || y.is_nan() || ex == 0x7ff { + return ((x * y) / (x * y), 0); + } + if (ux << 1) == 0 { + return (x, 0); + } + + /* normalize x and y */ + if ex == 0 { + i = uxi << 12; + while (i >> 63) == 0 { + ex -= 1; + i <<= 1; + } + uxi <<= -ex + 1; + } else { + uxi &= (!0) >> 12; + uxi |= 1 << 52; + } + if ey == 0 { + i = uy << 12; + while (i >> 63) == 0 { + ey -= 1; + i <<= 1; + } + uy <<= -ey + 1; + } else { + uy &= (!0) >> 12; + uy |= 1 << 52; + } + + q = 0; + + if ex + 1 != ey { + if ex < ey { + return (x, 0); + } + /* x mod y */ + while ex > ey { + i = uxi.wrapping_sub(uy); + if (i >> 63) == 0 { + uxi = i; + q += 1; + } + uxi <<= 1; + q <<= 1; + ex -= 1; + } + i = uxi.wrapping_sub(uy); + if (i >> 63) == 0 { + uxi = i; + q += 1; + } + if uxi == 0 { + ex = -60; + } else { + while (uxi >> 52) == 0 { + uxi <<= 1; + ex -= 1; + } + } + } + + /* scale result and decide between |x| and |x|-|y| */ + if ex > 0 { + uxi -= 1 << 52; + uxi |= (ex as u64) << 52; + } else { + uxi >>= -ex + 1; + } + x = f64::from_bits(uxi); + if sy { + y = -y; + } + if ex == ey || (ex + 1 == ey && (2.0 * x > y || (2.0 * x == y && (q % 2) != 0))) { + x -= y; + // TODO: this matches musl behavior, but it is incorrect + q = q.wrapping_add(1); + } + q &= 0x7fffffff; + let quo = if sx ^ sy { -(q as i32) } else { q as i32 }; + if sx { (-x, quo) } else { (x, quo) } +} + +#[cfg(test)] +mod tests { + use super::remquo; + + #[test] + fn test_q_overflow() { + // 0xc000000000000001, 0x04c0000000000004 + let _ = remquo(-2.0000000000000004, 8.406091369059082e-286); + } +} diff --git a/library/compiler-builtins/libm/src/math/remquof.rs b/library/compiler-builtins/libm/src/math/remquof.rs new file mode 100644 index 00000000000..b0e85ca6611 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/remquof.rs @@ -0,0 +1,93 @@ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn remquof(mut x: f32, mut y: f32) -> (f32, i32) { + let ux: u32 = x.to_bits(); + let mut uy: u32 = y.to_bits(); + let mut ex = ((ux >> 23) & 0xff) as i32; + let mut ey = ((uy >> 23) & 0xff) as i32; + let sx = (ux >> 31) != 0; + let sy = (uy >> 31) != 0; + let mut q: u32; + let mut i: u32; + let mut uxi: u32 = ux; + + if (uy << 1) == 0 || y.is_nan() || ex == 0xff { + return ((x * y) / (x * y), 0); + } + if (ux << 1) == 0 { + return (x, 0); + } + + /* normalize x and y */ + if ex == 0 { + i = uxi << 9; + while (i >> 31) == 0 { + ex -= 1; + i <<= 1; + } + uxi <<= -ex + 1; + } else { + uxi &= (!0) >> 9; + uxi |= 1 << 23; + } + if ey == 0 { + i = uy << 9; + while (i >> 31) == 0 { + ey -= 1; + i <<= 1; + } + uy <<= -ey + 1; + } else { + uy &= (!0) >> 9; + uy |= 1 << 23; + } + + q = 0; + if ex + 1 != ey { + if ex < ey { + return (x, 0); + } + /* x mod y */ + while ex > ey { + i = uxi.wrapping_sub(uy); + if (i >> 31) == 0 { + uxi = i; + q += 1; + } + uxi <<= 1; + q <<= 1; + ex -= 1; + } + i = uxi.wrapping_sub(uy); + if (i >> 31) == 0 { + uxi = i; + q += 1; + } + if uxi == 0 { + ex = -30; + } else { + while (uxi >> 23) == 0 { + uxi <<= 1; + ex -= 1; + } + } + } + + /* scale result and decide between |x| and |x|-|y| */ + if ex > 0 { + uxi -= 1 << 23; + uxi |= (ex as u32) << 23; + } else { + uxi >>= -ex + 1; + } + x = f32::from_bits(uxi); + if sy { + y = -y; + } + if ex == ey || (ex + 1 == ey && (2.0 * x > y || (2.0 * x == y && (q % 2) != 0))) { + x -= y; + q += 1; + } + q &= 0x7fffffff; + let quo = if sx ^ sy { -(q as i32) } else { q as i32 }; + if sx { (-x, quo) } else { (x, quo) } +} diff --git a/library/compiler-builtins/libm/src/math/rint.rs b/library/compiler-builtins/libm/src/math/rint.rs new file mode 100644 index 00000000000..e1c32c94355 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/rint.rs @@ -0,0 +1,51 @@ +use super::support::Round; + +/// Round `x` to the nearest integer, breaking ties toward even. +#[cfg(f16_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn rintf16(x: f16) -> f16 { + select_implementation! { + name: rintf16, + use_arch: all(target_arch = "aarch64", target_feature = "fp16"), + args: x, + } + + super::generic::rint_round(x, Round::Nearest).val +} + +/// Round `x` to the nearest integer, breaking ties toward even. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn rintf(x: f32) -> f32 { + select_implementation! { + name: rintf, + use_arch: any( + all(target_arch = "aarch64", target_feature = "neon"), + all(target_arch = "wasm32", intrinsics_enabled), + ), + args: x, + } + + super::generic::rint_round(x, Round::Nearest).val +} + +/// Round `x` to the nearest integer, breaking ties toward even. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn rint(x: f64) -> f64 { + select_implementation! { + name: rint, + use_arch: any( + all(target_arch = "aarch64", target_feature = "neon"), + all(target_arch = "wasm32", intrinsics_enabled), + ), + args: x, + } + + super::generic::rint_round(x, Round::Nearest).val +} + +/// Round `x` to the nearest integer, breaking ties toward even. +#[cfg(f128_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn rintf128(x: f128) -> f128 { + super::generic::rint_round(x, Round::Nearest).val +} diff --git a/library/compiler-builtins/libm/src/math/round.rs b/library/compiler-builtins/libm/src/math/round.rs new file mode 100644 index 00000000000..6cd091cd73c --- /dev/null +++ b/library/compiler-builtins/libm/src/math/round.rs @@ -0,0 +1,25 @@ +/// Round `x` to the nearest integer, breaking ties away from zero. +#[cfg(f16_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn roundf16(x: f16) -> f16 { + super::generic::round(x) +} + +/// Round `x` to the nearest integer, breaking ties away from zero. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn roundf(x: f32) -> f32 { + super::generic::round(x) +} + +/// Round `x` to the nearest integer, breaking ties away from zero. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn round(x: f64) -> f64 { + super::generic::round(x) +} + +/// Round `x` to the nearest integer, breaking ties away from zero. +#[cfg(f128_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn roundf128(x: f128) -> f128 { + super::generic::round(x) +} diff --git a/library/compiler-builtins/libm/src/math/roundeven.rs b/library/compiler-builtins/libm/src/math/roundeven.rs new file mode 100644 index 00000000000..6e621d7628f --- /dev/null +++ b/library/compiler-builtins/libm/src/math/roundeven.rs @@ -0,0 +1,36 @@ +use super::support::{Float, Round}; + +/// Round `x` to the nearest integer, breaking ties toward even. This is IEEE 754 +/// `roundToIntegralTiesToEven`. +#[cfg(f16_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn roundevenf16(x: f16) -> f16 { + roundeven_impl(x) +} + +/// Round `x` to the nearest integer, breaking ties toward even. This is IEEE 754 +/// `roundToIntegralTiesToEven`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn roundevenf(x: f32) -> f32 { + roundeven_impl(x) +} + +/// Round `x` to the nearest integer, breaking ties toward even. This is IEEE 754 +/// `roundToIntegralTiesToEven`. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn roundeven(x: f64) -> f64 { + roundeven_impl(x) +} + +/// Round `x` to the nearest integer, breaking ties toward even. This is IEEE 754 +/// `roundToIntegralTiesToEven`. +#[cfg(f128_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn roundevenf128(x: f128) -> f128 { + roundeven_impl(x) +} + +#[inline] +pub fn roundeven_impl<F: Float>(x: F) -> F { + super::generic::rint_round(x, Round::Nearest).val +} diff --git a/library/compiler-builtins/libm/src/math/roundf.rs b/library/compiler-builtins/libm/src/math/roundf.rs new file mode 100644 index 00000000000..b5d7c9d693e --- /dev/null +++ b/library/compiler-builtins/libm/src/math/roundf.rs @@ -0,0 +1,5 @@ +/// Round `x` to the nearest integer, breaking ties away from zero. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn roundf(x: f32) -> f32 { + super::generic::round(x) +} diff --git a/library/compiler-builtins/libm/src/math/roundf128.rs b/library/compiler-builtins/libm/src/math/roundf128.rs new file mode 100644 index 00000000000..fc3164929fe --- /dev/null +++ b/library/compiler-builtins/libm/src/math/roundf128.rs @@ -0,0 +1,5 @@ +/// Round `x` to the nearest integer, breaking ties away from zero. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn roundf128(x: f128) -> f128 { + super::generic::round(x) +} diff --git a/library/compiler-builtins/libm/src/math/roundf16.rs b/library/compiler-builtins/libm/src/math/roundf16.rs new file mode 100644 index 00000000000..8b356eaabee --- /dev/null +++ b/library/compiler-builtins/libm/src/math/roundf16.rs @@ -0,0 +1,5 @@ +/// Round `x` to the nearest integer, breaking ties away from zero. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn roundf16(x: f16) -> f16 { + super::generic::round(x) +} diff --git a/library/compiler-builtins/libm/src/math/scalbn.rs b/library/compiler-builtins/libm/src/math/scalbn.rs new file mode 100644 index 00000000000..ed73c3f94f0 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/scalbn.rs @@ -0,0 +1,87 @@ +#[cfg(f16_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn scalbnf16(x: f16, n: i32) -> f16 { + super::generic::scalbn(x, n) +} + +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn scalbnf(x: f32, n: i32) -> f32 { + super::generic::scalbn(x, n) +} + +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn scalbn(x: f64, n: i32) -> f64 { + super::generic::scalbn(x, n) +} + +#[cfg(f128_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn scalbnf128(x: f128, n: i32) -> f128 { + super::generic::scalbn(x, n) +} + +#[cfg(test)] +mod tests { + use super::*; + use crate::support::{CastFrom, CastInto, Float}; + + // Tests against N3220 + fn spec_test<F: Float>(f: impl Fn(F, i32) -> F) + where + u32: CastInto<F::Int>, + F::Int: CastFrom<i32>, + F::Int: CastFrom<u32>, + { + // `scalbn(±0, n)` returns `±0`. + assert_biteq!(f(F::NEG_ZERO, 10), F::NEG_ZERO); + assert_biteq!(f(F::NEG_ZERO, 0), F::NEG_ZERO); + assert_biteq!(f(F::NEG_ZERO, -10), F::NEG_ZERO); + assert_biteq!(f(F::ZERO, 10), F::ZERO); + assert_biteq!(f(F::ZERO, 0), F::ZERO); + assert_biteq!(f(F::ZERO, -10), F::ZERO); + + // `scalbn(x, 0)` returns `x`. + assert_biteq!(f(F::MIN, 0), F::MIN); + assert_biteq!(f(F::MAX, 0), F::MAX); + assert_biteq!(f(F::INFINITY, 0), F::INFINITY); + assert_biteq!(f(F::NEG_INFINITY, 0), F::NEG_INFINITY); + assert_biteq!(f(F::ZERO, 0), F::ZERO); + assert_biteq!(f(F::NEG_ZERO, 0), F::NEG_ZERO); + + // `scalbn(±∞, n)` returns `±∞`. + assert_biteq!(f(F::INFINITY, 10), F::INFINITY); + assert_biteq!(f(F::INFINITY, -10), F::INFINITY); + assert_biteq!(f(F::NEG_INFINITY, 10), F::NEG_INFINITY); + assert_biteq!(f(F::NEG_INFINITY, -10), F::NEG_INFINITY); + + // NaN should remain NaNs. + assert!(f(F::NAN, 10).is_nan()); + assert!(f(F::NAN, 0).is_nan()); + assert!(f(F::NAN, -10).is_nan()); + assert!(f(-F::NAN, 10).is_nan()); + assert!(f(-F::NAN, 0).is_nan()); + assert!(f(-F::NAN, -10).is_nan()); + } + + #[test] + #[cfg(f16_enabled)] + fn spec_test_f16() { + spec_test::<f16>(scalbnf16); + } + + #[test] + fn spec_test_f32() { + spec_test::<f32>(scalbnf); + } + + #[test] + fn spec_test_f64() { + spec_test::<f64>(scalbn); + } + + #[test] + #[cfg(f128_enabled)] + fn spec_test_f128() { + spec_test::<f128>(scalbnf128); + } +} diff --git a/library/compiler-builtins/libm/src/math/scalbnf.rs b/library/compiler-builtins/libm/src/math/scalbnf.rs new file mode 100644 index 00000000000..57e7ba76f60 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/scalbnf.rs @@ -0,0 +1,4 @@ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn scalbnf(x: f32, n: i32) -> f32 { + super::generic::scalbn(x, n) +} diff --git a/library/compiler-builtins/libm/src/math/scalbnf128.rs b/library/compiler-builtins/libm/src/math/scalbnf128.rs new file mode 100644 index 00000000000..c1d2b485585 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/scalbnf128.rs @@ -0,0 +1,4 @@ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn scalbnf128(x: f128, n: i32) -> f128 { + super::generic::scalbn(x, n) +} diff --git a/library/compiler-builtins/libm/src/math/scalbnf16.rs b/library/compiler-builtins/libm/src/math/scalbnf16.rs new file mode 100644 index 00000000000..2209e1a1795 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/scalbnf16.rs @@ -0,0 +1,4 @@ +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn scalbnf16(x: f16, n: i32) -> f16 { + super::generic::scalbn(x, n) +} diff --git a/library/compiler-builtins/libm/src/math/sin.rs b/library/compiler-builtins/libm/src/math/sin.rs new file mode 100644 index 00000000000..229fa4bef08 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/sin.rs @@ -0,0 +1,95 @@ +// origin: FreeBSD /usr/src/lib/msun/src/s_sin.c */ +// +// ==================================================== +// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. +// +// Developed at SunPro, a Sun Microsystems, Inc. business. +// Permission to use, copy, modify, and distribute this +// software is freely granted, provided that this notice +// is preserved. +// ==================================================== + +use super::{k_cos, k_sin, rem_pio2}; + +// sin(x) +// Return sine function of x. +// +// kernel function: +// k_sin ... sine function on [-pi/4,pi/4] +// k_cos ... cose function on [-pi/4,pi/4] +// rem_pio2 ... argument reduction routine +// +// Method. +// Let S,C and T denote the sin, cos and tan respectively on +// [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 +// in [-pi/4 , +pi/4], and let n = k mod 4. +// We have +// +// n sin(x) cos(x) tan(x) +// ---------------------------------------------------------- +// 0 S C T +// 1 C -S -1/T +// 2 -S -C T +// 3 -C S -1/T +// ---------------------------------------------------------- +// +// Special cases: +// Let trig be any of sin, cos, or tan. +// trig(+-INF) is NaN, with signals; +// trig(NaN) is that NaN; +// +// Accuracy: +// TRIG(x) returns trig(x) nearly rounded + +/// The sine of `x` (f64). +/// +/// `x` is specified in radians. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn sin(x: f64) -> f64 { + let x1p120 = f64::from_bits(0x4770000000000000); // 0x1p120f === 2 ^ 120 + + /* High word of x. */ + let ix = (f64::to_bits(x) >> 32) as u32 & 0x7fffffff; + + /* |x| ~< pi/4 */ + if ix <= 0x3fe921fb { + if ix < 0x3e500000 { + /* |x| < 2**-26 */ + /* raise inexact if x != 0 and underflow if subnormal*/ + if ix < 0x00100000 { + force_eval!(x / x1p120); + } else { + force_eval!(x + x1p120); + } + return x; + } + return k_sin(x, 0.0, 0); + } + + /* sin(Inf or NaN) is NaN */ + if ix >= 0x7ff00000 { + return x - x; + } + + /* argument reduction needed */ + let (n, y0, y1) = rem_pio2(x); + match n & 3 { + 0 => k_sin(y0, y1, 1), + 1 => k_cos(y0, y1), + 2 => -k_sin(y0, y1, 1), + _ => -k_cos(y0, y1), + } +} + +#[cfg(test)] +mod tests { + use super::*; + + #[test] + #[cfg_attr(x86_no_sse, ignore = "FIXME(i586): possible incorrect rounding")] + fn test_near_pi() { + let x = f64::from_bits(0x400921fb000FD5DD); // 3.141592026217707 + let sx = f64::from_bits(0x3ea50d15ced1a4a2); // 6.273720864039205e-7 + assert_eq!(sin(x), sx); + } +} diff --git a/library/compiler-builtins/libm/src/math/sincos.rs b/library/compiler-builtins/libm/src/math/sincos.rs new file mode 100644 index 00000000000..ebf482f2df3 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/sincos.rs @@ -0,0 +1,137 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/s_sin.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +use super::{get_high_word, k_cos, k_sin, rem_pio2}; + +/// Both the sine and cosine of `x` (f64). +/// +/// `x` is specified in radians and the return value is (sin(x), cos(x)). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn sincos(x: f64) -> (f64, f64) { + let s: f64; + let c: f64; + let mut ix: u32; + + ix = get_high_word(x); + ix &= 0x7fffffff; + + /* |x| ~< pi/4 */ + if ix <= 0x3fe921fb { + /* if |x| < 2**-27 * sqrt(2) */ + if ix < 0x3e46a09e { + /* raise inexact if x!=0 and underflow if subnormal */ + let x1p120 = f64::from_bits(0x4770000000000000); // 0x1p120 == 2^120 + if ix < 0x00100000 { + force_eval!(x / x1p120); + } else { + force_eval!(x + x1p120); + } + return (x, 1.0); + } + return (k_sin(x, 0.0, 0), k_cos(x, 0.0)); + } + + /* sincos(Inf or NaN) is NaN */ + if ix >= 0x7ff00000 { + let rv = x - x; + return (rv, rv); + } + + /* argument reduction needed */ + let (n, y0, y1) = rem_pio2(x); + s = k_sin(y0, y1, 1); + c = k_cos(y0, y1); + match n & 3 { + 0 => (s, c), + 1 => (c, -s), + 2 => (-s, -c), + 3 => (-c, s), + #[cfg(debug_assertions)] + _ => unreachable!(), + #[cfg(not(debug_assertions))] + _ => (0.0, 1.0), + } +} + +// These tests are based on those from sincosf.rs +#[cfg(test)] +mod tests { + use super::sincos; + + const TOLERANCE: f64 = 1e-6; + + #[test] + fn with_pi() { + let (s, c) = sincos(core::f64::consts::PI); + assert!( + (s - 0.0).abs() < TOLERANCE, + "|{} - {}| = {} >= {}", + s, + 0.0, + (s - 0.0).abs(), + TOLERANCE + ); + assert!( + (c + 1.0).abs() < TOLERANCE, + "|{} + {}| = {} >= {}", + c, + 1.0, + (s + 1.0).abs(), + TOLERANCE + ); + } + + #[test] + fn rotational_symmetry() { + use core::f64::consts::PI; + const N: usize = 24; + for n in 0..N { + let theta = 2. * PI * (n as f64) / (N as f64); + let (s, c) = sincos(theta); + let (s_plus, c_plus) = sincos(theta + 2. * PI); + let (s_minus, c_minus) = sincos(theta - 2. * PI); + + assert!( + (s - s_plus).abs() < TOLERANCE, + "|{} - {}| = {} >= {}", + s, + s_plus, + (s - s_plus).abs(), + TOLERANCE + ); + assert!( + (s - s_minus).abs() < TOLERANCE, + "|{} - {}| = {} >= {}", + s, + s_minus, + (s - s_minus).abs(), + TOLERANCE + ); + assert!( + (c - c_plus).abs() < TOLERANCE, + "|{} - {}| = {} >= {}", + c, + c_plus, + (c - c_plus).abs(), + TOLERANCE + ); + assert!( + (c - c_minus).abs() < TOLERANCE, + "|{} - {}| = {} >= {}", + c, + c_minus, + (c - c_minus).abs(), + TOLERANCE + ); + } + } +} diff --git a/library/compiler-builtins/libm/src/math/sincosf.rs b/library/compiler-builtins/libm/src/math/sincosf.rs new file mode 100644 index 00000000000..f3360767683 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/sincosf.rs @@ -0,0 +1,176 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/s_sinf.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + * Optimized by Bruce D. Evans. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +use super::{k_cosf, k_sinf, rem_pio2f}; + +/* Small multiples of pi/2 rounded to double precision. */ +const PI_2: f64 = 0.5 * 3.1415926535897931160E+00; +const S1PIO2: f64 = 1.0 * PI_2; /* 0x3FF921FB, 0x54442D18 */ +const S2PIO2: f64 = 2.0 * PI_2; /* 0x400921FB, 0x54442D18 */ +const S3PIO2: f64 = 3.0 * PI_2; /* 0x4012D97C, 0x7F3321D2 */ +const S4PIO2: f64 = 4.0 * PI_2; /* 0x401921FB, 0x54442D18 */ + +/// Both the sine and cosine of `x` (f32). +/// +/// `x` is specified in radians and the return value is (sin(x), cos(x)). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn sincosf(x: f32) -> (f32, f32) { + let s: f32; + let c: f32; + let mut ix: u32; + let sign: bool; + + ix = x.to_bits(); + sign = (ix >> 31) != 0; + ix &= 0x7fffffff; + + /* |x| ~<= pi/4 */ + if ix <= 0x3f490fda { + /* |x| < 2**-12 */ + if ix < 0x39800000 { + /* raise inexact if x!=0 and underflow if subnormal */ + + let x1p120 = f32::from_bits(0x7b800000); // 0x1p120 == 2^120 + if ix < 0x00100000 { + force_eval!(x / x1p120); + } else { + force_eval!(x + x1p120); + } + return (x, 1.0); + } + return (k_sinf(x as f64), k_cosf(x as f64)); + } + + /* |x| ~<= 5*pi/4 */ + if ix <= 0x407b53d1 { + if ix <= 0x4016cbe3 { + /* |x| ~<= 3pi/4 */ + if sign { + s = -k_cosf(x as f64 + S1PIO2); + c = k_sinf(x as f64 + S1PIO2); + } else { + s = k_cosf(S1PIO2 - x as f64); + c = k_sinf(S1PIO2 - x as f64); + } + } + /* -sin(x+c) is not correct if x+c could be 0: -0 vs +0 */ + else if sign { + s = -k_sinf(x as f64 + S2PIO2); + c = -k_cosf(x as f64 + S2PIO2); + } else { + s = -k_sinf(x as f64 - S2PIO2); + c = -k_cosf(x as f64 - S2PIO2); + } + + return (s, c); + } + + /* |x| ~<= 9*pi/4 */ + if ix <= 0x40e231d5 { + if ix <= 0x40afeddf { + /* |x| ~<= 7*pi/4 */ + if sign { + s = k_cosf(x as f64 + S3PIO2); + c = -k_sinf(x as f64 + S3PIO2); + } else { + s = -k_cosf(x as f64 - S3PIO2); + c = k_sinf(x as f64 - S3PIO2); + } + } else if sign { + s = k_sinf(x as f64 + S4PIO2); + c = k_cosf(x as f64 + S4PIO2); + } else { + s = k_sinf(x as f64 - S4PIO2); + c = k_cosf(x as f64 - S4PIO2); + } + + return (s, c); + } + + /* sin(Inf or NaN) is NaN */ + if ix >= 0x7f800000 { + let rv = x - x; + return (rv, rv); + } + + /* general argument reduction needed */ + let (n, y) = rem_pio2f(x); + s = k_sinf(y); + c = k_cosf(y); + match n & 3 { + 0 => (s, c), + 1 => (c, -s), + 2 => (-s, -c), + 3 => (-c, s), + #[cfg(debug_assertions)] + _ => unreachable!(), + #[cfg(not(debug_assertions))] + _ => (0.0, 1.0), + } +} + +// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520 +#[cfg(not(target_arch = "powerpc64"))] +#[cfg(test)] +mod tests { + use super::sincosf; + + #[test] + fn rotational_symmetry() { + use core::f32::consts::PI; + const N: usize = 24; + for n in 0..N { + let theta = 2. * PI * (n as f32) / (N as f32); + let (s, c) = sincosf(theta); + let (s_plus, c_plus) = sincosf(theta + 2. * PI); + let (s_minus, c_minus) = sincosf(theta - 2. * PI); + + const TOLERANCE: f32 = 1e-6; + assert!( + (s - s_plus).abs() < TOLERANCE, + "|{} - {}| = {} >= {}", + s, + s_plus, + (s - s_plus).abs(), + TOLERANCE + ); + assert!( + (s - s_minus).abs() < TOLERANCE, + "|{} - {}| = {} >= {}", + s, + s_minus, + (s - s_minus).abs(), + TOLERANCE + ); + assert!( + (c - c_plus).abs() < TOLERANCE, + "|{} - {}| = {} >= {}", + c, + c_plus, + (c - c_plus).abs(), + TOLERANCE + ); + assert!( + (c - c_minus).abs() < TOLERANCE, + "|{} - {}| = {} >= {}", + c, + c_minus, + (c - c_minus).abs(), + TOLERANCE + ); + } + } +} diff --git a/library/compiler-builtins/libm/src/math/sinf.rs b/library/compiler-builtins/libm/src/math/sinf.rs new file mode 100644 index 00000000000..b8fae2c9801 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/sinf.rs @@ -0,0 +1,88 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/s_sinf.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + * Optimized by Bruce D. Evans. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +use core::f64::consts::FRAC_PI_2; + +use super::{k_cosf, k_sinf, rem_pio2f}; + +/* Small multiples of pi/2 rounded to double precision. */ +const S1_PIO2: f64 = 1. * FRAC_PI_2; /* 0x3FF921FB, 0x54442D18 */ +const S2_PIO2: f64 = 2. * FRAC_PI_2; /* 0x400921FB, 0x54442D18 */ +const S3_PIO2: f64 = 3. * FRAC_PI_2; /* 0x4012D97C, 0x7F3321D2 */ +const S4_PIO2: f64 = 4. * FRAC_PI_2; /* 0x401921FB, 0x54442D18 */ + +/// The sine of `x` (f32). +/// +/// `x` is specified in radians. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn sinf(x: f32) -> f32 { + let x64 = x as f64; + + let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120 + + let mut ix = x.to_bits(); + let sign = (ix >> 31) != 0; + ix &= 0x7fffffff; + + if ix <= 0x3f490fda { + /* |x| ~<= pi/4 */ + if ix < 0x39800000 { + /* |x| < 2**-12 */ + /* raise inexact if x!=0 and underflow if subnormal */ + force_eval!(if ix < 0x00800000 { x / x1p120 } else { x + x1p120 }); + return x; + } + return k_sinf(x64); + } + if ix <= 0x407b53d1 { + /* |x| ~<= 5*pi/4 */ + if ix <= 0x4016cbe3 { + /* |x| ~<= 3pi/4 */ + if sign { + return -k_cosf(x64 + S1_PIO2); + } else { + return k_cosf(x64 - S1_PIO2); + } + } + return k_sinf(if sign { -(x64 + S2_PIO2) } else { -(x64 - S2_PIO2) }); + } + if ix <= 0x40e231d5 { + /* |x| ~<= 9*pi/4 */ + if ix <= 0x40afeddf { + /* |x| ~<= 7*pi/4 */ + if sign { + return k_cosf(x64 + S3_PIO2); + } else { + return -k_cosf(x64 - S3_PIO2); + } + } + return k_sinf(if sign { x64 + S4_PIO2 } else { x64 - S4_PIO2 }); + } + + /* sin(Inf or NaN) is NaN */ + if ix >= 0x7f800000 { + return x - x; + } + + /* general argument reduction needed */ + let (n, y) = rem_pio2f(x); + match n & 3 { + 0 => k_sinf(y), + 1 => k_cosf(y), + 2 => k_sinf(-y), + _ => -k_cosf(y), + } +} diff --git a/library/compiler-builtins/libm/src/math/sinh.rs b/library/compiler-builtins/libm/src/math/sinh.rs new file mode 100644 index 00000000000..79184198263 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/sinh.rs @@ -0,0 +1,51 @@ +use super::{expm1, expo2}; + +// sinh(x) = (exp(x) - 1/exp(x))/2 +// = (exp(x)-1 + (exp(x)-1)/exp(x))/2 +// = x + x^3/6 + o(x^5) +// + +/// The hyperbolic sine of `x` (f64). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn sinh(x: f64) -> f64 { + // union {double f; uint64_t i;} u = {.f = x}; + // uint32_t w; + // double t, h, absx; + + let mut uf: f64 = x; + let mut ui: u64 = f64::to_bits(uf); + let w: u32; + let t: f64; + let mut h: f64; + let absx: f64; + + h = 0.5; + if ui >> 63 != 0 { + h = -h; + } + /* |x| */ + ui &= !1 / 2; + uf = f64::from_bits(ui); + absx = uf; + w = (ui >> 32) as u32; + + /* |x| < log(DBL_MAX) */ + if w < 0x40862e42 { + t = expm1(absx); + if w < 0x3ff00000 { + if w < 0x3ff00000 - (26 << 20) { + /* note: inexact and underflow are raised by expm1 */ + /* note: this branch avoids spurious underflow */ + return x; + } + return h * (2.0 * t - t * t / (t + 1.0)); + } + /* note: |x|>log(0x1p26)+eps could be just h*exp(x) */ + return h * (t + t / (t + 1.0)); + } + + /* |x| > log(DBL_MAX) or nan */ + /* note: the result is stored to handle overflow */ + t = 2.0 * h * expo2(absx); + t +} diff --git a/library/compiler-builtins/libm/src/math/sinhf.rs b/library/compiler-builtins/libm/src/math/sinhf.rs new file mode 100644 index 00000000000..44d2e3560d5 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/sinhf.rs @@ -0,0 +1,30 @@ +use super::{expm1f, k_expo2f}; + +/// The hyperbolic sine of `x` (f32). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn sinhf(x: f32) -> f32 { + let mut h = 0.5f32; + let mut ix = x.to_bits(); + if (ix >> 31) != 0 { + h = -h; + } + /* |x| */ + ix &= 0x7fffffff; + let absx = f32::from_bits(ix); + let w = ix; + + /* |x| < log(FLT_MAX) */ + if w < 0x42b17217 { + let t = expm1f(absx); + if w < 0x3f800000 { + if w < (0x3f800000 - (12 << 23)) { + return x; + } + return h * (2. * t - t * t / (t + 1.)); + } + return h * (t + t / (t + 1.)); + } + + /* |x| > logf(FLT_MAX) or nan */ + 2. * h * k_expo2f(absx) +} diff --git a/library/compiler-builtins/libm/src/math/sqrt.rs b/library/compiler-builtins/libm/src/math/sqrt.rs new file mode 100644 index 00000000000..76bc240cf01 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/sqrt.rs @@ -0,0 +1,51 @@ +/// The square root of `x` (f16). +#[cfg(f16_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn sqrtf16(x: f16) -> f16 { + select_implementation! { + name: sqrtf16, + use_arch: all(target_arch = "aarch64", target_feature = "fp16"), + args: x, + } + + return super::generic::sqrt(x); +} + +/// The square root of `x` (f32). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn sqrtf(x: f32) -> f32 { + select_implementation! { + name: sqrtf, + use_arch: any( + all(target_arch = "aarch64", target_feature = "neon"), + all(target_arch = "wasm32", intrinsics_enabled), + target_feature = "sse2" + ), + args: x, + } + + super::generic::sqrt(x) +} + +/// The square root of `x` (f64). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn sqrt(x: f64) -> f64 { + select_implementation! { + name: sqrt, + use_arch: any( + all(target_arch = "aarch64", target_feature = "neon"), + all(target_arch = "wasm32", intrinsics_enabled), + target_feature = "sse2" + ), + args: x, + } + + super::generic::sqrt(x) +} + +/// The square root of `x` (f128). +#[cfg(f128_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn sqrtf128(x: f128) -> f128 { + return super::generic::sqrt(x); +} diff --git a/library/compiler-builtins/libm/src/math/sqrtf.rs b/library/compiler-builtins/libm/src/math/sqrtf.rs new file mode 100644 index 00000000000..c28a705e378 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/sqrtf.rs @@ -0,0 +1,15 @@ +/// The square root of `x` (f32). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn sqrtf(x: f32) -> f32 { + select_implementation! { + name: sqrtf, + use_arch: any( + all(target_arch = "aarch64", target_feature = "neon"), + all(target_arch = "wasm32", intrinsics_enabled), + target_feature = "sse2" + ), + args: x, + } + + super::generic::sqrt(x) +} diff --git a/library/compiler-builtins/libm/src/math/sqrtf128.rs b/library/compiler-builtins/libm/src/math/sqrtf128.rs new file mode 100644 index 00000000000..eaef6ae0c1c --- /dev/null +++ b/library/compiler-builtins/libm/src/math/sqrtf128.rs @@ -0,0 +1,5 @@ +/// The square root of `x` (f128). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn sqrtf128(x: f128) -> f128 { + return super::generic::sqrt(x); +} diff --git a/library/compiler-builtins/libm/src/math/sqrtf16.rs b/library/compiler-builtins/libm/src/math/sqrtf16.rs new file mode 100644 index 00000000000..7bedb7f8bbb --- /dev/null +++ b/library/compiler-builtins/libm/src/math/sqrtf16.rs @@ -0,0 +1,11 @@ +/// The square root of `x` (f16). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn sqrtf16(x: f16) -> f16 { + select_implementation! { + name: sqrtf16, + use_arch: all(target_arch = "aarch64", target_feature = "fp16"), + args: x, + } + + return super::generic::sqrt(x); +} diff --git a/library/compiler-builtins/libm/src/math/support/big.rs b/library/compiler-builtins/libm/src/math/support/big.rs new file mode 100644 index 00000000000..eae08238e09 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/support/big.rs @@ -0,0 +1,239 @@ +//! Integers used for wide operations, larger than `u128`. + +#[cfg(test)] +mod tests; + +use core::ops; + +use super::{DInt, HInt, Int, MinInt}; + +const U128_LO_MASK: u128 = u64::MAX as u128; + +/// A 256-bit unsigned integer represented as two 128-bit native-endian limbs. +#[allow(non_camel_case_types)] +#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)] +pub struct u256 { + pub lo: u128, + pub hi: u128, +} + +impl u256 { + #[cfg(any(test, feature = "unstable-public-internals"))] + pub const MAX: Self = Self { lo: u128::MAX, hi: u128::MAX }; + + /// Reinterpret as a signed integer + pub fn signed(self) -> i256 { + i256 { lo: self.lo, hi: self.hi } + } +} + +/// A 256-bit signed integer represented as two 128-bit native-endian limbs. +#[allow(non_camel_case_types)] +#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)] +pub struct i256 { + pub lo: u128, + pub hi: u128, +} + +impl i256 { + /// Reinterpret as an unsigned integer + #[cfg(any(test, feature = "unstable-public-internals"))] + pub fn unsigned(self) -> u256 { + u256 { lo: self.lo, hi: self.hi } + } +} + +impl MinInt for u256 { + type OtherSign = i256; + + type Unsigned = u256; + + const SIGNED: bool = false; + const BITS: u32 = 256; + const ZERO: Self = Self { lo: 0, hi: 0 }; + const ONE: Self = Self { lo: 1, hi: 0 }; + const MIN: Self = Self { lo: 0, hi: 0 }; + const MAX: Self = Self { lo: u128::MAX, hi: u128::MAX }; +} + +impl MinInt for i256 { + type OtherSign = u256; + + type Unsigned = u256; + + const SIGNED: bool = false; + const BITS: u32 = 256; + const ZERO: Self = Self { lo: 0, hi: 0 }; + const ONE: Self = Self { lo: 1, hi: 0 }; + const MIN: Self = Self { lo: 0, hi: 1 << 127 }; + const MAX: Self = Self { lo: u128::MAX, hi: u128::MAX << 1 }; +} + +macro_rules! impl_common { + ($ty:ty) => { + impl ops::BitOr for $ty { + type Output = Self; + + fn bitor(mut self, rhs: Self) -> Self::Output { + self.lo |= rhs.lo; + self.hi |= rhs.hi; + self + } + } + + impl ops::Not for $ty { + type Output = Self; + + fn not(mut self) -> Self::Output { + self.lo = !self.lo; + self.hi = !self.hi; + self + } + } + + impl ops::Shl<u32> for $ty { + type Output = Self; + + fn shl(self, _rhs: u32) -> Self::Output { + unimplemented!("only used to meet trait bounds") + } + } + }; +} + +impl_common!(i256); +impl_common!(u256); + +impl ops::Add<Self> for u256 { + type Output = Self; + + fn add(self, rhs: Self) -> Self::Output { + let (lo, carry) = self.lo.overflowing_add(rhs.lo); + let hi = self.hi.wrapping_add(carry as u128).wrapping_add(rhs.hi); + + Self { lo, hi } + } +} + +impl ops::Shr<u32> for u256 { + type Output = Self; + + fn shr(mut self, rhs: u32) -> Self::Output { + debug_assert!(rhs < Self::BITS, "attempted to shift right with overflow"); + if rhs >= Self::BITS { + return Self::ZERO; + } + + if rhs == 0 { + return self; + } + + if rhs < 128 { + self.lo >>= rhs; + self.lo |= self.hi << (128 - rhs); + } else { + self.lo = self.hi >> (rhs - 128); + } + + if rhs < 128 { + self.hi >>= rhs; + } else { + self.hi = 0; + } + + self + } +} + +impl HInt for u128 { + type D = u256; + + fn widen(self) -> Self::D { + u256 { lo: self, hi: 0 } + } + + fn zero_widen(self) -> Self::D { + self.widen() + } + + fn zero_widen_mul(self, rhs: Self) -> Self::D { + let l0 = self & U128_LO_MASK; + let l1 = rhs & U128_LO_MASK; + let h0 = self >> 64; + let h1 = rhs >> 64; + + let p_ll: u128 = l0.overflowing_mul(l1).0; + let p_lh: u128 = l0.overflowing_mul(h1).0; + let p_hl: u128 = h0.overflowing_mul(l1).0; + let p_hh: u128 = h0.overflowing_mul(h1).0; + + let s0 = p_hl + (p_ll >> 64); + let s1 = (p_ll & U128_LO_MASK) + (s0 << 64); + let s2 = p_lh + (s1 >> 64); + + let lo = (p_ll & U128_LO_MASK) + (s2 << 64); + let hi = p_hh + (s0 >> 64) + (s2 >> 64); + + u256 { lo, hi } + } + + fn widen_mul(self, rhs: Self) -> Self::D { + self.zero_widen_mul(rhs) + } + + fn widen_hi(self) -> Self::D { + self.widen() << <Self as MinInt>::BITS + } +} + +impl HInt for i128 { + type D = i256; + + fn widen(self) -> Self::D { + let mut ret = self.unsigned().zero_widen().signed(); + if self.is_negative() { + ret.hi = u128::MAX; + } + ret + } + + fn zero_widen(self) -> Self::D { + self.unsigned().zero_widen().signed() + } + + fn zero_widen_mul(self, rhs: Self) -> Self::D { + self.unsigned().zero_widen_mul(rhs.unsigned()).signed() + } + + fn widen_mul(self, _rhs: Self) -> Self::D { + unimplemented!("signed i128 widening multiply is not used") + } + + fn widen_hi(self) -> Self::D { + self.widen() << <Self as MinInt>::BITS + } +} + +impl DInt for u256 { + type H = u128; + + fn lo(self) -> Self::H { + self.lo + } + + fn hi(self) -> Self::H { + self.hi + } +} + +impl DInt for i256 { + type H = i128; + + fn lo(self) -> Self::H { + self.lo as i128 + } + + fn hi(self) -> Self::H { + self.hi as i128 + } +} diff --git a/library/compiler-builtins/libm/src/math/support/big/tests.rs b/library/compiler-builtins/libm/src/math/support/big/tests.rs new file mode 100644 index 00000000000..2c71191ba53 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/support/big/tests.rs @@ -0,0 +1,149 @@ +extern crate std; +use std::string::String; +use std::{eprintln, format}; + +use super::{HInt, MinInt, i256, u256}; + +const LOHI_SPLIT: u128 = 0xaaaaaaaaaaaaaaaaffffffffffffffff; + +/// Print a `u256` as hex since we can't add format implementations +fn hexu(v: u256) -> String { + format!("0x{:032x}{:032x}", v.hi, v.lo) +} + +#[test] +fn widen_u128() { + assert_eq!(u128::MAX.widen(), u256 { lo: u128::MAX, hi: 0 }); + assert_eq!(LOHI_SPLIT.widen(), u256 { lo: LOHI_SPLIT, hi: 0 }); +} + +#[test] +fn widen_i128() { + assert_eq!((-1i128).widen(), u256::MAX.signed()); + assert_eq!((LOHI_SPLIT as i128).widen(), i256 { lo: LOHI_SPLIT, hi: u128::MAX }); + assert_eq!((-1i128).zero_widen().unsigned(), (u128::MAX).widen()); +} + +#[test] +fn widen_mul_u128() { + let tests = [ + (u128::MAX / 2, 2_u128, u256 { lo: u128::MAX - 1, hi: 0 }), + (u128::MAX, 2_u128, u256 { lo: u128::MAX - 1, hi: 1 }), + (u128::MAX, u128::MAX, u256 { lo: 1, hi: u128::MAX - 1 }), + (0, 0, u256::ZERO), + (1234u128, 0, u256::ZERO), + (0, 1234, u256::ZERO), + ]; + + let mut has_errors = false; + let mut add_error = |i, a, b, expected, actual| { + has_errors = true; + eprintln!( + "\ + FAILURE ({i}): {a:#034x} * {b:#034x}\n\ + expected: {}\n\ + got: {}\ + ", + hexu(expected), + hexu(actual) + ); + }; + + for (i, (a, b, exp)) in tests.iter().copied().enumerate() { + let res = a.widen_mul(b); + let res_z = a.zero_widen_mul(b); + assert_eq!(res, res_z); + if res != exp { + add_error(i, a, b, exp, res); + } + } + + assert!(!has_errors); +} + +#[test] +fn not_u256() { + assert_eq!(!u256::ZERO, u256::MAX); +} + +#[test] +fn shr_u256() { + let only_low = [1, u16::MAX.into(), u32::MAX.into(), u64::MAX.into(), u128::MAX]; + let mut has_errors = false; + + let mut add_error = |a, b, expected, actual| { + has_errors = true; + eprintln!( + "\ + FAILURE: {} >> {b}\n\ + expected: {}\n\ + actual: {}\ + ", + hexu(a), + hexu(expected), + hexu(actual), + ); + }; + + for a in only_low { + for perturb in 0..10 { + let a = a.saturating_add(perturb); + for shift in 0..128 { + let res = a.widen() >> shift; + let expected = (a >> shift).widen(); + if res != expected { + add_error(a.widen(), shift, expected, res); + } + } + } + } + + let check = [ + (u256::MAX, 1, u256 { lo: u128::MAX, hi: u128::MAX >> 1 }), + (u256::MAX, 5, u256 { lo: u128::MAX, hi: u128::MAX >> 5 }), + (u256::MAX, 63, u256 { lo: u128::MAX, hi: u64::MAX as u128 | (1 << 64) }), + (u256::MAX, 64, u256 { lo: u128::MAX, hi: u64::MAX as u128 }), + (u256::MAX, 65, u256 { lo: u128::MAX, hi: (u64::MAX >> 1) as u128 }), + (u256::MAX, 127, u256 { lo: u128::MAX, hi: 1 }), + (u256::MAX, 128, u256 { lo: u128::MAX, hi: 0 }), + (u256::MAX, 129, u256 { lo: u128::MAX >> 1, hi: 0 }), + (u256::MAX, 191, u256 { lo: u64::MAX as u128 | 1 << 64, hi: 0 }), + (u256::MAX, 192, u256 { lo: u64::MAX as u128, hi: 0 }), + (u256::MAX, 193, u256 { lo: u64::MAX as u128 >> 1, hi: 0 }), + (u256::MAX, 254, u256 { lo: 0b11, hi: 0 }), + (u256::MAX, 255, u256 { lo: 1, hi: 0 }), + ( + u256 { hi: LOHI_SPLIT, lo: 0 }, + 64, + u256 { lo: 0xffffffffffffffff0000000000000000, hi: 0xaaaaaaaaaaaaaaaa }, + ), + ]; + + for (input, shift, expected) in check { + let res = input >> shift; + if res != expected { + add_error(input, shift, expected, res); + } + } + + assert!(!has_errors); +} + +#[test] +#[should_panic] +#[cfg(debug_assertions)] +// FIXME(ppc): ppc64le seems to have issues with `should_panic` tests. +#[cfg(not(all(target_arch = "powerpc64", target_endian = "little")))] +fn shr_u256_overflow() { + // Like regular shr, panic on overflow with debug assertions + let _ = u256::MAX >> 256; +} + +#[test] +#[cfg(not(debug_assertions))] +fn shr_u256_overflow() { + // No panic without debug assertions + assert_eq!(u256::MAX >> 256, u256::ZERO); + assert_eq!(u256::MAX >> 257, u256::ZERO); + assert_eq!(u256::MAX >> u32::MAX, u256::ZERO); +} diff --git a/library/compiler-builtins/libm/src/math/support/env.rs b/library/compiler-builtins/libm/src/math/support/env.rs new file mode 100644 index 00000000000..796309372a5 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/support/env.rs @@ -0,0 +1,127 @@ +//! Support for rounding directions and status flags as specified by IEEE 754. +//! +//! Rust does not support the floating point environment so rounding mode is passed as an argument +//! and status flags are returned as part of the result. There is currently not much support for +//! this; most existing ports from musl use a form of `force_eval!` to raise exceptions, but this +//! has no side effects in Rust. Further, correct behavior relies on elementary operations making +//! use of the correct rounding and raising relevant exceptions, which is not the case for Rust. +//! +//! This module exists so no functionality is lost when porting algorithms that respect floating +//! point environment, and so that some functionality may be tested (that which does not rely on +//! side effects from elementary operations). Full support would require wrappers around basic +//! operations, but there is no plan to add this at the current time. + +/// A value combined with a floating point status. +pub struct FpResult<T> { + pub val: T, + #[cfg_attr(not(feature = "unstable-public-internals"), allow(dead_code))] + pub status: Status, +} + +impl<T> FpResult<T> { + pub fn new(val: T, status: Status) -> Self { + Self { val, status } + } + + /// Return `val` with `Status::OK`. + pub fn ok(val: T) -> Self { + Self { val, status: Status::OK } + } +} + +/// IEEE 754 rounding mode, excluding the optional `roundTiesToAway` version of nearest. +/// +/// Integer representation comes from what CORE-MATH uses for indexing. +#[cfg_attr(not(feature = "unstable-public-internals"), allow(dead_code))] +#[derive(Clone, Copy, Debug, PartialEq)] +pub enum Round { + /// IEEE 754 nearest, `roundTiesToEven`. + Nearest = 0, + /// IEEE 754 `roundTowardNegative`. + Negative = 1, + /// IEEE 754 `roundTowardPositive`. + Positive = 2, + /// IEEE 754 `roundTowardZero`. + Zero = 3, +} + +/// IEEE 754 exception status flags. +#[derive(Clone, Copy, Debug, PartialEq, Eq)] +pub struct Status(u8); + +impl Status { + /// Default status indicating no errors. + pub const OK: Self = Self(0); + + /// No definable result. + /// + /// Includes: + /// - Any ops on sNaN, with a few exceptions. + /// - `0 * inf`, `inf * 0`. + /// - `fma(0, inf, c)` or `fma(inf, 0, c)`, possibly excluding `c = qNaN`. + /// - `+inf + -inf` and similar (includes subtraction and fma). + /// - `0.0 / 0.0`, `inf / inf` + /// - `remainder(x, y)` if `y == 0.0` or `x == inf`, and neither is NaN. + /// - `sqrt(x)` with `x < 0.0`. + pub const INVALID: Self = Self(1); + + /// Division by zero. + /// + /// The default result for division is +/-inf based on operand sign. For `logB`, the default + /// result is -inf. + /// `x / y` when `x != 0.0` and `y == 0.0`, + #[cfg_attr(not(feature = "unstable-public-internals"), allow(dead_code))] + pub const DIVIDE_BY_ZERO: Self = Self(1 << 2); + + /// The result exceeds the maximum finite value. + /// + /// The default result depends on rounding mode. `Nearest*` rounds to +/- infinity, sign based + /// on the intermediate result. `Zero` rounds to the signed maximum finite. `Positive` and + /// `Negative` round to signed maximum finite in one direction, signed infinity in the other. + #[cfg_attr(not(feature = "unstable-public-internals"), allow(dead_code))] + pub const OVERFLOW: Self = Self(1 << 3); + + /// The result is subnormal and lost precision. + pub const UNDERFLOW: Self = Self(1 << 4); + + /// The finite-precision result does not match that of infinite precision, and the reason + /// is not represented by one of the other flags. + pub const INEXACT: Self = Self(1 << 5); + + /// True if `UNDERFLOW` is set. + #[cfg_attr(not(feature = "unstable-public-internals"), allow(dead_code))] + pub const fn underflow(self) -> bool { + self.0 & Self::UNDERFLOW.0 != 0 + } + + /// True if `OVERFLOW` is set. + #[cfg_attr(not(feature = "unstable-public-internals"), allow(dead_code))] + pub const fn overflow(self) -> bool { + self.0 & Self::OVERFLOW.0 != 0 + } + + pub fn set_underflow(&mut self, val: bool) { + self.set_flag(val, Self::UNDERFLOW); + } + + /// True if `INEXACT` is set. + pub const fn inexact(self) -> bool { + self.0 & Self::INEXACT.0 != 0 + } + + pub fn set_inexact(&mut self, val: bool) { + self.set_flag(val, Self::INEXACT); + } + + fn set_flag(&mut self, val: bool, mask: Self) { + if val { + self.0 |= mask.0; + } else { + self.0 &= !mask.0; + } + } + + pub(crate) const fn with(self, rhs: Self) -> Self { + Self(self.0 | rhs.0) + } +} diff --git a/library/compiler-builtins/libm/src/math/support/float_traits.rs b/library/compiler-builtins/libm/src/math/support/float_traits.rs new file mode 100644 index 00000000000..fac10483237 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/support/float_traits.rs @@ -0,0 +1,484 @@ +use core::{fmt, mem, ops}; + +use super::int_traits::{CastFrom, Int, MinInt}; + +/// Trait for some basic operations on floats +// #[allow(dead_code)] +pub trait Float: + Copy + + fmt::Debug + + PartialEq + + PartialOrd + + ops::AddAssign + + ops::MulAssign + + ops::Add<Output = Self> + + ops::Sub<Output = Self> + + ops::Mul<Output = Self> + + ops::Div<Output = Self> + + ops::Rem<Output = Self> + + ops::Neg<Output = Self> + + 'static +{ + /// A uint of the same width as the float + type Int: Int<OtherSign = Self::SignedInt, Unsigned = Self::Int>; + + /// A int of the same width as the float + type SignedInt: Int + + MinInt<OtherSign = Self::Int, Unsigned = Self::Int> + + ops::Neg<Output = Self::SignedInt>; + + const ZERO: Self; + const NEG_ZERO: Self; + const ONE: Self; + const NEG_ONE: Self; + const INFINITY: Self; + const NEG_INFINITY: Self; + const NAN: Self; + const NEG_NAN: Self; + const MAX: Self; + const MIN: Self; + const EPSILON: Self; + const PI: Self; + const NEG_PI: Self; + const FRAC_PI_2: Self; + + const MIN_POSITIVE_NORMAL: Self; + + /// The bitwidth of the float type + const BITS: u32; + + /// The bitwidth of the significand + const SIG_BITS: u32; + + /// The bitwidth of the exponent + const EXP_BITS: u32 = Self::BITS - Self::SIG_BITS - 1; + + /// The saturated (maximum bitpattern) value of the exponent, i.e. the infinite + /// representation. + /// + /// This shifted fully right, use `EXP_MASK` for the shifted value. + const EXP_SAT: u32 = (1 << Self::EXP_BITS) - 1; + + /// The exponent bias value + const EXP_BIAS: u32 = Self::EXP_SAT >> 1; + + /// Maximum unbiased exponent value. + const EXP_MAX: i32 = Self::EXP_BIAS as i32; + + /// Minimum *NORMAL* unbiased exponent value. + const EXP_MIN: i32 = -(Self::EXP_MAX - 1); + + /// Minimum subnormal exponent value. + const EXP_MIN_SUBNORM: i32 = Self::EXP_MIN - Self::SIG_BITS as i32; + + /// A mask for the sign bit + const SIGN_MASK: Self::Int; + + /// A mask for the significand + const SIG_MASK: Self::Int; + + /// A mask for the exponent + const EXP_MASK: Self::Int; + + /// The implicit bit of the float format + const IMPLICIT_BIT: Self::Int; + + /// Returns `self` transmuted to `Self::Int` + fn to_bits(self) -> Self::Int; + + /// Returns `self` transmuted to `Self::SignedInt` + #[allow(dead_code)] + fn to_bits_signed(self) -> Self::SignedInt { + self.to_bits().signed() + } + + /// Check bitwise equality. + #[allow(dead_code)] + fn biteq(self, rhs: Self) -> bool { + self.to_bits() == rhs.to_bits() + } + + /// Checks if two floats have the same bit representation. *Except* for NaNs! NaN can be + /// represented in multiple different ways. + /// + /// This method returns `true` if two NaNs are compared. Use [`biteq`](Self::biteq) instead + /// if `NaN` should not be treated separately. + #[allow(dead_code)] + fn eq_repr(self, rhs: Self) -> bool { + if self.is_nan() && rhs.is_nan() { true } else { self.biteq(rhs) } + } + + /// Returns true if the value is NaN. + fn is_nan(self) -> bool; + + /// Returns true if the value is +inf or -inf. + fn is_infinite(self) -> bool; + + /// Returns true if the sign is negative. Extracts the sign bit regardless of zero or NaN. + fn is_sign_negative(self) -> bool; + + /// Returns true if the sign is positive. Extracts the sign bit regardless of zero or NaN. + fn is_sign_positive(self) -> bool { + !self.is_sign_negative() + } + + /// Returns if `self` is subnormal. + #[allow(dead_code)] + fn is_subnormal(self) -> bool { + (self.to_bits() & Self::EXP_MASK) == Self::Int::ZERO + } + + /// Returns the exponent, not adjusting for bias, not accounting for subnormals or zero. + fn ex(self) -> u32 { + u32::cast_from(self.to_bits() >> Self::SIG_BITS) & Self::EXP_SAT + } + + /// Extract the exponent and adjust it for bias, not accounting for subnormals or zero. + fn exp_unbiased(self) -> i32 { + self.ex().signed() - (Self::EXP_BIAS as i32) + } + + /// Returns the significand with no implicit bit (or the "fractional" part) + #[allow(dead_code)] + fn frac(self) -> Self::Int { + self.to_bits() & Self::SIG_MASK + } + + /// Returns a `Self::Int` transmuted back to `Self` + fn from_bits(a: Self::Int) -> Self; + + /// Constructs a `Self` from its parts. Inputs are treated as bits and shifted into position. + fn from_parts(negative: bool, exponent: u32, significand: Self::Int) -> Self { + let sign = if negative { Self::Int::ONE } else { Self::Int::ZERO }; + Self::from_bits( + (sign << (Self::BITS - 1)) + | (Self::Int::cast_from(exponent & Self::EXP_SAT) << Self::SIG_BITS) + | (significand & Self::SIG_MASK), + ) + } + + #[allow(dead_code)] + fn abs(self) -> Self; + + /// Returns a number composed of the magnitude of self and the sign of sign. + fn copysign(self, other: Self) -> Self; + + /// Fused multiply add, rounding once. + fn fma(self, y: Self, z: Self) -> Self; + + /// Returns (normalized exponent, normalized significand) + #[allow(dead_code)] + fn normalize(significand: Self::Int) -> (i32, Self::Int); + + /// Returns a number that represents the sign of self. + #[allow(dead_code)] + fn signum(self) -> Self { + if self.is_nan() { self } else { Self::ONE.copysign(self) } + } +} + +/// Access the associated `Int` type from a float (helper to avoid ambiguous associated types). +pub type IntTy<F> = <F as Float>::Int; + +macro_rules! float_impl { + ( + $ty:ident, + $ity:ident, + $sity:ident, + $bits:expr, + $significand_bits:expr, + $from_bits:path, + $to_bits:path, + $fma_fn:ident, + $fma_intrinsic:ident + ) => { + impl Float for $ty { + type Int = $ity; + type SignedInt = $sity; + + const ZERO: Self = 0.0; + const NEG_ZERO: Self = -0.0; + const ONE: Self = 1.0; + const NEG_ONE: Self = -1.0; + const INFINITY: Self = Self::INFINITY; + const NEG_INFINITY: Self = Self::NEG_INFINITY; + const NAN: Self = Self::NAN; + // NAN isn't guaranteed to be positive but it usually is. We only use this for + // tests. + const NEG_NAN: Self = $from_bits($to_bits(Self::NAN) | Self::SIGN_MASK); + const MAX: Self = -Self::MIN; + // Sign bit set, saturated mantissa, saturated exponent with last bit zeroed + const MIN: Self = $from_bits(Self::Int::MAX & !(1 << Self::SIG_BITS)); + const EPSILON: Self = <$ty>::EPSILON; + + // Exponent is a 1 in the LSB + const MIN_POSITIVE_NORMAL: Self = $from_bits(1 << Self::SIG_BITS); + + const PI: Self = core::$ty::consts::PI; + const NEG_PI: Self = -Self::PI; + const FRAC_PI_2: Self = core::$ty::consts::FRAC_PI_2; + + const BITS: u32 = $bits; + const SIG_BITS: u32 = $significand_bits; + + const SIGN_MASK: Self::Int = 1 << (Self::BITS - 1); + const SIG_MASK: Self::Int = (1 << Self::SIG_BITS) - 1; + const EXP_MASK: Self::Int = !(Self::SIGN_MASK | Self::SIG_MASK); + const IMPLICIT_BIT: Self::Int = 1 << Self::SIG_BITS; + + fn to_bits(self) -> Self::Int { + self.to_bits() + } + fn is_nan(self) -> bool { + self.is_nan() + } + fn is_infinite(self) -> bool { + self.is_infinite() + } + fn is_sign_negative(self) -> bool { + self.is_sign_negative() + } + fn from_bits(a: Self::Int) -> Self { + Self::from_bits(a) + } + fn abs(self) -> Self { + cfg_if! { + // FIXME(msrv): `abs` is available in `core` starting with 1.85. + if #[cfg(intrinsics_enabled)] { + self.abs() + } else { + super::super::generic::fabs(self) + } + } + } + fn copysign(self, other: Self) -> Self { + cfg_if! { + // FIXME(msrv): `copysign` is available in `core` starting with 1.85. + if #[cfg(intrinsics_enabled)] { + self.copysign(other) + } else { + super::super::generic::copysign(self, other) + } + } + } + fn fma(self, y: Self, z: Self) -> Self { + cfg_if! { + // fma is not yet available in `core` + if #[cfg(intrinsics_enabled)] { + unsafe{ core::intrinsics::$fma_intrinsic(self, y, z) } + } else { + super::super::$fma_fn(self, y, z) + } + } + } + fn normalize(significand: Self::Int) -> (i32, Self::Int) { + let shift = significand.leading_zeros().wrapping_sub(Self::EXP_BITS); + (1i32.wrapping_sub(shift as i32), significand << shift as Self::Int) + } + } + }; +} + +#[cfg(f16_enabled)] +float_impl!(f16, u16, i16, 16, 10, f16::from_bits, f16::to_bits, fmaf16, fmaf16); +float_impl!(f32, u32, i32, 32, 23, f32_from_bits, f32_to_bits, fmaf, fmaf32); +float_impl!(f64, u64, i64, 64, 52, f64_from_bits, f64_to_bits, fma, fmaf64); +#[cfg(f128_enabled)] +float_impl!(f128, u128, i128, 128, 112, f128::from_bits, f128::to_bits, fmaf128, fmaf128); + +/* FIXME(msrv): vendor some things that are not const stable at our MSRV */ + +/// `f32::from_bits` +pub const fn f32_from_bits(bits: u32) -> f32 { + // SAFETY: POD cast with no preconditions + unsafe { mem::transmute::<u32, f32>(bits) } +} + +/// `f32::to_bits` +pub const fn f32_to_bits(x: f32) -> u32 { + // SAFETY: POD cast with no preconditions + unsafe { mem::transmute::<f32, u32>(x) } +} + +/// `f64::from_bits` +pub const fn f64_from_bits(bits: u64) -> f64 { + // SAFETY: POD cast with no preconditions + unsafe { mem::transmute::<u64, f64>(bits) } +} + +/// `f64::to_bits` +pub const fn f64_to_bits(x: f64) -> u64 { + // SAFETY: POD cast with no preconditions + unsafe { mem::transmute::<f64, u64>(x) } +} + +/// Trait for floats twice the bit width of another integer. +pub trait DFloat: Float { + /// Float that is half the bit width of the floatthis trait is implemented for. + type H: HFloat<D = Self>; + + /// Narrow the float type. + fn narrow(self) -> Self::H; +} + +/// Trait for floats half the bit width of another float. +pub trait HFloat: Float { + /// Float that is double the bit width of the float this trait is implemented for. + type D: DFloat<H = Self>; + + /// Widen the float type. + fn widen(self) -> Self::D; +} + +macro_rules! impl_d_float { + ($($X:ident $D:ident),*) => { + $( + impl DFloat for $D { + type H = $X; + + fn narrow(self) -> Self::H { + self as $X + } + } + )* + }; +} + +macro_rules! impl_h_float { + ($($H:ident $X:ident),*) => { + $( + impl HFloat for $H { + type D = $X; + + fn widen(self) -> Self::D { + self as $X + } + } + )* + }; +} + +impl_d_float!(f32 f64); +#[cfg(f16_enabled)] +impl_d_float!(f16 f32); +#[cfg(f128_enabled)] +impl_d_float!(f64 f128); + +impl_h_float!(f32 f64); +#[cfg(f16_enabled)] +impl_h_float!(f16 f32); +#[cfg(f128_enabled)] +impl_h_float!(f64 f128); + +#[cfg(test)] +mod tests { + use super::*; + + #[test] + #[cfg(f16_enabled)] + fn check_f16() { + // Constants + assert_eq!(f16::EXP_SAT, 0b11111); + assert_eq!(f16::EXP_BIAS, 15); + assert_eq!(f16::EXP_MAX, 15); + assert_eq!(f16::EXP_MIN, -14); + assert_eq!(f16::EXP_MIN_SUBNORM, -24); + + // `exp_unbiased` + assert_eq!(f16::FRAC_PI_2.exp_unbiased(), 0); + assert_eq!((1.0f16 / 2.0).exp_unbiased(), -1); + assert_eq!(f16::MAX.exp_unbiased(), 15); + assert_eq!(f16::MIN.exp_unbiased(), 15); + assert_eq!(f16::MIN_POSITIVE.exp_unbiased(), -14); + // This is a convenience method and not ldexp, `exp_unbiased` does not return correct + // results for zero and subnormals. + assert_eq!(f16::ZERO.exp_unbiased(), -15); + assert_eq!(f16::from_bits(0x1).exp_unbiased(), -15); + assert_eq!(f16::MIN_POSITIVE, f16::MIN_POSITIVE_NORMAL); + + // `from_parts` + assert_biteq!(f16::from_parts(true, f16::EXP_BIAS, 0), -1.0f16); + assert_biteq!(f16::from_parts(false, 0, 1), f16::from_bits(0x1)); + } + + #[test] + fn check_f32() { + // Constants + assert_eq!(f32::EXP_SAT, 0b11111111); + assert_eq!(f32::EXP_BIAS, 127); + assert_eq!(f32::EXP_MAX, 127); + assert_eq!(f32::EXP_MIN, -126); + assert_eq!(f32::EXP_MIN_SUBNORM, -149); + + // `exp_unbiased` + assert_eq!(f32::FRAC_PI_2.exp_unbiased(), 0); + assert_eq!((1.0f32 / 2.0).exp_unbiased(), -1); + assert_eq!(f32::MAX.exp_unbiased(), 127); + assert_eq!(f32::MIN.exp_unbiased(), 127); + assert_eq!(f32::MIN_POSITIVE.exp_unbiased(), -126); + // This is a convenience method and not ldexp, `exp_unbiased` does not return correct + // results for zero and subnormals. + assert_eq!(f32::ZERO.exp_unbiased(), -127); + assert_eq!(f32::from_bits(0x1).exp_unbiased(), -127); + assert_eq!(f32::MIN_POSITIVE, f32::MIN_POSITIVE_NORMAL); + + // `from_parts` + assert_biteq!(f32::from_parts(true, f32::EXP_BIAS, 0), -1.0f32); + assert_biteq!(f32::from_parts(false, 10 + f32::EXP_BIAS, 0), hf32!("0x1p10")); + assert_biteq!(f32::from_parts(false, 0, 1), f32::from_bits(0x1)); + } + + #[test] + fn check_f64() { + // Constants + assert_eq!(f64::EXP_SAT, 0b11111111111); + assert_eq!(f64::EXP_BIAS, 1023); + assert_eq!(f64::EXP_MAX, 1023); + assert_eq!(f64::EXP_MIN, -1022); + assert_eq!(f64::EXP_MIN_SUBNORM, -1074); + + // `exp_unbiased` + assert_eq!(f64::FRAC_PI_2.exp_unbiased(), 0); + assert_eq!((1.0f64 / 2.0).exp_unbiased(), -1); + assert_eq!(f64::MAX.exp_unbiased(), 1023); + assert_eq!(f64::MIN.exp_unbiased(), 1023); + assert_eq!(f64::MIN_POSITIVE.exp_unbiased(), -1022); + // This is a convenience method and not ldexp, `exp_unbiased` does not return correct + // results for zero and subnormals. + assert_eq!(f64::ZERO.exp_unbiased(), -1023); + assert_eq!(f64::from_bits(0x1).exp_unbiased(), -1023); + assert_eq!(f64::MIN_POSITIVE, f64::MIN_POSITIVE_NORMAL); + + // `from_parts` + assert_biteq!(f64::from_parts(true, f64::EXP_BIAS, 0), -1.0f64); + assert_biteq!(f64::from_parts(false, 10 + f64::EXP_BIAS, 0), hf64!("0x1p10")); + assert_biteq!(f64::from_parts(false, 0, 1), f64::from_bits(0x1)); + } + + #[test] + #[cfg(f128_enabled)] + fn check_f128() { + // Constants + assert_eq!(f128::EXP_SAT, 0b111111111111111); + assert_eq!(f128::EXP_BIAS, 16383); + assert_eq!(f128::EXP_MAX, 16383); + assert_eq!(f128::EXP_MIN, -16382); + assert_eq!(f128::EXP_MIN_SUBNORM, -16494); + + // `exp_unbiased` + assert_eq!(f128::FRAC_PI_2.exp_unbiased(), 0); + assert_eq!((1.0f128 / 2.0).exp_unbiased(), -1); + assert_eq!(f128::MAX.exp_unbiased(), 16383); + assert_eq!(f128::MIN.exp_unbiased(), 16383); + assert_eq!(f128::MIN_POSITIVE.exp_unbiased(), -16382); + // This is a convenience method and not ldexp, `exp_unbiased` does not return correct + // results for zero and subnormals. + assert_eq!(f128::ZERO.exp_unbiased(), -16383); + assert_eq!(f128::from_bits(0x1).exp_unbiased(), -16383); + assert_eq!(f128::MIN_POSITIVE, f128::MIN_POSITIVE_NORMAL); + + // `from_parts` + assert_biteq!(f128::from_parts(true, f128::EXP_BIAS, 0), -1.0f128); + assert_biteq!(f128::from_parts(false, 0, 1), f128::from_bits(0x1)); + } +} diff --git a/library/compiler-builtins/libm/src/math/support/hex_float.rs b/library/compiler-builtins/libm/src/math/support/hex_float.rs new file mode 100644 index 00000000000..819e2f56e36 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/support/hex_float.rs @@ -0,0 +1,1155 @@ +//! Utilities for working with hex float formats. + +use core::fmt; + +use super::{Float, Round, Status, f32_from_bits, f64_from_bits}; + +/// Construct a 16-bit float from hex float representation (C-style) +#[cfg(f16_enabled)] +pub const fn hf16(s: &str) -> f16 { + match parse_hex_exact(s, 16, 10) { + Ok(bits) => f16::from_bits(bits as u16), + Err(HexFloatParseError(s)) => panic!("{}", s), + } +} + +/// Construct a 32-bit float from hex float representation (C-style) +#[allow(unused)] +pub const fn hf32(s: &str) -> f32 { + match parse_hex_exact(s, 32, 23) { + Ok(bits) => f32_from_bits(bits as u32), + Err(HexFloatParseError(s)) => panic!("{}", s), + } +} + +/// Construct a 64-bit float from hex float representation (C-style) +pub const fn hf64(s: &str) -> f64 { + match parse_hex_exact(s, 64, 52) { + Ok(bits) => f64_from_bits(bits as u64), + Err(HexFloatParseError(s)) => panic!("{}", s), + } +} + +/// Construct a 128-bit float from hex float representation (C-style) +#[cfg(f128_enabled)] +pub const fn hf128(s: &str) -> f128 { + match parse_hex_exact(s, 128, 112) { + Ok(bits) => f128::from_bits(bits), + Err(HexFloatParseError(s)) => panic!("{}", s), + } +} +#[derive(Copy, Clone, Debug)] +pub struct HexFloatParseError(&'static str); + +/// Parses any float to its bitwise representation, returning an error if it cannot be represented exactly +pub const fn parse_hex_exact( + s: &str, + bits: u32, + sig_bits: u32, +) -> Result<u128, HexFloatParseError> { + match parse_any(s, bits, sig_bits, Round::Nearest) { + Err(e) => Err(e), + Ok((bits, Status::OK)) => Ok(bits), + Ok((_, status)) if status.overflow() => Err(HexFloatParseError("the value is too huge")), + Ok((_, status)) if status.underflow() => Err(HexFloatParseError("the value is too tiny")), + Ok((_, status)) if status.inexact() => Err(HexFloatParseError("the value is too precise")), + Ok(_) => unreachable!(), + } +} + +/// Parse any float from hex to its bitwise representation. +pub const fn parse_any( + s: &str, + bits: u32, + sig_bits: u32, + round: Round, +) -> Result<(u128, Status), HexFloatParseError> { + let mut b = s.as_bytes(); + + if sig_bits > 119 || bits > 128 || bits < sig_bits + 3 || bits > sig_bits + 30 { + return Err(HexFloatParseError("unsupported target float configuration")); + } + + let neg = matches!(b, [b'-', ..]); + if let &[b'-' | b'+', ref rest @ ..] = b { + b = rest; + } + + let sign_bit = 1 << (bits - 1); + let quiet_bit = 1 << (sig_bits - 1); + let nan = sign_bit - quiet_bit; + let inf = nan - quiet_bit; + + let (mut x, status) = match *b { + [b'i' | b'I', b'n' | b'N', b'f' | b'F'] => (inf, Status::OK), + [b'n' | b'N', b'a' | b'A', b'n' | b'N'] => (nan, Status::OK), + [b'0', b'x' | b'X', ref rest @ ..] => { + let round = match (neg, round) { + // parse("-x", Round::Positive) == -parse("x", Round::Negative) + (true, Round::Positive) => Round::Negative, + (true, Round::Negative) => Round::Positive, + // rounding toward nearest or zero are symmetric + (true, Round::Nearest | Round::Zero) | (false, _) => round, + }; + match parse_finite(rest, bits, sig_bits, round) { + Err(e) => return Err(e), + Ok(res) => res, + } + } + _ => return Err(HexFloatParseError("no hex indicator")), + }; + + if neg { + x ^= sign_bit; + } + + Ok((x, status)) +} + +const fn parse_finite( + b: &[u8], + bits: u32, + sig_bits: u32, + rounding_mode: Round, +) -> Result<(u128, Status), HexFloatParseError> { + let exp_bits: u32 = bits - sig_bits - 1; + let max_msb: i32 = (1 << (exp_bits - 1)) - 1; + // The exponent of one ULP in the subnormals + let min_lsb: i32 = 1 - max_msb - sig_bits as i32; + + let (mut sig, mut exp) = match parse_hex(b) { + Err(e) => return Err(e), + Ok(Parsed { sig: 0, .. }) => return Ok((0, Status::OK)), + Ok(Parsed { sig, exp }) => (sig, exp), + }; + + let mut round_bits = u128_ilog2(sig) as i32 - sig_bits as i32; + + // Round at least up to min_lsb + if exp < min_lsb - round_bits { + round_bits = min_lsb - exp; + } + + let mut status = Status::OK; + + exp += round_bits; + + if round_bits > 0 { + // first, prepare for rounding exactly two bits + if round_bits == 1 { + sig <<= 1; + } else if round_bits > 2 { + sig = shr_odd_rounding(sig, (round_bits - 2) as u32); + } + + if sig & 0b11 != 0 { + status = Status::INEXACT; + } + + sig = shr2_round(sig, rounding_mode); + } else if round_bits < 0 { + sig <<= -round_bits; + } + + // The parsed value is X = sig * 2^exp + // Expressed as a multiple U of the smallest subnormal value: + // X = U * 2^min_lsb, so U = sig * 2^(exp-min_lsb) + let uexp = (exp - min_lsb) as u128; + let uexp = uexp << sig_bits; + + // Note that it is possible for the exponent bits to equal 2 here + // if the value rounded up, but that means the mantissa is all zeroes + // so the value is still correct + debug_assert!(sig <= 2 << sig_bits); + + let inf = ((1 << exp_bits) - 1) << sig_bits; + + let bits = match sig.checked_add(uexp) { + Some(bits) if bits < inf => { + // inexact subnormal or zero? + if status.inexact() && bits < (1 << sig_bits) { + status = status.with(Status::UNDERFLOW); + } + bits + } + _ => { + // overflow to infinity + status = status.with(Status::OVERFLOW).with(Status::INEXACT); + match rounding_mode { + Round::Positive | Round::Nearest => inf, + Round::Negative | Round::Zero => inf - 1, + } + } + }; + Ok((bits, status)) +} + +/// Shift right, rounding all inexact divisions to the nearest odd number +/// E.g. (0 >> 4) -> 0, (1..=31 >> 4) -> 1, (32 >> 4) -> 2, ... +/// +/// Useful for reducing a number before rounding the last two bits, since +/// the result of the final rounding is preserved for all rounding modes. +const fn shr_odd_rounding(x: u128, k: u32) -> u128 { + if k < 128 { + let inexact = x.trailing_zeros() < k; + (x >> k) | (inexact as u128) + } else { + (x != 0) as u128 + } +} + +/// Divide by 4, rounding with the given mode +const fn shr2_round(mut x: u128, round: Round) -> u128 { + let t = (x as u32) & 0b111; + x >>= 2; + match round { + // Look-up-table on the last three bits for when to round up + Round::Nearest => x + ((0b11001000_u8 >> t) & 1) as u128, + + Round::Negative => x, + Round::Zero => x, + Round::Positive => x + (t & 0b11 != 0) as u128, + } +} + +/// A parsed finite and unsigned floating point number. +struct Parsed { + /// Absolute value sig * 2^exp + sig: u128, + exp: i32, +} + +/// Parse a hexadecimal float x +const fn parse_hex(mut b: &[u8]) -> Result<Parsed, HexFloatParseError> { + let mut sig: u128 = 0; + let mut exp: i32 = 0; + + let mut seen_point = false; + let mut some_digits = false; + let mut inexact = false; + + while let &[c, ref rest @ ..] = b { + b = rest; + + match c { + b'.' => { + if seen_point { + return Err(HexFloatParseError("unexpected '.' parsing fractional digits")); + } + seen_point = true; + continue; + } + b'p' | b'P' => break, + c => { + let digit = match hex_digit(c) { + Some(d) => d, + None => return Err(HexFloatParseError("expected hexadecimal digit")), + }; + some_digits = true; + + if (sig >> 124) == 0 { + sig <<= 4; + sig |= digit as u128; + } else { + // FIXME: it is technically possible for exp to overflow if parsing a string with >500M digits + exp += 4; + inexact |= digit != 0; + } + // Up until the fractional point, the value grows + // with more digits, but after it the exponent is + // compensated to match. + if seen_point { + exp -= 4; + } + } + } + } + // If we've set inexact, the exact value has more than 125 + // significant bits, and lies somewhere between sig and sig + 1. + // Because we'll round off at least two of the trailing bits, + // setting the last bit gives correct rounding for inexact values. + sig |= inexact as u128; + + if !some_digits { + return Err(HexFloatParseError("at least one digit is required")); + }; + + some_digits = false; + + let negate_exp = matches!(b, [b'-', ..]); + if let &[b'-' | b'+', ref rest @ ..] = b { + b = rest; + } + + let mut pexp: u32 = 0; + while let &[c, ref rest @ ..] = b { + b = rest; + let digit = match dec_digit(c) { + Some(d) => d, + None => return Err(HexFloatParseError("expected decimal digit")), + }; + some_digits = true; + pexp = pexp.saturating_mul(10); + pexp += digit as u32; + } + + if !some_digits { + return Err(HexFloatParseError("at least one exponent digit is required")); + }; + + { + let e; + if negate_exp { + e = (exp as i64) - (pexp as i64); + } else { + e = (exp as i64) + (pexp as i64); + }; + + exp = if e < i32::MIN as i64 { + i32::MIN + } else if e > i32::MAX as i64 { + i32::MAX + } else { + e as i32 + }; + } + /* FIXME(msrv): once MSRV >= 1.66, replace the above workaround block with: + if negate_exp { + exp = exp.saturating_sub_unsigned(pexp); + } else { + exp = exp.saturating_add_unsigned(pexp); + }; + */ + + Ok(Parsed { sig, exp }) +} + +const fn dec_digit(c: u8) -> Option<u8> { + match c { + b'0'..=b'9' => Some(c - b'0'), + _ => None, + } +} + +const fn hex_digit(c: u8) -> Option<u8> { + match c { + b'0'..=b'9' => Some(c - b'0'), + b'a'..=b'f' => Some(c - b'a' + 10), + b'A'..=b'F' => Some(c - b'A' + 10), + _ => None, + } +} + +/* FIXME(msrv): vendor some things that are not const stable at our MSRV */ + +/// `u128::ilog2` +const fn u128_ilog2(v: u128) -> u32 { + assert!(v != 0); + u128::BITS - 1 - v.leading_zeros() +} + +/// Format a floating point number as its IEEE hex (`%a`) representation. +pub struct Hexf<F>(pub F); + +// Adapted from https://github.com/ericseppanen/hexfloat2/blob/a5c27932f0ff/src/format.rs +#[cfg(not(feature = "compiler-builtins"))] +fn fmt_any_hex<F: Float>(x: &F, f: &mut fmt::Formatter<'_>) -> fmt::Result { + if x.is_sign_negative() { + write!(f, "-")?; + } + + if x.is_nan() { + return write!(f, "NaN"); + } else if x.is_infinite() { + return write!(f, "inf"); + } else if *x == F::ZERO { + return write!(f, "0x0p+0"); + } + + let mut exponent = x.exp_unbiased(); + let sig = x.to_bits() & F::SIG_MASK; + + let bias = F::EXP_BIAS as i32; + // The mantissa MSB needs to be shifted up to the nearest nibble. + let mshift = (4 - (F::SIG_BITS % 4)) % 4; + let sig = sig << mshift; + // The width is rounded up to the nearest char (4 bits) + let mwidth = (F::SIG_BITS as usize + 3) / 4; + let leading = if exponent == -bias { + // subnormal number means we shift our output by 1 bit. + exponent += 1; + "0." + } else { + "1." + }; + + write!(f, "0x{leading}{sig:0mwidth$x}p{exponent:+}") +} + +#[cfg(feature = "compiler-builtins")] +fn fmt_any_hex<F: Float>(_x: &F, _f: &mut fmt::Formatter<'_>) -> fmt::Result { + unimplemented!() +} + +impl<F: Float> fmt::LowerHex for Hexf<F> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + cfg_if! { + if #[cfg(feature = "compiler-builtins")] { + let _ = f; + unimplemented!() + } else { + fmt_any_hex(&self.0, f) + } + } + } +} + +impl<F: Float> fmt::LowerHex for Hexf<(F, F)> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + cfg_if! { + if #[cfg(feature = "compiler-builtins")] { + let _ = f; + unimplemented!() + } else { + write!(f, "({:x}, {:x})", Hexf(self.0.0), Hexf(self.0.1)) + } + } + } +} + +impl<F: Float> fmt::LowerHex for Hexf<(F, i32)> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + cfg_if! { + if #[cfg(feature = "compiler-builtins")] { + let _ = f; + unimplemented!() + } else { + write!(f, "({:x}, {:x})", Hexf(self.0.0), Hexf(self.0.1)) + } + } + } +} + +impl fmt::LowerHex for Hexf<i32> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + cfg_if! { + if #[cfg(feature = "compiler-builtins")] { + let _ = f; + unimplemented!() + } else { + fmt::LowerHex::fmt(&self.0, f) + } + } + } +} + +impl<T> fmt::Debug for Hexf<T> +where + Hexf<T>: fmt::LowerHex, +{ + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + cfg_if! { + if #[cfg(feature = "compiler-builtins")] { + let _ = f; + unimplemented!() + } else { + fmt::LowerHex::fmt(self, f) + } + } + } +} + +impl<T> fmt::Display for Hexf<T> +where + Hexf<T>: fmt::LowerHex, +{ + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + cfg_if! { + if #[cfg(feature = "compiler-builtins")] { + let _ = f; + unimplemented!() + } else { + fmt::LowerHex::fmt(self, f) + } + } + } +} + +#[cfg(test)] +mod parse_tests { + extern crate std; + use std::{format, println}; + + use super::*; + + #[cfg(f16_enabled)] + fn rounding_properties(s: &str) -> Result<(), HexFloatParseError> { + let (xd, s0) = parse_any(s, 16, 10, Round::Negative)?; + let (xu, s1) = parse_any(s, 16, 10, Round::Positive)?; + let (xz, s2) = parse_any(s, 16, 10, Round::Zero)?; + let (xn, s3) = parse_any(s, 16, 10, Round::Nearest)?; + + // FIXME: A value between the least normal and largest subnormal + // could have underflow status depend on rounding mode. + + if let Status::OK = s0 { + // an exact result is the same for all rounding modes + assert_eq!(s0, s1); + assert_eq!(s0, s2); + assert_eq!(s0, s3); + + assert_eq!(xd, xu); + assert_eq!(xd, xz); + assert_eq!(xd, xn); + } else { + assert!([s0, s1, s2, s3].into_iter().all(Status::inexact)); + + let xd = f16::from_bits(xd as u16); + let xu = f16::from_bits(xu as u16); + let xz = f16::from_bits(xz as u16); + let xn = f16::from_bits(xn as u16); + + assert_biteq!(xd.next_up(), xu, "s={s}, xd={xd:?}, xu={xu:?}"); + + let signs = [xd, xu, xz, xn].map(f16::is_sign_negative); + + if signs == [true; 4] { + assert_biteq!(xz, xu); + } else { + assert_eq!(signs, [false; 4]); + assert_biteq!(xz, xd); + } + + if xn.to_bits() != xd.to_bits() { + assert_biteq!(xn, xu); + } + } + Ok(()) + } + #[test] + #[cfg(f16_enabled)] + fn test_rounding() { + let n = 1_i32 << 14; + for i in -n..n { + let u = i.rotate_right(11) as u32; + let s = format!("{}", Hexf(f32::from_bits(u))); + assert!(rounding_properties(&s).is_ok()); + } + } + + #[test] + fn test_parse_any() { + for k in -149..=127 { + let s = format!("0x1p{k}"); + let x = hf32(&s); + let y = if k < 0 { 0.5f32.powi(-k) } else { 2.0f32.powi(k) }; + assert_eq!(x, y); + } + + let mut s = *b"0x.0000000p-121"; + for e in 0..40 { + for k in 0..(1 << 15) { + let expected = f32::from_bits(k) * 2.0f32.powi(e); + let x = hf32(std::str::from_utf8(&s).unwrap()); + assert_eq!( + x.to_bits(), + expected.to_bits(), + "\ + e={e}\n\ + k={k}\n\ + x={x}\n\ + expected={expected}\n\ + s={}\n\ + f32::from_bits(k)={}\n\ + 2.0f32.powi(e)={}\ + ", + std::str::from_utf8(&s).unwrap(), + f32::from_bits(k), + 2.0f32.powi(e), + ); + for i in (3..10).rev() { + if s[i] == b'f' { + s[i] = b'0'; + } else if s[i] == b'9' { + s[i] = b'a'; + break; + } else { + s[i] += 1; + break; + } + } + } + for i in (12..15).rev() { + if s[i] == b'0' { + s[i] = b'9'; + } else { + s[i] -= 1; + break; + } + } + for i in (3..10).rev() { + s[i] = b'0'; + } + } + } + + // FIXME: this test is causing failures that are likely UB on various platforms + #[cfg(all(target_arch = "x86_64", target_os = "linux"))] + #[test] + #[cfg(f128_enabled)] + fn rounding() { + let pi = std::f128::consts::PI; + let s = format!("{}", Hexf(pi)); + + for k in 0..=111 { + let (bits, status) = parse_any(&s, 128 - k, 112 - k, Round::Nearest).unwrap(); + let scale = (1u128 << (112 - k - 1)) as f128; + let expected = (pi * scale).round_ties_even() / scale; + assert_eq!(bits << k, expected.to_bits(), "k = {k}, s = {s}"); + assert_eq!(expected != pi, status.inexact()); + } + } + #[test] + fn rounding_extreme_underflow() { + for k in 1..1000 { + let s = format!("0x1p{}", -149 - k); + let Ok((bits, status)) = parse_any(&s, 32, 23, Round::Nearest) else { unreachable!() }; + assert_eq!(bits, 0, "{s} should round to zero, got bits={bits}"); + assert!(status.underflow(), "should indicate underflow when parsing {s}"); + assert!(status.inexact(), "should indicate inexact when parsing {s}"); + } + } + #[test] + fn long_tail() { + for k in 1..1000 { + let s = format!("0x1.{}p0", "0".repeat(k)); + let Ok(bits) = parse_hex_exact(&s, 32, 23) else { panic!("parsing {s} failed") }; + assert_eq!(f32::from_bits(bits as u32), 1.0); + + let s = format!("0x1.{}1p0", "0".repeat(k)); + let Ok((bits, status)) = parse_any(&s, 32, 23, Round::Nearest) else { unreachable!() }; + if status.inexact() { + assert!(1.0 == f32::from_bits(bits as u32)); + } else { + assert!(1.0 < f32::from_bits(bits as u32)); + } + } + } + // HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to + // hide them from the AST. + #[cfg(f16_enabled)] + macro_rules! f16_tests { + () => { + #[test] + fn test_f16() { + let checks = [ + ("0x.1234p+16", (0x1234 as f16).to_bits()), + ("0x1.234p+12", (0x1234 as f16).to_bits()), + ("0x12.34p+8", (0x1234 as f16).to_bits()), + ("0x123.4p+4", (0x1234 as f16).to_bits()), + ("0x1234p+0", (0x1234 as f16).to_bits()), + ("0x1234.p+0", (0x1234 as f16).to_bits()), + ("0x1234.0p+0", (0x1234 as f16).to_bits()), + ("0x1.ffcp+15", f16::MAX.to_bits()), + ("0x1.0p+1", 2.0f16.to_bits()), + ("0x1.0p+0", 1.0f16.to_bits()), + ("0x1.ffp+8", 0x5ffc), + ("+0x1.ffp+8", 0x5ffc), + ("0x1p+0", 0x3c00), + ("0x1.998p-4", 0x2e66), + ("0x1.9p+6", 0x5640), + ("0x0.0p0", 0.0f16.to_bits()), + ("-0x0.0p0", (-0.0f16).to_bits()), + ("0x1.0p0", 1.0f16.to_bits()), + ("0x1.998p-4", (0.1f16).to_bits()), + ("-0x1.998p-4", (-0.1f16).to_bits()), + ("0x0.123p-12", 0x0123), + ("0x1p-24", 0x0001), + ("nan", f16::NAN.to_bits()), + ("-nan", (-f16::NAN).to_bits()), + ("inf", f16::INFINITY.to_bits()), + ("-inf", f16::NEG_INFINITY.to_bits()), + ]; + for (s, exp) in checks { + println!("parsing {s}"); + assert!(rounding_properties(s).is_ok()); + let act = hf16(s).to_bits(); + assert_eq!( + act, exp, + "parsing {s}: {act:#06x} != {exp:#06x}\nact: {act:#018b}\nexp: {exp:#018b}" + ); + } + } + + #[test] + fn test_macros_f16() { + assert_eq!(hf16!("0x1.ffp+8").to_bits(), 0x5ffc_u16); + } + }; + } + + #[cfg(f16_enabled)] + f16_tests!(); + + #[test] + fn test_f32() { + let checks = [ + ("0x.1234p+16", (0x1234 as f32).to_bits()), + ("0x1.234p+12", (0x1234 as f32).to_bits()), + ("0x12.34p+8", (0x1234 as f32).to_bits()), + ("0x123.4p+4", (0x1234 as f32).to_bits()), + ("0x1234p+0", (0x1234 as f32).to_bits()), + ("0x1234.p+0", (0x1234 as f32).to_bits()), + ("0x1234.0p+0", (0x1234 as f32).to_bits()), + ("0x1.fffffep+127", f32::MAX.to_bits()), + ("0x1.0p+1", 2.0f32.to_bits()), + ("0x1.0p+0", 1.0f32.to_bits()), + ("0x1.ffep+8", 0x43fff000), + ("+0x1.ffep+8", 0x43fff000), + ("0x1p+0", 0x3f800000), + ("0x1.99999ap-4", 0x3dcccccd), + ("0x1.9p+6", 0x42c80000), + ("0x1.2d5ed2p+20", 0x4996af69), + ("-0x1.348eb8p+10", 0xc49a475c), + ("-0x1.33dcfep-33", 0xaf19ee7f), + ("0x0.0p0", 0.0f32.to_bits()), + ("-0x0.0p0", (-0.0f32).to_bits()), + ("0x1.0p0", 1.0f32.to_bits()), + ("0x1.99999ap-4", (0.1f32).to_bits()), + ("-0x1.99999ap-4", (-0.1f32).to_bits()), + ("0x1.111114p-127", 0x00444445), + ("0x1.23456p-130", 0x00091a2b), + ("0x1p-149", 0x00000001), + ("nan", f32::NAN.to_bits()), + ("-nan", (-f32::NAN).to_bits()), + ("inf", f32::INFINITY.to_bits()), + ("-inf", f32::NEG_INFINITY.to_bits()), + ]; + for (s, exp) in checks { + println!("parsing {s}"); + let act = hf32(s).to_bits(); + assert_eq!( + act, exp, + "parsing {s}: {act:#010x} != {exp:#010x}\nact: {act:#034b}\nexp: {exp:#034b}" + ); + } + } + + #[test] + fn test_f64() { + let checks = [ + ("0x.1234p+16", (0x1234 as f64).to_bits()), + ("0x1.234p+12", (0x1234 as f64).to_bits()), + ("0x12.34p+8", (0x1234 as f64).to_bits()), + ("0x123.4p+4", (0x1234 as f64).to_bits()), + ("0x1234p+0", (0x1234 as f64).to_bits()), + ("0x1234.p+0", (0x1234 as f64).to_bits()), + ("0x1234.0p+0", (0x1234 as f64).to_bits()), + ("0x1.ffep+8", 0x407ffe0000000000), + ("0x1p+0", 0x3ff0000000000000), + ("0x1.999999999999ap-4", 0x3fb999999999999a), + ("0x1.9p+6", 0x4059000000000000), + ("0x1.2d5ed1fe1da7bp+20", 0x4132d5ed1fe1da7b), + ("-0x1.348eb851eb852p+10", 0xc09348eb851eb852), + ("-0x1.33dcfe54a3803p-33", 0xbde33dcfe54a3803), + ("0x1.0p0", 1.0f64.to_bits()), + ("0x0.0p0", 0.0f64.to_bits()), + ("-0x0.0p0", (-0.0f64).to_bits()), + ("0x1.999999999999ap-4", 0.1f64.to_bits()), + ("0x1.999999999998ap-4", (0.1f64 - f64::EPSILON).to_bits()), + ("-0x1.999999999999ap-4", (-0.1f64).to_bits()), + ("-0x1.999999999998ap-4", (-0.1f64 + f64::EPSILON).to_bits()), + ("0x0.8000000000001p-1022", 0x0008000000000001), + ("0x0.123456789abcdp-1022", 0x000123456789abcd), + ("0x0.0000000000002p-1022", 0x0000000000000002), + ("nan", f64::NAN.to_bits()), + ("-nan", (-f64::NAN).to_bits()), + ("inf", f64::INFINITY.to_bits()), + ("-inf", f64::NEG_INFINITY.to_bits()), + ]; + for (s, exp) in checks { + println!("parsing {s}"); + let act = hf64(s).to_bits(); + assert_eq!( + act, exp, + "parsing {s}: {act:#018x} != {exp:#018x}\nact: {act:#066b}\nexp: {exp:#066b}" + ); + } + } + + // HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to + // hide them from the AST. + #[cfg(f128_enabled)] + macro_rules! f128_tests { + () => { + #[test] + fn test_f128() { + let checks = [ + ("0x.1234p+16", (0x1234 as f128).to_bits()), + ("0x1.234p+12", (0x1234 as f128).to_bits()), + ("0x12.34p+8", (0x1234 as f128).to_bits()), + ("0x123.4p+4", (0x1234 as f128).to_bits()), + ("0x1234p+0", (0x1234 as f128).to_bits()), + ("0x1234.p+0", (0x1234 as f128).to_bits()), + ("0x1234.0p+0", (0x1234 as f128).to_bits()), + ("0x1.ffffffffffffffffffffffffffffp+16383", f128::MAX.to_bits()), + ("0x1.0p+1", 2.0f128.to_bits()), + ("0x1.0p+0", 1.0f128.to_bits()), + ("0x1.ffep+8", 0x4007ffe0000000000000000000000000), + ("+0x1.ffep+8", 0x4007ffe0000000000000000000000000), + ("0x1p+0", 0x3fff0000000000000000000000000000), + ("0x1.999999999999999999999999999ap-4", 0x3ffb999999999999999999999999999a), + ("0x1.9p+6", 0x40059000000000000000000000000000), + ("0x0.0p0", 0.0f128.to_bits()), + ("-0x0.0p0", (-0.0f128).to_bits()), + ("0x1.0p0", 1.0f128.to_bits()), + ("0x1.999999999999999999999999999ap-4", (0.1f128).to_bits()), + ("-0x1.999999999999999999999999999ap-4", (-0.1f128).to_bits()), + ("0x0.abcdef0123456789abcdef012345p-16382", 0x0000abcdef0123456789abcdef012345), + ("0x1p-16494", 0x00000000000000000000000000000001), + ("nan", f128::NAN.to_bits()), + ("-nan", (-f128::NAN).to_bits()), + ("inf", f128::INFINITY.to_bits()), + ("-inf", f128::NEG_INFINITY.to_bits()), + ]; + for (s, exp) in checks { + println!("parsing {s}"); + let act = hf128(s).to_bits(); + assert_eq!( + act, exp, + "parsing {s}: {act:#034x} != {exp:#034x}\nact: {act:#0130b}\nexp: {exp:#0130b}" + ); + } + } + + #[test] + fn test_macros_f128() { + assert_eq!(hf128!("0x1.ffep+8").to_bits(), 0x4007ffe0000000000000000000000000_u128); + } + } + } + + #[cfg(f128_enabled)] + f128_tests!(); + + #[test] + fn test_macros() { + #[cfg(f16_enabled)] + assert_eq!(hf16!("0x1.ffp+8").to_bits(), 0x5ffc_u16); + assert_eq!(hf32!("0x1.ffep+8").to_bits(), 0x43fff000_u32); + assert_eq!(hf64!("0x1.ffep+8").to_bits(), 0x407ffe0000000000_u64); + #[cfg(f128_enabled)] + assert_eq!(hf128!("0x1.ffep+8").to_bits(), 0x4007ffe0000000000000000000000000_u128); + } +} + +#[cfg(test)] +// FIXME(ppc): something with `should_panic` tests cause a SIGILL with ppc64le +#[cfg(not(all(target_arch = "powerpc64", target_endian = "little")))] +mod tests_panicking { + extern crate std; + use super::*; + + // HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to + // hide them from the AST. + #[cfg(f16_enabled)] + macro_rules! f16_tests { + () => { + #[test] + fn test_f16_almost_extra_precision() { + // Exact maximum precision allowed + hf16("0x1.ffcp+0"); + } + + #[test] + #[should_panic(expected = "the value is too precise")] + fn test_f16_extra_precision() { + // One bit more than the above. + hf16("0x1.ffdp+0"); + } + + #[test] + #[should_panic(expected = "the value is too huge")] + fn test_f16_overflow() { + // One bit more than the above. + hf16("0x1p+16"); + } + + #[test] + fn test_f16_tiniest() { + let x = hf16("0x1.p-24"); + let y = hf16("0x0.001p-12"); + let z = hf16("0x0.8p-23"); + assert_eq!(x, y); + assert_eq!(x, z); + } + + #[test] + #[should_panic(expected = "the value is too tiny")] + fn test_f16_too_tiny() { + hf16("0x1.p-25"); + } + + #[test] + #[should_panic(expected = "the value is too tiny")] + fn test_f16_also_too_tiny() { + hf16("0x0.8p-24"); + } + + #[test] + #[should_panic(expected = "the value is too tiny")] + fn test_f16_again_too_tiny() { + hf16("0x0.001p-13"); + } + }; + } + + #[cfg(f16_enabled)] + f16_tests!(); + + #[test] + fn test_f32_almost_extra_precision() { + // Exact maximum precision allowed + hf32("0x1.abcdeep+0"); + } + + #[test] + #[should_panic] + fn test_f32_extra_precision2() { + // One bit more than the above. + hf32("0x1.ffffffp+127"); + } + + #[test] + #[should_panic(expected = "the value is too huge")] + fn test_f32_overflow() { + // One bit more than the above. + hf32("0x1p+128"); + } + + #[test] + #[should_panic(expected = "the value is too precise")] + fn test_f32_extra_precision() { + // One bit more than the above. + hf32("0x1.abcdefp+0"); + } + + #[test] + fn test_f32_tiniest() { + let x = hf32("0x1.p-149"); + let y = hf32("0x0.0000000000000001p-85"); + let z = hf32("0x0.8p-148"); + assert_eq!(x, y); + assert_eq!(x, z); + } + + #[test] + #[should_panic(expected = "the value is too tiny")] + fn test_f32_too_tiny() { + hf32("0x1.p-150"); + } + + #[test] + #[should_panic(expected = "the value is too tiny")] + fn test_f32_also_too_tiny() { + hf32("0x0.8p-149"); + } + + #[test] + #[should_panic(expected = "the value is too tiny")] + fn test_f32_again_too_tiny() { + hf32("0x0.0000000000000001p-86"); + } + + #[test] + fn test_f64_almost_extra_precision() { + // Exact maximum precision allowed + hf64("0x1.abcdabcdabcdfp+0"); + } + + #[test] + #[should_panic(expected = "the value is too precise")] + fn test_f64_extra_precision() { + // One bit more than the above. + hf64("0x1.abcdabcdabcdf8p+0"); + } + + // HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to + // hide them from the AST. + #[cfg(f128_enabled)] + macro_rules! f128_tests { + () => { + #[test] + fn test_f128_almost_extra_precision() { + // Exact maximum precision allowed + hf128("0x1.ffffffffffffffffffffffffffffp+16383"); + } + + #[test] + #[should_panic(expected = "the value is too precise")] + fn test_f128_extra_precision() { + // Just below the maximum finite. + hf128("0x1.fffffffffffffffffffffffffffe8p+16383"); + } + #[test] + #[should_panic(expected = "the value is too huge")] + fn test_f128_extra_precision_overflow() { + // One bit more than the above. Should overflow. + hf128("0x1.ffffffffffffffffffffffffffff8p+16383"); + } + + #[test] + #[should_panic(expected = "the value is too huge")] + fn test_f128_overflow() { + // One bit more than the above. + hf128("0x1p+16384"); + } + + #[test] + fn test_f128_tiniest() { + let x = hf128("0x1.p-16494"); + let y = hf128("0x0.0000000000000001p-16430"); + let z = hf128("0x0.8p-16493"); + assert_eq!(x, y); + assert_eq!(x, z); + } + + #[test] + #[should_panic(expected = "the value is too tiny")] + fn test_f128_too_tiny() { + hf128("0x1.p-16495"); + } + + #[test] + #[should_panic(expected = "the value is too tiny")] + fn test_f128_again_too_tiny() { + hf128("0x0.0000000000000001p-16431"); + } + + #[test] + #[should_panic(expected = "the value is too tiny")] + fn test_f128_also_too_tiny() { + hf128("0x0.8p-16494"); + } + }; + } + + #[cfg(f128_enabled)] + f128_tests!(); +} + +#[cfg(test)] +mod print_tests { + extern crate std; + use std::string::ToString; + + use super::*; + + #[test] + #[cfg(f16_enabled)] + fn test_f16() { + use std::format; + // Exhaustively check that `f16` roundtrips. + for x in 0..=u16::MAX { + let f = f16::from_bits(x); + let s = format!("{}", Hexf(f)); + let from_s = hf16(&s); + + if f.is_nan() && from_s.is_nan() { + continue; + } + + assert_eq!( + f.to_bits(), + from_s.to_bits(), + "{f:?} formatted as {s} but parsed as {from_s:?}" + ); + } + } + + #[test] + #[cfg(f16_enabled)] + fn test_f16_to_f32() { + use std::format; + // Exhaustively check that these are equivalent for all `f16`: + // - `f16 -> f32` + // - `f16 -> str -> f32` + // - `f16 -> f32 -> str -> f32` + // - `f16 -> f32 -> str -> f16 -> f32` + for x in 0..=u16::MAX { + let f16 = f16::from_bits(x); + let s16 = format!("{}", Hexf(f16)); + let f32 = f16 as f32; + let s32 = format!("{}", Hexf(f32)); + + let a = hf32(&s16); + let b = hf32(&s32); + let c = hf16(&s32); + + if f32.is_nan() && a.is_nan() && b.is_nan() && c.is_nan() { + continue; + } + + assert_eq!( + f32.to_bits(), + a.to_bits(), + "{f16:?} : f16 formatted as {s16} which parsed as {a:?} : f16" + ); + assert_eq!( + f32.to_bits(), + b.to_bits(), + "{f32:?} : f32 formatted as {s32} which parsed as {b:?} : f32" + ); + assert_eq!( + f32.to_bits(), + (c as f32).to_bits(), + "{f32:?} : f32 formatted as {s32} which parsed as {c:?} : f16" + ); + } + } + #[test] + fn spot_checks() { + assert_eq!(Hexf(f32::MAX).to_string(), "0x1.fffffep+127"); + assert_eq!(Hexf(f64::MAX).to_string(), "0x1.fffffffffffffp+1023"); + + assert_eq!(Hexf(f32::MIN).to_string(), "-0x1.fffffep+127"); + assert_eq!(Hexf(f64::MIN).to_string(), "-0x1.fffffffffffffp+1023"); + + assert_eq!(Hexf(f32::ZERO).to_string(), "0x0p+0"); + assert_eq!(Hexf(f64::ZERO).to_string(), "0x0p+0"); + + assert_eq!(Hexf(f32::NEG_ZERO).to_string(), "-0x0p+0"); + assert_eq!(Hexf(f64::NEG_ZERO).to_string(), "-0x0p+0"); + + assert_eq!(Hexf(f32::NAN).to_string(), "NaN"); + assert_eq!(Hexf(f64::NAN).to_string(), "NaN"); + + assert_eq!(Hexf(f32::INFINITY).to_string(), "inf"); + assert_eq!(Hexf(f64::INFINITY).to_string(), "inf"); + + assert_eq!(Hexf(f32::NEG_INFINITY).to_string(), "-inf"); + assert_eq!(Hexf(f64::NEG_INFINITY).to_string(), "-inf"); + + #[cfg(f16_enabled)] + { + assert_eq!(Hexf(f16::MAX).to_string(), "0x1.ffcp+15"); + assert_eq!(Hexf(f16::MIN).to_string(), "-0x1.ffcp+15"); + assert_eq!(Hexf(f16::ZERO).to_string(), "0x0p+0"); + assert_eq!(Hexf(f16::NEG_ZERO).to_string(), "-0x0p+0"); + assert_eq!(Hexf(f16::NAN).to_string(), "NaN"); + assert_eq!(Hexf(f16::INFINITY).to_string(), "inf"); + assert_eq!(Hexf(f16::NEG_INFINITY).to_string(), "-inf"); + } + + #[cfg(f128_enabled)] + { + assert_eq!(Hexf(f128::MAX).to_string(), "0x1.ffffffffffffffffffffffffffffp+16383"); + assert_eq!(Hexf(f128::MIN).to_string(), "-0x1.ffffffffffffffffffffffffffffp+16383"); + assert_eq!(Hexf(f128::ZERO).to_string(), "0x0p+0"); + assert_eq!(Hexf(f128::NEG_ZERO).to_string(), "-0x0p+0"); + assert_eq!(Hexf(f128::NAN).to_string(), "NaN"); + assert_eq!(Hexf(f128::INFINITY).to_string(), "inf"); + assert_eq!(Hexf(f128::NEG_INFINITY).to_string(), "-inf"); + } + } +} diff --git a/library/compiler-builtins/libm/src/math/support/int_traits.rs b/library/compiler-builtins/libm/src/math/support/int_traits.rs new file mode 100644 index 00000000000..491adb1f22c --- /dev/null +++ b/library/compiler-builtins/libm/src/math/support/int_traits.rs @@ -0,0 +1,451 @@ +use core::{cmp, fmt, ops}; + +/// Minimal integer implementations needed on all integer types, including wide integers. +pub trait MinInt: + Copy + + fmt::Debug + + ops::BitOr<Output = Self> + + ops::Not<Output = Self> + + ops::Shl<u32, Output = Self> +{ + /// Type with the same width but other signedness + type OtherSign: MinInt; + /// Unsigned version of Self + type Unsigned: MinInt; + + /// If `Self` is a signed integer + const SIGNED: bool; + + /// The bitwidth of the int type + const BITS: u32; + + const ZERO: Self; + const ONE: Self; + const MIN: Self; + const MAX: Self; +} + +/// Access the associated `OtherSign` type from an int (helper to avoid ambiguous associated +/// types). +pub type OtherSign<I> = <I as MinInt>::OtherSign; + +/// Trait for some basic operations on integers +#[allow(dead_code)] +pub trait Int: + MinInt + + fmt::Display + + fmt::Binary + + fmt::LowerHex + + PartialEq + + PartialOrd + + ops::AddAssign + + ops::SubAssign + + ops::BitAndAssign + + ops::BitOrAssign + + ops::BitXorAssign + + ops::ShlAssign<i32> + + ops::ShlAssign<u32> + + ops::ShrAssign<u32> + + ops::ShrAssign<i32> + + ops::Add<Output = Self> + + ops::Sub<Output = Self> + + ops::Mul<Output = Self> + + ops::Div<Output = Self> + + ops::Shl<i32, Output = Self> + + ops::Shl<u32, Output = Self> + + ops::Shr<i32, Output = Self> + + ops::Shr<u32, Output = Self> + + ops::BitXor<Output = Self> + + ops::BitAnd<Output = Self> + + cmp::Ord + + From<bool> + + CastFrom<i32> + + CastFrom<u16> + + CastFrom<u32> + + CastFrom<u8> + + CastFrom<usize> + + CastInto<i32> + + CastInto<u16> + + CastInto<u32> + + CastInto<u8> + + CastInto<usize> +{ + fn signed(self) -> OtherSign<Self::Unsigned>; + fn unsigned(self) -> Self::Unsigned; + fn from_unsigned(unsigned: Self::Unsigned) -> Self; + fn abs(self) -> Self; + + fn from_bool(b: bool) -> Self; + + /// Prevents the need for excessive conversions between signed and unsigned + fn logical_shr(self, other: u32) -> Self; + + /// Absolute difference between two integers. + fn abs_diff(self, other: Self) -> Self::Unsigned; + + // copied from primitive integers, but put in a trait + fn is_zero(self) -> bool; + fn checked_add(self, other: Self) -> Option<Self>; + fn checked_sub(self, other: Self) -> Option<Self>; + fn wrapping_neg(self) -> Self; + fn wrapping_add(self, other: Self) -> Self; + fn wrapping_mul(self, other: Self) -> Self; + fn wrapping_sub(self, other: Self) -> Self; + fn wrapping_shl(self, other: u32) -> Self; + fn wrapping_shr(self, other: u32) -> Self; + fn rotate_left(self, other: u32) -> Self; + fn overflowing_add(self, other: Self) -> (Self, bool); + fn overflowing_sub(self, other: Self) -> (Self, bool); + fn leading_zeros(self) -> u32; + fn ilog2(self) -> u32; +} + +macro_rules! int_impl_common { + ($ty:ty) => { + fn from_bool(b: bool) -> Self { + b as $ty + } + + fn logical_shr(self, other: u32) -> Self { + Self::from_unsigned(self.unsigned().wrapping_shr(other)) + } + + fn is_zero(self) -> bool { + self == Self::ZERO + } + + fn checked_add(self, other: Self) -> Option<Self> { + self.checked_add(other) + } + + fn checked_sub(self, other: Self) -> Option<Self> { + self.checked_sub(other) + } + + fn wrapping_neg(self) -> Self { + <Self>::wrapping_neg(self) + } + + fn wrapping_add(self, other: Self) -> Self { + <Self>::wrapping_add(self, other) + } + + fn wrapping_mul(self, other: Self) -> Self { + <Self>::wrapping_mul(self, other) + } + + fn wrapping_sub(self, other: Self) -> Self { + <Self>::wrapping_sub(self, other) + } + + fn wrapping_shl(self, other: u32) -> Self { + <Self>::wrapping_shl(self, other) + } + + fn wrapping_shr(self, other: u32) -> Self { + <Self>::wrapping_shr(self, other) + } + + fn rotate_left(self, other: u32) -> Self { + <Self>::rotate_left(self, other) + } + + fn overflowing_add(self, other: Self) -> (Self, bool) { + <Self>::overflowing_add(self, other) + } + + fn overflowing_sub(self, other: Self) -> (Self, bool) { + <Self>::overflowing_sub(self, other) + } + + fn leading_zeros(self) -> u32 { + <Self>::leading_zeros(self) + } + + fn ilog2(self) -> u32 { + // On our older MSRV, this resolves to the trait method. Which won't actually work, + // but this is only called behind other gates. + #[allow(clippy::incompatible_msrv)] + <Self>::ilog2(self) + } + }; +} + +macro_rules! int_impl { + ($ity:ty, $uty:ty) => { + impl MinInt for $uty { + type OtherSign = $ity; + type Unsigned = $uty; + + const BITS: u32 = <Self as MinInt>::ZERO.count_zeros(); + const SIGNED: bool = Self::MIN != Self::ZERO; + + const ZERO: Self = 0; + const ONE: Self = 1; + const MIN: Self = <Self>::MIN; + const MAX: Self = <Self>::MAX; + } + + impl Int for $uty { + fn signed(self) -> $ity { + self as $ity + } + + fn unsigned(self) -> Self { + self + } + + fn abs(self) -> Self { + unimplemented!() + } + + // It makes writing macros easier if this is implemented for both signed and unsigned + #[allow(clippy::wrong_self_convention)] + fn from_unsigned(me: $uty) -> Self { + me + } + + fn abs_diff(self, other: Self) -> Self { + self.abs_diff(other) + } + + int_impl_common!($uty); + } + + impl MinInt for $ity { + type OtherSign = $uty; + type Unsigned = $uty; + + const BITS: u32 = <Self as MinInt>::ZERO.count_zeros(); + const SIGNED: bool = Self::MIN != Self::ZERO; + + const ZERO: Self = 0; + const ONE: Self = 1; + const MIN: Self = <Self>::MIN; + const MAX: Self = <Self>::MAX; + } + + impl Int for $ity { + fn signed(self) -> Self { + self + } + + fn unsigned(self) -> $uty { + self as $uty + } + + fn abs(self) -> Self { + self.abs() + } + + fn from_unsigned(me: $uty) -> Self { + me as $ity + } + + fn abs_diff(self, other: Self) -> $uty { + self.abs_diff(other) + } + + int_impl_common!($ity); + } + }; +} + +int_impl!(isize, usize); +int_impl!(i8, u8); +int_impl!(i16, u16); +int_impl!(i32, u32); +int_impl!(i64, u64); +int_impl!(i128, u128); + +/// Trait for integers twice the bit width of another integer. This is implemented for all +/// primitives except for `u8`, because there is not a smaller primitive. +pub trait DInt: MinInt { + /// Integer that is half the bit width of the integer this trait is implemented for + type H: HInt<D = Self>; + + /// Returns the low half of `self` + fn lo(self) -> Self::H; + /// Returns the high half of `self` + fn hi(self) -> Self::H; + /// Returns the low and high halves of `self` as a tuple + fn lo_hi(self) -> (Self::H, Self::H) { + (self.lo(), self.hi()) + } + /// Constructs an integer using lower and higher half parts + #[allow(unused)] + fn from_lo_hi(lo: Self::H, hi: Self::H) -> Self { + lo.zero_widen() | hi.widen_hi() + } +} + +/// Trait for integers half the bit width of another integer. This is implemented for all +/// primitives except for `u128`, because it there is not a larger primitive. +pub trait HInt: Int { + /// Integer that is double the bit width of the integer this trait is implemented for + type D: DInt<H = Self> + MinInt; + + // NB: some of the below methods could have default implementations (e.g. `widen_hi`), but for + // unknown reasons this can cause infinite recursion when optimizations are disabled. See + // <https://github.com/rust-lang/compiler-builtins/pull/707> for context. + + /// Widens (using default extension) the integer to have double bit width + fn widen(self) -> Self::D; + /// Widens (zero extension only) the integer to have double bit width. This is needed to get + /// around problems with associated type bounds (such as `Int<Othersign: DInt>`) being unstable + fn zero_widen(self) -> Self::D; + /// Widens the integer to have double bit width and shifts the integer into the higher bits + #[allow(unused)] + fn widen_hi(self) -> Self::D; + /// Widening multiplication with zero widening. This cannot overflow. + fn zero_widen_mul(self, rhs: Self) -> Self::D; + /// Widening multiplication. This cannot overflow. + fn widen_mul(self, rhs: Self) -> Self::D; +} + +macro_rules! impl_d_int { + ($($X:ident $D:ident),*) => { + $( + impl DInt for $D { + type H = $X; + + fn lo(self) -> Self::H { + self as $X + } + fn hi(self) -> Self::H { + (self >> <$X as MinInt>::BITS) as $X + } + } + )* + }; +} + +macro_rules! impl_h_int { + ($($H:ident $uH:ident $X:ident),*) => { + $( + impl HInt for $H { + type D = $X; + + fn widen(self) -> Self::D { + self as $X + } + fn zero_widen(self) -> Self::D { + (self as $uH) as $X + } + fn zero_widen_mul(self, rhs: Self) -> Self::D { + self.zero_widen().wrapping_mul(rhs.zero_widen()) + } + fn widen_mul(self, rhs: Self) -> Self::D { + self.widen().wrapping_mul(rhs.widen()) + } + fn widen_hi(self) -> Self::D { + (self as $X) << <Self as MinInt>::BITS + } + } + )* + }; +} + +impl_d_int!(u8 u16, u16 u32, u32 u64, u64 u128, i8 i16, i16 i32, i32 i64, i64 i128); +impl_h_int!( + u8 u8 u16, + u16 u16 u32, + u32 u32 u64, + u64 u64 u128, + i8 u8 i16, + i16 u16 i32, + i32 u32 i64, + i64 u64 i128 +); + +/// Trait to express (possibly lossy) casting of integers +pub trait CastInto<T: Copy>: Copy { + /// By default, casts should be exact. + fn cast(self) -> T; + + /// Call for casts that are expected to truncate. + fn cast_lossy(self) -> T; +} + +pub trait CastFrom<T: Copy>: Copy { + /// By default, casts should be exact. + fn cast_from(value: T) -> Self; + + /// Call for casts that are expected to truncate. + fn cast_from_lossy(value: T) -> Self; +} + +impl<T: Copy, U: CastInto<T> + Copy> CastFrom<U> for T { + fn cast_from(value: U) -> Self { + value.cast() + } + + fn cast_from_lossy(value: U) -> Self { + value.cast_lossy() + } +} + +macro_rules! cast_into { + ($ty:ty) => { + cast_into!($ty; usize, isize, u8, i8, u16, i16, u32, i32, u64, i64, u128, i128); + }; + ($ty:ty; $($into:ty),*) => {$( + impl CastInto<$into> for $ty { + fn cast(self) -> $into { + // All we can really do to enforce casting rules is check the rules when in + // debug mode. + #[cfg(not(feature = "compiler-builtins"))] + debug_assert!(<$into>::try_from(self).is_ok(), "failed cast from {self}"); + self as $into + } + + fn cast_lossy(self) -> $into { + self as $into + } + } + )*}; +} + +macro_rules! cast_into_float { + ($ty:ty) => { + #[cfg(f16_enabled)] + cast_into_float!($ty; f16); + + cast_into_float!($ty; f32, f64); + + #[cfg(f128_enabled)] + cast_into_float!($ty; f128); + }; + ($ty:ty; $($into:ty),*) => {$( + impl CastInto<$into> for $ty { + fn cast(self) -> $into { + #[cfg(not(feature = "compiler-builtins"))] + debug_assert_eq!(self as $into as $ty, self, "inexact float cast"); + self as $into + } + + fn cast_lossy(self) -> $into { + self as $into + } + } + )*}; +} + +cast_into!(usize); +cast_into!(isize); +cast_into!(u8); +cast_into!(i8); +cast_into!(u16); +cast_into!(i16); +cast_into!(u32); +cast_into!(i32); +cast_into!(u64); +cast_into!(i64); +cast_into!(u128); +cast_into!(i128); + +cast_into_float!(i8); +cast_into_float!(i16); +cast_into_float!(i32); +cast_into_float!(i64); +cast_into_float!(i128); diff --git a/library/compiler-builtins/libm/src/math/support/macros.rs b/library/compiler-builtins/libm/src/math/support/macros.rs new file mode 100644 index 00000000000..0b72db0e46e --- /dev/null +++ b/library/compiler-builtins/libm/src/math/support/macros.rs @@ -0,0 +1,157 @@ +/// `libm` cannot have dependencies, so this is vendored directly from the `cfg-if` crate +/// (with some comments stripped for compactness). +macro_rules! cfg_if { + // match if/else chains with a final `else` + ($( + if #[cfg($meta:meta)] { $($tokens:tt)* } + ) else * else { + $($tokens2:tt)* + }) => { + cfg_if! { @__items () ; $( ( ($meta) ($($tokens)*) ), )* ( () ($($tokens2)*) ), } + }; + + // match if/else chains lacking a final `else` + ( + if #[cfg($i_met:meta)] { $($i_tokens:tt)* } + $( else if #[cfg($e_met:meta)] { $($e_tokens:tt)* } )* + ) => { + cfg_if! { + @__items + () ; + ( ($i_met) ($($i_tokens)*) ), + $( ( ($e_met) ($($e_tokens)*) ), )* + ( () () ), + } + }; + + // Internal and recursive macro to emit all the items + // + // Collects all the negated cfgs in a list at the beginning and after the + // semicolon is all the remaining items + (@__items ($($not:meta,)*) ; ) => {}; + (@__items ($($not:meta,)*) ; ( ($($m:meta),*) ($($tokens:tt)*) ), $($rest:tt)*) => { + #[cfg(all($($m,)* not(any($($not),*))))] cfg_if! { @__identity $($tokens)* } + cfg_if! { @__items ($($not,)* $($m,)*) ; $($rest)* } + }; + + // Internal macro to make __apply work out right for different match types, + // because of how macros matching/expand stuff. + (@__identity $($tokens:tt)*) => { $($tokens)* }; +} + +/// Choose between using an arch-specific implementation and the function body. Returns directly +/// if the arch implementation is used, otherwise continue with the rest of the function. +/// +/// Specify a `use_arch` meta field if an architecture-specific implementation is provided. +/// These live in the `math::arch::some_target_arch` module. +/// +/// Specify a `use_arch_required` meta field if something architecture-specific must be used +/// regardless of feature configuration (`force-soft-floats`). +/// +/// The passed meta options do not need to account for the `arch` target feature. +macro_rules! select_implementation { + ( + name: $fn_name:ident, + // Configuration meta for when to use arch-specific implementation that requires hard + // float ops + $( use_arch: $use_arch:meta, )? + // Configuration meta for when to use the arch module regardless of whether softfloats + // have been requested. + $( use_arch_required: $use_arch_required:meta, )? + args: $($arg:ident),+ , + ) => { + // FIXME: these use paths that are a pretty fragile (`super`). We should figure out + // something better w.r.t. how this is vendored into compiler-builtins. + + // However, we do need a few things from `arch` that are used even with soft floats. + select_implementation! { + @cfg $($use_arch_required)?; + if true { + return super::arch::$fn_name( $($arg),+ ); + } + } + + // By default, never use arch-specific implementations if we have force-soft-floats + #[cfg(arch_enabled)] + select_implementation! { + @cfg $($use_arch)?; + // Wrap in `if true` to avoid unused warnings + if true { + return super::arch::$fn_name( $($arg),+ ); + } + } + }; + + // Coalesce helper to construct an expression only if a config is provided + (@cfg ; $ex:expr) => { }; + (@cfg $provided:meta; $ex:expr) => { #[cfg($provided)] $ex }; +} + +/// Construct a 16-bit float from hex float representation (C-style), guaranteed to +/// evaluate at compile time. +#[cfg(f16_enabled)] +#[cfg_attr(feature = "unstable-public-internals", macro_export)] +#[allow(unused_macros)] +macro_rules! hf16 { + ($s:literal) => {{ + const X: f16 = $crate::support::hf16($s); + X + }}; +} + +/// Construct a 32-bit float from hex float representation (C-style), guaranteed to +/// evaluate at compile time. +#[allow(unused_macros)] +#[cfg_attr(feature = "unstable-public-internals", macro_export)] +macro_rules! hf32 { + ($s:literal) => {{ + const X: f32 = $crate::support::hf32($s); + X + }}; +} + +/// Construct a 64-bit float from hex float representation (C-style), guaranteed to +/// evaluate at compile time. +#[allow(unused_macros)] +#[cfg_attr(feature = "unstable-public-internals", macro_export)] +macro_rules! hf64 { + ($s:literal) => {{ + const X: f64 = $crate::support::hf64($s); + X + }}; +} + +/// Construct a 128-bit float from hex float representation (C-style), guaranteed to +/// evaluate at compile time. +#[cfg(f128_enabled)] +#[allow(unused_macros)] +#[cfg_attr(feature = "unstable-public-internals", macro_export)] +macro_rules! hf128 { + ($s:literal) => {{ + const X: f128 = $crate::support::hf128($s); + X + }}; +} + +/// Assert `F::biteq` with better messages. +#[cfg(test)] +macro_rules! assert_biteq { + ($left:expr, $right:expr, $($tt:tt)*) => {{ + use $crate::support::Int; + let l = $left; + let r = $right; + let bits = Int::leading_zeros(l.to_bits() - l.to_bits()); // hack to get the width from the value + assert!( + l.biteq(r), + "{}\nl: {l:?} ({lb:#0width$x})\nr: {r:?} ({rb:#0width$x})", + format_args!($($tt)*), + lb = l.to_bits(), + rb = r.to_bits(), + width = ((bits / 4) + 2) as usize, + + ); + }}; + ($left:expr, $right:expr $(,)?) => { + assert_biteq!($left, $right, "") + }; +} diff --git a/library/compiler-builtins/libm/src/math/support/mod.rs b/library/compiler-builtins/libm/src/math/support/mod.rs new file mode 100644 index 00000000000..ee3f2bbdf02 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/support/mod.rs @@ -0,0 +1,29 @@ +#[macro_use] +pub mod macros; +mod big; +mod env; +mod float_traits; +pub mod hex_float; +mod int_traits; + +#[allow(unused_imports)] +pub use big::{i256, u256}; +pub use env::{FpResult, Round, Status}; +#[allow(unused_imports)] +pub use float_traits::{DFloat, Float, HFloat, IntTy}; +pub(crate) use float_traits::{f32_from_bits, f64_from_bits}; +#[cfg(f16_enabled)] +#[allow(unused_imports)] +pub use hex_float::hf16; +#[cfg(f128_enabled)] +#[allow(unused_imports)] +pub use hex_float::hf128; +#[allow(unused_imports)] +pub use hex_float::{Hexf, hf32, hf64}; +pub use int_traits::{CastFrom, CastInto, DInt, HInt, Int, MinInt}; + +/// Hint to the compiler that the current path is cold. +pub fn cold_path() { + #[cfg(intrinsics_enabled)] + core::intrinsics::cold_path(); +} diff --git a/library/compiler-builtins/libm/src/math/tan.rs b/library/compiler-builtins/libm/src/math/tan.rs new file mode 100644 index 00000000000..a074ca5540a --- /dev/null +++ b/library/compiler-builtins/libm/src/math/tan.rs @@ -0,0 +1,70 @@ +// origin: FreeBSD /usr/src/lib/msun/src/s_tan.c */ +// +// ==================================================== +// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. +// +// Developed at SunPro, a Sun Microsystems, Inc. business. +// Permission to use, copy, modify, and distribute this +// software is freely granted, provided that this notice +// is preserved. +// ==================================================== + +use super::{k_tan, rem_pio2}; + +// tan(x) +// Return tangent function of x. +// +// kernel function: +// k_tan ... tangent function on [-pi/4,pi/4] +// rem_pio2 ... argument reduction routine +// +// Method. +// Let S,C and T denote the sin, cos and tan respectively on +// [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 +// in [-pi/4 , +pi/4], and let n = k mod 4. +// We have +// +// n sin(x) cos(x) tan(x) +// ---------------------------------------------------------- +// 0 S C T +// 1 C -S -1/T +// 2 -S -C T +// 3 -C S -1/T +// ---------------------------------------------------------- +// +// Special cases: +// Let trig be any of sin, cos, or tan. +// trig(+-INF) is NaN, with signals; +// trig(NaN) is that NaN; +// +// Accuracy: +// TRIG(x) returns trig(x) nearly rounded + +/// The tangent of `x` (f64). +/// +/// `x` is specified in radians. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn tan(x: f64) -> f64 { + let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120 + + let ix = (f64::to_bits(x) >> 32) as u32 & 0x7fffffff; + /* |x| ~< pi/4 */ + if ix <= 0x3fe921fb { + if ix < 0x3e400000 { + /* |x| < 2**-27 */ + /* raise inexact if x!=0 and underflow if subnormal */ + force_eval!(if ix < 0x00100000 { x / x1p120 as f64 } else { x + x1p120 as f64 }); + return x; + } + return k_tan(x, 0.0, 0); + } + + /* tan(Inf or NaN) is NaN */ + if ix >= 0x7ff00000 { + return x - x; + } + + /* argument reduction */ + let (n, y0, y1) = rem_pio2(x); + k_tan(y0, y1, n & 1) +} diff --git a/library/compiler-builtins/libm/src/math/tanf.rs b/library/compiler-builtins/libm/src/math/tanf.rs new file mode 100644 index 00000000000..7586aae4c7e --- /dev/null +++ b/library/compiler-builtins/libm/src/math/tanf.rs @@ -0,0 +1,77 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/s_tanf.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + * Optimized by Bruce D. Evans. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +use core::f64::consts::FRAC_PI_2; + +use super::{k_tanf, rem_pio2f}; + +/* Small multiples of pi/2 rounded to double precision. */ +const T1_PIO2: f64 = 1. * FRAC_PI_2; /* 0x3FF921FB, 0x54442D18 */ +const T2_PIO2: f64 = 2. * FRAC_PI_2; /* 0x400921FB, 0x54442D18 */ +const T3_PIO2: f64 = 3. * FRAC_PI_2; /* 0x4012D97C, 0x7F3321D2 */ +const T4_PIO2: f64 = 4. * FRAC_PI_2; /* 0x401921FB, 0x54442D18 */ + +/// The tangent of `x` (f32). +/// +/// `x` is specified in radians. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn tanf(x: f32) -> f32 { + let x64 = x as f64; + + let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120 + + let mut ix = x.to_bits(); + let sign = (ix >> 31) != 0; + ix &= 0x7fffffff; + + if ix <= 0x3f490fda { + /* |x| ~<= pi/4 */ + if ix < 0x39800000 { + /* |x| < 2**-12 */ + /* raise inexact if x!=0 and underflow if subnormal */ + force_eval!(if ix < 0x00800000 { x / x1p120 } else { x + x1p120 }); + return x; + } + return k_tanf(x64, false); + } + if ix <= 0x407b53d1 { + /* |x| ~<= 5*pi/4 */ + if ix <= 0x4016cbe3 { + /* |x| ~<= 3pi/4 */ + return k_tanf(if sign { x64 + T1_PIO2 } else { x64 - T1_PIO2 }, true); + } else { + return k_tanf(if sign { x64 + T2_PIO2 } else { x64 - T2_PIO2 }, false); + } + } + if ix <= 0x40e231d5 { + /* |x| ~<= 9*pi/4 */ + if ix <= 0x40afeddf { + /* |x| ~<= 7*pi/4 */ + return k_tanf(if sign { x64 + T3_PIO2 } else { x64 - T3_PIO2 }, true); + } else { + return k_tanf(if sign { x64 + T4_PIO2 } else { x64 - T4_PIO2 }, false); + } + } + + /* tan(Inf or NaN) is NaN */ + if ix >= 0x7f800000 { + return x - x; + } + + /* argument reduction */ + let (n, y) = rem_pio2f(x); + k_tanf(y, n & 1 != 0) +} diff --git a/library/compiler-builtins/libm/src/math/tanh.rs b/library/compiler-builtins/libm/src/math/tanh.rs new file mode 100644 index 00000000000..cc0abe4fcb2 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/tanh.rs @@ -0,0 +1,53 @@ +use super::expm1; + +/* tanh(x) = (exp(x) - exp(-x))/(exp(x) + exp(-x)) + * = (exp(2*x) - 1)/(exp(2*x) - 1 + 2) + * = (1 - exp(-2*x))/(exp(-2*x) - 1 + 2) + */ + +/// The hyperbolic tangent of `x` (f64). +/// +/// `x` is specified in radians. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn tanh(mut x: f64) -> f64 { + let mut uf: f64 = x; + let mut ui: u64 = f64::to_bits(uf); + + let w: u32; + let sign: bool; + let mut t: f64; + + /* x = |x| */ + sign = ui >> 63 != 0; + ui &= !1 / 2; + uf = f64::from_bits(ui); + x = uf; + w = (ui >> 32) as u32; + + if w > 0x3fe193ea { + /* |x| > log(3)/2 ~= 0.5493 or nan */ + if w > 0x40340000 { + /* |x| > 20 or nan */ + /* note: this branch avoids raising overflow */ + t = 1.0 - 0.0 / x; + } else { + t = expm1(2.0 * x); + t = 1.0 - 2.0 / (t + 2.0); + } + } else if w > 0x3fd058ae { + /* |x| > log(5/3)/2 ~= 0.2554 */ + t = expm1(2.0 * x); + t = t / (t + 2.0); + } else if w >= 0x00100000 { + /* |x| >= 0x1p-1022, up to 2ulp error in [0.1,0.2554] */ + t = expm1(-2.0 * x); + t = -t / (t + 2.0); + } else { + /* |x| is subnormal */ + /* note: the branch above would not raise underflow in [0x1p-1023,0x1p-1022) */ + force_eval!(x as f32); + t = x; + } + + if sign { -t } else { t } +} diff --git a/library/compiler-builtins/libm/src/math/tanhf.rs b/library/compiler-builtins/libm/src/math/tanhf.rs new file mode 100644 index 00000000000..fffbba6c6ec --- /dev/null +++ b/library/compiler-builtins/libm/src/math/tanhf.rs @@ -0,0 +1,38 @@ +use super::expm1f; + +/// The hyperbolic tangent of `x` (f32). +/// +/// `x` is specified in radians. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn tanhf(mut x: f32) -> f32 { + /* x = |x| */ + let mut ix = x.to_bits(); + let sign = (ix >> 31) != 0; + ix &= 0x7fffffff; + x = f32::from_bits(ix); + let w = ix; + + let tt = if w > 0x3f0c9f54 { + /* |x| > log(3)/2 ~= 0.5493 or nan */ + if w > 0x41200000 { + /* |x| > 10 */ + 1. + 0. / x + } else { + let t = expm1f(2. * x); + 1. - 2. / (t + 2.) + } + } else if w > 0x3e82c578 { + /* |x| > log(5/3)/2 ~= 0.2554 */ + let t = expm1f(2. * x); + t / (t + 2.) + } else if w >= 0x00800000 { + /* |x| >= 0x1p-126 */ + let t = expm1f(-2. * x); + -t / (t + 2.) + } else { + /* |x| is subnormal */ + force_eval!(x * x); + x + }; + if sign { -tt } else { tt } +} diff --git a/library/compiler-builtins/libm/src/math/tgamma.rs b/library/compiler-builtins/libm/src/math/tgamma.rs new file mode 100644 index 00000000000..3059860646a --- /dev/null +++ b/library/compiler-builtins/libm/src/math/tgamma.rs @@ -0,0 +1,209 @@ +/* +"A Precision Approximation of the Gamma Function" - Cornelius Lanczos (1964) +"Lanczos Implementation of the Gamma Function" - Paul Godfrey (2001) +"An Analysis of the Lanczos Gamma Approximation" - Glendon Ralph Pugh (2004) + +approximation method: + + (x - 0.5) S(x) +Gamma(x) = (x + g - 0.5) * ---------------- + exp(x + g - 0.5) + +with + a1 a2 a3 aN +S(x) ~= [ a0 + ----- + ----- + ----- + ... + ----- ] + x + 1 x + 2 x + 3 x + N + +with a0, a1, a2, a3,.. aN constants which depend on g. + +for x < 0 the following reflection formula is used: + +Gamma(x)*Gamma(-x) = -pi/(x sin(pi x)) + +most ideas and constants are from boost and python +*/ +use super::{exp, floor, k_cos, k_sin, pow}; + +const PI: f64 = 3.141592653589793238462643383279502884; + +/* sin(pi x) with x > 0x1p-100, if sin(pi*x)==0 the sign is arbitrary */ +fn sinpi(mut x: f64) -> f64 { + let mut n: isize; + + /* argument reduction: x = |x| mod 2 */ + /* spurious inexact when x is odd int */ + x = x * 0.5; + x = 2.0 * (x - floor(x)); + + /* reduce x into [-.25,.25] */ + n = (4.0 * x) as isize; + n = div!(n + 1, 2); + x -= (n as f64) * 0.5; + + x *= PI; + match n { + 1 => k_cos(x, 0.0), + 2 => k_sin(-x, 0.0, 0), + 3 => -k_cos(x, 0.0), + // 0 + _ => k_sin(x, 0.0, 0), + } +} + +const N: usize = 12; +//static const double g = 6.024680040776729583740234375; +const GMHALF: f64 = 5.524680040776729583740234375; +const SNUM: [f64; N + 1] = [ + 23531376880.410759688572007674451636754734846804940, + 42919803642.649098768957899047001988850926355848959, + 35711959237.355668049440185451547166705960488635843, + 17921034426.037209699919755754458931112671403265390, + 6039542586.3520280050642916443072979210699388420708, + 1439720407.3117216736632230727949123939715485786772, + 248874557.86205415651146038641322942321632125127801, + 31426415.585400194380614231628318205362874684987640, + 2876370.6289353724412254090516208496135991145378768, + 186056.26539522349504029498971604569928220784236328, + 8071.6720023658162106380029022722506138218516325024, + 210.82427775157934587250973392071336271166969580291, + 2.5066282746310002701649081771338373386264310793408, +]; +const SDEN: [f64; N + 1] = [ + 0.0, + 39916800.0, + 120543840.0, + 150917976.0, + 105258076.0, + 45995730.0, + 13339535.0, + 2637558.0, + 357423.0, + 32670.0, + 1925.0, + 66.0, + 1.0, +]; +/* n! for small integer n */ +const FACT: [f64; 23] = [ + 1.0, + 1.0, + 2.0, + 6.0, + 24.0, + 120.0, + 720.0, + 5040.0, + 40320.0, + 362880.0, + 3628800.0, + 39916800.0, + 479001600.0, + 6227020800.0, + 87178291200.0, + 1307674368000.0, + 20922789888000.0, + 355687428096000.0, + 6402373705728000.0, + 121645100408832000.0, + 2432902008176640000.0, + 51090942171709440000.0, + 1124000727777607680000.0, +]; + +/* S(x) rational function for positive x */ +fn s(x: f64) -> f64 { + let mut num: f64 = 0.0; + let mut den: f64 = 0.0; + + /* to avoid overflow handle large x differently */ + if x < 8.0 { + for i in (0..=N).rev() { + num = num * x + i!(SNUM, i); + den = den * x + i!(SDEN, i); + } + } else { + for i in 0..=N { + num = num / x + i!(SNUM, i); + den = den / x + i!(SDEN, i); + } + } + return num / den; +} + +/// The [Gamma function](https://en.wikipedia.org/wiki/Gamma_function) (f64). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn tgamma(mut x: f64) -> f64 { + let u: u64 = x.to_bits(); + let absx: f64; + let mut y: f64; + let mut dy: f64; + let mut z: f64; + let mut r: f64; + let ix: u32 = ((u >> 32) as u32) & 0x7fffffff; + let sign: bool = (u >> 63) != 0; + + /* special cases */ + if ix >= 0x7ff00000 { + /* tgamma(nan)=nan, tgamma(inf)=inf, tgamma(-inf)=nan with invalid */ + return x + f64::INFINITY; + } + if ix < ((0x3ff - 54) << 20) { + /* |x| < 2^-54: tgamma(x) ~ 1/x, +-0 raises div-by-zero */ + return 1.0 / x; + } + + /* integer arguments */ + /* raise inexact when non-integer */ + if x == floor(x) { + if sign { + return 0.0 / 0.0; + } + if x <= FACT.len() as f64 { + return i!(FACT, (x as usize) - 1); + } + } + + /* x >= 172: tgamma(x)=inf with overflow */ + /* x =< -184: tgamma(x)=+-0 with underflow */ + if ix >= 0x40670000 { + /* |x| >= 184 */ + if sign { + let x1p_126 = f64::from_bits(0x3810000000000000); // 0x1p-126 == 2^-126 + force_eval!((x1p_126 / x) as f32); + if floor(x) * 0.5 == floor(x * 0.5) { + return 0.0; + } else { + return -0.0; + } + } + let x1p1023 = f64::from_bits(0x7fe0000000000000); // 0x1p1023 == 2^1023 + x *= x1p1023; + return x; + } + + absx = if sign { -x } else { x }; + + /* handle the error of x + g - 0.5 */ + y = absx + GMHALF; + if absx > GMHALF { + dy = y - absx; + dy -= GMHALF; + } else { + dy = y - GMHALF; + dy -= absx; + } + + z = absx - 0.5; + r = s(absx) * exp(-y); + if x < 0.0 { + /* reflection formula for negative x */ + /* sinpi(absx) is not 0, integers are already handled */ + r = -PI / (sinpi(absx) * absx * r); + dy = -dy; + z = -z; + } + r += dy * (GMHALF + 0.5) * r / y; + z = pow(y, 0.5 * z); + y = r * z * z; + return y; +} diff --git a/library/compiler-builtins/libm/src/math/tgammaf.rs b/library/compiler-builtins/libm/src/math/tgammaf.rs new file mode 100644 index 00000000000..fe178f7a3c0 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/tgammaf.rs @@ -0,0 +1,7 @@ +use super::tgamma; + +/// The [Gamma function](https://en.wikipedia.org/wiki/Gamma_function) (f32). +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn tgammaf(x: f32) -> f32 { + tgamma(x as f64) as f32 +} diff --git a/library/compiler-builtins/libm/src/math/trunc.rs b/library/compiler-builtins/libm/src/math/trunc.rs new file mode 100644 index 00000000000..fa50d55e136 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/trunc.rs @@ -0,0 +1,53 @@ +/// Rounds the number toward 0 to the closest integral value (f16). +/// +/// This effectively removes the decimal part of the number, leaving the integral part. +#[cfg(f16_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn truncf16(x: f16) -> f16 { + super::generic::trunc(x) +} + +/// Rounds the number toward 0 to the closest integral value (f32). +/// +/// This effectively removes the decimal part of the number, leaving the integral part. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn truncf(x: f32) -> f32 { + select_implementation! { + name: truncf, + use_arch: all(target_arch = "wasm32", intrinsics_enabled), + args: x, + } + + super::generic::trunc(x) +} + +/// Rounds the number toward 0 to the closest integral value (f64). +/// +/// This effectively removes the decimal part of the number, leaving the integral part. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn trunc(x: f64) -> f64 { + select_implementation! { + name: trunc, + use_arch: all(target_arch = "wasm32", intrinsics_enabled), + args: x, + } + + super::generic::trunc(x) +} + +/// Rounds the number toward 0 to the closest integral value (f128). +/// +/// This effectively removes the decimal part of the number, leaving the integral part. +#[cfg(f128_enabled)] +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn truncf128(x: f128) -> f128 { + super::generic::trunc(x) +} + +#[cfg(test)] +mod tests { + #[test] + fn sanity_check() { + assert_eq!(super::truncf(1.1), 1.0); + } +} diff --git a/library/compiler-builtins/libm/src/math/truncf.rs b/library/compiler-builtins/libm/src/math/truncf.rs new file mode 100644 index 00000000000..14533a26706 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/truncf.rs @@ -0,0 +1,23 @@ +/// Rounds the number toward 0 to the closest integral value (f32). +/// +/// This effectively removes the decimal part of the number, leaving the integral part. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn truncf(x: f32) -> f32 { + select_implementation! { + name: truncf, + use_arch: all(target_arch = "wasm32", intrinsics_enabled), + args: x, + } + + super::generic::trunc(x) +} + +// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520 +#[cfg(not(target_arch = "powerpc64"))] +#[cfg(test)] +mod tests { + #[test] + fn sanity_check() { + assert_eq!(super::truncf(1.1), 1.0); + } +} diff --git a/library/compiler-builtins/libm/src/math/truncf128.rs b/library/compiler-builtins/libm/src/math/truncf128.rs new file mode 100644 index 00000000000..9dccc0d0e9d --- /dev/null +++ b/library/compiler-builtins/libm/src/math/truncf128.rs @@ -0,0 +1,7 @@ +/// Rounds the number toward 0 to the closest integral value (f128). +/// +/// This effectively removes the decimal part of the number, leaving the integral part. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn truncf128(x: f128) -> f128 { + super::generic::trunc(x) +} diff --git a/library/compiler-builtins/libm/src/math/truncf16.rs b/library/compiler-builtins/libm/src/math/truncf16.rs new file mode 100644 index 00000000000..d7c3d225cf9 --- /dev/null +++ b/library/compiler-builtins/libm/src/math/truncf16.rs @@ -0,0 +1,7 @@ +/// Rounds the number toward 0 to the closest integral value (f16). +/// +/// This effectively removes the decimal part of the number, leaving the integral part. +#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] +pub fn truncf16(x: f16) -> f16 { + super::generic::trunc(x) +} |
