about summary refs log tree commit diff
path: root/library/compiler-builtins/libm/src/math
diff options
context:
space:
mode:
Diffstat (limited to 'library/compiler-builtins/libm/src/math')
-rw-r--r--library/compiler-builtins/libm/src/math/acos.rs112
-rw-r--r--library/compiler-builtins/libm/src/math/acosf.rs79
-rw-r--r--library/compiler-builtins/libm/src/math/acosh.rs27
-rw-r--r--library/compiler-builtins/libm/src/math/acoshf.rs26
-rw-r--r--library/compiler-builtins/libm/src/math/arch/aarch64.rs115
-rw-r--r--library/compiler-builtins/libm/src/math/arch/i586.rs37
-rw-r--r--library/compiler-builtins/libm/src/math/arch/i686.rs27
-rw-r--r--library/compiler-builtins/libm/src/math/arch/mod.rs50
-rw-r--r--library/compiler-builtins/libm/src/math/arch/wasm32.rs50
-rw-r--r--library/compiler-builtins/libm/src/math/asin.rs115
-rw-r--r--library/compiler-builtins/libm/src/math/asinf.rs68
-rw-r--r--library/compiler-builtins/libm/src/math/asinh.rs36
-rw-r--r--library/compiler-builtins/libm/src/math/asinhf.rs35
-rw-r--r--library/compiler-builtins/libm/src/math/atan.rs182
-rw-r--r--library/compiler-builtins/libm/src/math/atan2.rs131
-rw-r--r--library/compiler-builtins/libm/src/math/atan2f.rs90
-rw-r--r--library/compiler-builtins/libm/src/math/atanf.rs103
-rw-r--r--library/compiler-builtins/libm/src/math/atanh.rs33
-rw-r--r--library/compiler-builtins/libm/src/math/atanhf.rs33
-rw-r--r--library/compiler-builtins/libm/src/math/cbrt.rs215
-rw-r--r--library/compiler-builtins/libm/src/math/cbrtf.rs75
-rw-r--r--library/compiler-builtins/libm/src/math/ceil.rs46
-rw-r--r--library/compiler-builtins/libm/src/math/copysign.rs88
-rw-r--r--library/compiler-builtins/libm/src/math/copysignf.rs8
-rw-r--r--library/compiler-builtins/libm/src/math/copysignf128.rs8
-rw-r--r--library/compiler-builtins/libm/src/math/copysignf16.rs8
-rw-r--r--library/compiler-builtins/libm/src/math/cos.rs77
-rw-r--r--library/compiler-builtins/libm/src/math/cosf.rs86
-rw-r--r--library/compiler-builtins/libm/src/math/cosh.rs36
-rw-r--r--library/compiler-builtins/libm/src/math/coshf.rs36
-rw-r--r--library/compiler-builtins/libm/src/math/erf.rs310
-rw-r--r--library/compiler-builtins/libm/src/math/erff.rs222
-rw-r--r--library/compiler-builtins/libm/src/math/exp.rs150
-rw-r--r--library/compiler-builtins/libm/src/math/exp10.rs23
-rw-r--r--library/compiler-builtins/libm/src/math/exp10f.rs22
-rw-r--r--library/compiler-builtins/libm/src/math/exp2.rs394
-rw-r--r--library/compiler-builtins/libm/src/math/exp2f.rs135
-rw-r--r--library/compiler-builtins/libm/src/math/expf.rs97
-rw-r--r--library/compiler-builtins/libm/src/math/expm1.rs144
-rw-r--r--library/compiler-builtins/libm/src/math/expm1f.rs130
-rw-r--r--library/compiler-builtins/libm/src/math/expo2.rs14
-rw-r--r--library/compiler-builtins/libm/src/math/fabs.rs116
-rw-r--r--library/compiler-builtins/libm/src/math/fabsf.rs39
-rw-r--r--library/compiler-builtins/libm/src/math/fabsf128.rs31
-rw-r--r--library/compiler-builtins/libm/src/math/fabsf16.rs31
-rw-r--r--library/compiler-builtins/libm/src/math/fdim.rs53
-rw-r--r--library/compiler-builtins/libm/src/math/fdimf.rs12
-rw-r--r--library/compiler-builtins/libm/src/math/fdimf128.rs12
-rw-r--r--library/compiler-builtins/libm/src/math/fdimf16.rs12
-rw-r--r--library/compiler-builtins/libm/src/math/floor.rs46
-rw-r--r--library/compiler-builtins/libm/src/math/floorf.rs13
-rw-r--r--library/compiler-builtins/libm/src/math/floorf128.rs7
-rw-r--r--library/compiler-builtins/libm/src/math/floorf16.rs7
-rw-r--r--library/compiler-builtins/libm/src/math/fma.rs397
-rw-r--r--library/compiler-builtins/libm/src/math/fma_wide.rs104
-rw-r--r--library/compiler-builtins/libm/src/math/fmin_fmax.rs167
-rw-r--r--library/compiler-builtins/libm/src/math/fminimum_fmaximum.rs163
-rw-r--r--library/compiler-builtins/libm/src/math/fminimum_fmaximum_num.rs163
-rw-r--r--library/compiler-builtins/libm/src/math/fmod.rs25
-rw-r--r--library/compiler-builtins/libm/src/math/fmodf.rs5
-rw-r--r--library/compiler-builtins/libm/src/math/fmodf128.rs5
-rw-r--r--library/compiler-builtins/libm/src/math/fmodf16.rs5
-rw-r--r--library/compiler-builtins/libm/src/math/frexp.rs21
-rw-r--r--library/compiler-builtins/libm/src/math/frexpf.rs22
-rw-r--r--library/compiler-builtins/libm/src/math/generic/ceil.rs168
-rw-r--r--library/compiler-builtins/libm/src/math/generic/copysign.rs11
-rw-r--r--library/compiler-builtins/libm/src/math/generic/fabs.rs8
-rw-r--r--library/compiler-builtins/libm/src/math/generic/fdim.rs6
-rw-r--r--library/compiler-builtins/libm/src/math/generic/floor.rs151
-rw-r--r--library/compiler-builtins/libm/src/math/generic/fmax.rs24
-rw-r--r--library/compiler-builtins/libm/src/math/generic/fmaximum.rs28
-rw-r--r--library/compiler-builtins/libm/src/math/generic/fmaximum_num.rs27
-rw-r--r--library/compiler-builtins/libm/src/math/generic/fmin.rs24
-rw-r--r--library/compiler-builtins/libm/src/math/generic/fminimum.rs28
-rw-r--r--library/compiler-builtins/libm/src/math/generic/fminimum_num.rs27
-rw-r--r--library/compiler-builtins/libm/src/math/generic/fmod.rs84
-rw-r--r--library/compiler-builtins/libm/src/math/generic/mod.rs38
-rw-r--r--library/compiler-builtins/libm/src/math/generic/rint.rs120
-rw-r--r--library/compiler-builtins/libm/src/math/generic/round.rs83
-rw-r--r--library/compiler-builtins/libm/src/math/generic/scalbn.rs121
-rw-r--r--library/compiler-builtins/libm/src/math/generic/sqrt.rs537
-rw-r--r--library/compiler-builtins/libm/src/math/generic/trunc.rs138
-rw-r--r--library/compiler-builtins/libm/src/math/hypot.rs74
-rw-r--r--library/compiler-builtins/libm/src/math/hypotf.rs43
-rw-r--r--library/compiler-builtins/libm/src/math/ilogb.rs28
-rw-r--r--library/compiler-builtins/libm/src/math/ilogbf.rs28
-rw-r--r--library/compiler-builtins/libm/src/math/j0.rs426
-rw-r--r--library/compiler-builtins/libm/src/math/j0f.rs363
-rw-r--r--library/compiler-builtins/libm/src/math/j1.rs418
-rw-r--r--library/compiler-builtins/libm/src/math/j1f.rs384
-rw-r--r--library/compiler-builtins/libm/src/math/jn.rs339
-rw-r--r--library/compiler-builtins/libm/src/math/jnf.rs253
-rw-r--r--library/compiler-builtins/libm/src/math/k_cos.rs62
-rw-r--r--library/compiler-builtins/libm/src/math/k_cosf.rs29
-rw-r--r--library/compiler-builtins/libm/src/math/k_expo2.rs14
-rw-r--r--library/compiler-builtins/libm/src/math/k_expo2f.rs14
-rw-r--r--library/compiler-builtins/libm/src/math/k_sin.rs53
-rw-r--r--library/compiler-builtins/libm/src/math/k_sinf.rs30
-rw-r--r--library/compiler-builtins/libm/src/math/k_tan.rs105
-rw-r--r--library/compiler-builtins/libm/src/math/k_tanf.rs46
-rw-r--r--library/compiler-builtins/libm/src/math/ldexp.rs21
-rw-r--r--library/compiler-builtins/libm/src/math/ldexpf.rs4
-rw-r--r--library/compiler-builtins/libm/src/math/ldexpf128.rs4
-rw-r--r--library/compiler-builtins/libm/src/math/ldexpf16.rs4
-rw-r--r--library/compiler-builtins/libm/src/math/lgamma.rs8
-rw-r--r--library/compiler-builtins/libm/src/math/lgamma_r.rs321
-rw-r--r--library/compiler-builtins/libm/src/math/lgammaf.rs8
-rw-r--r--library/compiler-builtins/libm/src/math/lgammaf_r.rs256
-rw-r--r--library/compiler-builtins/libm/src/math/log.rs118
-rw-r--r--library/compiler-builtins/libm/src/math/log10.rs118
-rw-r--r--library/compiler-builtins/libm/src/math/log10f.rs92
-rw-r--r--library/compiler-builtins/libm/src/math/log1p.rs140
-rw-r--r--library/compiler-builtins/libm/src/math/log1pf.rs95
-rw-r--r--library/compiler-builtins/libm/src/math/log2.rs107
-rw-r--r--library/compiler-builtins/libm/src/math/log2f.rs88
-rw-r--r--library/compiler-builtins/libm/src/math/logf.rs66
-rw-r--r--library/compiler-builtins/libm/src/math/mod.rs396
-rw-r--r--library/compiler-builtins/libm/src/math/modf.rs35
-rw-r--r--library/compiler-builtins/libm/src/math/modff.rs34
-rw-r--r--library/compiler-builtins/libm/src/math/nextafter.rs37
-rw-r--r--library/compiler-builtins/libm/src/math/nextafterf.rs37
-rw-r--r--library/compiler-builtins/libm/src/math/pow.rs607
-rw-r--r--library/compiler-builtins/libm/src/math/powf.rs335
-rw-r--r--library/compiler-builtins/libm/src/math/rem_pio2.rs223
-rw-r--r--library/compiler-builtins/libm/src/math/rem_pio2_large.rs468
-rw-r--r--library/compiler-builtins/libm/src/math/rem_pio2f.rs67
-rw-r--r--library/compiler-builtins/libm/src/math/remainder.rs5
-rw-r--r--library/compiler-builtins/libm/src/math/remainderf.rs5
-rw-r--r--library/compiler-builtins/libm/src/math/remquo.rs106
-rw-r--r--library/compiler-builtins/libm/src/math/remquof.rs93
-rw-r--r--library/compiler-builtins/libm/src/math/rint.rs51
-rw-r--r--library/compiler-builtins/libm/src/math/round.rs25
-rw-r--r--library/compiler-builtins/libm/src/math/roundeven.rs36
-rw-r--r--library/compiler-builtins/libm/src/math/roundf.rs5
-rw-r--r--library/compiler-builtins/libm/src/math/roundf128.rs5
-rw-r--r--library/compiler-builtins/libm/src/math/roundf16.rs5
-rw-r--r--library/compiler-builtins/libm/src/math/scalbn.rs87
-rw-r--r--library/compiler-builtins/libm/src/math/scalbnf.rs4
-rw-r--r--library/compiler-builtins/libm/src/math/scalbnf128.rs4
-rw-r--r--library/compiler-builtins/libm/src/math/scalbnf16.rs4
-rw-r--r--library/compiler-builtins/libm/src/math/sin.rs95
-rw-r--r--library/compiler-builtins/libm/src/math/sincos.rs137
-rw-r--r--library/compiler-builtins/libm/src/math/sincosf.rs176
-rw-r--r--library/compiler-builtins/libm/src/math/sinf.rs88
-rw-r--r--library/compiler-builtins/libm/src/math/sinh.rs51
-rw-r--r--library/compiler-builtins/libm/src/math/sinhf.rs30
-rw-r--r--library/compiler-builtins/libm/src/math/sqrt.rs51
-rw-r--r--library/compiler-builtins/libm/src/math/sqrtf.rs15
-rw-r--r--library/compiler-builtins/libm/src/math/sqrtf128.rs5
-rw-r--r--library/compiler-builtins/libm/src/math/sqrtf16.rs11
-rw-r--r--library/compiler-builtins/libm/src/math/support/big.rs239
-rw-r--r--library/compiler-builtins/libm/src/math/support/big/tests.rs149
-rw-r--r--library/compiler-builtins/libm/src/math/support/env.rs127
-rw-r--r--library/compiler-builtins/libm/src/math/support/float_traits.rs484
-rw-r--r--library/compiler-builtins/libm/src/math/support/hex_float.rs1155
-rw-r--r--library/compiler-builtins/libm/src/math/support/int_traits.rs451
-rw-r--r--library/compiler-builtins/libm/src/math/support/macros.rs157
-rw-r--r--library/compiler-builtins/libm/src/math/support/mod.rs29
-rw-r--r--library/compiler-builtins/libm/src/math/tan.rs70
-rw-r--r--library/compiler-builtins/libm/src/math/tanf.rs77
-rw-r--r--library/compiler-builtins/libm/src/math/tanh.rs53
-rw-r--r--library/compiler-builtins/libm/src/math/tanhf.rs38
-rw-r--r--library/compiler-builtins/libm/src/math/tgamma.rs209
-rw-r--r--library/compiler-builtins/libm/src/math/tgammaf.rs7
-rw-r--r--library/compiler-builtins/libm/src/math/trunc.rs53
-rw-r--r--library/compiler-builtins/libm/src/math/truncf.rs23
-rw-r--r--library/compiler-builtins/libm/src/math/truncf128.rs7
-rw-r--r--library/compiler-builtins/libm/src/math/truncf16.rs7
168 files changed, 17579 insertions, 0 deletions
diff --git a/library/compiler-builtins/libm/src/math/acos.rs b/library/compiler-builtins/libm/src/math/acos.rs
new file mode 100644
index 00000000000..23b13251ee2
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/acos.rs
@@ -0,0 +1,112 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_acos.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* acos(x)
+ * Method :
+ *      acos(x)  = pi/2 - asin(x)
+ *      acos(-x) = pi/2 + asin(x)
+ * For |x|<=0.5
+ *      acos(x) = pi/2 - (x + x*x^2*R(x^2))     (see asin.c)
+ * For x>0.5
+ *      acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
+ *              = 2asin(sqrt((1-x)/2))
+ *              = 2s + 2s*z*R(z)        ...z=(1-x)/2, s=sqrt(z)
+ *              = 2f + (2c + 2s*z*R(z))
+ *     where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
+ *     for f so that f+c ~ sqrt(z).
+ * For x<-0.5
+ *      acos(x) = pi - 2asin(sqrt((1-|x|)/2))
+ *              = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
+ *
+ * Special cases:
+ *      if x is NaN, return x itself;
+ *      if |x|>1, return NaN with invalid signal.
+ *
+ * Function needed: sqrt
+ */
+
+use super::sqrt;
+
+const PIO2_HI: f64 = 1.57079632679489655800e+00; /* 0x3FF921FB, 0x54442D18 */
+const PIO2_LO: f64 = 6.12323399573676603587e-17; /* 0x3C91A626, 0x33145C07 */
+const PS0: f64 = 1.66666666666666657415e-01; /* 0x3FC55555, 0x55555555 */
+const PS1: f64 = -3.25565818622400915405e-01; /* 0xBFD4D612, 0x03EB6F7D */
+const PS2: f64 = 2.01212532134862925881e-01; /* 0x3FC9C155, 0x0E884455 */
+const PS3: f64 = -4.00555345006794114027e-02; /* 0xBFA48228, 0xB5688F3B */
+const PS4: f64 = 7.91534994289814532176e-04; /* 0x3F49EFE0, 0x7501B288 */
+const PS5: f64 = 3.47933107596021167570e-05; /* 0x3F023DE1, 0x0DFDF709 */
+const QS1: f64 = -2.40339491173441421878e+00; /* 0xC0033A27, 0x1C8A2D4B */
+const QS2: f64 = 2.02094576023350569471e+00; /* 0x40002AE5, 0x9C598AC8 */
+const QS3: f64 = -6.88283971605453293030e-01; /* 0xBFE6066C, 0x1B8D0159 */
+const QS4: f64 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
+
+fn r(z: f64) -> f64 {
+    let p: f64 = z * (PS0 + z * (PS1 + z * (PS2 + z * (PS3 + z * (PS4 + z * PS5)))));
+    let q: f64 = 1.0 + z * (QS1 + z * (QS2 + z * (QS3 + z * QS4)));
+    p / q
+}
+
+/// Arccosine (f64)
+///
+/// Computes the inverse cosine (arc cosine) of the input value.
+/// Arguments must be in the range -1 to 1.
+/// Returns values in radians, in the range of 0 to pi.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn acos(x: f64) -> f64 {
+    let x1p_120f = f64::from_bits(0x3870000000000000); // 0x1p-120 === 2 ^ -120
+    let z: f64;
+    let w: f64;
+    let s: f64;
+    let c: f64;
+    let df: f64;
+    let hx: u32;
+    let ix: u32;
+
+    hx = (x.to_bits() >> 32) as u32;
+    ix = hx & 0x7fffffff;
+    /* |x| >= 1 or nan */
+    if ix >= 0x3ff00000 {
+        let lx: u32 = x.to_bits() as u32;
+
+        if ((ix - 0x3ff00000) | lx) == 0 {
+            /* acos(1)=0, acos(-1)=pi */
+            if (hx >> 31) != 0 {
+                return 2. * PIO2_HI + x1p_120f;
+            }
+            return 0.;
+        }
+        return 0. / (x - x);
+    }
+    /* |x| < 0.5 */
+    if ix < 0x3fe00000 {
+        if ix <= 0x3c600000 {
+            /* |x| < 2**-57 */
+            return PIO2_HI + x1p_120f;
+        }
+        return PIO2_HI - (x - (PIO2_LO - x * r(x * x)));
+    }
+    /* x < -0.5 */
+    if (hx >> 31) != 0 {
+        z = (1.0 + x) * 0.5;
+        s = sqrt(z);
+        w = r(z) * s - PIO2_LO;
+        return 2. * (PIO2_HI - (s + w));
+    }
+    /* x > 0.5 */
+    z = (1.0 - x) * 0.5;
+    s = sqrt(z);
+    // Set the low 4 bytes to zero
+    df = f64::from_bits(s.to_bits() & 0xff_ff_ff_ff_00_00_00_00);
+
+    c = (z - df * df) / (s + df);
+    w = r(z) * s + c;
+    2. * (df + w)
+}
diff --git a/library/compiler-builtins/libm/src/math/acosf.rs b/library/compiler-builtins/libm/src/math/acosf.rs
new file mode 100644
index 00000000000..dd88eea5b13
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/acosf.rs
@@ -0,0 +1,79 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_acosf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::sqrt::sqrtf;
+
+const PIO2_HI: f32 = 1.5707962513e+00; /* 0x3fc90fda */
+const PIO2_LO: f32 = 7.5497894159e-08; /* 0x33a22168 */
+const P_S0: f32 = 1.6666586697e-01;
+const P_S1: f32 = -4.2743422091e-02;
+const P_S2: f32 = -8.6563630030e-03;
+const Q_S1: f32 = -7.0662963390e-01;
+
+fn r(z: f32) -> f32 {
+    let p = z * (P_S0 + z * (P_S1 + z * P_S2));
+    let q = 1. + z * Q_S1;
+    p / q
+}
+
+/// Arccosine (f32)
+///
+/// Computes the inverse cosine (arc cosine) of the input value.
+/// Arguments must be in the range -1 to 1.
+/// Returns values in radians, in the range of 0 to pi.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn acosf(x: f32) -> f32 {
+    let x1p_120 = f32::from_bits(0x03800000); // 0x1p-120 === 2 ^ (-120)
+
+    let z: f32;
+    let w: f32;
+    let s: f32;
+
+    let mut hx = x.to_bits();
+    let ix = hx & 0x7fffffff;
+    /* |x| >= 1 or nan */
+    if ix >= 0x3f800000 {
+        if ix == 0x3f800000 {
+            if (hx >> 31) != 0 {
+                return 2. * PIO2_HI + x1p_120;
+            }
+            return 0.;
+        }
+        return 0. / (x - x);
+    }
+    /* |x| < 0.5 */
+    if ix < 0x3f000000 {
+        if ix <= 0x32800000 {
+            /* |x| < 2**-26 */
+            return PIO2_HI + x1p_120;
+        }
+        return PIO2_HI - (x - (PIO2_LO - x * r(x * x)));
+    }
+    /* x < -0.5 */
+    if (hx >> 31) != 0 {
+        z = (1. + x) * 0.5;
+        s = sqrtf(z);
+        w = r(z) * s - PIO2_LO;
+        return 2. * (PIO2_HI - (s + w));
+    }
+    /* x > 0.5 */
+    z = (1. - x) * 0.5;
+    s = sqrtf(z);
+    hx = s.to_bits();
+    let df = f32::from_bits(hx & 0xfffff000);
+    let c = (z - df * df) / (s + df);
+    w = r(z) * s + c;
+    2. * (df + w)
+}
diff --git a/library/compiler-builtins/libm/src/math/acosh.rs b/library/compiler-builtins/libm/src/math/acosh.rs
new file mode 100644
index 00000000000..d1f5b9fa937
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/acosh.rs
@@ -0,0 +1,27 @@
+use super::{log, log1p, sqrt};
+
+const LN2: f64 = 0.693147180559945309417232121458176568; /* 0x3fe62e42,  0xfefa39ef*/
+
+/// Inverse hyperbolic cosine (f64)
+///
+/// Calculates the inverse hyperbolic cosine of `x`.
+/// Is defined as `log(x + sqrt(x*x-1))`.
+/// `x` must be a number greater than or equal to 1.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn acosh(x: f64) -> f64 {
+    let u = x.to_bits();
+    let e = ((u >> 52) as usize) & 0x7ff;
+
+    /* x < 1 domain error is handled in the called functions */
+
+    if e < 0x3ff + 1 {
+        /* |x| < 2, up to 2ulp error in [1,1.125] */
+        return log1p(x - 1.0 + sqrt((x - 1.0) * (x - 1.0) + 2.0 * (x - 1.0)));
+    }
+    if e < 0x3ff + 26 {
+        /* |x| < 0x1p26 */
+        return log(2.0 * x - 1.0 / (x + sqrt(x * x - 1.0)));
+    }
+    /* |x| >= 0x1p26 or nan */
+    return log(x) + LN2;
+}
diff --git a/library/compiler-builtins/libm/src/math/acoshf.rs b/library/compiler-builtins/libm/src/math/acoshf.rs
new file mode 100644
index 00000000000..ad3455fdd48
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/acoshf.rs
@@ -0,0 +1,26 @@
+use super::{log1pf, logf, sqrtf};
+
+const LN2: f32 = 0.693147180559945309417232121458176568;
+
+/// Inverse hyperbolic cosine (f32)
+///
+/// Calculates the inverse hyperbolic cosine of `x`.
+/// Is defined as `log(x + sqrt(x*x-1))`.
+/// `x` must be a number greater than or equal to 1.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn acoshf(x: f32) -> f32 {
+    let u = x.to_bits();
+    let a = u & 0x7fffffff;
+
+    if a < 0x3f800000 + (1 << 23) {
+        /* |x| < 2, invalid if x < 1 or nan */
+        /* up to 2ulp error in [1,1.125] */
+        return log1pf(x - 1.0 + sqrtf((x - 1.0) * (x - 1.0) + 2.0 * (x - 1.0)));
+    }
+    if a < 0x3f800000 + (12 << 23) {
+        /* |x| < 0x1p12 */
+        return logf(2.0 * x - 1.0 / (x + sqrtf(x * x - 1.0)));
+    }
+    /* x >= 0x1p12 */
+    return logf(x) + LN2;
+}
diff --git a/library/compiler-builtins/libm/src/math/arch/aarch64.rs b/library/compiler-builtins/libm/src/math/arch/aarch64.rs
new file mode 100644
index 00000000000..020bb731cdc
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/arch/aarch64.rs
@@ -0,0 +1,115 @@
+//! Architecture-specific support for aarch64 with neon.
+
+use core::arch::asm;
+
+pub fn fma(mut x: f64, y: f64, z: f64) -> f64 {
+    // SAFETY: `fmadd` is available with neon and has no side effects.
+    unsafe {
+        asm!(
+            "fmadd {x:d}, {x:d}, {y:d}, {z:d}",
+            x = inout(vreg) x,
+            y = in(vreg) y,
+            z = in(vreg) z,
+            options(nomem, nostack, pure)
+        );
+    }
+    x
+}
+
+pub fn fmaf(mut x: f32, y: f32, z: f32) -> f32 {
+    // SAFETY: `fmadd` is available with neon and has no side effects.
+    unsafe {
+        asm!(
+            "fmadd {x:s}, {x:s}, {y:s}, {z:s}",
+            x = inout(vreg) x,
+            y = in(vreg) y,
+            z = in(vreg) z,
+            options(nomem, nostack, pure)
+        );
+    }
+    x
+}
+
+pub fn rint(mut x: f64) -> f64 {
+    // SAFETY: `frintn` is available with neon and has no side effects.
+    //
+    // `frintn` is always round-to-nearest which does not match the C specification, but Rust does
+    // not support rounding modes.
+    unsafe {
+        asm!(
+            "frintn {x:d}, {x:d}",
+            x = inout(vreg) x,
+            options(nomem, nostack, pure)
+        );
+    }
+    x
+}
+
+pub fn rintf(mut x: f32) -> f32 {
+    // SAFETY: `frintn` is available with neon and has no side effects.
+    //
+    // `frintn` is always round-to-nearest which does not match the C specification, but Rust does
+    // not support rounding modes.
+    unsafe {
+        asm!(
+            "frintn {x:s}, {x:s}",
+            x = inout(vreg) x,
+            options(nomem, nostack, pure)
+        );
+    }
+    x
+}
+
+#[cfg(all(f16_enabled, target_feature = "fp16"))]
+pub fn rintf16(mut x: f16) -> f16 {
+    // SAFETY: `frintn` is available for `f16` with `fp16` (implies `neon`) and has no side effects.
+    //
+    // `frintn` is always round-to-nearest which does not match the C specification, but Rust does
+    // not support rounding modes.
+    unsafe {
+        asm!(
+            "frintn {x:h}, {x:h}",
+            x = inout(vreg) x,
+            options(nomem, nostack, pure)
+        );
+    }
+    x
+}
+
+pub fn sqrt(mut x: f64) -> f64 {
+    // SAFETY: `fsqrt` is available with neon and has no side effects.
+    unsafe {
+        asm!(
+            "fsqrt {x:d}, {x:d}",
+            x = inout(vreg) x,
+            options(nomem, nostack, pure)
+        );
+    }
+    x
+}
+
+pub fn sqrtf(mut x: f32) -> f32 {
+    // SAFETY: `fsqrt` is available with neon and has no side effects.
+    unsafe {
+        asm!(
+            "fsqrt {x:s}, {x:s}",
+            x = inout(vreg) x,
+            options(nomem, nostack, pure)
+        );
+    }
+    x
+}
+
+#[cfg(all(f16_enabled, target_feature = "fp16"))]
+pub fn sqrtf16(mut x: f16) -> f16 {
+    // SAFETY: `fsqrt` is available for `f16` with `fp16` (implies `neon`) and has no
+    // side effects.
+    unsafe {
+        asm!(
+            "fsqrt {x:h}, {x:h}",
+            x = inout(vreg) x,
+            options(nomem, nostack, pure)
+        );
+    }
+    x
+}
diff --git a/library/compiler-builtins/libm/src/math/arch/i586.rs b/library/compiler-builtins/libm/src/math/arch/i586.rs
new file mode 100644
index 00000000000..f92b9a2af71
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/arch/i586.rs
@@ -0,0 +1,37 @@
+//! Architecture-specific support for x86-32 without SSE2
+
+use super::super::fabs;
+
+/// Use an alternative implementation on x86, because the
+/// main implementation fails with the x87 FPU used by
+/// debian i386, probably due to excess precision issues.
+/// Basic implementation taken from https://github.com/rust-lang/libm/issues/219.
+pub fn ceil(x: f64) -> f64 {
+    if fabs(x).to_bits() < 4503599627370496.0_f64.to_bits() {
+        let truncated = x as i64 as f64;
+        if truncated < x {
+            return truncated + 1.0;
+        } else {
+            return truncated;
+        }
+    } else {
+        return x;
+    }
+}
+
+/// Use an alternative implementation on x86, because the
+/// main implementation fails with the x87 FPU used by
+/// debian i386, probably due to excess precision issues.
+/// Basic implementation taken from https://github.com/rust-lang/libm/issues/219.
+pub fn floor(x: f64) -> f64 {
+    if fabs(x).to_bits() < 4503599627370496.0_f64.to_bits() {
+        let truncated = x as i64 as f64;
+        if truncated > x {
+            return truncated - 1.0;
+        } else {
+            return truncated;
+        }
+    } else {
+        return x;
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/arch/i686.rs b/library/compiler-builtins/libm/src/math/arch/i686.rs
new file mode 100644
index 00000000000..3e1d19bfab6
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/arch/i686.rs
@@ -0,0 +1,27 @@
+//! Architecture-specific support for x86-32 and x86-64 with SSE2
+
+pub fn sqrtf(mut x: f32) -> f32 {
+    // SAFETY: `sqrtss` is part of `sse2`, which this module is gated behind. It has no memory
+    // access or side effects.
+    unsafe {
+        core::arch::asm!(
+            "sqrtss {x}, {x}",
+            x = inout(xmm_reg) x,
+            options(nostack, nomem, pure),
+        )
+    };
+    x
+}
+
+pub fn sqrt(mut x: f64) -> f64 {
+    // SAFETY: `sqrtsd` is part of `sse2`, which this module is gated behind. It has no memory
+    // access or side effects.
+    unsafe {
+        core::arch::asm!(
+            "sqrtsd {x}, {x}",
+            x = inout(xmm_reg) x,
+            options(nostack, nomem, pure),
+        )
+    };
+    x
+}
diff --git a/library/compiler-builtins/libm/src/math/arch/mod.rs b/library/compiler-builtins/libm/src/math/arch/mod.rs
new file mode 100644
index 00000000000..d9f2aad66d4
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/arch/mod.rs
@@ -0,0 +1,50 @@
+//! Architecture-specific routines and operations.
+//!
+//! LLVM will already optimize calls to some of these in cases that there are hardware
+//! instructions. Providing an implementation here just ensures that the faster implementation
+//! is used when calling the function directly. This helps anyone who uses `libm` directly, as
+//! well as improving things when these routines are called as part of other implementations.
+
+// Most implementations should be defined here, to ensure they are not made available when
+// soft floats are required.
+#[cfg(arch_enabled)]
+cfg_if! {
+    if #[cfg(all(target_arch = "wasm32", intrinsics_enabled))] {
+        mod wasm32;
+        pub use wasm32::{
+            ceil, ceilf, fabs, fabsf, floor, floorf, rint, rintf, sqrt, sqrtf, trunc, truncf,
+        };
+    } else if #[cfg(target_feature = "sse2")] {
+        mod i686;
+        pub use i686::{sqrt, sqrtf};
+    } else if #[cfg(all(
+        any(target_arch = "aarch64", target_arch = "arm64ec"),
+        target_feature = "neon"
+    ))] {
+        mod aarch64;
+
+        pub use aarch64::{
+            fma,
+            fmaf,
+            rint,
+            rintf,
+            sqrt,
+            sqrtf,
+        };
+
+        #[cfg(all(f16_enabled, target_feature = "fp16"))]
+        pub use aarch64::{
+            rintf16,
+            sqrtf16,
+        };
+    }
+}
+
+// There are certain architecture-specific implementations that are needed for correctness
+// even with `force-soft-float`. These are configured here.
+cfg_if! {
+    if #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))] {
+        mod i586;
+        pub use i586::{ceil, floor};
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/arch/wasm32.rs b/library/compiler-builtins/libm/src/math/arch/wasm32.rs
new file mode 100644
index 00000000000..de80c8a5817
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/arch/wasm32.rs
@@ -0,0 +1,50 @@
+//! Wasm has builtins for simple float operations. Use the unstable `core::arch` intrinsics which
+//! are significantly faster than soft float operations.
+
+pub fn ceil(x: f64) -> f64 {
+    core::arch::wasm32::f64_ceil(x)
+}
+
+pub fn ceilf(x: f32) -> f32 {
+    core::arch::wasm32::f32_ceil(x)
+}
+
+pub fn fabs(x: f64) -> f64 {
+    x.abs()
+}
+
+pub fn fabsf(x: f32) -> f32 {
+    x.abs()
+}
+
+pub fn floor(x: f64) -> f64 {
+    core::arch::wasm32::f64_floor(x)
+}
+
+pub fn floorf(x: f32) -> f32 {
+    core::arch::wasm32::f32_floor(x)
+}
+
+pub fn rint(x: f64) -> f64 {
+    core::arch::wasm32::f64_nearest(x)
+}
+
+pub fn rintf(x: f32) -> f32 {
+    core::arch::wasm32::f32_nearest(x)
+}
+
+pub fn sqrt(x: f64) -> f64 {
+    core::arch::wasm32::f64_sqrt(x)
+}
+
+pub fn sqrtf(x: f32) -> f32 {
+    core::arch::wasm32::f32_sqrt(x)
+}
+
+pub fn trunc(x: f64) -> f64 {
+    core::arch::wasm32::f64_trunc(x)
+}
+
+pub fn truncf(x: f32) -> f32 {
+    core::arch::wasm32::f32_trunc(x)
+}
diff --git a/library/compiler-builtins/libm/src/math/asin.rs b/library/compiler-builtins/libm/src/math/asin.rs
new file mode 100644
index 00000000000..12d0cd35fa5
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/asin.rs
@@ -0,0 +1,115 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_asin.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* asin(x)
+ * Method :
+ *      Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
+ *      we approximate asin(x) on [0,0.5] by
+ *              asin(x) = x + x*x^2*R(x^2)
+ *      where
+ *              R(x^2) is a rational approximation of (asin(x)-x)/x^3
+ *      and its remez error is bounded by
+ *              |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
+ *
+ *      For x in [0.5,1]
+ *              asin(x) = pi/2-2*asin(sqrt((1-x)/2))
+ *      Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
+ *      then for x>0.98
+ *              asin(x) = pi/2 - 2*(s+s*z*R(z))
+ *                      = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
+ *      For x<=0.98, let pio4_hi = pio2_hi/2, then
+ *              f = hi part of s;
+ *              c = sqrt(z) - f = (z-f*f)/(s+f)         ...f+c=sqrt(z)
+ *      and
+ *              asin(x) = pi/2 - 2*(s+s*z*R(z))
+ *                      = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
+ *                      = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
+ *
+ * Special cases:
+ *      if x is NaN, return x itself;
+ *      if |x|>1, return NaN with invalid signal.
+ *
+ */
+
+use super::{fabs, get_high_word, get_low_word, sqrt, with_set_low_word};
+
+const PIO2_HI: f64 = 1.57079632679489655800e+00; /* 0x3FF921FB, 0x54442D18 */
+const PIO2_LO: f64 = 6.12323399573676603587e-17; /* 0x3C91A626, 0x33145C07 */
+/* coefficients for R(x^2) */
+const P_S0: f64 = 1.66666666666666657415e-01; /* 0x3FC55555, 0x55555555 */
+const P_S1: f64 = -3.25565818622400915405e-01; /* 0xBFD4D612, 0x03EB6F7D */
+const P_S2: f64 = 2.01212532134862925881e-01; /* 0x3FC9C155, 0x0E884455 */
+const P_S3: f64 = -4.00555345006794114027e-02; /* 0xBFA48228, 0xB5688F3B */
+const P_S4: f64 = 7.91534994289814532176e-04; /* 0x3F49EFE0, 0x7501B288 */
+const P_S5: f64 = 3.47933107596021167570e-05; /* 0x3F023DE1, 0x0DFDF709 */
+const Q_S1: f64 = -2.40339491173441421878e+00; /* 0xC0033A27, 0x1C8A2D4B */
+const Q_S2: f64 = 2.02094576023350569471e+00; /* 0x40002AE5, 0x9C598AC8 */
+const Q_S3: f64 = -6.88283971605453293030e-01; /* 0xBFE6066C, 0x1B8D0159 */
+const Q_S4: f64 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
+
+fn comp_r(z: f64) -> f64 {
+    let p = z * (P_S0 + z * (P_S1 + z * (P_S2 + z * (P_S3 + z * (P_S4 + z * P_S5)))));
+    let q = 1.0 + z * (Q_S1 + z * (Q_S2 + z * (Q_S3 + z * Q_S4)));
+    p / q
+}
+
+/// Arcsine (f64)
+///
+/// Computes the inverse sine (arc sine) of the argument `x`.
+/// Arguments to asin must be in the range -1 to 1.
+/// Returns values in radians, in the range of -pi/2 to pi/2.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn asin(mut x: f64) -> f64 {
+    let z: f64;
+    let r: f64;
+    let s: f64;
+    let hx: u32;
+    let ix: u32;
+
+    hx = get_high_word(x);
+    ix = hx & 0x7fffffff;
+    /* |x| >= 1 or nan */
+    if ix >= 0x3ff00000 {
+        let lx: u32;
+        lx = get_low_word(x);
+        if ((ix - 0x3ff00000) | lx) == 0 {
+            /* asin(1) = +-pi/2 with inexact */
+            return x * PIO2_HI + f64::from_bits(0x3870000000000000);
+        } else {
+            return 0.0 / (x - x);
+        }
+    }
+    /* |x| < 0.5 */
+    if ix < 0x3fe00000 {
+        /* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */
+        if (0x00100000..0x3e500000).contains(&ix) {
+            return x;
+        } else {
+            return x + x * comp_r(x * x);
+        }
+    }
+    /* 1 > |x| >= 0.5 */
+    z = (1.0 - fabs(x)) * 0.5;
+    s = sqrt(z);
+    r = comp_r(z);
+    if ix >= 0x3fef3333 {
+        /* if |x| > 0.975 */
+        x = PIO2_HI - (2. * (s + s * r) - PIO2_LO);
+    } else {
+        let f: f64;
+        let c: f64;
+        /* f+c = sqrt(z) */
+        f = with_set_low_word(s, 0);
+        c = (z - f * f) / (s + f);
+        x = 0.5 * PIO2_HI - (2.0 * s * r - (PIO2_LO - 2.0 * c) - (0.5 * PIO2_HI - 2.0 * f));
+    }
+    if hx >> 31 != 0 { -x } else { x }
+}
diff --git a/library/compiler-builtins/libm/src/math/asinf.rs b/library/compiler-builtins/libm/src/math/asinf.rs
new file mode 100644
index 00000000000..ed685556730
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/asinf.rs
@@ -0,0 +1,68 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_asinf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::sqrt::sqrt;
+use super::support::Float;
+
+const PIO2: f64 = 1.570796326794896558e+00;
+
+/* coefficients for R(x^2) */
+const P_S0: f32 = 1.6666586697e-01;
+const P_S1: f32 = -4.2743422091e-02;
+const P_S2: f32 = -8.6563630030e-03;
+const Q_S1: f32 = -7.0662963390e-01;
+
+fn r(z: f32) -> f32 {
+    let p = z * (P_S0 + z * (P_S1 + z * P_S2));
+    let q = 1. + z * Q_S1;
+    p / q
+}
+
+/// Arcsine (f32)
+///
+/// Computes the inverse sine (arc sine) of the argument `x`.
+/// Arguments to asin must be in the range -1 to 1.
+/// Returns values in radians, in the range of -pi/2 to pi/2.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn asinf(mut x: f32) -> f32 {
+    let x1p_120 = f64::from_bits(0x3870000000000000); // 0x1p-120 === 2 ^ (-120)
+
+    let hx = x.to_bits();
+    let ix = hx & 0x7fffffff;
+
+    if ix >= 0x3f800000 {
+        /* |x| >= 1 */
+        if ix == 0x3f800000 {
+            /* |x| == 1 */
+            return ((x as f64) * PIO2 + x1p_120) as f32; /* asin(+-1) = +-pi/2 with inexact */
+        }
+        return 0. / (x - x); /* asin(|x|>1) is NaN */
+    }
+
+    if ix < 0x3f000000 {
+        /* |x| < 0.5 */
+        /* if 0x1p-126 <= |x| < 0x1p-12, avoid raising underflow */
+        if (0x00800000..0x39800000).contains(&ix) {
+            return x;
+        }
+        return x + x * r(x * x);
+    }
+
+    /* 1 > |x| >= 0.5 */
+    let z = (1. - Float::abs(x)) * 0.5;
+    let s = sqrt(z as f64);
+    x = (PIO2 - 2. * (s + s * (r(z) as f64))) as f32;
+    if (hx >> 31) != 0 { -x } else { x }
+}
diff --git a/library/compiler-builtins/libm/src/math/asinh.rs b/library/compiler-builtins/libm/src/math/asinh.rs
new file mode 100644
index 00000000000..75d3c3ad462
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/asinh.rs
@@ -0,0 +1,36 @@
+use super::{log, log1p, sqrt};
+
+const LN2: f64 = 0.693147180559945309417232121458176568; /* 0x3fe62e42,  0xfefa39ef*/
+
+/* asinh(x) = sign(x)*log(|x|+sqrt(x*x+1)) ~= x - x^3/6 + o(x^5) */
+/// Inverse hyperbolic sine (f64)
+///
+/// Calculates the inverse hyperbolic sine of `x`.
+/// Is defined as `sgn(x)*log(|x|+sqrt(x*x+1))`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn asinh(mut x: f64) -> f64 {
+    let mut u = x.to_bits();
+    let e = ((u >> 52) as usize) & 0x7ff;
+    let sign = (u >> 63) != 0;
+
+    /* |x| */
+    u &= (!0) >> 1;
+    x = f64::from_bits(u);
+
+    if e >= 0x3ff + 26 {
+        /* |x| >= 0x1p26 or inf or nan */
+        x = log(x) + LN2;
+    } else if e >= 0x3ff + 1 {
+        /* |x| >= 2 */
+        x = log(2.0 * x + 1.0 / (sqrt(x * x + 1.0) + x));
+    } else if e >= 0x3ff - 26 {
+        /* |x| >= 0x1p-26, up to 1.6ulp error in [0.125,0.5] */
+        x = log1p(x + x * x / (sqrt(x * x + 1.0) + 1.0));
+    } else {
+        /* |x| < 0x1p-26, raise inexact if x != 0 */
+        let x1p120 = f64::from_bits(0x4770000000000000);
+        force_eval!(x + x1p120);
+    }
+
+    if sign { -x } else { x }
+}
diff --git a/library/compiler-builtins/libm/src/math/asinhf.rs b/library/compiler-builtins/libm/src/math/asinhf.rs
new file mode 100644
index 00000000000..27ed9dd372d
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/asinhf.rs
@@ -0,0 +1,35 @@
+use super::{log1pf, logf, sqrtf};
+
+const LN2: f32 = 0.693147180559945309417232121458176568;
+
+/* asinh(x) = sign(x)*log(|x|+sqrt(x*x+1)) ~= x - x^3/6 + o(x^5) */
+/// Inverse hyperbolic sine (f32)
+///
+/// Calculates the inverse hyperbolic sine of `x`.
+/// Is defined as `sgn(x)*log(|x|+sqrt(x*x+1))`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn asinhf(mut x: f32) -> f32 {
+    let u = x.to_bits();
+    let i = u & 0x7fffffff;
+    let sign = (u >> 31) != 0;
+
+    /* |x| */
+    x = f32::from_bits(i);
+
+    if i >= 0x3f800000 + (12 << 23) {
+        /* |x| >= 0x1p12 or inf or nan */
+        x = logf(x) + LN2;
+    } else if i >= 0x3f800000 + (1 << 23) {
+        /* |x| >= 2 */
+        x = logf(2.0 * x + 1.0 / (sqrtf(x * x + 1.0) + x));
+    } else if i >= 0x3f800000 - (12 << 23) {
+        /* |x| >= 0x1p-12, up to 1.6ulp error in [0.125,0.5] */
+        x = log1pf(x + x * x / (sqrtf(x * x + 1.0) + 1.0));
+    } else {
+        /* |x| < 0x1p-12, raise inexact if x!=0 */
+        let x1p120 = f32::from_bits(0x7b800000);
+        force_eval!(x + x1p120);
+    }
+
+    if sign { -x } else { x }
+}
diff --git a/library/compiler-builtins/libm/src/math/atan.rs b/library/compiler-builtins/libm/src/math/atan.rs
new file mode 100644
index 00000000000..4ca5cc91a1e
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/atan.rs
@@ -0,0 +1,182 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_atan.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* atan(x)
+ * Method
+ *   1. Reduce x to positive by atan(x) = -atan(-x).
+ *   2. According to the integer k=4t+0.25 chopped, t=x, the argument
+ *      is further reduced to one of the following intervals and the
+ *      arctangent of t is evaluated by the corresponding formula:
+ *
+ *      [0,7/16]      atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
+ *      [7/16,11/16]  atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
+ *      [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
+ *      [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
+ *      [39/16,INF]   atan(x) = atan(INF) + atan( -1/t )
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+use core::f64;
+
+use super::fabs;
+
+const ATANHI: [f64; 4] = [
+    4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
+    7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
+    9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
+    1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
+];
+
+const ATANLO: [f64; 4] = [
+    2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
+    3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
+    1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
+    6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
+];
+
+const AT: [f64; 11] = [
+    3.33333333333329318027e-01,  /* 0x3FD55555, 0x5555550D */
+    -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
+    1.42857142725034663711e-01,  /* 0x3FC24924, 0x920083FF */
+    -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
+    9.09088713343650656196e-02,  /* 0x3FB745CD, 0xC54C206E */
+    -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
+    6.66107313738753120669e-02,  /* 0x3FB10D66, 0xA0D03D51 */
+    -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
+    4.97687799461593236017e-02,  /* 0x3FA97B4B, 0x24760DEB */
+    -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
+    1.62858201153657823623e-02,  /* 0x3F90AD3A, 0xE322DA11 */
+];
+
+/// Arctangent (f64)
+///
+/// Computes the inverse tangent (arc tangent) of the input value.
+/// Returns a value in radians, in the range of -pi/2 to pi/2.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn atan(x: f64) -> f64 {
+    let mut x = x;
+    let mut ix = (x.to_bits() >> 32) as u32;
+    let sign = ix >> 31;
+    ix &= 0x7fff_ffff;
+    if ix >= 0x4410_0000 {
+        if x.is_nan() {
+            return x;
+        }
+
+        let z = ATANHI[3] + f64::from_bits(0x0380_0000); // 0x1p-120f
+        return if sign != 0 { -z } else { z };
+    }
+
+    let id = if ix < 0x3fdc_0000 {
+        /* |x| < 0.4375 */
+        if ix < 0x3e40_0000 {
+            /* |x| < 2^-27 */
+            if ix < 0x0010_0000 {
+                /* raise underflow for subnormal x */
+                force_eval!(x as f32);
+            }
+
+            return x;
+        }
+
+        -1
+    } else {
+        x = fabs(x);
+        if ix < 0x3ff30000 {
+            /* |x| < 1.1875 */
+            if ix < 0x3fe60000 {
+                /* 7/16 <= |x| < 11/16 */
+                x = (2. * x - 1.) / (2. + x);
+                0
+            } else {
+                /* 11/16 <= |x| < 19/16 */
+                x = (x - 1.) / (x + 1.);
+                1
+            }
+        } else if ix < 0x40038000 {
+            /* |x| < 2.4375 */
+            x = (x - 1.5) / (1. + 1.5 * x);
+            2
+        } else {
+            /* 2.4375 <= |x| < 2^66 */
+            x = -1. / x;
+            3
+        }
+    };
+
+    let z = x * x;
+    let w = z * z;
+    /* break sum from i=0 to 10 AT[i]z**(i+1) into odd and even poly */
+    let s1 = z * (AT[0] + w * (AT[2] + w * (AT[4] + w * (AT[6] + w * (AT[8] + w * AT[10])))));
+    let s2 = w * (AT[1] + w * (AT[3] + w * (AT[5] + w * (AT[7] + w * AT[9]))));
+
+    if id < 0 {
+        return x - x * (s1 + s2);
+    }
+
+    let z = i!(ATANHI, id as usize) - (x * (s1 + s2) - i!(ATANLO, id as usize) - x);
+
+    if sign != 0 { -z } else { z }
+}
+
+#[cfg(test)]
+mod tests {
+    use core::f64;
+
+    use super::atan;
+
+    #[test]
+    fn sanity_check() {
+        for (input, answer) in [
+            (3.0_f64.sqrt() / 3.0, f64::consts::FRAC_PI_6),
+            (1.0, f64::consts::FRAC_PI_4),
+            (3.0_f64.sqrt(), f64::consts::FRAC_PI_3),
+            (-3.0_f64.sqrt() / 3.0, -f64::consts::FRAC_PI_6),
+            (-1.0, -f64::consts::FRAC_PI_4),
+            (-3.0_f64.sqrt(), -f64::consts::FRAC_PI_3),
+        ]
+        .iter()
+        {
+            assert!(
+                (atan(*input) - answer) / answer < 1e-5,
+                "\natan({:.4}/16) = {:.4}, actual: {}",
+                input * 16.0,
+                answer,
+                atan(*input)
+            );
+        }
+    }
+
+    #[test]
+    fn zero() {
+        assert_eq!(atan(0.0), 0.0);
+    }
+
+    #[test]
+    fn infinity() {
+        assert_eq!(atan(f64::INFINITY), f64::consts::FRAC_PI_2);
+    }
+
+    #[test]
+    fn minus_infinity() {
+        assert_eq!(atan(f64::NEG_INFINITY), -f64::consts::FRAC_PI_2);
+    }
+
+    #[test]
+    fn nan() {
+        assert!(atan(f64::NAN).is_nan());
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/atan2.rs b/library/compiler-builtins/libm/src/math/atan2.rs
new file mode 100644
index 00000000000..c668731cf37
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/atan2.rs
@@ -0,0 +1,131 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_atan2.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ *
+ */
+/* atan2(y,x)
+ * Method :
+ *      1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
+ *      2. Reduce x to positive by (if x and y are unexceptional):
+ *              ARG (x+iy) = arctan(y/x)           ... if x > 0,
+ *              ARG (x+iy) = pi - arctan[y/(-x)]   ... if x < 0,
+ *
+ * Special cases:
+ *
+ *      ATAN2((anything), NaN ) is NaN;
+ *      ATAN2(NAN , (anything) ) is NaN;
+ *      ATAN2(+-0, +(anything but NaN)) is +-0  ;
+ *      ATAN2(+-0, -(anything but NaN)) is +-pi ;
+ *      ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
+ *      ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
+ *      ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
+ *      ATAN2(+-INF,+INF ) is +-pi/4 ;
+ *      ATAN2(+-INF,-INF ) is +-3pi/4;
+ *      ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+use super::{atan, fabs};
+
+const PI: f64 = 3.1415926535897931160E+00; /* 0x400921FB, 0x54442D18 */
+const PI_LO: f64 = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
+
+/// Arctangent of y/x (f64)
+///
+/// Computes the inverse tangent (arc tangent) of `y/x`.
+/// Produces the correct result even for angles near pi/2 or -pi/2 (that is, when `x` is near 0).
+/// Returns a value in radians, in the range of -pi to pi.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn atan2(y: f64, x: f64) -> f64 {
+    if x.is_nan() || y.is_nan() {
+        return x + y;
+    }
+    let mut ix = (x.to_bits() >> 32) as u32;
+    let lx = x.to_bits() as u32;
+    let mut iy = (y.to_bits() >> 32) as u32;
+    let ly = y.to_bits() as u32;
+    if ((ix.wrapping_sub(0x3ff00000)) | lx) == 0 {
+        /* x = 1.0 */
+        return atan(y);
+    }
+    let m = ((iy >> 31) & 1) | ((ix >> 30) & 2); /* 2*sign(x)+sign(y) */
+    ix &= 0x7fffffff;
+    iy &= 0x7fffffff;
+
+    /* when y = 0 */
+    if (iy | ly) == 0 {
+        return match m {
+            0 | 1 => y, /* atan(+-0,+anything)=+-0 */
+            2 => PI,    /* atan(+0,-anything) = PI */
+            _ => -PI,   /* atan(-0,-anything) =-PI */
+        };
+    }
+    /* when x = 0 */
+    if (ix | lx) == 0 {
+        return if m & 1 != 0 { -PI / 2.0 } else { PI / 2.0 };
+    }
+    /* when x is INF */
+    if ix == 0x7ff00000 {
+        if iy == 0x7ff00000 {
+            return match m {
+                0 => PI / 4.0,        /* atan(+INF,+INF) */
+                1 => -PI / 4.0,       /* atan(-INF,+INF) */
+                2 => 3.0 * PI / 4.0,  /* atan(+INF,-INF) */
+                _ => -3.0 * PI / 4.0, /* atan(-INF,-INF) */
+            };
+        } else {
+            return match m {
+                0 => 0.0,  /* atan(+...,+INF) */
+                1 => -0.0, /* atan(-...,+INF) */
+                2 => PI,   /* atan(+...,-INF) */
+                _ => -PI,  /* atan(-...,-INF) */
+            };
+        }
+    }
+    /* |y/x| > 0x1p64 */
+    if ix.wrapping_add(64 << 20) < iy || iy == 0x7ff00000 {
+        return if m & 1 != 0 { -PI / 2.0 } else { PI / 2.0 };
+    }
+
+    /* z = atan(|y/x|) without spurious underflow */
+    let z = if (m & 2 != 0) && iy.wrapping_add(64 << 20) < ix {
+        /* |y/x| < 0x1p-64, x<0 */
+        0.0
+    } else {
+        atan(fabs(y / x))
+    };
+    match m {
+        0 => z,                /* atan(+,+) */
+        1 => -z,               /* atan(-,+) */
+        2 => PI - (z - PI_LO), /* atan(+,-) */
+        _ => (z - PI_LO) - PI, /* atan(-,-) */
+    }
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+
+    #[test]
+    #[cfg_attr(x86_no_sse, ignore = "FIXME(i586): possible incorrect rounding")]
+    fn sanity_check() {
+        assert_eq!(atan2(0.0, 1.0), 0.0);
+        assert_eq!(atan2(0.0, -1.0), PI);
+        assert_eq!(atan2(-0.0, -1.0), -PI);
+        assert_eq!(atan2(3.0, 2.0), atan(3.0 / 2.0));
+        assert_eq!(atan2(2.0, -1.0), atan(2.0 / -1.0) + PI);
+        assert_eq!(atan2(-2.0, -1.0), atan(-2.0 / -1.0) - PI);
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/atan2f.rs b/library/compiler-builtins/libm/src/math/atan2f.rs
new file mode 100644
index 00000000000..95b466fff4e
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/atan2f.rs
@@ -0,0 +1,90 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_atan2f.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{atanf, fabsf};
+
+const PI: f32 = 3.1415927410e+00; /* 0x40490fdb */
+const PI_LO: f32 = -8.7422776573e-08; /* 0xb3bbbd2e */
+
+/// Arctangent of y/x (f32)
+///
+/// Computes the inverse tangent (arc tangent) of `y/x`.
+/// Produces the correct result even for angles near pi/2 or -pi/2 (that is, when `x` is near 0).
+/// Returns a value in radians, in the range of -pi to pi.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn atan2f(y: f32, x: f32) -> f32 {
+    if x.is_nan() || y.is_nan() {
+        return x + y;
+    }
+    let mut ix = x.to_bits();
+    let mut iy = y.to_bits();
+
+    if ix == 0x3f800000 {
+        /* x=1.0 */
+        return atanf(y);
+    }
+    let m = ((iy >> 31) & 1) | ((ix >> 30) & 2); /* 2*sign(x)+sign(y) */
+    ix &= 0x7fffffff;
+    iy &= 0x7fffffff;
+
+    /* when y = 0 */
+    if iy == 0 {
+        return match m {
+            0 | 1 => y, /* atan(+-0,+anything)=+-0 */
+            2 => PI,    /* atan(+0,-anything) = pi */
+            _ => -PI,   /* atan(-0,-anything) =-pi */
+        };
+    }
+    /* when x = 0 */
+    if ix == 0 {
+        return if m & 1 != 0 { -PI / 2. } else { PI / 2. };
+    }
+    /* when x is INF */
+    if ix == 0x7f800000 {
+        return if iy == 0x7f800000 {
+            match m {
+                0 => PI / 4.,       /* atan(+INF,+INF) */
+                1 => -PI / 4.,      /* atan(-INF,+INF) */
+                2 => 3. * PI / 4.,  /* atan(+INF,-INF)*/
+                _ => -3. * PI / 4., /* atan(-INF,-INF)*/
+            }
+        } else {
+            match m {
+                0 => 0.,  /* atan(+...,+INF) */
+                1 => -0., /* atan(-...,+INF) */
+                2 => PI,  /* atan(+...,-INF) */
+                _ => -PI, /* atan(-...,-INF) */
+            }
+        };
+    }
+    /* |y/x| > 0x1p26 */
+    if (ix + (26 << 23) < iy) || (iy == 0x7f800000) {
+        return if m & 1 != 0 { -PI / 2. } else { PI / 2. };
+    }
+
+    /* z = atan(|y/x|) with correct underflow */
+    let z = if (m & 2 != 0) && (iy + (26 << 23) < ix) {
+        /*|y/x| < 0x1p-26, x < 0 */
+        0.
+    } else {
+        atanf(fabsf(y / x))
+    };
+    match m {
+        0 => z,                /* atan(+,+) */
+        1 => -z,               /* atan(-,+) */
+        2 => PI - (z - PI_LO), /* atan(+,-) */
+        _ => (z - PI_LO) - PI, /* case 3 */ /* atan(-,-) */
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/atanf.rs b/library/compiler-builtins/libm/src/math/atanf.rs
new file mode 100644
index 00000000000..eb3d401cd96
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/atanf.rs
@@ -0,0 +1,103 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_atanf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::fabsf;
+
+const ATAN_HI: [f32; 4] = [
+    4.6364760399e-01, /* atan(0.5)hi 0x3eed6338 */
+    7.8539812565e-01, /* atan(1.0)hi 0x3f490fda */
+    9.8279368877e-01, /* atan(1.5)hi 0x3f7b985e */
+    1.5707962513e+00, /* atan(inf)hi 0x3fc90fda */
+];
+
+const ATAN_LO: [f32; 4] = [
+    5.0121582440e-09, /* atan(0.5)lo 0x31ac3769 */
+    3.7748947079e-08, /* atan(1.0)lo 0x33222168 */
+    3.4473217170e-08, /* atan(1.5)lo 0x33140fb4 */
+    7.5497894159e-08, /* atan(inf)lo 0x33a22168 */
+];
+
+const A_T: [f32; 5] =
+    [3.3333328366e-01, -1.9999158382e-01, 1.4253635705e-01, -1.0648017377e-01, 6.1687607318e-02];
+
+/// Arctangent (f32)
+///
+/// Computes the inverse tangent (arc tangent) of the input value.
+/// Returns a value in radians, in the range of -pi/2 to pi/2.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn atanf(mut x: f32) -> f32 {
+    let x1p_120 = f32::from_bits(0x03800000); // 0x1p-120 === 2 ^ (-120)
+
+    let z: f32;
+
+    let mut ix = x.to_bits();
+    let sign = (ix >> 31) != 0;
+    ix &= 0x7fffffff;
+
+    if ix >= 0x4c800000 {
+        /* if |x| >= 2**26 */
+        if x.is_nan() {
+            return x;
+        }
+        z = i!(ATAN_HI, 3) + x1p_120;
+        return if sign { -z } else { z };
+    }
+    let id = if ix < 0x3ee00000 {
+        /* |x| < 0.4375 */
+        if ix < 0x39800000 {
+            /* |x| < 2**-12 */
+            if ix < 0x00800000 {
+                /* raise underflow for subnormal x */
+                force_eval!(x * x);
+            }
+            return x;
+        }
+        -1
+    } else {
+        x = fabsf(x);
+        if ix < 0x3f980000 {
+            /* |x| < 1.1875 */
+            if ix < 0x3f300000 {
+                /*  7/16 <= |x| < 11/16 */
+                x = (2. * x - 1.) / (2. + x);
+                0
+            } else {
+                /* 11/16 <= |x| < 19/16 */
+                x = (x - 1.) / (x + 1.);
+                1
+            }
+        } else if ix < 0x401c0000 {
+            /* |x| < 2.4375 */
+            x = (x - 1.5) / (1. + 1.5 * x);
+            2
+        } else {
+            /* 2.4375 <= |x| < 2**26 */
+            x = -1. / x;
+            3
+        }
+    };
+    /* end of argument reduction */
+    z = x * x;
+    let w = z * z;
+    /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
+    let s1 = z * (i!(A_T, 0) + w * (i!(A_T, 2) + w * i!(A_T, 4)));
+    let s2 = w * (i!(A_T, 1) + w * i!(A_T, 3));
+    if id < 0 {
+        return x - x * (s1 + s2);
+    }
+    let id = id as usize;
+    let z = i!(ATAN_HI, id) - ((x * (s1 + s2) - i!(ATAN_LO, id)) - x);
+    if sign { -z } else { z }
+}
diff --git a/library/compiler-builtins/libm/src/math/atanh.rs b/library/compiler-builtins/libm/src/math/atanh.rs
new file mode 100644
index 00000000000..9dc826f5605
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/atanh.rs
@@ -0,0 +1,33 @@
+use super::log1p;
+
+/* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */
+/// Inverse hyperbolic tangent (f64)
+///
+/// Calculates the inverse hyperbolic tangent of `x`.
+/// Is defined as `log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn atanh(x: f64) -> f64 {
+    let u = x.to_bits();
+    let e = ((u >> 52) as usize) & 0x7ff;
+    let sign = (u >> 63) != 0;
+
+    /* |x| */
+    let mut y = f64::from_bits(u & 0x7fff_ffff_ffff_ffff);
+
+    if e < 0x3ff - 1 {
+        if e < 0x3ff - 32 {
+            /* handle underflow */
+            if e == 0 {
+                force_eval!(y as f32);
+            }
+        } else {
+            /* |x| < 0.5, up to 1.7ulp error */
+            y = 0.5 * log1p(2.0 * y + 2.0 * y * y / (1.0 - y));
+        }
+    } else {
+        /* avoid overflow */
+        y = 0.5 * log1p(2.0 * (y / (1.0 - y)));
+    }
+
+    if sign { -y } else { y }
+}
diff --git a/library/compiler-builtins/libm/src/math/atanhf.rs b/library/compiler-builtins/libm/src/math/atanhf.rs
new file mode 100644
index 00000000000..80ccec1f67f
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/atanhf.rs
@@ -0,0 +1,33 @@
+use super::log1pf;
+
+/* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */
+/// Inverse hyperbolic tangent (f32)
+///
+/// Calculates the inverse hyperbolic tangent of `x`.
+/// Is defined as `log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn atanhf(mut x: f32) -> f32 {
+    let mut u = x.to_bits();
+    let sign = (u >> 31) != 0;
+
+    /* |x| */
+    u &= 0x7fffffff;
+    x = f32::from_bits(u);
+
+    if u < 0x3f800000 - (1 << 23) {
+        if u < 0x3f800000 - (32 << 23) {
+            /* handle underflow */
+            if u < (1 << 23) {
+                force_eval!(x * x);
+            }
+        } else {
+            /* |x| < 0.5, up to 1.7ulp error */
+            x = 0.5 * log1pf(2.0 * x + 2.0 * x * x / (1.0 - x));
+        }
+    } else {
+        /* avoid overflow */
+        x = 0.5 * log1pf(2.0 * (x / (1.0 - x)));
+    }
+
+    if sign { -x } else { x }
+}
diff --git a/library/compiler-builtins/libm/src/math/cbrt.rs b/library/compiler-builtins/libm/src/math/cbrt.rs
new file mode 100644
index 00000000000..9d3311cd6a8
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/cbrt.rs
@@ -0,0 +1,215 @@
+/* SPDX-License-Identifier: MIT */
+/* origin: core-math/src/binary64/cbrt/cbrt.c
+ * Copyright (c) 2021-2022 Alexei Sibidanov.
+ * Ported to Rust in 2025 by Trevor Gross.
+ */
+
+use super::Float;
+use super::support::{FpResult, Round, cold_path};
+
+/// Compute the cube root of the argument.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn cbrt(x: f64) -> f64 {
+    cbrt_round(x, Round::Nearest).val
+}
+
+pub fn cbrt_round(x: f64, round: Round) -> FpResult<f64> {
+    const ESCALE: [f64; 3] = [
+        1.0,
+        hf64!("0x1.428a2f98d728bp+0"), /* 2^(1/3) */
+        hf64!("0x1.965fea53d6e3dp+0"), /* 2^(2/3) */
+    ];
+
+    /* the polynomial c0+c1*x+c2*x^2+c3*x^3 approximates x^(1/3) on [1,2]
+    with maximal error < 9.2e-5 (attained at x=2) */
+    const C: [f64; 4] = [
+        hf64!("0x1.1b0babccfef9cp-1"),
+        hf64!("0x1.2c9a3e94d1da5p-1"),
+        hf64!("-0x1.4dc30b1a1ddbap-3"),
+        hf64!("0x1.7a8d3e4ec9b07p-6"),
+    ];
+
+    let u0: f64 = hf64!("0x1.5555555555555p-2");
+    let u1: f64 = hf64!("0x1.c71c71c71c71cp-3");
+
+    let rsc = [1.0, -1.0, 0.5, -0.5, 0.25, -0.25];
+
+    let off = [hf64!("0x1p-53"), 0.0, 0.0, 0.0];
+
+    /* rm=0 for rounding to nearest, and other values for directed roundings */
+    let hx: u64 = x.to_bits();
+    let mut mant: u64 = hx & f64::SIG_MASK;
+    let sign: u64 = hx >> 63;
+
+    let mut e: u32 = (hx >> f64::SIG_BITS) as u32 & f64::EXP_SAT;
+
+    if ((e + 1) & f64::EXP_SAT) < 2 {
+        cold_path();
+
+        let ix: u64 = hx & !f64::SIGN_MASK;
+
+        /* 0, inf, nan: we return x + x instead of simply x,
+        to that for x a signaling NaN, it correctly triggers
+        the invalid exception. */
+        if e == f64::EXP_SAT || ix == 0 {
+            return FpResult::ok(x + x);
+        }
+
+        let nz = ix.leading_zeros() - 11; /* subnormal */
+        mant <<= nz;
+        mant &= f64::SIG_MASK;
+        e = e.wrapping_sub(nz - 1);
+    }
+
+    e = e.wrapping_add(3072);
+    let cvt1: u64 = mant | (0x3ffu64 << 52);
+    let mut cvt5: u64 = cvt1;
+
+    let et: u32 = e / 3;
+    let it: u32 = e % 3;
+
+    /* 2^(3k+it) <= x < 2^(3k+it+1), with 0 <= it <= 3 */
+    cvt5 += u64::from(it) << f64::SIG_BITS;
+    cvt5 |= sign << 63;
+    let zz: f64 = f64::from_bits(cvt5);
+
+    /* cbrt(x) = cbrt(zz)*2^(et-1365) where 1 <= zz < 8 */
+    let mut isc: u64 = ESCALE[it as usize].to_bits(); // todo: index
+    isc |= sign << 63;
+    let cvt2: u64 = isc;
+    let z: f64 = f64::from_bits(cvt1);
+
+    /* cbrt(zz) = cbrt(z)*isc, where isc encodes 1, 2^(1/3) or 2^(2/3),
+    and 1 <= z < 2 */
+    let r: f64 = 1.0 / z;
+    let rr: f64 = r * rsc[((it as usize) << 1) | sign as usize];
+    let z2: f64 = z * z;
+    let c0: f64 = C[0] + z * C[1];
+    let c2: f64 = C[2] + z * C[3];
+    let mut y: f64 = c0 + z2 * c2;
+    let mut y2: f64 = y * y;
+
+    /* y is an approximation of z^(1/3) */
+    let mut h: f64 = y2 * (y * r) - 1.0;
+
+    /* h determines the error between y and z^(1/3) */
+    y -= (h * y) * (u0 - u1 * h);
+
+    /* The correction y -= (h*y)*(u0 - u1*h) corresponds to a cubic variant
+    of Newton's method, with the function f(y) = 1-z/y^3. */
+    y *= f64::from_bits(cvt2);
+
+    /* Now y is an approximation of zz^(1/3),
+     * and rr an approximation of 1/zz. We now perform another iteration of
+     * Newton-Raphson, this time with a linear approximation only. */
+    y2 = y * y;
+    let mut y2l: f64 = y.fma(y, -y2);
+
+    /* y2 + y2l = y^2 exactly */
+    let mut y3: f64 = y2 * y;
+    let mut y3l: f64 = y.fma(y2, -y3) + y * y2l;
+
+    /* y3 + y3l approximates y^3 with about 106 bits of accuracy */
+    h = ((y3 - zz) + y3l) * rr;
+    let mut dy: f64 = h * (y * u0);
+
+    /* the approximation of zz^(1/3) is y - dy */
+    let mut y1: f64 = y - dy;
+    dy = (y - y1) - dy;
+
+    /* the approximation of zz^(1/3) is now y1 + dy, where |dy| < 1/2 ulp(y)
+     * (for rounding to nearest) */
+    let mut ady: f64 = dy.abs();
+
+    /* For directed roundings, ady0 is tiny when dy is tiny, or ady0 is near
+     * from ulp(1);
+     * for rounding to nearest, ady0 is tiny when dy is near from 1/2 ulp(1),
+     * or from 3/2 ulp(1). */
+    let mut ady0: f64 = (ady - off[round as usize]).abs();
+    let mut ady1: f64 = (ady - (hf64!("0x1p-52") + off[round as usize])).abs();
+
+    if ady0 < hf64!("0x1p-75") || ady1 < hf64!("0x1p-75") {
+        cold_path();
+
+        y2 = y1 * y1;
+        y2l = y1.fma(y1, -y2);
+        y3 = y2 * y1;
+        y3l = y1.fma(y2, -y3) + y1 * y2l;
+        h = ((y3 - zz) + y3l) * rr;
+        dy = h * (y1 * u0);
+        y = y1 - dy;
+        dy = (y1 - y) - dy;
+        y1 = y;
+        ady = dy.abs();
+        ady0 = (ady - off[round as usize]).abs();
+        ady1 = (ady - (hf64!("0x1p-52") + off[round as usize])).abs();
+
+        if ady0 < hf64!("0x1p-98") || ady1 < hf64!("0x1p-98") {
+            cold_path();
+            let azz: f64 = zz.abs();
+
+            // ~ 0x1.79d15d0e8d59b80000000000000ffc3dp+0
+            if azz == hf64!("0x1.9b78223aa307cp+1") {
+                y1 = hf64!("0x1.79d15d0e8d59cp+0").copysign(zz);
+            }
+
+            // ~ 0x1.de87aa837820e80000000000001c0f08p+0
+            if azz == hf64!("0x1.a202bfc89ddffp+2") {
+                y1 = hf64!("0x1.de87aa837820fp+0").copysign(zz);
+            }
+
+            if round != Round::Nearest {
+                let wlist = [
+                    (hf64!("0x1.3a9ccd7f022dbp+0"), hf64!("0x1.1236160ba9b93p+0")), // ~ 0x1.1236160ba9b930000000000001e7e8fap+0
+                    (hf64!("0x1.7845d2faac6fep+0"), hf64!("0x1.23115e657e49cp+0")), // ~ 0x1.23115e657e49c0000000000001d7a799p+0
+                    (hf64!("0x1.d1ef81cbbbe71p+0"), hf64!("0x1.388fb44cdcf5ap+0")), // ~ 0x1.388fb44cdcf5a0000000000002202c55p+0
+                    (hf64!("0x1.0a2014f62987cp+1"), hf64!("0x1.46bcbf47dc1e8p+0")), // ~ 0x1.46bcbf47dc1e8000000000000303aa2dp+0
+                    (hf64!("0x1.fe18a044a5501p+1"), hf64!("0x1.95decfec9c904p+0")), // ~ 0x1.95decfec9c9040000000000000159e8ep+0
+                    (hf64!("0x1.a6bb8c803147bp+2"), hf64!("0x1.e05335a6401dep+0")), // ~ 0x1.e05335a6401de00000000000027ca017p+0
+                    (hf64!("0x1.ac8538a031cbdp+2"), hf64!("0x1.e281d87098de8p+0")), // ~ 0x1.e281d87098de80000000000000ee9314p+0
+                ];
+
+                for (a, b) in wlist {
+                    if azz == a {
+                        let tmp = if round as u64 + sign == 2 { hf64!("0x1p-52") } else { 0.0 };
+                        y1 = (b + tmp).copysign(zz);
+                    }
+                }
+            }
+        }
+    }
+
+    let mut cvt3: u64 = y1.to_bits();
+    cvt3 = cvt3.wrapping_add(((et.wrapping_sub(342).wrapping_sub(1023)) as u64) << 52);
+    let m0: u64 = cvt3 << 30;
+    let m1 = m0 >> 63;
+
+    if (m0 ^ m1) <= (1u64 << 30) {
+        cold_path();
+
+        let mut cvt4: u64 = y1.to_bits();
+        cvt4 = (cvt4 + (164 << 15)) & 0xffffffffffff0000u64;
+
+        if ((f64::from_bits(cvt4) - y1) - dy).abs() < hf64!("0x1p-60") || (zz).abs() == 1.0 {
+            cvt3 = (cvt3 + (1u64 << 15)) & 0xffffffffffff0000u64;
+        }
+    }
+
+    FpResult::ok(f64::from_bits(cvt3))
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+
+    #[test]
+    fn spot_checks() {
+        if !cfg!(x86_no_sse) {
+            // Exposes a rounding mode problem. Ignored on i586 because of inaccurate FMA.
+            assert_biteq!(
+                cbrt(f64::from_bits(0xf7f792b28f600000)),
+                f64::from_bits(0xd29ce68655d962f3)
+            );
+        }
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/cbrtf.rs b/library/compiler-builtins/libm/src/math/cbrtf.rs
new file mode 100644
index 00000000000..9d70305c647
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/cbrtf.rs
@@ -0,0 +1,75 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Debugged and optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* cbrtf(x)
+ * Return cube root of x
+ */
+
+use core::f32;
+
+const B1: u32 = 709958130; /* B1 = (127-127.0/3-0.03306235651)*2**23 */
+const B2: u32 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */
+
+/// Cube root (f32)
+///
+/// Computes the cube root of the argument.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn cbrtf(x: f32) -> f32 {
+    let x1p24 = f32::from_bits(0x4b800000); // 0x1p24f === 2 ^ 24
+
+    let mut r: f64;
+    let mut t: f64;
+    let mut ui: u32 = x.to_bits();
+    let mut hx: u32 = ui & 0x7fffffff;
+
+    if hx >= 0x7f800000 {
+        /* cbrt(NaN,INF) is itself */
+        return x + x;
+    }
+
+    /* rough cbrt to 5 bits */
+    if hx < 0x00800000 {
+        /* zero or subnormal? */
+        if hx == 0 {
+            return x; /* cbrt(+-0) is itself */
+        }
+        ui = (x * x1p24).to_bits();
+        hx = ui & 0x7fffffff;
+        hx = hx / 3 + B2;
+    } else {
+        hx = hx / 3 + B1;
+    }
+    ui &= 0x80000000;
+    ui |= hx;
+
+    /*
+     * First step Newton iteration (solving t*t-x/t == 0) to 16 bits.  In
+     * double precision so that its terms can be arranged for efficiency
+     * without causing overflow or underflow.
+     */
+    t = f32::from_bits(ui) as f64;
+    r = t * t * t;
+    t = t * (x as f64 + x as f64 + r) / (x as f64 + r + r);
+
+    /*
+     * Second step Newton iteration to 47 bits.  In double precision for
+     * efficiency and accuracy.
+     */
+    r = t * t * t;
+    t = t * (x as f64 + x as f64 + r) / (x as f64 + r + r);
+
+    /* rounding to 24 bits is perfect in round-to-nearest mode */
+    t as f32
+}
diff --git a/library/compiler-builtins/libm/src/math/ceil.rs b/library/compiler-builtins/libm/src/math/ceil.rs
new file mode 100644
index 00000000000..4e103545727
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/ceil.rs
@@ -0,0 +1,46 @@
+/// Ceil (f16)
+///
+/// Finds the nearest integer greater than or equal to `x`.
+#[cfg(f16_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn ceilf16(x: f16) -> f16 {
+    super::generic::ceil(x)
+}
+
+/// Ceil (f32)
+///
+/// Finds the nearest integer greater than or equal to `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn ceilf(x: f32) -> f32 {
+    select_implementation! {
+        name: ceilf,
+        use_arch: all(target_arch = "wasm32", intrinsics_enabled),
+        args: x,
+    }
+
+    super::generic::ceil(x)
+}
+
+/// Ceil (f64)
+///
+/// Finds the nearest integer greater than or equal to `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn ceil(x: f64) -> f64 {
+    select_implementation! {
+        name: ceil,
+        use_arch: all(target_arch = "wasm32", intrinsics_enabled),
+        use_arch_required: all(target_arch = "x86", not(target_feature = "sse2")),
+        args: x,
+    }
+
+    super::generic::ceil(x)
+}
+
+/// Ceil (f128)
+///
+/// Finds the nearest integer greater than or equal to `x`.
+#[cfg(f128_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn ceilf128(x: f128) -> f128 {
+    super::generic::ceil(x)
+}
diff --git a/library/compiler-builtins/libm/src/math/copysign.rs b/library/compiler-builtins/libm/src/math/copysign.rs
new file mode 100644
index 00000000000..d2a86e7fd54
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/copysign.rs
@@ -0,0 +1,88 @@
+/// Sign of Y, magnitude of X (f16)
+///
+/// Constructs a number with the magnitude (absolute value) of its
+/// first argument, `x`, and the sign of its second argument, `y`.
+#[cfg(f16_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn copysignf16(x: f16, y: f16) -> f16 {
+    super::generic::copysign(x, y)
+}
+
+/// Sign of Y, magnitude of X (f32)
+///
+/// Constructs a number with the magnitude (absolute value) of its
+/// first argument, `x`, and the sign of its second argument, `y`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn copysignf(x: f32, y: f32) -> f32 {
+    super::generic::copysign(x, y)
+}
+
+/// Sign of Y, magnitude of X (f64)
+///
+/// Constructs a number with the magnitude (absolute value) of its
+/// first argument, `x`, and the sign of its second argument, `y`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn copysign(x: f64, y: f64) -> f64 {
+    super::generic::copysign(x, y)
+}
+
+/// Sign of Y, magnitude of X (f128)
+///
+/// Constructs a number with the magnitude (absolute value) of its
+/// first argument, `x`, and the sign of its second argument, `y`.
+#[cfg(f128_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn copysignf128(x: f128, y: f128) -> f128 {
+    super::generic::copysign(x, y)
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+    use crate::support::Float;
+
+    fn spec_test<F: Float>(f: impl Fn(F, F) -> F) {
+        assert_biteq!(f(F::ZERO, F::ZERO), F::ZERO);
+        assert_biteq!(f(F::NEG_ZERO, F::ZERO), F::ZERO);
+        assert_biteq!(f(F::ZERO, F::NEG_ZERO), F::NEG_ZERO);
+        assert_biteq!(f(F::NEG_ZERO, F::NEG_ZERO), F::NEG_ZERO);
+
+        assert_biteq!(f(F::ONE, F::ONE), F::ONE);
+        assert_biteq!(f(F::NEG_ONE, F::ONE), F::ONE);
+        assert_biteq!(f(F::ONE, F::NEG_ONE), F::NEG_ONE);
+        assert_biteq!(f(F::NEG_ONE, F::NEG_ONE), F::NEG_ONE);
+
+        assert_biteq!(f(F::INFINITY, F::INFINITY), F::INFINITY);
+        assert_biteq!(f(F::NEG_INFINITY, F::INFINITY), F::INFINITY);
+        assert_biteq!(f(F::INFINITY, F::NEG_INFINITY), F::NEG_INFINITY);
+        assert_biteq!(f(F::NEG_INFINITY, F::NEG_INFINITY), F::NEG_INFINITY);
+
+        // Not required but we expect it
+        assert_biteq!(f(F::NAN, F::NAN), F::NAN);
+        assert_biteq!(f(F::NEG_NAN, F::NAN), F::NAN);
+        assert_biteq!(f(F::NAN, F::NEG_NAN), F::NEG_NAN);
+        assert_biteq!(f(F::NEG_NAN, F::NEG_NAN), F::NEG_NAN);
+    }
+
+    #[test]
+    #[cfg(f16_enabled)]
+    fn spec_tests_f16() {
+        spec_test::<f16>(copysignf16);
+    }
+
+    #[test]
+    fn spec_tests_f32() {
+        spec_test::<f32>(copysignf);
+    }
+
+    #[test]
+    fn spec_tests_f64() {
+        spec_test::<f64>(copysign);
+    }
+
+    #[test]
+    #[cfg(f128_enabled)]
+    fn spec_tests_f128() {
+        spec_test::<f128>(copysignf128);
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/copysignf.rs b/library/compiler-builtins/libm/src/math/copysignf.rs
new file mode 100644
index 00000000000..8b9bed4c0c4
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/copysignf.rs
@@ -0,0 +1,8 @@
+/// Sign of Y, magnitude of X (f32)
+///
+/// Constructs a number with the magnitude (absolute value) of its
+/// first argument, `x`, and the sign of its second argument, `y`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn copysignf(x: f32, y: f32) -> f32 {
+    super::generic::copysign(x, y)
+}
diff --git a/library/compiler-builtins/libm/src/math/copysignf128.rs b/library/compiler-builtins/libm/src/math/copysignf128.rs
new file mode 100644
index 00000000000..7bd81d42b2e
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/copysignf128.rs
@@ -0,0 +1,8 @@
+/// Sign of Y, magnitude of X (f128)
+///
+/// Constructs a number with the magnitude (absolute value) of its
+/// first argument, `x`, and the sign of its second argument, `y`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn copysignf128(x: f128, y: f128) -> f128 {
+    super::generic::copysign(x, y)
+}
diff --git a/library/compiler-builtins/libm/src/math/copysignf16.rs b/library/compiler-builtins/libm/src/math/copysignf16.rs
new file mode 100644
index 00000000000..82065868601
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/copysignf16.rs
@@ -0,0 +1,8 @@
+/// Sign of Y, magnitude of X (f16)
+///
+/// Constructs a number with the magnitude (absolute value) of its
+/// first argument, `x`, and the sign of its second argument, `y`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn copysignf16(x: f16, y: f16) -> f16 {
+    super::generic::copysign(x, y)
+}
diff --git a/library/compiler-builtins/libm/src/math/cos.rs b/library/compiler-builtins/libm/src/math/cos.rs
new file mode 100644
index 00000000000..de99cd4c5e4
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/cos.rs
@@ -0,0 +1,77 @@
+// origin: FreeBSD /usr/src/lib/msun/src/s_cos.c */
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+
+use super::{k_cos, k_sin, rem_pio2};
+
+// cos(x)
+// Return cosine function of x.
+//
+// kernel function:
+//      k_sin           ... sine function on [-pi/4,pi/4]
+//      k_cos           ... cosine function on [-pi/4,pi/4]
+//      rem_pio2        ... argument reduction routine
+//
+// Method.
+//      Let S,C and T denote the sin, cos and tan respectively on
+//      [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+//      in [-pi/4 , +pi/4], and let n = k mod 4.
+//      We have
+//
+//          n        sin(x)      cos(x)        tan(x)
+//     ----------------------------------------------------------
+//          0          S           C             T
+//          1          C          -S            -1/T
+//          2         -S          -C             T
+//          3         -C           S            -1/T
+//     ----------------------------------------------------------
+//
+// Special cases:
+//      Let trig be any of sin, cos, or tan.
+//      trig(+-INF)  is NaN, with signals;
+//      trig(NaN)    is that NaN;
+//
+// Accuracy:
+//      TRIG(x) returns trig(x) nearly rounded
+//
+
+/// The cosine of `x` (f64).
+///
+/// `x` is specified in radians.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn cos(x: f64) -> f64 {
+    let ix = (f64::to_bits(x) >> 32) as u32 & 0x7fffffff;
+
+    /* |x| ~< pi/4 */
+    if ix <= 0x3fe921fb {
+        if ix < 0x3e46a09e {
+            /* if x < 2**-27 * sqrt(2) */
+            /* raise inexact if x != 0 */
+            if x as i32 == 0 {
+                return 1.0;
+            }
+        }
+        return k_cos(x, 0.0);
+    }
+
+    /* cos(Inf or NaN) is NaN */
+    if ix >= 0x7ff00000 {
+        return x - x;
+    }
+
+    /* argument reduction needed */
+    let (n, y0, y1) = rem_pio2(x);
+    match n & 3 {
+        0 => k_cos(y0, y1),
+        1 => -k_sin(y0, y1, 1),
+        2 => -k_cos(y0, y1),
+        _ => k_sin(y0, y1, 1),
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/cosf.rs b/library/compiler-builtins/libm/src/math/cosf.rs
new file mode 100644
index 00000000000..27c2fc3b994
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/cosf.rs
@@ -0,0 +1,86 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_cosf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use core::f64::consts::FRAC_PI_2;
+
+use super::{k_cosf, k_sinf, rem_pio2f};
+
+/* Small multiples of pi/2 rounded to double precision. */
+const C1_PIO2: f64 = 1. * FRAC_PI_2; /* 0x3FF921FB, 0x54442D18 */
+const C2_PIO2: f64 = 2. * FRAC_PI_2; /* 0x400921FB, 0x54442D18 */
+const C3_PIO2: f64 = 3. * FRAC_PI_2; /* 0x4012D97C, 0x7F3321D2 */
+const C4_PIO2: f64 = 4. * FRAC_PI_2; /* 0x401921FB, 0x54442D18 */
+
+/// The cosine of `x` (f32).
+///
+/// `x` is specified in radians.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn cosf(x: f32) -> f32 {
+    let x64 = x as f64;
+
+    let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120
+
+    let mut ix = x.to_bits();
+    let sign = (ix >> 31) != 0;
+    ix &= 0x7fffffff;
+
+    if ix <= 0x3f490fda {
+        /* |x| ~<= pi/4 */
+        if ix < 0x39800000 {
+            /* |x| < 2**-12 */
+            /* raise inexact if x != 0 */
+            force_eval!(x + x1p120);
+            return 1.;
+        }
+        return k_cosf(x64);
+    }
+    if ix <= 0x407b53d1 {
+        /* |x| ~<= 5*pi/4 */
+        if ix > 0x4016cbe3 {
+            /* |x|  ~> 3*pi/4 */
+            return -k_cosf(if sign { x64 + C2_PIO2 } else { x64 - C2_PIO2 });
+        } else if sign {
+            return k_sinf(x64 + C1_PIO2);
+        } else {
+            return k_sinf(C1_PIO2 - x64);
+        }
+    }
+    if ix <= 0x40e231d5 {
+        /* |x| ~<= 9*pi/4 */
+        if ix > 0x40afeddf {
+            /* |x| ~> 7*pi/4 */
+            return k_cosf(if sign { x64 + C4_PIO2 } else { x64 - C4_PIO2 });
+        } else if sign {
+            return k_sinf(-x64 - C3_PIO2);
+        } else {
+            return k_sinf(x64 - C3_PIO2);
+        }
+    }
+
+    /* cos(Inf or NaN) is NaN */
+    if ix >= 0x7f800000 {
+        return x - x;
+    }
+
+    /* general argument reduction needed */
+    let (n, y) = rem_pio2f(x);
+    match n & 3 {
+        0 => k_cosf(y),
+        1 => k_sinf(-y),
+        2 => -k_cosf(y),
+        _ => k_sinf(y),
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/cosh.rs b/library/compiler-builtins/libm/src/math/cosh.rs
new file mode 100644
index 00000000000..d2e43fd6cb6
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/cosh.rs
@@ -0,0 +1,36 @@
+use super::{exp, expm1, k_expo2};
+
+/// Hyperbolic cosine (f64)
+///
+/// Computes the hyperbolic cosine of the argument x.
+/// Is defined as `(exp(x) + exp(-x))/2`
+/// Angles are specified in radians.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn cosh(mut x: f64) -> f64 {
+    /* |x| */
+    let mut ix = x.to_bits();
+    ix &= 0x7fffffffffffffff;
+    x = f64::from_bits(ix);
+    let w = ix >> 32;
+
+    /* |x| < log(2) */
+    if w < 0x3fe62e42 {
+        if w < 0x3ff00000 - (26 << 20) {
+            let x1p120 = f64::from_bits(0x4770000000000000);
+            force_eval!(x + x1p120);
+            return 1.;
+        }
+        let t = expm1(x); // exponential minus 1
+        return 1. + t * t / (2. * (1. + t));
+    }
+
+    /* |x| < log(DBL_MAX) */
+    if w < 0x40862e42 {
+        let t = exp(x);
+        /* note: if x>log(0x1p26) then the 1/t is not needed */
+        return 0.5 * (t + 1. / t);
+    }
+
+    /* |x| > log(DBL_MAX) or nan */
+    k_expo2(x)
+}
diff --git a/library/compiler-builtins/libm/src/math/coshf.rs b/library/compiler-builtins/libm/src/math/coshf.rs
new file mode 100644
index 00000000000..567a24410e7
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/coshf.rs
@@ -0,0 +1,36 @@
+use super::{expf, expm1f, k_expo2f};
+
+/// Hyperbolic cosine (f64)
+///
+/// Computes the hyperbolic cosine of the argument x.
+/// Is defined as `(exp(x) + exp(-x))/2`
+/// Angles are specified in radians.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn coshf(mut x: f32) -> f32 {
+    let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120
+
+    /* |x| */
+    let mut ix = x.to_bits();
+    ix &= 0x7fffffff;
+    x = f32::from_bits(ix);
+    let w = ix;
+
+    /* |x| < log(2) */
+    if w < 0x3f317217 {
+        if w < (0x3f800000 - (12 << 23)) {
+            force_eval!(x + x1p120);
+            return 1.;
+        }
+        let t = expm1f(x);
+        return 1. + t * t / (2. * (1. + t));
+    }
+
+    /* |x| < log(FLT_MAX) */
+    if w < 0x42b17217 {
+        let t = expf(x);
+        return 0.5 * (t + 1. / t);
+    }
+
+    /* |x| > log(FLT_MAX) or nan */
+    k_expo2f(x)
+}
diff --git a/library/compiler-builtins/libm/src/math/erf.rs b/library/compiler-builtins/libm/src/math/erf.rs
new file mode 100644
index 00000000000..1b634abec6b
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/erf.rs
@@ -0,0 +1,310 @@
+use super::{exp, fabs, get_high_word, with_set_low_word};
+/* origin: FreeBSD /usr/src/lib/msun/src/s_erf.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* double erf(double x)
+ * double erfc(double x)
+ *                           x
+ *                    2      |\
+ *     erf(x)  =  ---------  | exp(-t*t)dt
+ *                 sqrt(pi) \|
+ *                           0
+ *
+ *     erfc(x) =  1-erf(x)
+ *  Note that
+ *              erf(-x) = -erf(x)
+ *              erfc(-x) = 2 - erfc(x)
+ *
+ * Method:
+ *      1. For |x| in [0, 0.84375]
+ *          erf(x)  = x + x*R(x^2)
+ *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
+ *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
+ *         where R = P/Q where P is an odd poly of degree 8 and
+ *         Q is an odd poly of degree 10.
+ *                                               -57.90
+ *                      | R - (erf(x)-x)/x | <= 2
+ *
+ *
+ *         Remark. The formula is derived by noting
+ *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
+ *         and that
+ *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
+ *         is close to one. The interval is chosen because the fix
+ *         point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
+ *         near 0.6174), and by some experiment, 0.84375 is chosen to
+ *         guarantee the error is less than one ulp for erf.
+ *
+ *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
+ *         c = 0.84506291151 rounded to single (24 bits)
+ *              erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
+ *              erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
+ *                        1+(c+P1(s)/Q1(s))    if x < 0
+ *              |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
+ *         Remark: here we use the taylor series expansion at x=1.
+ *              erf(1+s) = erf(1) + s*Poly(s)
+ *                       = 0.845.. + P1(s)/Q1(s)
+ *         That is, we use rational approximation to approximate
+ *                      erf(1+s) - (c = (single)0.84506291151)
+ *         Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
+ *         where
+ *              P1(s) = degree 6 poly in s
+ *              Q1(s) = degree 6 poly in s
+ *
+ *      3. For x in [1.25,1/0.35(~2.857143)],
+ *              erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
+ *              erf(x)  = 1 - erfc(x)
+ *         where
+ *              R1(z) = degree 7 poly in z, (z=1/x^2)
+ *              S1(z) = degree 8 poly in z
+ *
+ *      4. For x in [1/0.35,28]
+ *              erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
+ *                      = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
+ *                      = 2.0 - tiny            (if x <= -6)
+ *              erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
+ *              erf(x)  = sign(x)*(1.0 - tiny)
+ *         where
+ *              R2(z) = degree 6 poly in z, (z=1/x^2)
+ *              S2(z) = degree 7 poly in z
+ *
+ *      Note1:
+ *         To compute exp(-x*x-0.5625+R/S), let s be a single
+ *         precision number and s := x; then
+ *              -x*x = -s*s + (s-x)*(s+x)
+ *              exp(-x*x-0.5626+R/S) =
+ *                      exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
+ *      Note2:
+ *         Here 4 and 5 make use of the asymptotic series
+ *                        exp(-x*x)
+ *              erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
+ *                        x*sqrt(pi)
+ *         We use rational approximation to approximate
+ *              g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
+ *         Here is the error bound for R1/S1 and R2/S2
+ *              |R1/S1 - f(x)|  < 2**(-62.57)
+ *              |R2/S2 - f(x)|  < 2**(-61.52)
+ *
+ *      5. For inf > x >= 28
+ *              erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
+ *              erfc(x) = tiny*tiny (raise underflow) if x > 0
+ *                      = 2 - tiny if x<0
+ *
+ *      7. Special case:
+ *              erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
+ *              erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
+ *              erfc/erf(NaN) is NaN
+ */
+
+const ERX: f64 = 8.45062911510467529297e-01; /* 0x3FEB0AC1, 0x60000000 */
+/*
+ * Coefficients for approximation to  erf on [0,0.84375]
+ */
+const EFX8: f64 = 1.02703333676410069053e+00; /* 0x3FF06EBA, 0x8214DB69 */
+const PP0: f64 = 1.28379167095512558561e-01; /* 0x3FC06EBA, 0x8214DB68 */
+const PP1: f64 = -3.25042107247001499370e-01; /* 0xBFD4CD7D, 0x691CB913 */
+const PP2: f64 = -2.84817495755985104766e-02; /* 0xBF9D2A51, 0xDBD7194F */
+const PP3: f64 = -5.77027029648944159157e-03; /* 0xBF77A291, 0x236668E4 */
+const PP4: f64 = -2.37630166566501626084e-05; /* 0xBEF8EAD6, 0x120016AC */
+const QQ1: f64 = 3.97917223959155352819e-01; /* 0x3FD97779, 0xCDDADC09 */
+const QQ2: f64 = 6.50222499887672944485e-02; /* 0x3FB0A54C, 0x5536CEBA */
+const QQ3: f64 = 5.08130628187576562776e-03; /* 0x3F74D022, 0xC4D36B0F */
+const QQ4: f64 = 1.32494738004321644526e-04; /* 0x3F215DC9, 0x221C1A10 */
+const QQ5: f64 = -3.96022827877536812320e-06; /* 0xBED09C43, 0x42A26120 */
+/*
+ * Coefficients for approximation to  erf  in [0.84375,1.25]
+ */
+const PA0: f64 = -2.36211856075265944077e-03; /* 0xBF6359B8, 0xBEF77538 */
+const PA1: f64 = 4.14856118683748331666e-01; /* 0x3FDA8D00, 0xAD92B34D */
+const PA2: f64 = -3.72207876035701323847e-01; /* 0xBFD7D240, 0xFBB8C3F1 */
+const PA3: f64 = 3.18346619901161753674e-01; /* 0x3FD45FCA, 0x805120E4 */
+const PA4: f64 = -1.10894694282396677476e-01; /* 0xBFBC6398, 0x3D3E28EC */
+const PA5: f64 = 3.54783043256182359371e-02; /* 0x3FA22A36, 0x599795EB */
+const PA6: f64 = -2.16637559486879084300e-03; /* 0xBF61BF38, 0x0A96073F */
+const QA1: f64 = 1.06420880400844228286e-01; /* 0x3FBB3E66, 0x18EEE323 */
+const QA2: f64 = 5.40397917702171048937e-01; /* 0x3FE14AF0, 0x92EB6F33 */
+const QA3: f64 = 7.18286544141962662868e-02; /* 0x3FB2635C, 0xD99FE9A7 */
+const QA4: f64 = 1.26171219808761642112e-01; /* 0x3FC02660, 0xE763351F */
+const QA5: f64 = 1.36370839120290507362e-02; /* 0x3F8BEDC2, 0x6B51DD1C */
+const QA6: f64 = 1.19844998467991074170e-02; /* 0x3F888B54, 0x5735151D */
+/*
+ * Coefficients for approximation to  erfc in [1.25,1/0.35]
+ */
+const RA0: f64 = -9.86494403484714822705e-03; /* 0xBF843412, 0x600D6435 */
+const RA1: f64 = -6.93858572707181764372e-01; /* 0xBFE63416, 0xE4BA7360 */
+const RA2: f64 = -1.05586262253232909814e+01; /* 0xC0251E04, 0x41B0E726 */
+const RA3: f64 = -6.23753324503260060396e+01; /* 0xC04F300A, 0xE4CBA38D */
+const RA4: f64 = -1.62396669462573470355e+02; /* 0xC0644CB1, 0x84282266 */
+const RA5: f64 = -1.84605092906711035994e+02; /* 0xC067135C, 0xEBCCABB2 */
+const RA6: f64 = -8.12874355063065934246e+01; /* 0xC0545265, 0x57E4D2F2 */
+const RA7: f64 = -9.81432934416914548592e+00; /* 0xC023A0EF, 0xC69AC25C */
+const SA1: f64 = 1.96512716674392571292e+01; /* 0x4033A6B9, 0xBD707687 */
+const SA2: f64 = 1.37657754143519042600e+02; /* 0x4061350C, 0x526AE721 */
+const SA3: f64 = 4.34565877475229228821e+02; /* 0x407B290D, 0xD58A1A71 */
+const SA4: f64 = 6.45387271733267880336e+02; /* 0x40842B19, 0x21EC2868 */
+const SA5: f64 = 4.29008140027567833386e+02; /* 0x407AD021, 0x57700314 */
+const SA6: f64 = 1.08635005541779435134e+02; /* 0x405B28A3, 0xEE48AE2C */
+const SA7: f64 = 6.57024977031928170135e+00; /* 0x401A47EF, 0x8E484A93 */
+const SA8: f64 = -6.04244152148580987438e-02; /* 0xBFAEEFF2, 0xEE749A62 */
+/*
+ * Coefficients for approximation to  erfc in [1/.35,28]
+ */
+const RB0: f64 = -9.86494292470009928597e-03; /* 0xBF843412, 0x39E86F4A */
+const RB1: f64 = -7.99283237680523006574e-01; /* 0xBFE993BA, 0x70C285DE */
+const RB2: f64 = -1.77579549177547519889e+01; /* 0xC031C209, 0x555F995A */
+const RB3: f64 = -1.60636384855821916062e+02; /* 0xC064145D, 0x43C5ED98 */
+const RB4: f64 = -6.37566443368389627722e+02; /* 0xC083EC88, 0x1375F228 */
+const RB5: f64 = -1.02509513161107724954e+03; /* 0xC0900461, 0x6A2E5992 */
+const RB6: f64 = -4.83519191608651397019e+02; /* 0xC07E384E, 0x9BDC383F */
+const SB1: f64 = 3.03380607434824582924e+01; /* 0x403E568B, 0x261D5190 */
+const SB2: f64 = 3.25792512996573918826e+02; /* 0x40745CAE, 0x221B9F0A */
+const SB3: f64 = 1.53672958608443695994e+03; /* 0x409802EB, 0x189D5118 */
+const SB4: f64 = 3.19985821950859553908e+03; /* 0x40A8FFB7, 0x688C246A */
+const SB5: f64 = 2.55305040643316442583e+03; /* 0x40A3F219, 0xCEDF3BE6 */
+const SB6: f64 = 4.74528541206955367215e+02; /* 0x407DA874, 0xE79FE763 */
+const SB7: f64 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
+
+fn erfc1(x: f64) -> f64 {
+    let s: f64;
+    let p: f64;
+    let q: f64;
+
+    s = fabs(x) - 1.0;
+    p = PA0 + s * (PA1 + s * (PA2 + s * (PA3 + s * (PA4 + s * (PA5 + s * PA6)))));
+    q = 1.0 + s * (QA1 + s * (QA2 + s * (QA3 + s * (QA4 + s * (QA5 + s * QA6)))));
+
+    1.0 - ERX - p / q
+}
+
+fn erfc2(ix: u32, mut x: f64) -> f64 {
+    let s: f64;
+    let r: f64;
+    let big_s: f64;
+    let z: f64;
+
+    if ix < 0x3ff40000 {
+        /* |x| < 1.25 */
+        return erfc1(x);
+    }
+
+    x = fabs(x);
+    s = 1.0 / (x * x);
+    if ix < 0x4006db6d {
+        /* |x| < 1/.35 ~ 2.85714 */
+        r = RA0 + s * (RA1 + s * (RA2 + s * (RA3 + s * (RA4 + s * (RA5 + s * (RA6 + s * RA7))))));
+        big_s = 1.0
+            + s * (SA1
+                + s * (SA2 + s * (SA3 + s * (SA4 + s * (SA5 + s * (SA6 + s * (SA7 + s * SA8)))))));
+    } else {
+        /* |x| > 1/.35 */
+        r = RB0 + s * (RB1 + s * (RB2 + s * (RB3 + s * (RB4 + s * (RB5 + s * RB6)))));
+        big_s =
+            1.0 + s * (SB1 + s * (SB2 + s * (SB3 + s * (SB4 + s * (SB5 + s * (SB6 + s * SB7))))));
+    }
+    z = with_set_low_word(x, 0);
+
+    exp(-z * z - 0.5625) * exp((z - x) * (z + x) + r / big_s) / x
+}
+
+/// Error function (f64)
+///
+/// Calculates an approximation to the “error function”, which estimates
+/// the probability that an observation will fall within x standard
+/// deviations of the mean (assuming a normal distribution).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn erf(x: f64) -> f64 {
+    let r: f64;
+    let s: f64;
+    let z: f64;
+    let y: f64;
+    let mut ix: u32;
+    let sign: usize;
+
+    ix = get_high_word(x);
+    sign = (ix >> 31) as usize;
+    ix &= 0x7fffffff;
+    if ix >= 0x7ff00000 {
+        /* erf(nan)=nan, erf(+-inf)=+-1 */
+        return 1.0 - 2.0 * (sign as f64) + 1.0 / x;
+    }
+    if ix < 0x3feb0000 {
+        /* |x| < 0.84375 */
+        if ix < 0x3e300000 {
+            /* |x| < 2**-28 */
+            /* avoid underflow */
+            return 0.125 * (8.0 * x + EFX8 * x);
+        }
+        z = x * x;
+        r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4)));
+        s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5))));
+        y = r / s;
+        return x + x * y;
+    }
+    if ix < 0x40180000 {
+        /* 0.84375 <= |x| < 6 */
+        y = 1.0 - erfc2(ix, x);
+    } else {
+        let x1p_1022 = f64::from_bits(0x0010000000000000);
+        y = 1.0 - x1p_1022;
+    }
+
+    if sign != 0 { -y } else { y }
+}
+
+/// Complementary error function (f64)
+///
+/// Calculates the complementary probability.
+/// Is `1 - erf(x)`. Is computed directly, so that you can use it to avoid
+/// the loss of precision that would result from subtracting
+/// large probabilities (on large `x`) from 1.
+pub fn erfc(x: f64) -> f64 {
+    let r: f64;
+    let s: f64;
+    let z: f64;
+    let y: f64;
+    let mut ix: u32;
+    let sign: usize;
+
+    ix = get_high_word(x);
+    sign = (ix >> 31) as usize;
+    ix &= 0x7fffffff;
+    if ix >= 0x7ff00000 {
+        /* erfc(nan)=nan, erfc(+-inf)=0,2 */
+        return 2.0 * (sign as f64) + 1.0 / x;
+    }
+    if ix < 0x3feb0000 {
+        /* |x| < 0.84375 */
+        if ix < 0x3c700000 {
+            /* |x| < 2**-56 */
+            return 1.0 - x;
+        }
+        z = x * x;
+        r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4)));
+        s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5))));
+        y = r / s;
+        if sign != 0 || ix < 0x3fd00000 {
+            /* x < 1/4 */
+            return 1.0 - (x + x * y);
+        }
+        return 0.5 - (x - 0.5 + x * y);
+    }
+    if ix < 0x403c0000 {
+        /* 0.84375 <= |x| < 28 */
+        if sign != 0 {
+            return 2.0 - erfc2(ix, x);
+        } else {
+            return erfc2(ix, x);
+        }
+    }
+
+    let x1p_1022 = f64::from_bits(0x0010000000000000);
+    if sign != 0 { 2.0 - x1p_1022 } else { x1p_1022 * x1p_1022 }
+}
diff --git a/library/compiler-builtins/libm/src/math/erff.rs b/library/compiler-builtins/libm/src/math/erff.rs
new file mode 100644
index 00000000000..2e41183bfc0
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/erff.rs
@@ -0,0 +1,222 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_erff.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{expf, fabsf};
+
+const ERX: f32 = 8.4506291151e-01; /* 0x3f58560b */
+/*
+ * Coefficients for approximation to  erf on [0,0.84375]
+ */
+const EFX8: f32 = 1.0270333290e+00; /* 0x3f8375d4 */
+const PP0: f32 = 1.2837916613e-01; /* 0x3e0375d4 */
+const PP1: f32 = -3.2504209876e-01; /* 0xbea66beb */
+const PP2: f32 = -2.8481749818e-02; /* 0xbce9528f */
+const PP3: f32 = -5.7702702470e-03; /* 0xbbbd1489 */
+const PP4: f32 = -2.3763017452e-05; /* 0xb7c756b1 */
+const QQ1: f32 = 3.9791721106e-01; /* 0x3ecbbbce */
+const QQ2: f32 = 6.5022252500e-02; /* 0x3d852a63 */
+const QQ3: f32 = 5.0813062117e-03; /* 0x3ba68116 */
+const QQ4: f32 = 1.3249473704e-04; /* 0x390aee49 */
+const QQ5: f32 = -3.9602282413e-06; /* 0xb684e21a */
+/*
+ * Coefficients for approximation to  erf  in [0.84375,1.25]
+ */
+const PA0: f32 = -2.3621185683e-03; /* 0xbb1acdc6 */
+const PA1: f32 = 4.1485610604e-01; /* 0x3ed46805 */
+const PA2: f32 = -3.7220788002e-01; /* 0xbebe9208 */
+const PA3: f32 = 3.1834661961e-01; /* 0x3ea2fe54 */
+const PA4: f32 = -1.1089469492e-01; /* 0xbde31cc2 */
+const PA5: f32 = 3.5478305072e-02; /* 0x3d1151b3 */
+const PA6: f32 = -2.1663755178e-03; /* 0xbb0df9c0 */
+const QA1: f32 = 1.0642088205e-01; /* 0x3dd9f331 */
+const QA2: f32 = 5.4039794207e-01; /* 0x3f0a5785 */
+const QA3: f32 = 7.1828655899e-02; /* 0x3d931ae7 */
+const QA4: f32 = 1.2617121637e-01; /* 0x3e013307 */
+const QA5: f32 = 1.3637083583e-02; /* 0x3c5f6e13 */
+const QA6: f32 = 1.1984500103e-02; /* 0x3c445aa3 */
+/*
+ * Coefficients for approximation to  erfc in [1.25,1/0.35]
+ */
+const RA0: f32 = -9.8649440333e-03; /* 0xbc21a093 */
+const RA1: f32 = -6.9385856390e-01; /* 0xbf31a0b7 */
+const RA2: f32 = -1.0558626175e+01; /* 0xc128f022 */
+const RA3: f32 = -6.2375331879e+01; /* 0xc2798057 */
+const RA4: f32 = -1.6239666748e+02; /* 0xc322658c */
+const RA5: f32 = -1.8460508728e+02; /* 0xc3389ae7 */
+const RA6: f32 = -8.1287437439e+01; /* 0xc2a2932b */
+const RA7: f32 = -9.8143291473e+00; /* 0xc11d077e */
+const SA1: f32 = 1.9651271820e+01; /* 0x419d35ce */
+const SA2: f32 = 1.3765776062e+02; /* 0x4309a863 */
+const SA3: f32 = 4.3456588745e+02; /* 0x43d9486f */
+const SA4: f32 = 6.4538726807e+02; /* 0x442158c9 */
+const SA5: f32 = 4.2900814819e+02; /* 0x43d6810b */
+const SA6: f32 = 1.0863500214e+02; /* 0x42d9451f */
+const SA7: f32 = 6.5702495575e+00; /* 0x40d23f7c */
+const SA8: f32 = -6.0424413532e-02; /* 0xbd777f97 */
+/*
+ * Coefficients for approximation to  erfc in [1/.35,28]
+ */
+const RB0: f32 = -9.8649431020e-03; /* 0xbc21a092 */
+const RB1: f32 = -7.9928326607e-01; /* 0xbf4c9dd4 */
+const RB2: f32 = -1.7757955551e+01; /* 0xc18e104b */
+const RB3: f32 = -1.6063638306e+02; /* 0xc320a2ea */
+const RB4: f32 = -6.3756646729e+02; /* 0xc41f6441 */
+const RB5: f32 = -1.0250950928e+03; /* 0xc480230b */
+const RB6: f32 = -4.8351919556e+02; /* 0xc3f1c275 */
+const SB1: f32 = 3.0338060379e+01; /* 0x41f2b459 */
+const SB2: f32 = 3.2579251099e+02; /* 0x43a2e571 */
+const SB3: f32 = 1.5367296143e+03; /* 0x44c01759 */
+const SB4: f32 = 3.1998581543e+03; /* 0x4547fdbb */
+const SB5: f32 = 2.5530502930e+03; /* 0x451f90ce */
+const SB6: f32 = 4.7452853394e+02; /* 0x43ed43a7 */
+const SB7: f32 = -2.2440952301e+01; /* 0xc1b38712 */
+
+fn erfc1(x: f32) -> f32 {
+    let s: f32;
+    let p: f32;
+    let q: f32;
+
+    s = fabsf(x) - 1.0;
+    p = PA0 + s * (PA1 + s * (PA2 + s * (PA3 + s * (PA4 + s * (PA5 + s * PA6)))));
+    q = 1.0 + s * (QA1 + s * (QA2 + s * (QA3 + s * (QA4 + s * (QA5 + s * QA6)))));
+    return 1.0 - ERX - p / q;
+}
+
+fn erfc2(mut ix: u32, mut x: f32) -> f32 {
+    let s: f32;
+    let r: f32;
+    let big_s: f32;
+    let z: f32;
+
+    if ix < 0x3fa00000 {
+        /* |x| < 1.25 */
+        return erfc1(x);
+    }
+
+    x = fabsf(x);
+    s = 1.0 / (x * x);
+    if ix < 0x4036db6d {
+        /* |x| < 1/0.35 */
+        r = RA0 + s * (RA1 + s * (RA2 + s * (RA3 + s * (RA4 + s * (RA5 + s * (RA6 + s * RA7))))));
+        big_s = 1.0
+            + s * (SA1
+                + s * (SA2 + s * (SA3 + s * (SA4 + s * (SA5 + s * (SA6 + s * (SA7 + s * SA8)))))));
+    } else {
+        /* |x| >= 1/0.35 */
+        r = RB0 + s * (RB1 + s * (RB2 + s * (RB3 + s * (RB4 + s * (RB5 + s * RB6)))));
+        big_s =
+            1.0 + s * (SB1 + s * (SB2 + s * (SB3 + s * (SB4 + s * (SB5 + s * (SB6 + s * SB7))))));
+    }
+    ix = x.to_bits();
+    z = f32::from_bits(ix & 0xffffe000);
+
+    expf(-z * z - 0.5625) * expf((z - x) * (z + x) + r / big_s) / x
+}
+
+/// Error function (f32)
+///
+/// Calculates an approximation to the “error function”, which estimates
+/// the probability that an observation will fall within x standard
+/// deviations of the mean (assuming a normal distribution).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn erff(x: f32) -> f32 {
+    let r: f32;
+    let s: f32;
+    let z: f32;
+    let y: f32;
+    let mut ix: u32;
+    let sign: usize;
+
+    ix = x.to_bits();
+    sign = (ix >> 31) as usize;
+    ix &= 0x7fffffff;
+    if ix >= 0x7f800000 {
+        /* erf(nan)=nan, erf(+-inf)=+-1 */
+        return 1.0 - 2.0 * (sign as f32) + 1.0 / x;
+    }
+    if ix < 0x3f580000 {
+        /* |x| < 0.84375 */
+        if ix < 0x31800000 {
+            /* |x| < 2**-28 */
+            /*avoid underflow */
+            return 0.125 * (8.0 * x + EFX8 * x);
+        }
+        z = x * x;
+        r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4)));
+        s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5))));
+        y = r / s;
+        return x + x * y;
+    }
+    if ix < 0x40c00000 {
+        /* |x| < 6 */
+        y = 1.0 - erfc2(ix, x);
+    } else {
+        let x1p_120 = f32::from_bits(0x03800000);
+        y = 1.0 - x1p_120;
+    }
+
+    if sign != 0 { -y } else { y }
+}
+
+/// Complementary error function (f32)
+///
+/// Calculates the complementary probability.
+/// Is `1 - erf(x)`. Is computed directly, so that you can use it to avoid
+/// the loss of precision that would result from subtracting
+/// large probabilities (on large `x`) from 1.
+pub fn erfcf(x: f32) -> f32 {
+    let r: f32;
+    let s: f32;
+    let z: f32;
+    let y: f32;
+    let mut ix: u32;
+    let sign: usize;
+
+    ix = x.to_bits();
+    sign = (ix >> 31) as usize;
+    ix &= 0x7fffffff;
+    if ix >= 0x7f800000 {
+        /* erfc(nan)=nan, erfc(+-inf)=0,2 */
+        return 2.0 * (sign as f32) + 1.0 / x;
+    }
+
+    if ix < 0x3f580000 {
+        /* |x| < 0.84375 */
+        if ix < 0x23800000 {
+            /* |x| < 2**-56 */
+            return 1.0 - x;
+        }
+        z = x * x;
+        r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4)));
+        s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5))));
+        y = r / s;
+        if sign != 0 || ix < 0x3e800000 {
+            /* x < 1/4 */
+            return 1.0 - (x + x * y);
+        }
+        return 0.5 - (x - 0.5 + x * y);
+    }
+    if ix < 0x41e00000 {
+        /* |x| < 28 */
+        if sign != 0 {
+            return 2.0 - erfc2(ix, x);
+        } else {
+            return erfc2(ix, x);
+        }
+    }
+
+    let x1p_120 = f32::from_bits(0x03800000);
+    if sign != 0 { 2.0 - x1p_120 } else { x1p_120 * x1p_120 }
+}
diff --git a/library/compiler-builtins/libm/src/math/exp.rs b/library/compiler-builtins/libm/src/math/exp.rs
new file mode 100644
index 00000000000..782042b62cd
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/exp.rs
@@ -0,0 +1,150 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_exp.c */
+/*
+ * ====================================================
+ * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* exp(x)
+ * Returns the exponential of x.
+ *
+ * Method
+ *   1. Argument reduction:
+ *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
+ *      Given x, find r and integer k such that
+ *
+ *               x = k*ln2 + r,  |r| <= 0.5*ln2.
+ *
+ *      Here r will be represented as r = hi-lo for better
+ *      accuracy.
+ *
+ *   2. Approximation of exp(r) by a special rational function on
+ *      the interval [0,0.34658]:
+ *      Write
+ *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
+ *      We use a special Remez algorithm on [0,0.34658] to generate
+ *      a polynomial of degree 5 to approximate R. The maximum error
+ *      of this polynomial approximation is bounded by 2**-59. In
+ *      other words,
+ *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
+ *      (where z=r*r, and the values of P1 to P5 are listed below)
+ *      and
+ *          |                  5          |     -59
+ *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
+ *          |                             |
+ *      The computation of exp(r) thus becomes
+ *                              2*r
+ *              exp(r) = 1 + ----------
+ *                            R(r) - r
+ *                                 r*c(r)
+ *                     = 1 + r + ----------- (for better accuracy)
+ *                                2 - c(r)
+ *      where
+ *                              2       4             10
+ *              c(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
+ *
+ *   3. Scale back to obtain exp(x):
+ *      From step 1, we have
+ *         exp(x) = 2^k * exp(r)
+ *
+ * Special cases:
+ *      exp(INF) is INF, exp(NaN) is NaN;
+ *      exp(-INF) is 0, and
+ *      for finite argument, only exp(0)=1 is exact.
+ *
+ * Accuracy:
+ *      according to an error analysis, the error is always less than
+ *      1 ulp (unit in the last place).
+ *
+ * Misc. info.
+ *      For IEEE double
+ *          if x >  709.782712893383973096 then exp(x) overflows
+ *          if x < -745.133219101941108420 then exp(x) underflows
+ */
+
+use super::scalbn;
+
+const HALF: [f64; 2] = [0.5, -0.5];
+const LN2HI: f64 = 6.93147180369123816490e-01; /* 0x3fe62e42, 0xfee00000 */
+const LN2LO: f64 = 1.90821492927058770002e-10; /* 0x3dea39ef, 0x35793c76 */
+const INVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */
+const P1: f64 = 1.66666666666666019037e-01; /* 0x3FC55555, 0x5555553E */
+const P2: f64 = -2.77777777770155933842e-03; /* 0xBF66C16C, 0x16BEBD93 */
+const P3: f64 = 6.61375632143793436117e-05; /* 0x3F11566A, 0xAF25DE2C */
+const P4: f64 = -1.65339022054652515390e-06; /* 0xBEBBBD41, 0xC5D26BF1 */
+const P5: f64 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
+
+/// Exponential, base *e* (f64)
+///
+/// Calculate the exponential of `x`, that is, *e* raised to the power `x`
+/// (where *e* is the base of the natural system of logarithms, approximately 2.71828).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn exp(mut x: f64) -> f64 {
+    let x1p1023 = f64::from_bits(0x7fe0000000000000); // 0x1p1023 === 2 ^ 1023
+    let x1p_149 = f64::from_bits(0x36a0000000000000); // 0x1p-149 === 2 ^ -149
+
+    let hi: f64;
+    let lo: f64;
+    let c: f64;
+    let xx: f64;
+    let y: f64;
+    let k: i32;
+    let sign: i32;
+    let mut hx: u32;
+
+    hx = (x.to_bits() >> 32) as u32;
+    sign = (hx >> 31) as i32;
+    hx &= 0x7fffffff; /* high word of |x| */
+
+    /* special cases */
+    if hx >= 0x4086232b {
+        /* if |x| >= 708.39... */
+        if x.is_nan() {
+            return x;
+        }
+        if x > 709.782712893383973096 {
+            /* overflow if x!=inf */
+            x *= x1p1023;
+            return x;
+        }
+        if x < -708.39641853226410622 {
+            /* underflow if x!=-inf */
+            force_eval!((-x1p_149 / x) as f32);
+            if x < -745.13321910194110842 {
+                return 0.;
+            }
+        }
+    }
+
+    /* argument reduction */
+    if hx > 0x3fd62e42 {
+        /* if |x| > 0.5 ln2 */
+        if hx >= 0x3ff0a2b2 {
+            /* if |x| >= 1.5 ln2 */
+            k = (INVLN2 * x + i!(HALF, sign as usize)) as i32;
+        } else {
+            k = 1 - sign - sign;
+        }
+        hi = x - k as f64 * LN2HI; /* k*ln2hi is exact here */
+        lo = k as f64 * LN2LO;
+        x = hi - lo;
+    } else if hx > 0x3e300000 {
+        /* if |x| > 2**-28 */
+        k = 0;
+        hi = x;
+        lo = 0.;
+    } else {
+        /* inexact if x!=0 */
+        force_eval!(x1p1023 + x);
+        return 1. + x;
+    }
+
+    /* x is now in primary range */
+    xx = x * x;
+    c = x - xx * (P1 + xx * (P2 + xx * (P3 + xx * (P4 + xx * P5))));
+    y = 1. + (x * c / (2. - c) - lo + hi);
+    if k == 0 { y } else { scalbn(y, k) }
+}
diff --git a/library/compiler-builtins/libm/src/math/exp10.rs b/library/compiler-builtins/libm/src/math/exp10.rs
new file mode 100644
index 00000000000..7c33c92b603
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/exp10.rs
@@ -0,0 +1,23 @@
+use super::{exp2, modf, pow};
+
+const LN10: f64 = 3.32192809488736234787031942948939;
+const P10: &[f64] = &[
+    1e-15, 1e-14, 1e-13, 1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1,
+    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15,
+];
+
+/// Calculates 10 raised to the power of `x` (f64).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn exp10(x: f64) -> f64 {
+    let (mut y, n) = modf(x);
+    let u: u64 = n.to_bits();
+    /* fabs(n) < 16 without raising invalid on nan */
+    if ((u >> 52) & 0x7ff) < 0x3ff + 4 {
+        if y == 0.0 {
+            return i!(P10, ((n as isize) + 15) as usize);
+        }
+        y = exp2(LN10 * y);
+        return y * i!(P10, ((n as isize) + 15) as usize);
+    }
+    return pow(10.0, x);
+}
diff --git a/library/compiler-builtins/libm/src/math/exp10f.rs b/library/compiler-builtins/libm/src/math/exp10f.rs
new file mode 100644
index 00000000000..0520a41f2e9
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/exp10f.rs
@@ -0,0 +1,22 @@
+use super::{exp2, exp2f, modff};
+
+const LN10_F32: f32 = 3.32192809488736234787031942948939;
+const LN10_F64: f64 = 3.32192809488736234787031942948939;
+const P10: &[f32] =
+    &[1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7];
+
+/// Calculates 10 raised to the power of `x` (f32).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn exp10f(x: f32) -> f32 {
+    let (mut y, n) = modff(x);
+    let u = n.to_bits();
+    /* fabsf(n) < 8 without raising invalid on nan */
+    if ((u >> 23) & 0xff) < 0x7f + 3 {
+        if y == 0.0 {
+            return i!(P10, ((n as isize) + 7) as usize);
+        }
+        y = exp2f(LN10_F32 * y);
+        return y * i!(P10, ((n as isize) + 7) as usize);
+    }
+    return exp2(LN10_F64 * (x as f64)) as f32;
+}
diff --git a/library/compiler-builtins/libm/src/math/exp2.rs b/library/compiler-builtins/libm/src/math/exp2.rs
new file mode 100644
index 00000000000..6e98d066cbf
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/exp2.rs
@@ -0,0 +1,394 @@
+// origin: FreeBSD /usr/src/lib/msun/src/s_exp2.c */
+//-
+// Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions
+// are met:
+// 1. Redistributions of source code must retain the above copyright
+//    notice, this list of conditions and the following disclaimer.
+// 2. Redistributions in binary form must reproduce the above copyright
+//    notice, this list of conditions and the following disclaimer in the
+//    documentation and/or other materials provided with the distribution.
+//
+// THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+// OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+// SUCH DAMAGE.
+
+use super::scalbn;
+
+const TBLSIZE: usize = 256;
+
+#[rustfmt::skip]
+static TBL: [u64; TBLSIZE * 2] = [
+    //  exp2(z + eps)          eps
+    0x3fe6a09e667f3d5d, 0x3d39880000000000,
+    0x3fe6b052fa751744, 0x3cd8000000000000,
+    0x3fe6c012750bd9fe, 0xbd28780000000000,
+    0x3fe6cfdcddd476bf, 0x3d1ec00000000000,
+    0x3fe6dfb23c651a29, 0xbcd8000000000000,
+    0x3fe6ef9298593ae3, 0xbcbc000000000000,
+    0x3fe6ff7df9519386, 0xbd2fd80000000000,
+    0x3fe70f7466f42da3, 0xbd2c880000000000,
+    0x3fe71f75e8ec5fc3, 0x3d13c00000000000,
+    0x3fe72f8286eacf05, 0xbd38300000000000,
+    0x3fe73f9a48a58152, 0xbd00c00000000000,
+    0x3fe74fbd35d7ccfc, 0x3d2f880000000000,
+    0x3fe75feb564267f1, 0x3d03e00000000000,
+    0x3fe77024b1ab6d48, 0xbd27d00000000000,
+    0x3fe780694fde5d38, 0xbcdd000000000000,
+    0x3fe790b938ac1d00, 0x3ce3000000000000,
+    0x3fe7a11473eb0178, 0xbced000000000000,
+    0x3fe7b17b0976d060, 0x3d20400000000000,
+    0x3fe7c1ed0130c133, 0x3ca0000000000000,
+    0x3fe7d26a62ff8636, 0xbd26900000000000,
+    0x3fe7e2f336cf4e3b, 0xbd02e00000000000,
+    0x3fe7f3878491c3e8, 0xbd24580000000000,
+    0x3fe80427543e1b4e, 0x3d33000000000000,
+    0x3fe814d2add1071a, 0x3d0f000000000000,
+    0x3fe82589994ccd7e, 0xbd21c00000000000,
+    0x3fe8364c1eb942d0, 0x3d29d00000000000,
+    0x3fe8471a4623cab5, 0x3d47100000000000,
+    0x3fe857f4179f5bbc, 0x3d22600000000000,
+    0x3fe868d99b4491af, 0xbd32c40000000000,
+    0x3fe879cad931a395, 0xbd23000000000000,
+    0x3fe88ac7d98a65b8, 0xbd2a800000000000,
+    0x3fe89bd0a4785800, 0xbced000000000000,
+    0x3fe8ace5422aa223, 0x3d33280000000000,
+    0x3fe8be05bad619fa, 0x3d42b40000000000,
+    0x3fe8cf3216b54383, 0xbd2ed00000000000,
+    0x3fe8e06a5e08664c, 0xbd20500000000000,
+    0x3fe8f1ae99157807, 0x3d28280000000000,
+    0x3fe902fed0282c0e, 0xbd1cb00000000000,
+    0x3fe9145b0b91ff96, 0xbd05e00000000000,
+    0x3fe925c353aa2ff9, 0x3cf5400000000000,
+    0x3fe93737b0cdc64a, 0x3d17200000000000,
+    0x3fe948b82b5f98ae, 0xbd09000000000000,
+    0x3fe95a44cbc852cb, 0x3d25680000000000,
+    0x3fe96bdd9a766f21, 0xbd36d00000000000,
+    0x3fe97d829fde4e2a, 0xbd01000000000000,
+    0x3fe98f33e47a23a3, 0x3d2d000000000000,
+    0x3fe9a0f170ca0604, 0xbd38a40000000000,
+    0x3fe9b2bb4d53ff89, 0x3d355c0000000000,
+    0x3fe9c49182a3f15b, 0x3d26b80000000000,
+    0x3fe9d674194bb8c5, 0xbcec000000000000,
+    0x3fe9e86319e3238e, 0x3d17d00000000000,
+    0x3fe9fa5e8d07f302, 0x3d16400000000000,
+    0x3fea0c667b5de54d, 0xbcf5000000000000,
+    0x3fea1e7aed8eb8f6, 0x3d09e00000000000,
+    0x3fea309bec4a2e27, 0x3d2ad80000000000,
+    0x3fea42c980460a5d, 0xbd1af00000000000,
+    0x3fea5503b23e259b, 0x3d0b600000000000,
+    0x3fea674a8af46213, 0x3d38880000000000,
+    0x3fea799e1330b3a7, 0x3d11200000000000,
+    0x3fea8bfe53c12e8d, 0x3d06c00000000000,
+    0x3fea9e6b5579fcd2, 0xbd29b80000000000,
+    0x3feab0e521356fb8, 0x3d2b700000000000,
+    0x3feac36bbfd3f381, 0x3cd9000000000000,
+    0x3fead5ff3a3c2780, 0x3ce4000000000000,
+    0x3feae89f995ad2a3, 0xbd2c900000000000,
+    0x3feafb4ce622f367, 0x3d16500000000000,
+    0x3feb0e07298db790, 0x3d2fd40000000000,
+    0x3feb20ce6c9a89a9, 0x3d12700000000000,
+    0x3feb33a2b84f1a4b, 0x3d4d470000000000,
+    0x3feb468415b747e7, 0xbd38380000000000,
+    0x3feb59728de5593a, 0x3c98000000000000,
+    0x3feb6c6e29f1c56a, 0x3d0ad00000000000,
+    0x3feb7f76f2fb5e50, 0x3cde800000000000,
+    0x3feb928cf22749b2, 0xbd04c00000000000,
+    0x3feba5b030a10603, 0xbd0d700000000000,
+    0x3febb8e0b79a6f66, 0x3d0d900000000000,
+    0x3febcc1e904bc1ff, 0x3d02a00000000000,
+    0x3febdf69c3f3a16f, 0xbd1f780000000000,
+    0x3febf2c25bd71db8, 0xbd10a00000000000,
+    0x3fec06286141b2e9, 0xbd11400000000000,
+    0x3fec199bdd8552e0, 0x3d0be00000000000,
+    0x3fec2d1cd9fa64ee, 0xbd09400000000000,
+    0x3fec40ab5fffd02f, 0xbd0ed00000000000,
+    0x3fec544778fafd15, 0x3d39660000000000,
+    0x3fec67f12e57d0cb, 0xbd1a100000000000,
+    0x3fec7ba88988c1b6, 0xbd58458000000000,
+    0x3fec8f6d9406e733, 0xbd1a480000000000,
+    0x3feca3405751c4df, 0x3ccb000000000000,
+    0x3fecb720dcef9094, 0x3d01400000000000,
+    0x3feccb0f2e6d1689, 0x3cf0200000000000,
+    0x3fecdf0b555dc412, 0x3cf3600000000000,
+    0x3fecf3155b5bab3b, 0xbd06900000000000,
+    0x3fed072d4a0789bc, 0x3d09a00000000000,
+    0x3fed1b532b08c8fa, 0xbd15e00000000000,
+    0x3fed2f87080d8a85, 0x3d1d280000000000,
+    0x3fed43c8eacaa203, 0x3d01a00000000000,
+    0x3fed5818dcfba491, 0x3cdf000000000000,
+    0x3fed6c76e862e6a1, 0xbd03a00000000000,
+    0x3fed80e316c9834e, 0xbd0cd80000000000,
+    0x3fed955d71ff6090, 0x3cf4c00000000000,
+    0x3feda9e603db32ae, 0x3cff900000000000,
+    0x3fedbe7cd63a8325, 0x3ce9800000000000,
+    0x3fedd321f301b445, 0xbcf5200000000000,
+    0x3fede7d5641c05bf, 0xbd1d700000000000,
+    0x3fedfc97337b9aec, 0xbd16140000000000,
+    0x3fee11676b197d5e, 0x3d0b480000000000,
+    0x3fee264614f5a3e7, 0x3d40ce0000000000,
+    0x3fee3b333b16ee5c, 0x3d0c680000000000,
+    0x3fee502ee78b3fb4, 0xbd09300000000000,
+    0x3fee653924676d68, 0xbce5000000000000,
+    0x3fee7a51fbc74c44, 0xbd07f80000000000,
+    0x3fee8f7977cdb726, 0xbcf3700000000000,
+    0x3feea4afa2a490e8, 0x3ce5d00000000000,
+    0x3feeb9f4867ccae4, 0x3d161a0000000000,
+    0x3feecf482d8e680d, 0x3cf5500000000000,
+    0x3feee4aaa2188514, 0x3cc6400000000000,
+    0x3feefa1bee615a13, 0xbcee800000000000,
+    0x3fef0f9c1cb64106, 0xbcfa880000000000,
+    0x3fef252b376bb963, 0xbd2c900000000000,
+    0x3fef3ac948dd7275, 0x3caa000000000000,
+    0x3fef50765b6e4524, 0xbcf4f00000000000,
+    0x3fef6632798844fd, 0x3cca800000000000,
+    0x3fef7bfdad9cbe38, 0x3cfabc0000000000,
+    0x3fef91d802243c82, 0xbcd4600000000000,
+    0x3fefa7c1819e908e, 0xbd0b0c0000000000,
+    0x3fefbdba3692d511, 0xbcc0e00000000000,
+    0x3fefd3c22b8f7194, 0xbd10de8000000000,
+    0x3fefe9d96b2a23ee, 0x3cee430000000000,
+    0x3ff0000000000000, 0x0,
+    0x3ff00b1afa5abcbe, 0xbcb3400000000000,
+    0x3ff0163da9fb3303, 0xbd12170000000000,
+    0x3ff02168143b0282, 0x3cba400000000000,
+    0x3ff02c9a3e77806c, 0x3cef980000000000,
+    0x3ff037d42e11bbca, 0xbcc7400000000000,
+    0x3ff04315e86e7f89, 0x3cd8300000000000,
+    0x3ff04e5f72f65467, 0xbd1a3f0000000000,
+    0x3ff059b0d315855a, 0xbd02840000000000,
+    0x3ff0650a0e3c1f95, 0x3cf1600000000000,
+    0x3ff0706b29ddf71a, 0x3d15240000000000,
+    0x3ff07bd42b72a82d, 0xbce9a00000000000,
+    0x3ff0874518759bd0, 0x3ce6400000000000,
+    0x3ff092bdf66607c8, 0xbd00780000000000,
+    0x3ff09e3ecac6f383, 0xbc98000000000000,
+    0x3ff0a9c79b1f3930, 0x3cffa00000000000,
+    0x3ff0b5586cf988fc, 0xbcfac80000000000,
+    0x3ff0c0f145e46c8a, 0x3cd9c00000000000,
+    0x3ff0cc922b724816, 0x3d05200000000000,
+    0x3ff0d83b23395dd8, 0xbcfad00000000000,
+    0x3ff0e3ec32d3d1f3, 0x3d1bac0000000000,
+    0x3ff0efa55fdfa9a6, 0xbd04e80000000000,
+    0x3ff0fb66affed2f0, 0xbd0d300000000000,
+    0x3ff1073028d7234b, 0x3cf1500000000000,
+    0x3ff11301d0125b5b, 0x3cec000000000000,
+    0x3ff11edbab5e2af9, 0x3d16bc0000000000,
+    0x3ff12abdc06c31d5, 0x3ce8400000000000,
+    0x3ff136a814f2047d, 0xbd0ed00000000000,
+    0x3ff1429aaea92de9, 0x3ce8e00000000000,
+    0x3ff14e95934f3138, 0x3ceb400000000000,
+    0x3ff15a98c8a58e71, 0x3d05300000000000,
+    0x3ff166a45471c3df, 0x3d03380000000000,
+    0x3ff172b83c7d5211, 0x3d28d40000000000,
+    0x3ff17ed48695bb9f, 0xbd05d00000000000,
+    0x3ff18af9388c8d93, 0xbd1c880000000000,
+    0x3ff1972658375d66, 0x3d11f00000000000,
+    0x3ff1a35beb6fcba7, 0x3d10480000000000,
+    0x3ff1af99f81387e3, 0xbd47390000000000,
+    0x3ff1bbe084045d54, 0x3d24e40000000000,
+    0x3ff1c82f95281c43, 0xbd0a200000000000,
+    0x3ff1d4873168b9b2, 0x3ce3800000000000,
+    0x3ff1e0e75eb44031, 0x3ceac00000000000,
+    0x3ff1ed5022fcd938, 0x3d01900000000000,
+    0x3ff1f9c18438cdf7, 0xbd1b780000000000,
+    0x3ff2063b88628d8f, 0x3d2d940000000000,
+    0x3ff212be3578a81e, 0x3cd8000000000000,
+    0x3ff21f49917ddd41, 0x3d2b340000000000,
+    0x3ff22bdda2791323, 0x3d19f80000000000,
+    0x3ff2387a6e7561e7, 0xbd19c80000000000,
+    0x3ff2451ffb821427, 0x3d02300000000000,
+    0x3ff251ce4fb2a602, 0xbd13480000000000,
+    0x3ff25e85711eceb0, 0x3d12700000000000,
+    0x3ff26b4565e27d16, 0x3d11d00000000000,
+    0x3ff2780e341de00f, 0x3d31ee0000000000,
+    0x3ff284dfe1f5633e, 0xbd14c00000000000,
+    0x3ff291ba7591bb30, 0xbd13d80000000000,
+    0x3ff29e9df51fdf09, 0x3d08b00000000000,
+    0x3ff2ab8a66d10e9b, 0xbd227c0000000000,
+    0x3ff2b87fd0dada3a, 0x3d2a340000000000,
+    0x3ff2c57e39771af9, 0xbd10800000000000,
+    0x3ff2d285a6e402d9, 0xbd0ed00000000000,
+    0x3ff2df961f641579, 0xbcf4200000000000,
+    0x3ff2ecafa93e2ecf, 0xbd24980000000000,
+    0x3ff2f9d24abd8822, 0xbd16300000000000,
+    0x3ff306fe0a31b625, 0xbd32360000000000,
+    0x3ff31432edeea50b, 0xbd70df8000000000,
+    0x3ff32170fc4cd7b8, 0xbd22480000000000,
+    0x3ff32eb83ba8e9a2, 0xbd25980000000000,
+    0x3ff33c08b2641766, 0x3d1ed00000000000,
+    0x3ff3496266e3fa27, 0xbcdc000000000000,
+    0x3ff356c55f929f0f, 0xbd30d80000000000,
+    0x3ff36431a2de88b9, 0x3d22c80000000000,
+    0x3ff371a7373aaa39, 0x3d20600000000000,
+    0x3ff37f26231e74fe, 0xbd16600000000000,
+    0x3ff38cae6d05d838, 0xbd0ae00000000000,
+    0x3ff39a401b713ec3, 0xbd44720000000000,
+    0x3ff3a7db34e5a020, 0x3d08200000000000,
+    0x3ff3b57fbfec6e95, 0x3d3e800000000000,
+    0x3ff3c32dc313a8f2, 0x3cef800000000000,
+    0x3ff3d0e544ede122, 0xbd17a00000000000,
+    0x3ff3dea64c1234bb, 0x3d26300000000000,
+    0x3ff3ec70df1c4ecc, 0xbd48a60000000000,
+    0x3ff3fa4504ac7e8c, 0xbd3cdc0000000000,
+    0x3ff40822c367a0bb, 0x3d25b80000000000,
+    0x3ff4160a21f72e95, 0x3d1ec00000000000,
+    0x3ff423fb27094646, 0xbd13600000000000,
+    0x3ff431f5d950a920, 0x3d23980000000000,
+    0x3ff43ffa3f84b9eb, 0x3cfa000000000000,
+    0x3ff44e0860618919, 0xbcf6c00000000000,
+    0x3ff45c2042a7d201, 0xbd0bc00000000000,
+    0x3ff46a41ed1d0016, 0xbd12800000000000,
+    0x3ff4786d668b3326, 0x3d30e00000000000,
+    0x3ff486a2b5c13c00, 0xbd2d400000000000,
+    0x3ff494e1e192af04, 0x3d0c200000000000,
+    0x3ff4a32af0d7d372, 0xbd1e500000000000,
+    0x3ff4b17dea6db801, 0x3d07800000000000,
+    0x3ff4bfdad53629e1, 0xbd13800000000000,
+    0x3ff4ce41b817c132, 0x3d00800000000000,
+    0x3ff4dcb299fddddb, 0x3d2c700000000000,
+    0x3ff4eb2d81d8ab96, 0xbd1ce00000000000,
+    0x3ff4f9b2769d2d02, 0x3d19200000000000,
+    0x3ff508417f4531c1, 0xbd08c00000000000,
+    0x3ff516daa2cf662a, 0xbcfa000000000000,
+    0x3ff5257de83f51ea, 0x3d4a080000000000,
+    0x3ff5342b569d4eda, 0xbd26d80000000000,
+    0x3ff542e2f4f6ac1a, 0xbd32440000000000,
+    0x3ff551a4ca5d94db, 0x3d483c0000000000,
+    0x3ff56070dde9116b, 0x3d24b00000000000,
+    0x3ff56f4736b529de, 0x3d415a0000000000,
+    0x3ff57e27dbe2c40e, 0xbd29e00000000000,
+    0x3ff58d12d497c76f, 0xbd23080000000000,
+    0x3ff59c0827ff0b4c, 0x3d4dec0000000000,
+    0x3ff5ab07dd485427, 0xbcc4000000000000,
+    0x3ff5ba11fba87af4, 0x3d30080000000000,
+    0x3ff5c9268a59460b, 0xbd26c80000000000,
+    0x3ff5d84590998e3f, 0x3d469a0000000000,
+    0x3ff5e76f15ad20e1, 0xbd1b400000000000,
+    0x3ff5f6a320dcebca, 0x3d17700000000000,
+    0x3ff605e1b976dcb8, 0x3d26f80000000000,
+    0x3ff6152ae6cdf715, 0x3d01000000000000,
+    0x3ff6247eb03a5531, 0xbd15d00000000000,
+    0x3ff633dd1d1929b5, 0xbd12d00000000000,
+    0x3ff6434634ccc313, 0xbcea800000000000,
+    0x3ff652b9febc8efa, 0xbd28600000000000,
+    0x3ff6623882553397, 0x3d71fe0000000000,
+    0x3ff671c1c708328e, 0xbd37200000000000,
+    0x3ff68155d44ca97e, 0x3ce6800000000000,
+    0x3ff690f4b19e9471, 0xbd29780000000000,
+];
+
+// exp2(x): compute the base 2 exponential of x
+//
+// Accuracy: Peak error < 0.503 ulp for normalized results.
+//
+// Method: (accurate tables)
+//
+//   Reduce x:
+//     x = k + y, for integer k and |y| <= 1/2.
+//     Thus we have exp2(x) = 2**k * exp2(y).
+//
+//   Reduce y:
+//     y = i/TBLSIZE + z - eps[i] for integer i near y * TBLSIZE.
+//     Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z - eps[i]),
+//     with |z - eps[i]| <= 2**-9 + 2**-39 for the table used.
+//
+//   We compute exp2(i/TBLSIZE) via table lookup and exp2(z - eps[i]) via
+//   a degree-5 minimax polynomial with maximum error under 1.3 * 2**-61.
+//   The values in exp2t[] and eps[] are chosen such that
+//   exp2t[i] = exp2(i/TBLSIZE + eps[i]), and eps[i] is a small offset such
+//   that exp2t[i] is accurate to 2**-64.
+//
+//   Note that the range of i is +-TBLSIZE/2, so we actually index the tables
+//   by i0 = i + TBLSIZE/2.  For cache efficiency, exp2t[] and eps[] are
+//   virtual tables, interleaved in the real table tbl[].
+//
+//   This method is due to Gal, with many details due to Gal and Bachelis:
+//
+//      Gal, S. and Bachelis, B.  An Accurate Elementary Mathematical Library
+//      for the IEEE Floating Point Standard.  TOMS 17(1), 26-46 (1991).
+
+/// Exponential, base 2 (f64)
+///
+/// Calculate `2^x`, that is, 2 raised to the power `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn exp2(mut x: f64) -> f64 {
+    let redux = f64::from_bits(0x4338000000000000) / TBLSIZE as f64;
+    let p1 = f64::from_bits(0x3fe62e42fefa39ef);
+    let p2 = f64::from_bits(0x3fcebfbdff82c575);
+    let p3 = f64::from_bits(0x3fac6b08d704a0a6);
+    let p4 = f64::from_bits(0x3f83b2ab88f70400);
+    let p5 = f64::from_bits(0x3f55d88003875c74);
+
+    // double_t r, t, z;
+    // uint32_t ix, i0;
+    // union {double f; uint64_t i;} u = {x};
+    // union {uint32_t u; int32_t i;} k;
+    let x1p1023 = f64::from_bits(0x7fe0000000000000);
+    let x1p52 = f64::from_bits(0x4330000000000000);
+    let _0x1p_149 = f64::from_bits(0xb6a0000000000000);
+
+    /* Filter out exceptional cases. */
+    let ui = f64::to_bits(x);
+    let ix = (ui >> 32) & 0x7fffffff;
+    if ix >= 0x408ff000 {
+        /* |x| >= 1022 or nan */
+        if ix >= 0x40900000 && ui >> 63 == 0 {
+            /* x >= 1024 or nan */
+            /* overflow */
+            x *= x1p1023;
+            return x;
+        }
+        if ix >= 0x7ff00000 {
+            /* -inf or -nan */
+            return -1.0 / x;
+        }
+        if ui >> 63 != 0 {
+            /* x <= -1022 */
+            /* underflow */
+            if x <= -1075.0 || x - x1p52 + x1p52 != x {
+                force_eval!((_0x1p_149 / x) as f32);
+            }
+            if x <= -1075.0 {
+                return 0.0;
+            }
+        }
+    } else if ix < 0x3c900000 {
+        /* |x| < 0x1p-54 */
+        return 1.0 + x;
+    }
+
+    /* Reduce x, computing z, i0, and k. */
+    let ui = f64::to_bits(x + redux);
+    let mut i0 = ui as u32;
+    i0 = i0.wrapping_add(TBLSIZE as u32 / 2);
+    let ku = i0 / TBLSIZE as u32 * TBLSIZE as u32;
+    let ki = div!(ku as i32, TBLSIZE as i32);
+    i0 %= TBLSIZE as u32;
+    let uf = f64::from_bits(ui) - redux;
+    let mut z = x - uf;
+
+    /* Compute r = exp2(y) = exp2t[i0] * p(z - eps[i]). */
+    let t = f64::from_bits(i!(TBL, 2 * i0 as usize)); /* exp2t[i0] */
+    z -= f64::from_bits(i!(TBL, 2 * i0 as usize + 1)); /* eps[i0]   */
+    let r = t + t * z * (p1 + z * (p2 + z * (p3 + z * (p4 + z * p5))));
+
+    scalbn(r, ki)
+}
+
+#[test]
+fn i0_wrap_test() {
+    let x = -3.0 / 256.0;
+    assert_eq!(exp2(x), f64::from_bits(0x3fefbdba3692d514));
+}
diff --git a/library/compiler-builtins/libm/src/math/exp2f.rs b/library/compiler-builtins/libm/src/math/exp2f.rs
new file mode 100644
index 00000000000..f452b6a20f8
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/exp2f.rs
@@ -0,0 +1,135 @@
+// origin: FreeBSD /usr/src/lib/msun/src/s_exp2f.c
+//-
+// Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions
+// are met:
+// 1. Redistributions of source code must retain the above copyright
+//    notice, this list of conditions and the following disclaimer.
+// 2. Redistributions in binary form must reproduce the above copyright
+//    notice, this list of conditions and the following disclaimer in the
+//    documentation and/or other materials provided with the distribution.
+//
+// THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+// OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+// SUCH DAMAGE.
+
+const TBLSIZE: usize = 16;
+
+static EXP2FT: [u64; TBLSIZE] = [
+    0x3fe6a09e667f3bcd,
+    0x3fe7a11473eb0187,
+    0x3fe8ace5422aa0db,
+    0x3fe9c49182a3f090,
+    0x3feae89f995ad3ad,
+    0x3fec199bdd85529c,
+    0x3fed5818dcfba487,
+    0x3feea4afa2a490da,
+    0x3ff0000000000000,
+    0x3ff0b5586cf9890f,
+    0x3ff172b83c7d517b,
+    0x3ff2387a6e756238,
+    0x3ff306fe0a31b715,
+    0x3ff3dea64c123422,
+    0x3ff4bfdad5362a27,
+    0x3ff5ab07dd485429,
+];
+
+// exp2f(x): compute the base 2 exponential of x
+//
+// Accuracy: Peak error < 0.501 ulp; location of peak: -0.030110927.
+//
+// Method: (equally-spaced tables)
+//
+//   Reduce x:
+//     x = k + y, for integer k and |y| <= 1/2.
+//     Thus we have exp2f(x) = 2**k * exp2(y).
+//
+//   Reduce y:
+//     y = i/TBLSIZE + z for integer i near y * TBLSIZE.
+//     Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z),
+//     with |z| <= 2**-(TBLSIZE+1).
+//
+//   We compute exp2(i/TBLSIZE) via table lookup and exp2(z) via a
+//   degree-4 minimax polynomial with maximum error under 1.4 * 2**-33.
+//   Using double precision for everything except the reduction makes
+//   roundoff error insignificant and simplifies the scaling step.
+//
+//   This method is due to Tang, but I do not use his suggested parameters:
+//
+//      Tang, P.  Table-driven Implementation of the Exponential Function
+//      in IEEE Floating-Point Arithmetic.  TOMS 15(2), 144-157 (1989).
+
+/// Exponential, base 2 (f32)
+///
+/// Calculate `2^x`, that is, 2 raised to the power `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn exp2f(mut x: f32) -> f32 {
+    let redux = f32::from_bits(0x4b400000) / TBLSIZE as f32;
+    let p1 = f32::from_bits(0x3f317218);
+    let p2 = f32::from_bits(0x3e75fdf0);
+    let p3 = f32::from_bits(0x3d6359a4);
+    let p4 = f32::from_bits(0x3c1d964e);
+
+    // double_t t, r, z;
+    // uint32_t ix, i0, k;
+
+    let x1p127 = f32::from_bits(0x7f000000);
+
+    /* Filter out exceptional cases. */
+    let ui = f32::to_bits(x);
+    let ix = ui & 0x7fffffff;
+    if ix > 0x42fc0000 {
+        /* |x| > 126 */
+        if ix > 0x7f800000 {
+            /* NaN */
+            return x;
+        }
+        if (0x43000000..0x80000000).contains(&ui) {
+            /* x >= 128 */
+            x *= x1p127;
+            return x;
+        }
+        if ui >= 0x80000000 {
+            /* x < -126 */
+            if ui >= 0xc3160000 || (ui & 0x0000ffff != 0) {
+                force_eval!(f32::from_bits(0x80000001) / x);
+            }
+            if ui >= 0xc3160000 {
+                /* x <= -150 */
+                return 0.0;
+            }
+        }
+    } else if ix <= 0x33000000 {
+        /* |x| <= 0x1p-25 */
+        return 1.0 + x;
+    }
+
+    /* Reduce x, computing z, i0, and k. */
+    let ui = f32::to_bits(x + redux);
+    let mut i0 = ui;
+    i0 += TBLSIZE as u32 / 2;
+    let k = i0 / TBLSIZE as u32;
+    let ukf = f64::from_bits(((0x3ff + k) as u64) << 52);
+    i0 &= TBLSIZE as u32 - 1;
+    let mut uf = f32::from_bits(ui);
+    uf -= redux;
+    let z: f64 = (x - uf) as f64;
+    /* Compute r = exp2(y) = exp2ft[i0] * p(z). */
+    let r: f64 = f64::from_bits(i!(EXP2FT, i0 as usize));
+    let t: f64 = r * z;
+    let r: f64 = r + t * (p1 as f64 + z * p2 as f64) + t * (z * z) * (p3 as f64 + z * p4 as f64);
+
+    /* Scale by 2**k */
+    (r * ukf) as f32
+}
diff --git a/library/compiler-builtins/libm/src/math/expf.rs b/library/compiler-builtins/libm/src/math/expf.rs
new file mode 100644
index 00000000000..8dc067ab084
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/expf.rs
@@ -0,0 +1,97 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_expf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::scalbnf;
+
+const HALF: [f32; 2] = [0.5, -0.5];
+const LN2_HI: f32 = 6.9314575195e-01; /* 0x3f317200 */
+const LN2_LO: f32 = 1.4286067653e-06; /* 0x35bfbe8e */
+const INV_LN2: f32 = 1.4426950216e+00; /* 0x3fb8aa3b */
+/*
+ * Domain [-0.34568, 0.34568], range ~[-4.278e-9, 4.447e-9]:
+ * |x*(exp(x)+1)/(exp(x)-1) - p(x)| < 2**-27.74
+ */
+const P1: f32 = 1.6666625440e-1; /*  0xaaaa8f.0p-26 */
+const P2: f32 = -2.7667332906e-3; /* -0xb55215.0p-32 */
+
+/// Exponential, base *e* (f32)
+///
+/// Calculate the exponential of `x`, that is, *e* raised to the power `x`
+/// (where *e* is the base of the natural system of logarithms, approximately 2.71828).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn expf(mut x: f32) -> f32 {
+    let x1p127 = f32::from_bits(0x7f000000); // 0x1p127f === 2 ^ 127
+    let x1p_126 = f32::from_bits(0x800000); // 0x1p-126f === 2 ^ -126  /*original 0x1p-149f    ??????????? */
+    let mut hx = x.to_bits();
+    let sign = (hx >> 31) as i32; /* sign bit of x */
+    let signb: bool = sign != 0;
+    hx &= 0x7fffffff; /* high word of |x| */
+
+    /* special cases */
+    if hx >= 0x42aeac50 {
+        /* if |x| >= -87.33655f or NaN */
+        if hx > 0x7f800000 {
+            /* NaN */
+            return x;
+        }
+        if (hx >= 0x42b17218) && (!signb) {
+            /* x >= 88.722839f */
+            /* overflow */
+            x *= x1p127;
+            return x;
+        }
+        if signb {
+            /* underflow */
+            force_eval!(-x1p_126 / x);
+            if hx >= 0x42cff1b5 {
+                /* x <= -103.972084f */
+                return 0.;
+            }
+        }
+    }
+
+    /* argument reduction */
+    let k: i32;
+    let hi: f32;
+    let lo: f32;
+    if hx > 0x3eb17218 {
+        /* if |x| > 0.5 ln2 */
+        if hx > 0x3f851592 {
+            /* if |x| > 1.5 ln2 */
+            k = (INV_LN2 * x + i!(HALF, sign as usize)) as i32;
+        } else {
+            k = 1 - sign - sign;
+        }
+        let kf = k as f32;
+        hi = x - kf * LN2_HI; /* k*ln2hi is exact here */
+        lo = kf * LN2_LO;
+        x = hi - lo;
+    } else if hx > 0x39000000 {
+        /* |x| > 2**-14 */
+        k = 0;
+        hi = x;
+        lo = 0.;
+    } else {
+        /* raise inexact */
+        force_eval!(x1p127 + x);
+        return 1. + x;
+    }
+
+    /* x is now in primary range */
+    let xx = x * x;
+    let c = x - xx * (P1 + xx * P2);
+    let y = 1. + (x * c / (2. - c) - lo + hi);
+    if k == 0 { y } else { scalbnf(y, k) }
+}
diff --git a/library/compiler-builtins/libm/src/math/expm1.rs b/library/compiler-builtins/libm/src/math/expm1.rs
new file mode 100644
index 00000000000..f25153f32a3
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/expm1.rs
@@ -0,0 +1,144 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_expm1.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use core::f64;
+
+const O_THRESHOLD: f64 = 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */
+const LN2_HI: f64 = 6.93147180369123816490e-01; /* 0x3fe62e42, 0xfee00000 */
+const LN2_LO: f64 = 1.90821492927058770002e-10; /* 0x3dea39ef, 0x35793c76 */
+const INVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */
+/* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
+const Q1: f64 = -3.33333333333331316428e-02; /* BFA11111 111110F4 */
+const Q2: f64 = 1.58730158725481460165e-03; /* 3F5A01A0 19FE5585 */
+const Q3: f64 = -7.93650757867487942473e-05; /* BF14CE19 9EAADBB7 */
+const Q4: f64 = 4.00821782732936239552e-06; /* 3ED0CFCA 86E65239 */
+const Q5: f64 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
+
+/// Exponential, base *e*, of x-1 (f64)
+///
+/// Calculates the exponential of `x` and subtract 1, that is, *e* raised
+/// to the power `x` minus 1 (where *e* is the base of the natural
+/// system of logarithms, approximately 2.71828).
+/// The result is accurate even for small values of `x`,
+/// where using `exp(x)-1` would lose many significant digits.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn expm1(mut x: f64) -> f64 {
+    let hi: f64;
+    let lo: f64;
+    let k: i32;
+    let c: f64;
+    let mut t: f64;
+    let mut y: f64;
+
+    let mut ui = x.to_bits();
+    let hx = ((ui >> 32) & 0x7fffffff) as u32;
+    let sign = (ui >> 63) as i32;
+
+    /* filter out huge and non-finite argument */
+    if hx >= 0x4043687A {
+        /* if |x|>=56*ln2 */
+        if x.is_nan() {
+            return x;
+        }
+        if sign != 0 {
+            return -1.0;
+        }
+        if x > O_THRESHOLD {
+            x *= f64::from_bits(0x7fe0000000000000);
+            return x;
+        }
+    }
+
+    /* argument reduction */
+    if hx > 0x3fd62e42 {
+        /* if  |x| > 0.5 ln2 */
+        if hx < 0x3FF0A2B2 {
+            /* and |x| < 1.5 ln2 */
+            if sign == 0 {
+                hi = x - LN2_HI;
+                lo = LN2_LO;
+                k = 1;
+            } else {
+                hi = x + LN2_HI;
+                lo = -LN2_LO;
+                k = -1;
+            }
+        } else {
+            k = (INVLN2 * x + if sign != 0 { -0.5 } else { 0.5 }) as i32;
+            t = k as f64;
+            hi = x - t * LN2_HI; /* t*ln2_hi is exact here */
+            lo = t * LN2_LO;
+        }
+        x = hi - lo;
+        c = (hi - x) - lo;
+    } else if hx < 0x3c900000 {
+        /* |x| < 2**-54, return x */
+        if hx < 0x00100000 {
+            force_eval!(x);
+        }
+        return x;
+    } else {
+        c = 0.0;
+        k = 0;
+    }
+
+    /* x is now in primary range */
+    let hfx = 0.5 * x;
+    let hxs = x * hfx;
+    let r1 = 1.0 + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5))));
+    t = 3.0 - r1 * hfx;
+    let mut e = hxs * ((r1 - t) / (6.0 - x * t));
+    if k == 0 {
+        /* c is 0 */
+        return x - (x * e - hxs);
+    }
+    e = x * (e - c) - c;
+    e -= hxs;
+    /* exp(x) ~ 2^k (x_reduced - e + 1) */
+    if k == -1 {
+        return 0.5 * (x - e) - 0.5;
+    }
+    if k == 1 {
+        if x < -0.25 {
+            return -2.0 * (e - (x + 0.5));
+        }
+        return 1.0 + 2.0 * (x - e);
+    }
+    ui = ((0x3ff + k) as u64) << 52; /* 2^k */
+    let twopk = f64::from_bits(ui);
+    if !(0..=56).contains(&k) {
+        /* suffice to return exp(x)-1 */
+        y = x - e + 1.0;
+        if k == 1024 {
+            y = y * 2.0 * f64::from_bits(0x7fe0000000000000);
+        } else {
+            y = y * twopk;
+        }
+        return y - 1.0;
+    }
+    ui = ((0x3ff - k) as u64) << 52; /* 2^-k */
+    let uf = f64::from_bits(ui);
+    if k < 20 {
+        y = (x - e + (1.0 - uf)) * twopk;
+    } else {
+        y = (x - (e + uf) + 1.0) * twopk;
+    }
+    y
+}
+
+#[cfg(test)]
+mod tests {
+    #[test]
+    fn sanity_check() {
+        assert_eq!(super::expm1(1.1), 2.0041660239464334);
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/expm1f.rs b/library/compiler-builtins/libm/src/math/expm1f.rs
new file mode 100644
index 00000000000..12c6f532b96
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/expm1f.rs
@@ -0,0 +1,130 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_expm1f.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+const O_THRESHOLD: f32 = 8.8721679688e+01; /* 0x42b17180 */
+const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */
+const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */
+const INV_LN2: f32 = 1.4426950216e+00; /* 0x3fb8aa3b */
+/*
+ * Domain [-0.34568, 0.34568], range ~[-6.694e-10, 6.696e-10]:
+ * |6 / x * (1 + 2 * (1 / (exp(x) - 1) - 1 / x)) - q(x)| < 2**-30.04
+ * Scaled coefficients: Qn_here = 2**n * Qn_for_q (see s_expm1.c):
+ */
+const Q1: f32 = -3.3333212137e-2; /* -0x888868.0p-28 */
+const Q2: f32 = 1.5807170421e-3; /*  0xcf3010.0p-33 */
+
+/// Exponential, base *e*, of x-1 (f32)
+///
+/// Calculates the exponential of `x` and subtract 1, that is, *e* raised
+/// to the power `x` minus 1 (where *e* is the base of the natural
+/// system of logarithms, approximately 2.71828).
+/// The result is accurate even for small values of `x`,
+/// where using `exp(x)-1` would lose many significant digits.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn expm1f(mut x: f32) -> f32 {
+    let x1p127 = f32::from_bits(0x7f000000); // 0x1p127f === 2 ^ 127
+
+    let mut hx = x.to_bits();
+    let sign = (hx >> 31) != 0;
+    hx &= 0x7fffffff;
+
+    /* filter out huge and non-finite argument */
+    if hx >= 0x4195b844 {
+        /* if |x|>=27*ln2 */
+        if hx > 0x7f800000 {
+            /* NaN */
+            return x;
+        }
+        if sign {
+            return -1.;
+        }
+        if x > O_THRESHOLD {
+            x *= x1p127;
+            return x;
+        }
+    }
+
+    let k: i32;
+    let hi: f32;
+    let lo: f32;
+    let mut c = 0f32;
+    /* argument reduction */
+    if hx > 0x3eb17218 {
+        /* if  |x| > 0.5 ln2 */
+        if hx < 0x3F851592 {
+            /* and |x| < 1.5 ln2 */
+            if !sign {
+                hi = x - LN2_HI;
+                lo = LN2_LO;
+                k = 1;
+            } else {
+                hi = x + LN2_HI;
+                lo = -LN2_LO;
+                k = -1;
+            }
+        } else {
+            k = (INV_LN2 * x + (if sign { -0.5 } else { 0.5 })) as i32;
+            let t = k as f32;
+            hi = x - t * LN2_HI; /* t*ln2_hi is exact here */
+            lo = t * LN2_LO;
+        }
+        x = hi - lo;
+        c = (hi - x) - lo;
+    } else if hx < 0x33000000 {
+        /* when |x|<2**-25, return x */
+        if hx < 0x00800000 {
+            force_eval!(x * x);
+        }
+        return x;
+    } else {
+        k = 0;
+    }
+
+    /* x is now in primary range */
+    let hfx = 0.5 * x;
+    let hxs = x * hfx;
+    let r1 = 1. + hxs * (Q1 + hxs * Q2);
+    let t = 3. - r1 * hfx;
+    let mut e = hxs * ((r1 - t) / (6. - x * t));
+    if k == 0 {
+        /* c is 0 */
+        return x - (x * e - hxs);
+    }
+    e = x * (e - c) - c;
+    e -= hxs;
+    /* exp(x) ~ 2^k (x_reduced - e + 1) */
+    if k == -1 {
+        return 0.5 * (x - e) - 0.5;
+    }
+    if k == 1 {
+        if x < -0.25 {
+            return -2. * (e - (x + 0.5));
+        }
+        return 1. + 2. * (x - e);
+    }
+    let twopk = f32::from_bits(((0x7f + k) << 23) as u32); /* 2^k */
+    if !(0..=56).contains(&k) {
+        /* suffice to return exp(x)-1 */
+        let mut y = x - e + 1.;
+        if k == 128 {
+            y = y * 2. * x1p127;
+        } else {
+            y = y * twopk;
+        }
+        return y - 1.;
+    }
+    let uf = f32::from_bits(((0x7f - k) << 23) as u32); /* 2^-k */
+    if k < 23 { (x - e + (1. - uf)) * twopk } else { (x - (e + uf) + 1.) * twopk }
+}
diff --git a/library/compiler-builtins/libm/src/math/expo2.rs b/library/compiler-builtins/libm/src/math/expo2.rs
new file mode 100644
index 00000000000..82e9b360a76
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/expo2.rs
@@ -0,0 +1,14 @@
+use super::{combine_words, exp};
+
+/* exp(x)/2 for x >= log(DBL_MAX), slightly better than 0.5*exp(x/2)*exp(x/2) */
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn expo2(x: f64) -> f64 {
+    /* k is such that k*ln2 has minimal relative error and x - kln2 > log(DBL_MIN) */
+    const K: i32 = 2043;
+    let kln2 = f64::from_bits(0x40962066151add8b);
+
+    /* note that k is odd and scale*scale overflows */
+    let scale = combine_words(((0x3ff + K / 2) as u32) << 20, 0);
+    /* exp(x - k ln2) * 2**(k-1) */
+    exp(x - kln2) * scale * scale
+}
diff --git a/library/compiler-builtins/libm/src/math/fabs.rs b/library/compiler-builtins/libm/src/math/fabs.rs
new file mode 100644
index 00000000000..0050a309fee
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/fabs.rs
@@ -0,0 +1,116 @@
+/// Absolute value (magnitude) (f16)
+///
+/// Calculates the absolute value (magnitude) of the argument `x`,
+/// by direct manipulation of the bit representation of `x`.
+#[cfg(f16_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fabsf16(x: f16) -> f16 {
+    super::generic::fabs(x)
+}
+
+/// Absolute value (magnitude) (f32)
+///
+/// Calculates the absolute value (magnitude) of the argument `x`,
+/// by direct manipulation of the bit representation of `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fabsf(x: f32) -> f32 {
+    select_implementation! {
+        name: fabsf,
+        use_arch: all(target_arch = "wasm32", intrinsics_enabled),
+        args: x,
+    }
+
+    super::generic::fabs(x)
+}
+
+/// Absolute value (magnitude) (f64)
+///
+/// Calculates the absolute value (magnitude) of the argument `x`,
+/// by direct manipulation of the bit representation of `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fabs(x: f64) -> f64 {
+    select_implementation! {
+        name: fabs,
+        use_arch: all(target_arch = "wasm32", intrinsics_enabled),
+        args: x,
+    }
+
+    super::generic::fabs(x)
+}
+
+/// Absolute value (magnitude) (f128)
+///
+/// Calculates the absolute value (magnitude) of the argument `x`,
+/// by direct manipulation of the bit representation of `x`.
+#[cfg(f128_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fabsf128(x: f128) -> f128 {
+    super::generic::fabs(x)
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+    use crate::support::Float;
+
+    /// Based on https://en.cppreference.com/w/cpp/numeric/math/fabs
+    fn spec_test<F: Float>(f: impl Fn(F) -> F) {
+        assert_biteq!(f(F::ZERO), F::ZERO);
+        assert_biteq!(f(F::NEG_ZERO), F::ZERO);
+        assert_biteq!(f(F::INFINITY), F::INFINITY);
+        assert_biteq!(f(F::NEG_INFINITY), F::INFINITY);
+        assert!(f(F::NAN).is_nan());
+
+        // Not spec rewquired but we expect it
+        assert!(f(F::NAN).is_sign_positive());
+        assert!(f(F::from_bits(F::NAN.to_bits() | F::SIGN_MASK)).is_sign_positive());
+    }
+
+    #[test]
+    #[cfg(f16_enabled)]
+    fn sanity_check_f16() {
+        assert_eq!(fabsf16(-1.0f16), 1.0);
+        assert_eq!(fabsf16(2.8f16), 2.8);
+    }
+
+    #[test]
+    #[cfg(f16_enabled)]
+    fn spec_tests_f16() {
+        spec_test::<f16>(fabsf16);
+    }
+
+    #[test]
+    fn sanity_check_f32() {
+        assert_eq!(fabsf(-1.0f32), 1.0);
+        assert_eq!(fabsf(2.8f32), 2.8);
+    }
+
+    #[test]
+    fn spec_tests_f32() {
+        spec_test::<f32>(fabsf);
+    }
+
+    #[test]
+    fn sanity_check_f64() {
+        assert_eq!(fabs(-1.0f64), 1.0);
+        assert_eq!(fabs(2.8f64), 2.8);
+    }
+
+    #[test]
+    fn spec_tests_f64() {
+        spec_test::<f64>(fabs);
+    }
+
+    #[test]
+    #[cfg(f128_enabled)]
+    fn sanity_check_f128() {
+        assert_eq!(fabsf128(-1.0f128), 1.0);
+        assert_eq!(fabsf128(2.8f128), 2.8);
+    }
+
+    #[test]
+    #[cfg(f128_enabled)]
+    fn spec_tests_f128() {
+        spec_test::<f128>(fabsf128);
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/fabsf.rs b/library/compiler-builtins/libm/src/math/fabsf.rs
new file mode 100644
index 00000000000..e5820a26c52
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/fabsf.rs
@@ -0,0 +1,39 @@
+/// Absolute value (magnitude) (f32)
+///
+/// Calculates the absolute value (magnitude) of the argument `x`,
+/// by direct manipulation of the bit representation of `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fabsf(x: f32) -> f32 {
+    select_implementation! {
+        name: fabsf,
+        use_arch: all(target_arch = "wasm32", intrinsics_enabled),
+        args: x,
+    }
+
+    super::generic::fabs(x)
+}
+
+// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520
+#[cfg(not(target_arch = "powerpc64"))]
+#[cfg(test)]
+mod tests {
+    use super::*;
+
+    #[test]
+    fn sanity_check() {
+        assert_eq!(fabsf(-1.0), 1.0);
+        assert_eq!(fabsf(2.8), 2.8);
+    }
+
+    /// The spec: https://en.cppreference.com/w/cpp/numeric/math/fabs
+    #[test]
+    fn spec_tests() {
+        assert!(fabsf(f32::NAN).is_nan());
+        for f in [0.0, -0.0].iter().copied() {
+            assert_eq!(fabsf(f), 0.0);
+        }
+        for f in [f32::INFINITY, f32::NEG_INFINITY].iter().copied() {
+            assert_eq!(fabsf(f), f32::INFINITY);
+        }
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/fabsf128.rs b/library/compiler-builtins/libm/src/math/fabsf128.rs
new file mode 100644
index 00000000000..46429ca4940
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/fabsf128.rs
@@ -0,0 +1,31 @@
+/// Absolute value (magnitude) (f128)
+///
+/// Calculates the absolute value (magnitude) of the argument `x`,
+/// by direct manipulation of the bit representation of `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fabsf128(x: f128) -> f128 {
+    super::generic::fabs(x)
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+
+    #[test]
+    fn sanity_check() {
+        assert_eq!(fabsf128(-1.0), 1.0);
+        assert_eq!(fabsf128(2.8), 2.8);
+    }
+
+    /// The spec: https://en.cppreference.com/w/cpp/numeric/math/fabs
+    #[test]
+    fn spec_tests() {
+        assert!(fabsf128(f128::NAN).is_nan());
+        for f in [0.0, -0.0].iter().copied() {
+            assert_eq!(fabsf128(f), 0.0);
+        }
+        for f in [f128::INFINITY, f128::NEG_INFINITY].iter().copied() {
+            assert_eq!(fabsf128(f), f128::INFINITY);
+        }
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/fabsf16.rs b/library/compiler-builtins/libm/src/math/fabsf16.rs
new file mode 100644
index 00000000000..eee42ac6a3c
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/fabsf16.rs
@@ -0,0 +1,31 @@
+/// Absolute value (magnitude) (f16)
+///
+/// Calculates the absolute value (magnitude) of the argument `x`,
+/// by direct manipulation of the bit representation of `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fabsf16(x: f16) -> f16 {
+    super::generic::fabs(x)
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+
+    #[test]
+    fn sanity_check() {
+        assert_eq!(fabsf16(-1.0), 1.0);
+        assert_eq!(fabsf16(2.8), 2.8);
+    }
+
+    /// The spec: https://en.cppreference.com/w/cpp/numeric/math/fabs
+    #[test]
+    fn spec_tests() {
+        assert!(fabsf16(f16::NAN).is_nan());
+        for f in [0.0, -0.0].iter().copied() {
+            assert_eq!(fabsf16(f), 0.0);
+        }
+        for f in [f16::INFINITY, f16::NEG_INFINITY].iter().copied() {
+            assert_eq!(fabsf16(f), f16::INFINITY);
+        }
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/fdim.rs b/library/compiler-builtins/libm/src/math/fdim.rs
new file mode 100644
index 00000000000..082c5478b2a
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/fdim.rs
@@ -0,0 +1,53 @@
+/// Positive difference (f16)
+///
+/// Determines the positive difference between arguments, returning:
+/// * x - y if x > y, or
+/// * +0    if x <= y, or
+/// * NAN   if either argument is NAN.
+///
+/// A range error may occur.
+#[cfg(f16_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fdimf16(x: f16, y: f16) -> f16 {
+    super::generic::fdim(x, y)
+}
+
+/// Positive difference (f32)
+///
+/// Determines the positive difference between arguments, returning:
+/// * x - y if x > y, or
+/// * +0    if x <= y, or
+/// * NAN   if either argument is NAN.
+///
+/// A range error may occur.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fdimf(x: f32, y: f32) -> f32 {
+    super::generic::fdim(x, y)
+}
+
+/// Positive difference (f64)
+///
+/// Determines the positive difference between arguments, returning:
+/// * x - y if x > y, or
+/// * +0    if x <= y, or
+/// * NAN   if either argument is NAN.
+///
+/// A range error may occur.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fdim(x: f64, y: f64) -> f64 {
+    super::generic::fdim(x, y)
+}
+
+/// Positive difference (f128)
+///
+/// Determines the positive difference between arguments, returning:
+/// * x - y if x > y, or
+/// * +0    if x <= y, or
+/// * NAN   if either argument is NAN.
+///
+/// A range error may occur.
+#[cfg(f128_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fdimf128(x: f128, y: f128) -> f128 {
+    super::generic::fdim(x, y)
+}
diff --git a/library/compiler-builtins/libm/src/math/fdimf.rs b/library/compiler-builtins/libm/src/math/fdimf.rs
new file mode 100644
index 00000000000..367ef517c63
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/fdimf.rs
@@ -0,0 +1,12 @@
+/// Positive difference (f32)
+///
+/// Determines the positive difference between arguments, returning:
+/// * x - y if x > y, or
+/// * +0    if x <= y, or
+/// * NAN   if either argument is NAN.
+///
+/// A range error may occur.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fdimf(x: f32, y: f32) -> f32 {
+    super::generic::fdim(x, y)
+}
diff --git a/library/compiler-builtins/libm/src/math/fdimf128.rs b/library/compiler-builtins/libm/src/math/fdimf128.rs
new file mode 100644
index 00000000000..6f3d1d0ff1d
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/fdimf128.rs
@@ -0,0 +1,12 @@
+/// Positive difference (f128)
+///
+/// Determines the positive difference between arguments, returning:
+/// * x - y if x > y, or
+/// * +0    if x <= y, or
+/// * NAN   if either argument is NAN.
+///
+/// A range error may occur.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fdimf128(x: f128, y: f128) -> f128 {
+    super::generic::fdim(x, y)
+}
diff --git a/library/compiler-builtins/libm/src/math/fdimf16.rs b/library/compiler-builtins/libm/src/math/fdimf16.rs
new file mode 100644
index 00000000000..37bd6885817
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/fdimf16.rs
@@ -0,0 +1,12 @@
+/// Positive difference (f16)
+///
+/// Determines the positive difference between arguments, returning:
+/// * x - y if x > y, or
+/// * +0    if x <= y, or
+/// * NAN   if either argument is NAN.
+///
+/// A range error may occur.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fdimf16(x: f16, y: f16) -> f16 {
+    super::generic::fdim(x, y)
+}
diff --git a/library/compiler-builtins/libm/src/math/floor.rs b/library/compiler-builtins/libm/src/math/floor.rs
new file mode 100644
index 00000000000..3c5eab101d1
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/floor.rs
@@ -0,0 +1,46 @@
+/// Floor (f16)
+///
+/// Finds the nearest integer less than or equal to `x`.
+#[cfg(f16_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn floorf16(x: f16) -> f16 {
+    return super::generic::floor(x);
+}
+
+/// Floor (f64)
+///
+/// Finds the nearest integer less than or equal to `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn floor(x: f64) -> f64 {
+    select_implementation! {
+        name: floor,
+        use_arch: all(target_arch = "wasm32", intrinsics_enabled),
+        use_arch_required: all(target_arch = "x86", not(target_feature = "sse2")),
+        args: x,
+    }
+
+    return super::generic::floor(x);
+}
+
+/// Floor (f32)
+///
+/// Finds the nearest integer less than or equal to `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn floorf(x: f32) -> f32 {
+    select_implementation! {
+        name: floorf,
+        use_arch: all(target_arch = "wasm32", intrinsics_enabled),
+        args: x,
+    }
+
+    return super::generic::floor(x);
+}
+
+/// Floor (f128)
+///
+/// Finds the nearest integer less than or equal to `x`.
+#[cfg(f128_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn floorf128(x: f128) -> f128 {
+    return super::generic::floor(x);
+}
diff --git a/library/compiler-builtins/libm/src/math/floorf.rs b/library/compiler-builtins/libm/src/math/floorf.rs
new file mode 100644
index 00000000000..16957b7f355
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/floorf.rs
@@ -0,0 +1,13 @@
+/// Floor (f32)
+///
+/// Finds the nearest integer less than or equal to `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn floorf(x: f32) -> f32 {
+    select_implementation! {
+        name: floorf,
+        use_arch: all(target_arch = "wasm32", intrinsics_enabled),
+        args: x,
+    }
+
+    return super::generic::floor(x);
+}
diff --git a/library/compiler-builtins/libm/src/math/floorf128.rs b/library/compiler-builtins/libm/src/math/floorf128.rs
new file mode 100644
index 00000000000..9a9fe415115
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/floorf128.rs
@@ -0,0 +1,7 @@
+/// Floor (f128)
+///
+/// Finds the nearest integer less than or equal to `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn floorf128(x: f128) -> f128 {
+    return super::generic::floor(x);
+}
diff --git a/library/compiler-builtins/libm/src/math/floorf16.rs b/library/compiler-builtins/libm/src/math/floorf16.rs
new file mode 100644
index 00000000000..f9b868e0410
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/floorf16.rs
@@ -0,0 +1,7 @@
+/// Floor (f16)
+///
+/// Finds the nearest integer less than or equal to `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn floorf16(x: f16) -> f16 {
+    return super::generic::floor(x);
+}
diff --git a/library/compiler-builtins/libm/src/math/fma.rs b/library/compiler-builtins/libm/src/math/fma.rs
new file mode 100644
index 00000000000..e0b3347acf8
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/fma.rs
@@ -0,0 +1,397 @@
+/* SPDX-License-Identifier: MIT */
+/* origin: musl src/math/fma.c. Ported to generic Rust algorithm in 2025, TG. */
+
+use super::support::{DInt, FpResult, HInt, IntTy, Round, Status};
+use super::{CastFrom, CastInto, Float, Int, MinInt};
+
+/// Fused multiply add (f64)
+///
+/// Computes `(x*y)+z`, rounded as one ternary operation (i.e. calculated with infinite precision).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fma(x: f64, y: f64, z: f64) -> f64 {
+    select_implementation! {
+        name: fma,
+        use_arch: all(target_arch = "aarch64", target_feature = "neon"),
+        args: x, y, z,
+    }
+
+    fma_round(x, y, z, Round::Nearest).val
+}
+
+/// Fused multiply add (f128)
+///
+/// Computes `(x*y)+z`, rounded as one ternary operation (i.e. calculated with infinite precision).
+#[cfg(f128_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmaf128(x: f128, y: f128, z: f128) -> f128 {
+    fma_round(x, y, z, Round::Nearest).val
+}
+
+/// Fused multiply-add that works when there is not a larger float size available. Computes
+/// `(x * y) + z`.
+#[inline]
+pub fn fma_round<F>(x: F, y: F, z: F, _round: Round) -> FpResult<F>
+where
+    F: Float,
+    F: CastFrom<F::SignedInt>,
+    F: CastFrom<i8>,
+    F::Int: HInt,
+    u32: CastInto<F::Int>,
+{
+    let one = IntTy::<F>::ONE;
+    let zero = IntTy::<F>::ZERO;
+
+    // Normalize such that the top of the mantissa is zero and we have a guard bit.
+    let nx = Norm::from_float(x);
+    let ny = Norm::from_float(y);
+    let nz = Norm::from_float(z);
+
+    if nx.is_zero_nan_inf() || ny.is_zero_nan_inf() {
+        // Value will overflow, defer to non-fused operations.
+        return FpResult::ok(x * y + z);
+    }
+
+    if nz.is_zero_nan_inf() {
+        if nz.is_zero() {
+            // Empty add component means we only need to multiply.
+            return FpResult::ok(x * y);
+        }
+        // `z` is NaN or infinity, which sets the result.
+        return FpResult::ok(z);
+    }
+
+    // multiply: r = x * y
+    let zhi: F::Int;
+    let zlo: F::Int;
+    let (mut rlo, mut rhi) = nx.m.widen_mul(ny.m).lo_hi();
+
+    // Exponent result of multiplication
+    let mut e: i32 = nx.e + ny.e;
+    // Needed shift to align `z` to the multiplication result
+    let mut d: i32 = nz.e - e;
+    let sbits = F::BITS as i32;
+
+    // Scale `z`. Shift `z <<= kz`, `r >>= kr`, so `kz+kr == d`, set `e = e+kr` (== ez-kz)
+    if d > 0 {
+        // The magnitude of `z` is larger than `x * y`
+        if d < sbits {
+            // Maximum shift of one `F::BITS` means shifted `z` will fit into `2 * F::BITS`. Shift
+            // it into `(zhi, zlo)`. No exponent adjustment necessary.
+            zlo = nz.m << d;
+            zhi = nz.m >> (sbits - d);
+        } else {
+            // Shift larger than `sbits`, `z` only needs the top half `zhi`. Place it there (acts
+            // as a shift by `sbits`).
+            zlo = zero;
+            zhi = nz.m;
+            d -= sbits;
+
+            // `z`'s exponent is large enough that it now needs to be taken into account.
+            e = nz.e - sbits;
+
+            if d == 0 {
+                // Exactly `sbits`, nothing to do
+            } else if d < sbits {
+                // Remaining shift fits within `sbits`. Leave `z` in place, shift `x * y`
+                rlo = (rhi << (sbits - d)) | (rlo >> d);
+                // Set the sticky bit
+                rlo |= IntTy::<F>::from((rlo << (sbits - d)) != zero);
+                rhi = rhi >> d;
+            } else {
+                // `z`'s magnitude is enough that `x * y` is irrelevant. It was nonzero, so set
+                // the sticky bit.
+                rlo = one;
+                rhi = zero;
+            }
+        }
+    } else {
+        // `z`'s magnitude once shifted fits entirely within `zlo`
+        zhi = zero;
+        d = -d;
+        if d == 0 {
+            // No shift needed
+            zlo = nz.m;
+        } else if d < sbits {
+            // Shift s.t. `nz.m` fits into `zlo`
+            let sticky = IntTy::<F>::from((nz.m << (sbits - d)) != zero);
+            zlo = (nz.m >> d) | sticky;
+        } else {
+            // Would be entirely shifted out, only set the sticky bit
+            zlo = one;
+        }
+    }
+
+    /* addition */
+
+    let mut neg = nx.neg ^ ny.neg;
+    let samesign: bool = !neg ^ nz.neg;
+    let mut rhi_nonzero = true;
+
+    if samesign {
+        // r += z
+        rlo = rlo.wrapping_add(zlo);
+        rhi += zhi + IntTy::<F>::from(rlo < zlo);
+    } else {
+        // r -= z
+        let (res, borrow) = rlo.overflowing_sub(zlo);
+        rlo = res;
+        rhi = rhi.wrapping_sub(zhi.wrapping_add(IntTy::<F>::from(borrow)));
+        if (rhi >> (F::BITS - 1)) != zero {
+            rlo = rlo.signed().wrapping_neg().unsigned();
+            rhi = rhi.signed().wrapping_neg().unsigned() - IntTy::<F>::from(rlo != zero);
+            neg = !neg;
+        }
+        rhi_nonzero = rhi != zero;
+    }
+
+    /* Construct result */
+
+    // Shift result into `rhi`, left-aligned. Last bit is sticky
+    if rhi_nonzero {
+        // `d` > 0, need to shift both `rhi` and `rlo` into result
+        e += sbits;
+        d = rhi.leading_zeros() as i32 - 1;
+        rhi = (rhi << d) | (rlo >> (sbits - d));
+        // Update sticky
+        rhi |= IntTy::<F>::from((rlo << d) != zero);
+    } else if rlo != zero {
+        // `rhi` is zero, `rlo` is the entire result and needs to be shifted
+        d = rlo.leading_zeros() as i32 - 1;
+        if d < 0 {
+            // Shift and set sticky
+            rhi = (rlo >> 1) | (rlo & one);
+        } else {
+            rhi = rlo << d;
+        }
+    } else {
+        // exact +/- 0.0
+        return FpResult::ok(x * y + z);
+    }
+
+    e -= d;
+
+    // Use int->float conversion to populate the significand.
+    // i is in [1 << (BITS - 2), (1 << (BITS - 1)) - 1]
+    let mut i: F::SignedInt = rhi.signed();
+
+    if neg {
+        i = -i;
+    }
+
+    // `|r|` is in `[0x1p62,0x1p63]` for `f64`
+    let mut r: F = F::cast_from_lossy(i);
+
+    /* Account for subnormal and rounding */
+
+    // Unbiased exponent for the maximum value of `r`
+    let max_pow = F::BITS - 1 + F::EXP_BIAS;
+
+    let mut status = Status::OK;
+
+    if e < -(max_pow as i32 - 2) {
+        // Result is subnormal before rounding
+        if e == -(max_pow as i32 - 1) {
+            let mut c = F::from_parts(false, max_pow, zero);
+            if neg {
+                c = -c;
+            }
+
+            if r == c {
+                // Min normal after rounding,
+                status.set_underflow(true);
+                r = F::MIN_POSITIVE_NORMAL.copysign(r);
+                return FpResult::new(r, status);
+            }
+
+            if (rhi << (F::SIG_BITS + 1)) != zero {
+                // Account for truncated bits. One bit will be lost in the `scalbn` call, add
+                // another top bit to avoid double rounding if inexact.
+                let iu: F::Int = (rhi >> 1) | (rhi & one) | (one << (F::BITS - 2));
+                i = iu.signed();
+
+                if neg {
+                    i = -i;
+                }
+
+                r = F::cast_from_lossy(i);
+
+                // Remove the top bit
+                r = F::cast_from(2i8) * r - c;
+                status.set_underflow(true);
+            }
+        } else {
+            // Only round once when scaled
+            d = F::EXP_BITS as i32 - 1;
+            let sticky = IntTy::<F>::from(rhi << (F::BITS as i32 - d) != zero);
+            i = (((rhi >> d) | sticky) << d).signed();
+
+            if neg {
+                i = -i;
+            }
+
+            r = F::cast_from_lossy(i);
+        }
+    }
+
+    // Use our exponent to scale the final value.
+    FpResult::new(super::generic::scalbn(r, e), status)
+}
+
+/// Representation of `F` that has handled subnormals.
+#[derive(Clone, Copy, Debug)]
+struct Norm<F: Float> {
+    /// Normalized significand with one guard bit, unsigned.
+    m: F::Int,
+    /// Exponent of the mantissa such that `m * 2^e = x`. Accounts for the shift in the mantissa
+    /// and the guard bit; that is, 1.0 will normalize as `m = 1 << 53` and `e = -53`.
+    e: i32,
+    neg: bool,
+}
+
+impl<F: Float> Norm<F> {
+    /// Unbias the exponent and account for the mantissa's precision, including the guard bit.
+    const EXP_UNBIAS: u32 = F::EXP_BIAS + F::SIG_BITS + 1;
+
+    /// Values greater than this had a saturated exponent (infinity or NaN), OR were zero and we
+    /// adjusted the exponent such that it exceeds this threashold.
+    const ZERO_INF_NAN: u32 = F::EXP_SAT - Self::EXP_UNBIAS;
+
+    fn from_float(x: F) -> Self {
+        let mut ix = x.to_bits();
+        let mut e = x.ex() as i32;
+        let neg = x.is_sign_negative();
+        if e == 0 {
+            // Normalize subnormals by multiplication
+            let scale_i = F::BITS - 1;
+            let scale_f = F::from_parts(false, scale_i + F::EXP_BIAS, F::Int::ZERO);
+            let scaled = x * scale_f;
+            ix = scaled.to_bits();
+            e = scaled.ex() as i32;
+            e = if e == 0 {
+                // If the exponent is still zero, the input was zero. Artifically set this value
+                // such that the final `e` will exceed `ZERO_INF_NAN`.
+                1 << F::EXP_BITS
+            } else {
+                // Otherwise, account for the scaling we just did.
+                e - scale_i as i32
+            };
+        }
+
+        e -= Self::EXP_UNBIAS as i32;
+
+        // Absolute  value, set the implicit bit, and shift to create a guard bit
+        ix &= F::SIG_MASK;
+        ix |= F::IMPLICIT_BIT;
+        ix <<= 1;
+
+        Self { m: ix, e, neg }
+    }
+
+    /// True if the value was zero, infinity, or NaN.
+    fn is_zero_nan_inf(self) -> bool {
+        self.e >= Self::ZERO_INF_NAN as i32
+    }
+
+    /// The only value we have
+    fn is_zero(self) -> bool {
+        // The only exponent that strictly exceeds this value is our sentinel value for zero.
+        self.e > Self::ZERO_INF_NAN as i32
+    }
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+
+    /// Test the generic `fma_round` algorithm for a given float.
+    fn spec_test<F>()
+    where
+        F: Float,
+        F: CastFrom<F::SignedInt>,
+        F: CastFrom<i8>,
+        F::Int: HInt,
+        u32: CastInto<F::Int>,
+    {
+        let x = F::from_bits(F::Int::ONE);
+        let y = F::from_bits(F::Int::ONE);
+        let z = F::ZERO;
+
+        let fma = |x, y, z| fma_round(x, y, z, Round::Nearest).val;
+
+        // 754-2020 says "When the exact result of (a × b) + c is non-zero yet the result of
+        // fusedMultiplyAdd is zero because of rounding, the zero result takes the sign of the
+        // exact result"
+        assert_biteq!(fma(x, y, z), F::ZERO);
+        assert_biteq!(fma(x, -y, z), F::NEG_ZERO);
+        assert_biteq!(fma(-x, y, z), F::NEG_ZERO);
+        assert_biteq!(fma(-x, -y, z), F::ZERO);
+    }
+
+    #[test]
+    fn spec_test_f32() {
+        spec_test::<f32>();
+    }
+
+    #[test]
+    fn spec_test_f64() {
+        spec_test::<f64>();
+
+        let expect_underflow = [
+            (
+                hf64!("0x1.0p-1070"),
+                hf64!("0x1.0p-1070"),
+                hf64!("0x1.ffffffffffffp-1023"),
+                hf64!("0x0.ffffffffffff8p-1022"),
+            ),
+            (
+                // FIXME: we raise underflow but this should only be inexact (based on C and
+                // `rustc_apfloat`).
+                hf64!("0x1.0p-1070"),
+                hf64!("0x1.0p-1070"),
+                hf64!("-0x1.0p-1022"),
+                hf64!("-0x1.0p-1022"),
+            ),
+        ];
+
+        for (x, y, z, res) in expect_underflow {
+            let FpResult { val, status } = fma_round(x, y, z, Round::Nearest);
+            assert_biteq!(val, res);
+            assert_eq!(status, Status::UNDERFLOW);
+        }
+    }
+
+    #[test]
+    #[cfg(f128_enabled)]
+    fn spec_test_f128() {
+        spec_test::<f128>();
+    }
+
+    #[test]
+    fn fma_segfault() {
+        // These two inputs cause fma to segfault on release due to overflow:
+        assert_eq!(
+            fma(
+                -0.0000000000000002220446049250313,
+                -0.0000000000000002220446049250313,
+                -0.0000000000000002220446049250313
+            ),
+            -0.00000000000000022204460492503126,
+        );
+
+        let result = fma(-0.992, -0.992, -0.992);
+        //force rounding to storage format on x87 to prevent superious errors.
+        #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
+        let result = force_eval!(result);
+        assert_eq!(result, -0.007936000000000007,);
+    }
+
+    #[test]
+    fn fma_sbb() {
+        assert_eq!(fma(-(1.0 - f64::EPSILON), f64::MIN, f64::MIN), -3991680619069439e277);
+    }
+
+    #[test]
+    fn fma_underflow() {
+        assert_eq!(fma(1.1102230246251565e-16, -9.812526705433188e-305, 1.0894e-320), 0.0,);
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/fma_wide.rs b/library/compiler-builtins/libm/src/math/fma_wide.rs
new file mode 100644
index 00000000000..08b78b02264
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/fma_wide.rs
@@ -0,0 +1,104 @@
+/* SPDX-License-Identifier: MIT */
+/* origin: musl src/math/fmaf.c. Ported to generic Rust algorithm in 2025, TG. */
+
+use super::support::{FpResult, IntTy, Round, Status};
+use super::{CastFrom, CastInto, DFloat, Float, HFloat, MinInt};
+
+// Placeholder so we can have `fmaf16` in the `Float` trait.
+#[allow(unused)]
+#[cfg(f16_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn fmaf16(_x: f16, _y: f16, _z: f16) -> f16 {
+    unimplemented!()
+}
+
+/// Floating multiply add (f32)
+///
+/// Computes `(x*y)+z`, rounded as one ternary operation (i.e. calculated with infinite precision).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmaf(x: f32, y: f32, z: f32) -> f32 {
+    select_implementation! {
+        name: fmaf,
+        use_arch: all(target_arch = "aarch64", target_feature = "neon"),
+        args: x, y, z,
+    }
+
+    fma_wide_round(x, y, z, Round::Nearest).val
+}
+
+/// Fma implementation when a hardware-backed larger float type is available. For `f32` and `f64`,
+/// `f64` has enough precision to represent the `f32` in its entirety, except for double rounding.
+#[inline]
+pub fn fma_wide_round<F, B>(x: F, y: F, z: F, round: Round) -> FpResult<F>
+where
+    F: Float + HFloat<D = B>,
+    B: Float + DFloat<H = F>,
+    B::Int: CastInto<i32>,
+    i32: CastFrom<i32>,
+{
+    let one = IntTy::<B>::ONE;
+
+    let xy: B = x.widen() * y.widen();
+    let mut result: B = xy + z.widen();
+    let mut ui: B::Int = result.to_bits();
+    let re = result.ex();
+    let zb: B = z.widen();
+
+    let prec_diff = B::SIG_BITS - F::SIG_BITS;
+    let excess_prec = ui & ((one << prec_diff) - one);
+    let halfway = one << (prec_diff - 1);
+
+    // Common case: the larger precision is fine if...
+    // This is not a halfway case
+    if excess_prec != halfway
+        // Or the result is NaN
+        || re == B::EXP_SAT
+        // Or the result is exact
+        || (result - xy == zb && result - zb == xy)
+        // Or the mode is something other than round to nearest
+        || round != Round::Nearest
+    {
+        let min_inexact_exp = (B::EXP_BIAS as i32 + F::EXP_MIN_SUBNORM) as u32;
+        let max_inexact_exp = (B::EXP_BIAS as i32 + F::EXP_MIN) as u32;
+
+        let mut status = Status::OK;
+
+        if (min_inexact_exp..max_inexact_exp).contains(&re) && status.inexact() {
+            // This branch is never hit; requires previous operations to set a status
+            status.set_inexact(false);
+
+            result = xy + z.widen();
+            if status.inexact() {
+                status.set_underflow(true);
+            } else {
+                status.set_inexact(true);
+            }
+        }
+
+        return FpResult { val: result.narrow(), status };
+    }
+
+    let neg = ui >> (B::BITS - 1) != IntTy::<B>::ZERO;
+    let err = if neg == (zb > xy) { xy - result + zb } else { zb - result + xy };
+    if neg == (err < B::ZERO) {
+        ui += one;
+    } else {
+        ui -= one;
+    }
+
+    FpResult::ok(B::from_bits(ui).narrow())
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+
+    #[test]
+    fn issue_263() {
+        let a = f32::from_bits(1266679807);
+        let b = f32::from_bits(1300234242);
+        let c = f32::from_bits(1115553792);
+        let expected = f32::from_bits(1501560833);
+        assert_eq!(fmaf(a, b, c), expected);
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/fmin_fmax.rs b/library/compiler-builtins/libm/src/math/fmin_fmax.rs
new file mode 100644
index 00000000000..2947b783e2f
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/fmin_fmax.rs
@@ -0,0 +1,167 @@
+/// Return the lesser of two arguments or, if either argument is NaN, the other argument.
+///
+/// This coincides with IEEE 754-2011 `minNum`. The result disregards signed zero (meaning if
+/// the inputs are -0.0 and +0.0, either may be returned).
+#[cfg(f16_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fminf16(x: f16, y: f16) -> f16 {
+    super::generic::fmin(x, y)
+}
+
+/// Return the lesser of two arguments or, if either argument is NaN, the other argument.
+///
+/// This coincides with IEEE 754-2011 `minNum`. The result disregards signed zero (meaning if
+/// the inputs are -0.0 and +0.0, either may be returned).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fminf(x: f32, y: f32) -> f32 {
+    super::generic::fmin(x, y)
+}
+
+/// Return the lesser of two arguments or, if either argument is NaN, the other argument.
+///
+/// This coincides with IEEE 754-2011 `minNum`. The result disregards signed zero (meaning if
+/// the inputs are -0.0 and +0.0, either may be returned).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmin(x: f64, y: f64) -> f64 {
+    super::generic::fmin(x, y)
+}
+
+/// Return the lesser of two arguments or, if either argument is NaN, the other argument.
+///
+/// This coincides with IEEE 754-2011 `minNum`. The result disregards signed zero (meaning if
+/// the inputs are -0.0 and +0.0, either may be returned).
+#[cfg(f128_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fminf128(x: f128, y: f128) -> f128 {
+    super::generic::fmin(x, y)
+}
+
+/// Return the greater of two arguments or, if either argument is NaN, the other argument.
+///
+/// This coincides with IEEE 754-2011 `maxNum`. The result disregards signed zero (meaning if
+/// the inputs are -0.0 and +0.0, either may be returned).
+#[cfg(f16_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmaxf16(x: f16, y: f16) -> f16 {
+    super::generic::fmax(x, y)
+}
+
+/// Return the greater of two arguments or, if either argument is NaN, the other argument.
+///
+/// This coincides with IEEE 754-2011 `maxNum`. The result disregards signed zero (meaning if
+/// the inputs are -0.0 and +0.0, either may be returned).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmaxf(x: f32, y: f32) -> f32 {
+    super::generic::fmax(x, y)
+}
+
+/// Return the greater of two arguments or, if either argument is NaN, the other argument.
+///
+/// This coincides with IEEE 754-2011 `maxNum`. The result disregards signed zero (meaning if
+/// the inputs are -0.0 and +0.0, either may be returned).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmax(x: f64, y: f64) -> f64 {
+    super::generic::fmax(x, y)
+}
+
+/// Return the greater of two arguments or, if either argument is NaN, the other argument.
+///
+/// This coincides with IEEE 754-2011 `maxNum`. The result disregards signed zero (meaning if
+/// the inputs are -0.0 and +0.0, either may be returned).
+#[cfg(f128_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmaxf128(x: f128, y: f128) -> f128 {
+    super::generic::fmax(x, y)
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+    use crate::support::{Float, Hexf};
+
+    fn fmin_spec_test<F: Float>(f: impl Fn(F, F) -> F) {
+        let cases = [
+            (F::ZERO, F::ZERO, F::ZERO),
+            (F::ONE, F::ONE, F::ONE),
+            (F::ZERO, F::ONE, F::ZERO),
+            (F::ONE, F::ZERO, F::ZERO),
+            (F::ZERO, F::NEG_ONE, F::NEG_ONE),
+            (F::NEG_ONE, F::ZERO, F::NEG_ONE),
+            (F::INFINITY, F::ZERO, F::ZERO),
+            (F::NEG_INFINITY, F::ZERO, F::NEG_INFINITY),
+            (F::NAN, F::ZERO, F::ZERO),
+            (F::ZERO, F::NAN, F::ZERO),
+            (F::NAN, F::NAN, F::NAN),
+        ];
+
+        for (x, y, res) in cases {
+            let val = f(x, y);
+            assert_biteq!(val, res, "fmin({}, {})", Hexf(x), Hexf(y));
+        }
+    }
+
+    #[test]
+    #[cfg(f16_enabled)]
+    fn fmin_spec_tests_f16() {
+        fmin_spec_test::<f16>(fminf16);
+    }
+
+    #[test]
+    fn fmin_spec_tests_f32() {
+        fmin_spec_test::<f32>(fminf);
+    }
+
+    #[test]
+    fn fmin_spec_tests_f64() {
+        fmin_spec_test::<f64>(fmin);
+    }
+
+    #[test]
+    #[cfg(f128_enabled)]
+    fn fmin_spec_tests_f128() {
+        fmin_spec_test::<f128>(fminf128);
+    }
+
+    fn fmax_spec_test<F: Float>(f: impl Fn(F, F) -> F) {
+        let cases = [
+            (F::ZERO, F::ZERO, F::ZERO),
+            (F::ONE, F::ONE, F::ONE),
+            (F::ZERO, F::ONE, F::ONE),
+            (F::ONE, F::ZERO, F::ONE),
+            (F::ZERO, F::NEG_ONE, F::ZERO),
+            (F::NEG_ONE, F::ZERO, F::ZERO),
+            (F::INFINITY, F::ZERO, F::INFINITY),
+            (F::NEG_INFINITY, F::ZERO, F::ZERO),
+            (F::NAN, F::ZERO, F::ZERO),
+            (F::ZERO, F::NAN, F::ZERO),
+            (F::NAN, F::NAN, F::NAN),
+        ];
+
+        for (x, y, res) in cases {
+            let val = f(x, y);
+            assert_biteq!(val, res, "fmax({}, {})", Hexf(x), Hexf(y));
+        }
+    }
+
+    #[test]
+    #[cfg(f16_enabled)]
+    fn fmax_spec_tests_f16() {
+        fmax_spec_test::<f16>(fmaxf16);
+    }
+
+    #[test]
+    fn fmax_spec_tests_f32() {
+        fmax_spec_test::<f32>(fmaxf);
+    }
+
+    #[test]
+    fn fmax_spec_tests_f64() {
+        fmax_spec_test::<f64>(fmax);
+    }
+
+    #[test]
+    #[cfg(f128_enabled)]
+    fn fmax_spec_tests_f128() {
+        fmax_spec_test::<f128>(fmaxf128);
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/fminimum_fmaximum.rs b/library/compiler-builtins/libm/src/math/fminimum_fmaximum.rs
new file mode 100644
index 00000000000..b7999e27392
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/fminimum_fmaximum.rs
@@ -0,0 +1,163 @@
+/// Return the lesser of two arguments or, if either argument is NaN, the other argument.
+///
+/// This coincides with IEEE 754-2019 `minimum`. The result orders -0.0 < 0.0.
+#[cfg(f16_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fminimumf16(x: f16, y: f16) -> f16 {
+    super::generic::fminimum(x, y)
+}
+
+/// Return the lesser of two arguments or, if either argument is NaN, the other argument.
+///
+/// This coincides with IEEE 754-2019 `minimum`. The result orders -0.0 < 0.0.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fminimum(x: f64, y: f64) -> f64 {
+    super::generic::fminimum(x, y)
+}
+
+/// Return the lesser of two arguments or, if either argument is NaN, the other argument.
+///
+/// This coincides with IEEE 754-2019 `minimum`. The result orders -0.0 < 0.0.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fminimumf(x: f32, y: f32) -> f32 {
+    super::generic::fminimum(x, y)
+}
+
+/// Return the lesser of two arguments or, if either argument is NaN, the other argument.
+///
+/// This coincides with IEEE 754-2019 `minimum`. The result orders -0.0 < 0.0.
+#[cfg(f128_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fminimumf128(x: f128, y: f128) -> f128 {
+    super::generic::fminimum(x, y)
+}
+
+/// Return the greater of two arguments or, if either argument is NaN, the other argument.
+///
+/// This coincides with IEEE 754-2019 `maximum`. The result orders -0.0 < 0.0.
+#[cfg(f16_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmaximumf16(x: f16, y: f16) -> f16 {
+    super::generic::fmaximum(x, y)
+}
+
+/// Return the greater of two arguments or, if either argument is NaN, the other argument.
+///
+/// This coincides with IEEE 754-2019 `maximum`. The result orders -0.0 < 0.0.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmaximumf(x: f32, y: f32) -> f32 {
+    super::generic::fmaximum(x, y)
+}
+
+/// Return the greater of two arguments or, if either argument is NaN, the other argument.
+///
+/// This coincides with IEEE 754-2019 `maximum`. The result orders -0.0 < 0.0.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmaximum(x: f64, y: f64) -> f64 {
+    super::generic::fmaximum(x, y)
+}
+
+/// Return the greater of two arguments or, if either argument is NaN, the other argument.
+///
+/// This coincides with IEEE 754-2019 `maximum`. The result orders -0.0 < 0.0.
+#[cfg(f128_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmaximumf128(x: f128, y: f128) -> f128 {
+    super::generic::fmaximum(x, y)
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+    use crate::support::{Float, Hexf};
+
+    fn fminimum_spec_test<F: Float>(f: impl Fn(F, F) -> F) {
+        let cases = [
+            (F::ZERO, F::ZERO, F::ZERO),
+            (F::ONE, F::ONE, F::ONE),
+            (F::ZERO, F::ONE, F::ZERO),
+            (F::ONE, F::ZERO, F::ZERO),
+            (F::ZERO, F::NEG_ONE, F::NEG_ONE),
+            (F::NEG_ONE, F::ZERO, F::NEG_ONE),
+            (F::INFINITY, F::ZERO, F::ZERO),
+            (F::NEG_INFINITY, F::ZERO, F::NEG_INFINITY),
+            (F::NAN, F::ZERO, F::NAN),
+            (F::ZERO, F::NAN, F::NAN),
+            (F::NAN, F::NAN, F::NAN),
+            (F::ZERO, F::NEG_ZERO, F::NEG_ZERO),
+            (F::NEG_ZERO, F::ZERO, F::NEG_ZERO),
+        ];
+
+        for (x, y, res) in cases {
+            let val = f(x, y);
+            assert_biteq!(val, res, "fminimum({}, {})", Hexf(x), Hexf(y));
+        }
+    }
+
+    #[test]
+    #[cfg(f16_enabled)]
+    fn fminimum_spec_tests_f16() {
+        fminimum_spec_test::<f16>(fminimumf16);
+    }
+
+    #[test]
+    fn fminimum_spec_tests_f32() {
+        fminimum_spec_test::<f32>(fminimumf);
+    }
+
+    #[test]
+    fn fminimum_spec_tests_f64() {
+        fminimum_spec_test::<f64>(fminimum);
+    }
+
+    #[test]
+    #[cfg(f128_enabled)]
+    fn fminimum_spec_tests_f128() {
+        fminimum_spec_test::<f128>(fminimumf128);
+    }
+
+    fn fmaximum_spec_test<F: Float>(f: impl Fn(F, F) -> F) {
+        let cases = [
+            (F::ZERO, F::ZERO, F::ZERO),
+            (F::ONE, F::ONE, F::ONE),
+            (F::ZERO, F::ONE, F::ONE),
+            (F::ONE, F::ZERO, F::ONE),
+            (F::ZERO, F::NEG_ONE, F::ZERO),
+            (F::NEG_ONE, F::ZERO, F::ZERO),
+            (F::INFINITY, F::ZERO, F::INFINITY),
+            (F::NEG_INFINITY, F::ZERO, F::ZERO),
+            (F::NAN, F::ZERO, F::NAN),
+            (F::ZERO, F::NAN, F::NAN),
+            (F::NAN, F::NAN, F::NAN),
+            (F::ZERO, F::NEG_ZERO, F::ZERO),
+            (F::NEG_ZERO, F::ZERO, F::ZERO),
+        ];
+
+        for (x, y, res) in cases {
+            let val = f(x, y);
+            assert_biteq!(val, res, "fmaximum({}, {})", Hexf(x), Hexf(y));
+        }
+    }
+
+    #[test]
+    #[cfg(f16_enabled)]
+    fn fmaximum_spec_tests_f16() {
+        fmaximum_spec_test::<f16>(fmaximumf16);
+    }
+
+    #[test]
+    fn fmaximum_spec_tests_f32() {
+        fmaximum_spec_test::<f32>(fmaximumf);
+    }
+
+    #[test]
+    fn fmaximum_spec_tests_f64() {
+        fmaximum_spec_test::<f64>(fmaximum);
+    }
+
+    #[test]
+    #[cfg(f128_enabled)]
+    fn fmaximum_spec_tests_f128() {
+        fmaximum_spec_test::<f128>(fmaximumf128);
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/fminimum_fmaximum_num.rs b/library/compiler-builtins/libm/src/math/fminimum_fmaximum_num.rs
new file mode 100644
index 00000000000..180d21f72b7
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/fminimum_fmaximum_num.rs
@@ -0,0 +1,163 @@
+/// Return the lesser of two arguments or, if either argument is NaN, NaN.
+///
+/// This coincides with IEEE 754-2019 `minimumNumber`. The result orders -0.0 < 0.0.
+#[cfg(f16_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fminimum_numf16(x: f16, y: f16) -> f16 {
+    super::generic::fminimum_num(x, y)
+}
+
+/// Return the lesser of two arguments or, if either argument is NaN, NaN.
+///
+/// This coincides with IEEE 754-2019 `minimumNumber`. The result orders -0.0 < 0.0.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fminimum_numf(x: f32, y: f32) -> f32 {
+    super::generic::fminimum_num(x, y)
+}
+
+/// Return the lesser of two arguments or, if either argument is NaN, NaN.
+///
+/// This coincides with IEEE 754-2019 `minimumNumber`. The result orders -0.0 < 0.0.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fminimum_num(x: f64, y: f64) -> f64 {
+    super::generic::fminimum_num(x, y)
+}
+
+/// Return the lesser of two arguments or, if either argument is NaN, NaN.
+///
+/// This coincides with IEEE 754-2019 `minimumNumber`. The result orders -0.0 < 0.0.
+#[cfg(f128_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fminimum_numf128(x: f128, y: f128) -> f128 {
+    super::generic::fminimum_num(x, y)
+}
+
+/// Return the greater of two arguments or, if either argument is NaN, NaN.
+///
+/// This coincides with IEEE 754-2019 `maximumNumber`. The result orders -0.0 < 0.0.
+#[cfg(f16_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmaximum_numf16(x: f16, y: f16) -> f16 {
+    super::generic::fmaximum_num(x, y)
+}
+
+/// Return the greater of two arguments or, if either argument is NaN, NaN.
+///
+/// This coincides with IEEE 754-2019 `maximumNumber`. The result orders -0.0 < 0.0.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmaximum_numf(x: f32, y: f32) -> f32 {
+    super::generic::fmaximum_num(x, y)
+}
+
+/// Return the greater of two arguments or, if either argument is NaN, NaN.
+///
+/// This coincides with IEEE 754-2019 `maximumNumber`. The result orders -0.0 < 0.0.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmaximum_num(x: f64, y: f64) -> f64 {
+    super::generic::fmaximum_num(x, y)
+}
+
+/// Return the greater of two arguments or, if either argument is NaN, NaN.
+///
+/// This coincides with IEEE 754-2019 `maximumNumber`. The result orders -0.0 < 0.0.
+#[cfg(f128_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmaximum_numf128(x: f128, y: f128) -> f128 {
+    super::generic::fmaximum_num(x, y)
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+    use crate::support::{Float, Hexf};
+
+    fn fminimum_num_spec_test<F: Float>(f: impl Fn(F, F) -> F) {
+        let cases = [
+            (F::ZERO, F::ZERO, F::ZERO),
+            (F::ONE, F::ONE, F::ONE),
+            (F::ZERO, F::ONE, F::ZERO),
+            (F::ONE, F::ZERO, F::ZERO),
+            (F::ZERO, F::NEG_ONE, F::NEG_ONE),
+            (F::NEG_ONE, F::ZERO, F::NEG_ONE),
+            (F::INFINITY, F::ZERO, F::ZERO),
+            (F::NEG_INFINITY, F::ZERO, F::NEG_INFINITY),
+            (F::NAN, F::ZERO, F::ZERO),
+            (F::ZERO, F::NAN, F::ZERO),
+            (F::NAN, F::NAN, F::NAN),
+            (F::ZERO, F::NEG_ZERO, F::NEG_ZERO),
+            (F::NEG_ZERO, F::ZERO, F::NEG_ZERO),
+        ];
+
+        for (x, y, res) in cases {
+            let val = f(x, y);
+            assert_biteq!(val, res, "fminimum_num({}, {})", Hexf(x), Hexf(y));
+        }
+    }
+
+    #[test]
+    #[cfg(f16_enabled)]
+    fn fminimum_num_spec_tests_f16() {
+        fminimum_num_spec_test::<f16>(fminimum_numf16);
+    }
+
+    #[test]
+    fn fminimum_num_spec_tests_f32() {
+        fminimum_num_spec_test::<f32>(fminimum_numf);
+    }
+
+    #[test]
+    fn fminimum_num_spec_tests_f64() {
+        fminimum_num_spec_test::<f64>(fminimum_num);
+    }
+
+    #[test]
+    #[cfg(f128_enabled)]
+    fn fminimum_num_spec_tests_f128() {
+        fminimum_num_spec_test::<f128>(fminimum_numf128);
+    }
+
+    fn fmaximum_num_spec_test<F: Float>(f: impl Fn(F, F) -> F) {
+        let cases = [
+            (F::ZERO, F::ZERO, F::ZERO),
+            (F::ONE, F::ONE, F::ONE),
+            (F::ZERO, F::ONE, F::ONE),
+            (F::ONE, F::ZERO, F::ONE),
+            (F::ZERO, F::NEG_ONE, F::ZERO),
+            (F::NEG_ONE, F::ZERO, F::ZERO),
+            (F::INFINITY, F::ZERO, F::INFINITY),
+            (F::NEG_INFINITY, F::ZERO, F::ZERO),
+            (F::NAN, F::ZERO, F::ZERO),
+            (F::ZERO, F::NAN, F::ZERO),
+            (F::NAN, F::NAN, F::NAN),
+            (F::ZERO, F::NEG_ZERO, F::ZERO),
+            (F::NEG_ZERO, F::ZERO, F::ZERO),
+        ];
+
+        for (x, y, res) in cases {
+            let val = f(x, y);
+            assert_biteq!(val, res, "fmaximum_num({}, {})", Hexf(x), Hexf(y));
+        }
+    }
+
+    #[test]
+    #[cfg(f16_enabled)]
+    fn fmaximum_num_spec_tests_f16() {
+        fmaximum_num_spec_test::<f16>(fmaximum_numf16);
+    }
+
+    #[test]
+    fn fmaximum_num_spec_tests_f32() {
+        fmaximum_num_spec_test::<f32>(fmaximum_numf);
+    }
+
+    #[test]
+    fn fmaximum_num_spec_tests_f64() {
+        fmaximum_num_spec_test::<f64>(fmaximum_num);
+    }
+
+    #[test]
+    #[cfg(f128_enabled)]
+    fn fmaximum_num_spec_tests_f128() {
+        fmaximum_num_spec_test::<f128>(fmaximum_numf128);
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/fmod.rs b/library/compiler-builtins/libm/src/math/fmod.rs
new file mode 100644
index 00000000000..c4752b92578
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/fmod.rs
@@ -0,0 +1,25 @@
+/// Calculate the remainder of `x / y`, the precise result of `x - trunc(x / y) * y`.
+#[cfg(f16_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmodf16(x: f16, y: f16) -> f16 {
+    super::generic::fmod(x, y)
+}
+
+/// Calculate the remainder of `x / y`, the precise result of `x - trunc(x / y) * y`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmodf(x: f32, y: f32) -> f32 {
+    super::generic::fmod(x, y)
+}
+
+/// Calculate the remainder of `x / y`, the precise result of `x - trunc(x / y) * y`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmod(x: f64, y: f64) -> f64 {
+    super::generic::fmod(x, y)
+}
+
+/// Calculate the remainder of `x / y`, the precise result of `x - trunc(x / y) * y`.
+#[cfg(f128_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmodf128(x: f128, y: f128) -> f128 {
+    super::generic::fmod(x, y)
+}
diff --git a/library/compiler-builtins/libm/src/math/fmodf.rs b/library/compiler-builtins/libm/src/math/fmodf.rs
new file mode 100644
index 00000000000..4e95696e20d
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/fmodf.rs
@@ -0,0 +1,5 @@
+/// Calculate the remainder of `x / y`, the precise result of `x - trunc(x / y) * y`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmodf(x: f32, y: f32) -> f32 {
+    super::generic::fmod(x, y)
+}
diff --git a/library/compiler-builtins/libm/src/math/fmodf128.rs b/library/compiler-builtins/libm/src/math/fmodf128.rs
new file mode 100644
index 00000000000..ff0e0493e26
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/fmodf128.rs
@@ -0,0 +1,5 @@
+/// Calculate the remainder of `x / y`, the precise result of `x - trunc(x / y) * y`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmodf128(x: f128, y: f128) -> f128 {
+    super::generic::fmod(x, y)
+}
diff --git a/library/compiler-builtins/libm/src/math/fmodf16.rs b/library/compiler-builtins/libm/src/math/fmodf16.rs
new file mode 100644
index 00000000000..11972a7de4f
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/fmodf16.rs
@@ -0,0 +1,5 @@
+/// Calculate the remainder of `x / y`, the precise result of `x - trunc(x / y) * y`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmodf16(x: f16, y: f16) -> f16 {
+    super::generic::fmod(x, y)
+}
diff --git a/library/compiler-builtins/libm/src/math/frexp.rs b/library/compiler-builtins/libm/src/math/frexp.rs
new file mode 100644
index 00000000000..de7a64fdae1
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/frexp.rs
@@ -0,0 +1,21 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn frexp(x: f64) -> (f64, i32) {
+    let mut y = x.to_bits();
+    let ee = ((y >> 52) & 0x7ff) as i32;
+
+    if ee == 0 {
+        if x != 0.0 {
+            let x1p64 = f64::from_bits(0x43f0000000000000);
+            let (x, e) = frexp(x * x1p64);
+            return (x, e - 64);
+        }
+        return (x, 0);
+    } else if ee == 0x7ff {
+        return (x, 0);
+    }
+
+    let e = ee - 0x3fe;
+    y &= 0x800fffffffffffff;
+    y |= 0x3fe0000000000000;
+    return (f64::from_bits(y), e);
+}
diff --git a/library/compiler-builtins/libm/src/math/frexpf.rs b/library/compiler-builtins/libm/src/math/frexpf.rs
new file mode 100644
index 00000000000..0ec91c2d350
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/frexpf.rs
@@ -0,0 +1,22 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn frexpf(x: f32) -> (f32, i32) {
+    let mut y = x.to_bits();
+    let ee: i32 = ((y >> 23) & 0xff) as i32;
+
+    if ee == 0 {
+        if x != 0.0 {
+            let x1p64 = f32::from_bits(0x5f800000);
+            let (x, e) = frexpf(x * x1p64);
+            return (x, e - 64);
+        } else {
+            return (x, 0);
+        }
+    } else if ee == 0xff {
+        return (x, 0);
+    }
+
+    let e = ee - 0x7e;
+    y &= 0x807fffff;
+    y |= 0x3f000000;
+    (f32::from_bits(y), e)
+}
diff --git a/library/compiler-builtins/libm/src/math/generic/ceil.rs b/library/compiler-builtins/libm/src/math/generic/ceil.rs
new file mode 100644
index 00000000000..5c5bb47638f
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/generic/ceil.rs
@@ -0,0 +1,168 @@
+/* SPDX-License-Identifier: MIT */
+/* origin: musl src/math/ceilf.c */
+
+//! Generic `ceil` algorithm.
+//!
+//! Note that this uses the algorithm from musl's `ceilf` rather than `ceil` or `ceill` because
+//! performance seems to be better (based on icount) and it does not seem to experience rounding
+//! errors on i386.
+
+use super::super::support::{FpResult, Status};
+use super::super::{Float, Int, IntTy, MinInt};
+
+#[inline]
+pub fn ceil<F: Float>(x: F) -> F {
+    ceil_status(x).val
+}
+
+#[inline]
+pub fn ceil_status<F: Float>(x: F) -> FpResult<F> {
+    let zero = IntTy::<F>::ZERO;
+
+    let mut ix = x.to_bits();
+    let e = x.exp_unbiased();
+
+    // If the represented value has no fractional part, no truncation is needed.
+    if e >= F::SIG_BITS as i32 {
+        return FpResult::ok(x);
+    }
+
+    let status;
+    let res = if e >= 0 {
+        // |x| >= 1.0
+        let m = F::SIG_MASK >> e.unsigned();
+        if (ix & m) == zero {
+            // Portion to be masked is already zero; no adjustment needed.
+            return FpResult::ok(x);
+        }
+
+        // Otherwise, raise an inexact exception.
+        status = Status::INEXACT;
+
+        if x.is_sign_positive() {
+            ix += m;
+        }
+
+        ix &= !m;
+        F::from_bits(ix)
+    } else {
+        // |x| < 1.0, raise an inexact exception since truncation will happen (unless x == 0).
+        if ix & F::SIG_MASK == F::Int::ZERO {
+            status = Status::OK;
+        } else {
+            status = Status::INEXACT;
+        }
+
+        if x.is_sign_negative() {
+            // -1.0 < x <= -0.0; rounding up goes toward -0.0.
+            F::NEG_ZERO
+        } else if ix << 1 != zero {
+            // 0.0 < x < 1.0; rounding up goes toward +1.0.
+            F::ONE
+        } else {
+            // +0.0 remains unchanged
+            x
+        }
+    };
+
+    FpResult::new(res, status)
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+    use crate::support::Hexf;
+
+    /// Test against https://en.cppreference.com/w/cpp/numeric/math/ceil
+    fn spec_test<F: Float>(cases: &[(F, F, Status)]) {
+        let roundtrip = [F::ZERO, F::ONE, F::NEG_ONE, F::NEG_ZERO, F::INFINITY, F::NEG_INFINITY];
+
+        for x in roundtrip {
+            let FpResult { val, status } = ceil_status(x);
+            assert_biteq!(val, x, "{}", Hexf(x));
+            assert_eq!(status, Status::OK, "{}", Hexf(x));
+        }
+
+        for &(x, res, res_stat) in cases {
+            let FpResult { val, status } = ceil_status(x);
+            assert_biteq!(val, res, "{}", Hexf(x));
+            assert_eq!(status, res_stat, "{}", Hexf(x));
+        }
+    }
+
+    /* Skipping f16 / f128 "sanity_check"s due to rejected literal lexing at MSRV */
+
+    #[test]
+    #[cfg(f16_enabled)]
+    fn spec_tests_f16() {
+        let cases = [
+            (0.1, 1.0, Status::INEXACT),
+            (-0.1, -0.0, Status::INEXACT),
+            (0.9, 1.0, Status::INEXACT),
+            (-0.9, -0.0, Status::INEXACT),
+            (1.1, 2.0, Status::INEXACT),
+            (-1.1, -1.0, Status::INEXACT),
+            (1.9, 2.0, Status::INEXACT),
+            (-1.9, -1.0, Status::INEXACT),
+        ];
+        spec_test::<f16>(&cases);
+    }
+
+    #[test]
+    fn sanity_check_f32() {
+        assert_eq!(ceil(1.1f32), 2.0);
+        assert_eq!(ceil(2.9f32), 3.0);
+    }
+
+    #[test]
+    fn spec_tests_f32() {
+        let cases = [
+            (0.1, 1.0, Status::INEXACT),
+            (-0.1, -0.0, Status::INEXACT),
+            (0.9, 1.0, Status::INEXACT),
+            (-0.9, -0.0, Status::INEXACT),
+            (1.1, 2.0, Status::INEXACT),
+            (-1.1, -1.0, Status::INEXACT),
+            (1.9, 2.0, Status::INEXACT),
+            (-1.9, -1.0, Status::INEXACT),
+        ];
+        spec_test::<f32>(&cases);
+    }
+
+    #[test]
+    fn sanity_check_f64() {
+        assert_eq!(ceil(1.1f64), 2.0);
+        assert_eq!(ceil(2.9f64), 3.0);
+    }
+
+    #[test]
+    fn spec_tests_f64() {
+        let cases = [
+            (0.1, 1.0, Status::INEXACT),
+            (-0.1, -0.0, Status::INEXACT),
+            (0.9, 1.0, Status::INEXACT),
+            (-0.9, -0.0, Status::INEXACT),
+            (1.1, 2.0, Status::INEXACT),
+            (-1.1, -1.0, Status::INEXACT),
+            (1.9, 2.0, Status::INEXACT),
+            (-1.9, -1.0, Status::INEXACT),
+        ];
+        spec_test::<f64>(&cases);
+    }
+
+    #[test]
+    #[cfg(f128_enabled)]
+    fn spec_tests_f128() {
+        let cases = [
+            (0.1, 1.0, Status::INEXACT),
+            (-0.1, -0.0, Status::INEXACT),
+            (0.9, 1.0, Status::INEXACT),
+            (-0.9, -0.0, Status::INEXACT),
+            (1.1, 2.0, Status::INEXACT),
+            (-1.1, -1.0, Status::INEXACT),
+            (1.9, 2.0, Status::INEXACT),
+            (-1.9, -1.0, Status::INEXACT),
+        ];
+        spec_test::<f128>(&cases);
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/generic/copysign.rs b/library/compiler-builtins/libm/src/math/generic/copysign.rs
new file mode 100644
index 00000000000..a61af22f04a
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/generic/copysign.rs
@@ -0,0 +1,11 @@
+use super::super::Float;
+
+/// Copy the sign of `y` to `x`.
+#[inline]
+pub fn copysign<F: Float>(x: F, y: F) -> F {
+    let mut ux = x.to_bits();
+    let uy = y.to_bits();
+    ux &= !F::SIGN_MASK;
+    ux |= uy & F::SIGN_MASK;
+    F::from_bits(ux)
+}
diff --git a/library/compiler-builtins/libm/src/math/generic/fabs.rs b/library/compiler-builtins/libm/src/math/generic/fabs.rs
new file mode 100644
index 00000000000..0fa0edf9b87
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/generic/fabs.rs
@@ -0,0 +1,8 @@
+use super::super::Float;
+
+/// Absolute value.
+#[inline]
+pub fn fabs<F: Float>(x: F) -> F {
+    let abs_mask = !F::SIGN_MASK;
+    F::from_bits(x.to_bits() & abs_mask)
+}
diff --git a/library/compiler-builtins/libm/src/math/generic/fdim.rs b/library/compiler-builtins/libm/src/math/generic/fdim.rs
new file mode 100644
index 00000000000..a63007b191c
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/generic/fdim.rs
@@ -0,0 +1,6 @@
+use super::super::Float;
+
+#[inline]
+pub fn fdim<F: Float>(x: F, y: F) -> F {
+    if x <= y { F::ZERO } else { x - y }
+}
diff --git a/library/compiler-builtins/libm/src/math/generic/floor.rs b/library/compiler-builtins/libm/src/math/generic/floor.rs
new file mode 100644
index 00000000000..2438046254f
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/generic/floor.rs
@@ -0,0 +1,151 @@
+/* SPDX-License-Identifier: MIT
+ * origin: musl src/math/floor.c */
+
+//! Generic `floor` algorithm.
+//!
+//! Note that this uses the algorithm from musl's `floorf` rather than `floor` or `floorl` because
+//! performance seems to be better (based on icount) and it does not seem to experience rounding
+//! errors on i386.
+
+use super::super::support::{FpResult, Status};
+use super::super::{Float, Int, IntTy, MinInt};
+
+#[inline]
+pub fn floor<F: Float>(x: F) -> F {
+    floor_status(x).val
+}
+
+#[inline]
+pub fn floor_status<F: Float>(x: F) -> FpResult<F> {
+    let zero = IntTy::<F>::ZERO;
+
+    let mut ix = x.to_bits();
+    let e = x.exp_unbiased();
+
+    // If the represented value has no fractional part, no truncation is needed.
+    if e >= F::SIG_BITS as i32 {
+        return FpResult::ok(x);
+    }
+
+    let status;
+    let res = if e >= 0 {
+        // |x| >= 1.0
+        let m = F::SIG_MASK >> e.unsigned();
+        if ix & m == zero {
+            // Portion to be masked is already zero; no adjustment needed.
+            return FpResult::ok(x);
+        }
+
+        // Otherwise, raise an inexact exception.
+        status = Status::INEXACT;
+
+        if x.is_sign_negative() {
+            ix += m;
+        }
+
+        ix &= !m;
+        F::from_bits(ix)
+    } else {
+        // |x| < 1.0, raise an inexact exception since truncation will happen.
+        if ix & F::SIG_MASK == F::Int::ZERO {
+            status = Status::OK;
+        } else {
+            status = Status::INEXACT;
+        }
+
+        if x.is_sign_positive() {
+            // 0.0 <= x < 1.0; rounding down goes toward +0.0.
+            F::ZERO
+        } else if ix << 1 != zero {
+            // -1.0 < x < 0.0; rounding down goes toward -1.0.
+            F::NEG_ONE
+        } else {
+            // -0.0 remains unchanged
+            x
+        }
+    };
+
+    FpResult::new(res, status)
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+    use crate::support::Hexf;
+
+    /// Test against https://en.cppreference.com/w/cpp/numeric/math/floor
+    fn spec_test<F: Float>(cases: &[(F, F, Status)]) {
+        let roundtrip = [F::ZERO, F::ONE, F::NEG_ONE, F::NEG_ZERO, F::INFINITY, F::NEG_INFINITY];
+
+        for x in roundtrip {
+            let FpResult { val, status } = floor_status(x);
+            assert_biteq!(val, x, "{}", Hexf(x));
+            assert_eq!(status, Status::OK, "{}", Hexf(x));
+        }
+
+        for &(x, res, res_stat) in cases {
+            let FpResult { val, status } = floor_status(x);
+            assert_biteq!(val, res, "{}", Hexf(x));
+            assert_eq!(status, res_stat, "{}", Hexf(x));
+        }
+    }
+
+    /* Skipping f16 / f128 "sanity_check"s and spec cases due to rejected literal lexing at MSRV */
+
+    #[test]
+    #[cfg(f16_enabled)]
+    fn spec_tests_f16() {
+        let cases = [];
+        spec_test::<f16>(&cases);
+    }
+
+    #[test]
+    fn sanity_check_f32() {
+        assert_eq!(floor(0.5f32), 0.0);
+        assert_eq!(floor(1.1f32), 1.0);
+        assert_eq!(floor(2.9f32), 2.0);
+    }
+
+    #[test]
+    fn spec_tests_f32() {
+        let cases = [
+            (0.1, 0.0, Status::INEXACT),
+            (-0.1, -1.0, Status::INEXACT),
+            (0.9, 0.0, Status::INEXACT),
+            (-0.9, -1.0, Status::INEXACT),
+            (1.1, 1.0, Status::INEXACT),
+            (-1.1, -2.0, Status::INEXACT),
+            (1.9, 1.0, Status::INEXACT),
+            (-1.9, -2.0, Status::INEXACT),
+        ];
+        spec_test::<f32>(&cases);
+    }
+
+    #[test]
+    fn sanity_check_f64() {
+        assert_eq!(floor(1.1f64), 1.0);
+        assert_eq!(floor(2.9f64), 2.0);
+    }
+
+    #[test]
+    fn spec_tests_f64() {
+        let cases = [
+            (0.1, 0.0, Status::INEXACT),
+            (-0.1, -1.0, Status::INEXACT),
+            (0.9, 0.0, Status::INEXACT),
+            (-0.9, -1.0, Status::INEXACT),
+            (1.1, 1.0, Status::INEXACT),
+            (-1.1, -2.0, Status::INEXACT),
+            (1.9, 1.0, Status::INEXACT),
+            (-1.9, -2.0, Status::INEXACT),
+        ];
+        spec_test::<f64>(&cases);
+    }
+
+    #[test]
+    #[cfg(f128_enabled)]
+    fn spec_tests_f128() {
+        let cases = [];
+        spec_test::<f128>(&cases);
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/generic/fmax.rs b/library/compiler-builtins/libm/src/math/generic/fmax.rs
new file mode 100644
index 00000000000..bf3f847e89b
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/generic/fmax.rs
@@ -0,0 +1,24 @@
+/* SPDX-License-Identifier: MIT OR Apache-2.0 */
+//! IEEE 754-2011 `maxNum`. This has been superseded by IEEE 754-2019 `maximumNumber`.
+//!
+//! Per the spec, returns the canonicalized result of:
+//! - `x` if `x > y`
+//! - `y` if `y > x`
+//! - The other number if one is NaN
+//! - Otherwise, either `x` or `y`, canonicalized
+//! - -0.0 and +0.0 may be disregarded (unlike newer operations)
+//!
+//! Excluded from our implementation is sNaN handling.
+//!
+//! More on the differences: [link].
+//!
+//! [link]: https://grouper.ieee.org/groups/msc/ANSI_IEEE-Std-754-2019/background/minNum_maxNum_Removal_Demotion_v3.pdf
+
+use super::super::Float;
+
+#[inline]
+pub fn fmax<F: Float>(x: F, y: F) -> F {
+    let res = if x.is_nan() || x < y { y } else { x };
+    // Canonicalize
+    res * F::ONE
+}
diff --git a/library/compiler-builtins/libm/src/math/generic/fmaximum.rs b/library/compiler-builtins/libm/src/math/generic/fmaximum.rs
new file mode 100644
index 00000000000..387055af29c
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/generic/fmaximum.rs
@@ -0,0 +1,28 @@
+/* SPDX-License-Identifier: MIT OR Apache-2.0 */
+//! IEEE 754-2019 `maximum`.
+//!
+//! Per the spec, returns the canonicalized result of:
+//! - `x` if `x > y`
+//! - `y` if `y > x`
+//! - qNaN if either operation is NaN
+//! - Logic following +0.0 > -0.0
+//!
+//! Excluded from our implementation is sNaN handling.
+
+use super::super::Float;
+
+#[inline]
+pub fn fmaximum<F: Float>(x: F, y: F) -> F {
+    let res = if x.is_nan() {
+        x
+    } else if y.is_nan() {
+        y
+    } else if x > y || (y.to_bits() == F::NEG_ZERO.to_bits() && x.is_sign_positive()) {
+        x
+    } else {
+        y
+    };
+
+    // Canonicalize
+    res * F::ONE
+}
diff --git a/library/compiler-builtins/libm/src/math/generic/fmaximum_num.rs b/library/compiler-builtins/libm/src/math/generic/fmaximum_num.rs
new file mode 100644
index 00000000000..f7efdde80ea
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/generic/fmaximum_num.rs
@@ -0,0 +1,27 @@
+/* SPDX-License-Identifier: MIT OR Apache-2.0 */
+//! IEEE 754-2019 `maximumNumber`.
+//!
+//! Per the spec, returns:
+//! - `x` if `x > y`
+//! - `y` if `y > x`
+//! - Non-NaN if one operand is NaN
+//! - Logic following +0.0 > -0.0
+//! - Either `x` or `y` if `x == y` and the signs are the same
+//! - qNaN if either operand is a NaN
+//!
+//! Excluded from our implementation is sNaN handling.
+
+use super::super::Float;
+
+#[inline]
+pub fn fmaximum_num<F: Float>(x: F, y: F) -> F {
+    let res =
+        if x.is_nan() || x < y || (x.to_bits() == F::NEG_ZERO.to_bits() && y.is_sign_positive()) {
+            y
+        } else {
+            x
+        };
+
+    // Canonicalize
+    res * F::ONE
+}
diff --git a/library/compiler-builtins/libm/src/math/generic/fmin.rs b/library/compiler-builtins/libm/src/math/generic/fmin.rs
new file mode 100644
index 00000000000..cd3caeee4f2
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/generic/fmin.rs
@@ -0,0 +1,24 @@
+/* SPDX-License-Identifier: MIT OR Apache-2.0 */
+//! IEEE 754-2008 `minNum`. This has been superseded by IEEE 754-2019 `minimumNumber`.
+//!
+//! Per the spec, returns the canonicalized result of:
+//! - `x` if `x < y`
+//! - `y` if `y < x`
+//! - The other number if one is NaN
+//! - Otherwise, either `x` or `y`, canonicalized
+//! - -0.0 and +0.0 may be disregarded (unlike newer operations)
+//!
+//! Excluded from our implementation is sNaN handling.
+//!
+//! More on the differences: [link].
+//!
+//! [link]: https://grouper.ieee.org/groups/msc/ANSI_IEEE-Std-754-2019/background/minNum_maxNum_Removal_Demotion_v3.pdf
+
+use super::super::Float;
+
+#[inline]
+pub fn fmin<F: Float>(x: F, y: F) -> F {
+    let res = if y.is_nan() || x < y { x } else { y };
+    // Canonicalize
+    res * F::ONE
+}
diff --git a/library/compiler-builtins/libm/src/math/generic/fminimum.rs b/library/compiler-builtins/libm/src/math/generic/fminimum.rs
new file mode 100644
index 00000000000..4ddb3645506
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/generic/fminimum.rs
@@ -0,0 +1,28 @@
+/* SPDX-License-Identifier: MIT OR Apache-2.0 */
+//! IEEE 754-2019 `minimum`.
+//!
+//! Per the spec, returns the canonicalized result of:
+//! - `x` if `x < y`
+//! - `y` if `y < x`
+//! - qNaN if either operation is NaN
+//! - Logic following +0.0 > -0.0
+//!
+//! Excluded from our implementation is sNaN handling.
+
+use super::super::Float;
+
+#[inline]
+pub fn fminimum<F: Float>(x: F, y: F) -> F {
+    let res = if x.is_nan() {
+        x
+    } else if y.is_nan() {
+        y
+    } else if x < y || (x.to_bits() == F::NEG_ZERO.to_bits() && y.is_sign_positive()) {
+        x
+    } else {
+        y
+    };
+
+    // Canonicalize
+    res * F::ONE
+}
diff --git a/library/compiler-builtins/libm/src/math/generic/fminimum_num.rs b/library/compiler-builtins/libm/src/math/generic/fminimum_num.rs
new file mode 100644
index 00000000000..441c204a921
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/generic/fminimum_num.rs
@@ -0,0 +1,27 @@
+/* SPDX-License-Identifier: MIT OR Apache-2.0 */
+//! IEEE 754-2019 `minimum`.
+//!
+//! Per the spec, returns:
+//! - `x` if `x < y`
+//! - `y` if `y < x`
+//! - Non-NaN if one operand is NaN
+//! - Logic following +0.0 > -0.0
+//! - Either `x` or `y` if `x == y` and the signs are the same
+//! - qNaN if either operand is a NaN
+//!
+//! Excluded from our implementation is sNaN handling.
+
+use super::super::Float;
+
+#[inline]
+pub fn fminimum_num<F: Float>(x: F, y: F) -> F {
+    let res =
+        if y.is_nan() || x < y || (x.to_bits() == F::NEG_ZERO.to_bits() && y.is_sign_positive()) {
+            x
+        } else {
+            y
+        };
+
+    // Canonicalize
+    res * F::ONE
+}
diff --git a/library/compiler-builtins/libm/src/math/generic/fmod.rs b/library/compiler-builtins/libm/src/math/generic/fmod.rs
new file mode 100644
index 00000000000..6414bbd2508
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/generic/fmod.rs
@@ -0,0 +1,84 @@
+/* SPDX-License-Identifier: MIT */
+/* origin: musl src/math/fmod.c. Ported to generic Rust algorithm in 2025, TG. */
+
+use super::super::{CastFrom, Float, Int, MinInt};
+
+#[inline]
+pub fn fmod<F: Float>(x: F, y: F) -> F {
+    let zero = F::Int::ZERO;
+    let one = F::Int::ONE;
+    let mut ix = x.to_bits();
+    let mut iy = y.to_bits();
+    let mut ex = x.ex().signed();
+    let mut ey = y.ex().signed();
+    let sx = ix & F::SIGN_MASK;
+
+    if iy << 1 == zero || y.is_nan() || ex == F::EXP_SAT as i32 {
+        return (x * y) / (x * y);
+    }
+
+    if ix << 1 <= iy << 1 {
+        if ix << 1 == iy << 1 {
+            return F::ZERO * x;
+        }
+        return x;
+    }
+
+    /* normalize x and y */
+    if ex == 0 {
+        let i = ix << (F::EXP_BITS + 1);
+        ex -= i.leading_zeros() as i32;
+        ix <<= -ex + 1;
+    } else {
+        ix &= F::Int::MAX >> F::EXP_BITS;
+        ix |= one << F::SIG_BITS;
+    }
+
+    if ey == 0 {
+        let i = iy << (F::EXP_BITS + 1);
+        ey -= i.leading_zeros() as i32;
+        iy <<= -ey + 1;
+    } else {
+        iy &= F::Int::MAX >> F::EXP_BITS;
+        iy |= one << F::SIG_BITS;
+    }
+
+    /* x mod y */
+    while ex > ey {
+        let i = ix.wrapping_sub(iy);
+        if i >> (F::BITS - 1) == zero {
+            if i == zero {
+                return F::ZERO * x;
+            }
+            ix = i;
+        }
+
+        ix <<= 1;
+        ex -= 1;
+    }
+
+    let i = ix.wrapping_sub(iy);
+    if i >> (F::BITS - 1) == zero {
+        if i == zero {
+            return F::ZERO * x;
+        }
+
+        ix = i;
+    }
+
+    let shift = ix.leading_zeros().saturating_sub(F::EXP_BITS);
+    ix <<= shift;
+    ex -= shift as i32;
+
+    /* scale result */
+    if ex > 0 {
+        ix -= one << F::SIG_BITS;
+        ix |= F::Int::cast_from(ex) << F::SIG_BITS;
+    } else {
+        ix >>= -ex + 1;
+    }
+
+    ix |= sx;
+
+    F::from_bits(ix)
+}
diff --git a/library/compiler-builtins/libm/src/math/generic/mod.rs b/library/compiler-builtins/libm/src/math/generic/mod.rs
new file mode 100644
index 00000000000..35846351a6e
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/generic/mod.rs
@@ -0,0 +1,38 @@
+// Note: generic functions are marked `#[inline]` because, even though generic functions are
+// typically inlined, this does not seem to always be the case.
+
+mod ceil;
+mod copysign;
+mod fabs;
+mod fdim;
+mod floor;
+mod fmax;
+mod fmaximum;
+mod fmaximum_num;
+mod fmin;
+mod fminimum;
+mod fminimum_num;
+mod fmod;
+mod rint;
+mod round;
+mod scalbn;
+mod sqrt;
+mod trunc;
+
+pub use ceil::ceil;
+pub use copysign::copysign;
+pub use fabs::fabs;
+pub use fdim::fdim;
+pub use floor::floor;
+pub use fmax::fmax;
+pub use fmaximum::fmaximum;
+pub use fmaximum_num::fmaximum_num;
+pub use fmin::fmin;
+pub use fminimum::fminimum;
+pub use fminimum_num::fminimum_num;
+pub use fmod::fmod;
+pub use rint::rint_round;
+pub use round::round;
+pub use scalbn::scalbn;
+pub use sqrt::sqrt;
+pub use trunc::trunc;
diff --git a/library/compiler-builtins/libm/src/math/generic/rint.rs b/library/compiler-builtins/libm/src/math/generic/rint.rs
new file mode 100644
index 00000000000..9cdeb1185a8
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/generic/rint.rs
@@ -0,0 +1,120 @@
+/* SPDX-License-Identifier: MIT */
+/* origin: musl src/math/rint.c */
+
+use super::super::Float;
+use super::super::support::{FpResult, Round};
+
+/// IEEE 754-2019 `roundToIntegralExact`, which respects rounding mode and raises inexact if
+/// applicable.
+#[inline]
+pub fn rint_round<F: Float>(x: F, _round: Round) -> FpResult<F> {
+    let toint = F::ONE / F::EPSILON;
+    let e = x.ex();
+    let positive = x.is_sign_positive();
+
+    // On i386 `force_eval!` must be used to force rounding via storage to memory. Otherwise,
+    // the excess precission from x87 would cause an incorrect final result.
+    let force = |x| {
+        if cfg!(x86_no_sse) && (F::BITS == 32 || F::BITS == 64) { force_eval!(x) } else { x }
+    };
+
+    let res = if e >= F::EXP_BIAS + F::SIG_BITS {
+        // No fractional part; exact result can be returned.
+        x
+    } else {
+        // Apply a net-zero adjustment that nudges `y` in the direction of the rounding mode. For
+        // Rust this is always nearest, but ideally it would take `round` into account.
+        let y = if positive {
+            force(force(x) + toint) - toint
+        } else {
+            force(force(x) - toint) + toint
+        };
+
+        if y == F::ZERO {
+            // A zero result takes the sign of the input.
+            if positive { F::ZERO } else { F::NEG_ZERO }
+        } else {
+            y
+        }
+    };
+
+    FpResult::ok(res)
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+    use crate::support::{Hexf, Status};
+
+    fn spec_test<F: Float>(cases: &[(F, F, Status)]) {
+        let roundtrip = [F::ZERO, F::ONE, F::NEG_ONE, F::NEG_ZERO, F::INFINITY, F::NEG_INFINITY];
+
+        for x in roundtrip {
+            let FpResult { val, status } = rint_round(x, Round::Nearest);
+            assert_biteq!(val, x, "rint_round({})", Hexf(x));
+            assert_eq!(status, Status::OK, "{}", Hexf(x));
+        }
+
+        for &(x, res, res_stat) in cases {
+            let FpResult { val, status } = rint_round(x, Round::Nearest);
+            assert_biteq!(val, res, "rint_round({})", Hexf(x));
+            assert_eq!(status, res_stat, "{}", Hexf(x));
+        }
+    }
+
+    #[test]
+    #[cfg(f16_enabled)]
+    fn spec_tests_f16() {
+        let cases = [];
+        spec_test::<f16>(&cases);
+    }
+
+    #[test]
+    fn spec_tests_f32() {
+        let cases = [
+            (0.1, 0.0, Status::OK),
+            (-0.1, -0.0, Status::OK),
+            (0.5, 0.0, Status::OK),
+            (-0.5, -0.0, Status::OK),
+            (0.9, 1.0, Status::OK),
+            (-0.9, -1.0, Status::OK),
+            (1.1, 1.0, Status::OK),
+            (-1.1, -1.0, Status::OK),
+            (1.5, 2.0, Status::OK),
+            (-1.5, -2.0, Status::OK),
+            (1.9, 2.0, Status::OK),
+            (-1.9, -2.0, Status::OK),
+            (2.8, 3.0, Status::OK),
+            (-2.8, -3.0, Status::OK),
+        ];
+        spec_test::<f32>(&cases);
+    }
+
+    #[test]
+    fn spec_tests_f64() {
+        let cases = [
+            (0.1, 0.0, Status::OK),
+            (-0.1, -0.0, Status::OK),
+            (0.5, 0.0, Status::OK),
+            (-0.5, -0.0, Status::OK),
+            (0.9, 1.0, Status::OK),
+            (-0.9, -1.0, Status::OK),
+            (1.1, 1.0, Status::OK),
+            (-1.1, -1.0, Status::OK),
+            (1.5, 2.0, Status::OK),
+            (-1.5, -2.0, Status::OK),
+            (1.9, 2.0, Status::OK),
+            (-1.9, -2.0, Status::OK),
+            (2.8, 3.0, Status::OK),
+            (-2.8, -3.0, Status::OK),
+        ];
+        spec_test::<f64>(&cases);
+    }
+
+    #[test]
+    #[cfg(f128_enabled)]
+    fn spec_tests_f128() {
+        let cases = [];
+        spec_test::<f128>(&cases);
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/generic/round.rs b/library/compiler-builtins/libm/src/math/generic/round.rs
new file mode 100644
index 00000000000..01314ac70c2
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/generic/round.rs
@@ -0,0 +1,83 @@
+use super::super::{Float, MinInt};
+use super::{copysign, trunc};
+
+#[inline]
+pub fn round<F: Float>(x: F) -> F {
+    let f0p5 = F::from_parts(false, F::EXP_BIAS - 1, F::Int::ZERO); // 0.5
+    let f0p25 = F::from_parts(false, F::EXP_BIAS - 2, F::Int::ZERO); // 0.25
+
+    trunc(x + copysign(f0p5 - f0p25 * F::EPSILON, x))
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+
+    #[test]
+    #[cfg(f16_enabled)]
+    fn zeroes_f16() {
+        assert_biteq!(round(0.0_f16), 0.0_f16);
+        assert_biteq!(round(-0.0_f16), -0.0_f16);
+    }
+
+    #[test]
+    #[cfg(f16_enabled)]
+    fn sanity_check_f16() {
+        assert_eq!(round(-1.0_f16), -1.0);
+        assert_eq!(round(2.8_f16), 3.0);
+        assert_eq!(round(-0.5_f16), -1.0);
+        assert_eq!(round(0.5_f16), 1.0);
+        assert_eq!(round(-1.5_f16), -2.0);
+        assert_eq!(round(1.5_f16), 2.0);
+    }
+
+    #[test]
+    fn zeroes_f32() {
+        assert_biteq!(round(0.0_f32), 0.0_f32);
+        assert_biteq!(round(-0.0_f32), -0.0_f32);
+    }
+
+    #[test]
+    fn sanity_check_f32() {
+        assert_eq!(round(-1.0_f32), -1.0);
+        assert_eq!(round(2.8_f32), 3.0);
+        assert_eq!(round(-0.5_f32), -1.0);
+        assert_eq!(round(0.5_f32), 1.0);
+        assert_eq!(round(-1.5_f32), -2.0);
+        assert_eq!(round(1.5_f32), 2.0);
+    }
+
+    #[test]
+    fn zeroes_f64() {
+        assert_biteq!(round(0.0_f64), 0.0_f64);
+        assert_biteq!(round(-0.0_f64), -0.0_f64);
+    }
+
+    #[test]
+    fn sanity_check_f64() {
+        assert_eq!(round(-1.0_f64), -1.0);
+        assert_eq!(round(2.8_f64), 3.0);
+        assert_eq!(round(-0.5_f64), -1.0);
+        assert_eq!(round(0.5_f64), 1.0);
+        assert_eq!(round(-1.5_f64), -2.0);
+        assert_eq!(round(1.5_f64), 2.0);
+    }
+
+    #[test]
+    #[cfg(f128_enabled)]
+    fn zeroes_f128() {
+        assert_biteq!(round(0.0_f128), 0.0_f128);
+        assert_biteq!(round(-0.0_f128), -0.0_f128);
+    }
+
+    #[test]
+    #[cfg(f128_enabled)]
+    fn sanity_check_f128() {
+        assert_eq!(round(-1.0_f128), -1.0);
+        assert_eq!(round(2.8_f128), 3.0);
+        assert_eq!(round(-0.5_f128), -1.0);
+        assert_eq!(round(0.5_f128), 1.0);
+        assert_eq!(round(-1.5_f128), -2.0);
+        assert_eq!(round(1.5_f128), 2.0);
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/generic/scalbn.rs b/library/compiler-builtins/libm/src/math/generic/scalbn.rs
new file mode 100644
index 00000000000..a45db1b4a02
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/generic/scalbn.rs
@@ -0,0 +1,121 @@
+use super::super::{CastFrom, CastInto, Float, IntTy, MinInt};
+
+/// Scale the exponent.
+///
+/// From N3220:
+///
+/// > The scalbn and scalbln functions compute `x * b^n`, where `b = FLT_RADIX` if the return type
+/// > of the function is a standard floating type, or `b = 10` if the return type of the function
+/// > is a decimal floating type. A range error occurs for some finite x, depending on n.
+/// >
+/// > [...]
+/// >
+/// > * `scalbn(±0, n)` returns `±0`.
+/// > * `scalbn(x, 0)` returns `x`.
+/// > * `scalbn(±∞, n)` returns `±∞`.
+/// >
+/// > If the calculation does not overflow or underflow, the returned value is exact and
+/// > independent of the current rounding direction mode.
+#[inline]
+pub fn scalbn<F: Float>(mut x: F, mut n: i32) -> F
+where
+    u32: CastInto<F::Int>,
+    F::Int: CastFrom<i32>,
+    F::Int: CastFrom<u32>,
+{
+    let zero = IntTy::<F>::ZERO;
+
+    // Bits including the implicit bit
+    let sig_total_bits = F::SIG_BITS + 1;
+
+    // Maximum and minimum values when biased
+    let exp_max = F::EXP_MAX;
+    let exp_min = F::EXP_MIN;
+
+    // 2 ^ Emax, maximum positive with null significand (0x1p1023 for f64)
+    let f_exp_max = F::from_parts(false, F::EXP_BIAS << 1, zero);
+
+    // 2 ^ Emin, minimum positive normal with null significand (0x1p-1022 for f64)
+    let f_exp_min = F::from_parts(false, 1, zero);
+
+    // 2 ^ sig_total_bits, moltiplier to normalize subnormals (0x1p53 for f64)
+    let f_pow_subnorm = F::from_parts(false, sig_total_bits + F::EXP_BIAS, zero);
+
+    /*
+     * The goal is to multiply `x` by a scale factor that applies `n`. However, there are cases
+     * where `2^n` is not representable by `F` but the result should be, e.g. `x = 2^Emin` with
+     * `n = -EMin + 2` (one out of range of 2^Emax). To get around this, reduce the magnitude of
+     * the final scale operation by prescaling by the max/min power representable by `F`.
+     */
+
+    if n > exp_max {
+        // Worse case positive `n`: `x`  is the minimum subnormal value, the result is `F::MAX`.
+        // This can be reached by three scaling multiplications (two here and one final).
+        debug_assert!(-exp_min + F::SIG_BITS as i32 + exp_max <= exp_max * 3);
+
+        x *= f_exp_max;
+        n -= exp_max;
+        if n > exp_max {
+            x *= f_exp_max;
+            n -= exp_max;
+            if n > exp_max {
+                n = exp_max;
+            }
+        }
+    } else if n < exp_min {
+        // When scaling toward 0, the prescaling is limited to a value that does not allow `x` to
+        // go subnormal. This avoids double rounding.
+        if F::BITS > 16 {
+            // `mul` s.t. `!(x * mul).is_subnormal() ∀ x`
+            let mul = f_exp_min * f_pow_subnorm;
+            let add = -exp_min - sig_total_bits as i32;
+
+            // Worse case negative `n`: `x`  is the maximum positive value, the result is `F::MIN`.
+            // This must be reachable by three scaling multiplications (two here and one final).
+            debug_assert!(-exp_min + F::SIG_BITS as i32 + exp_max <= add * 2 + -exp_min);
+
+            x *= mul;
+            n += add;
+
+            if n < exp_min {
+                x *= mul;
+                n += add;
+
+                if n < exp_min {
+                    n = exp_min;
+                }
+            }
+        } else {
+            // `f16` is unique compared to other float types in that the difference between the
+            // minimum exponent and the significand bits (`add = -exp_min - sig_total_bits`) is
+            // small, only three. The above method depend on decrementing `n` by `add` two times;
+            // for other float types this works out because `add` is a substantial fraction of
+            // the exponent range. For `f16`, however, 3 is relatively small compared to the
+            // exponent range (which is 39), so that requires ~10 prescale rounds rather than two.
+            //
+            // Work aroudn this by using a different algorithm that calculates the prescale
+            // dynamically based on the maximum possible value. This adds more operations per round
+            // since it needs to construct the scale, but works better in the general case.
+            let add = -(n + sig_total_bits as i32).clamp(exp_min, sig_total_bits as i32);
+            let mul = F::from_parts(false, (F::EXP_BIAS as i32 - add) as u32, zero);
+
+            x *= mul;
+            n += add;
+
+            if n < exp_min {
+                let add = -(n + sig_total_bits as i32).clamp(exp_min, sig_total_bits as i32);
+                let mul = F::from_parts(false, (F::EXP_BIAS as i32 - add) as u32, zero);
+
+                x *= mul;
+                n += add;
+
+                if n < exp_min {
+                    n = exp_min;
+                }
+            }
+        }
+    }
+
+    let scale = F::from_parts(false, (F::EXP_BIAS as i32 + n) as u32, zero);
+    x * scale
+}
diff --git a/library/compiler-builtins/libm/src/math/generic/sqrt.rs b/library/compiler-builtins/libm/src/math/generic/sqrt.rs
new file mode 100644
index 00000000000..ec9ff22df20
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/generic/sqrt.rs
@@ -0,0 +1,537 @@
+/* SPDX-License-Identifier: MIT */
+/* origin: musl src/math/sqrt.c. Ported to generic Rust algorithm in 2025, TG. */
+
+//! Generic square root algorithm.
+//!
+//! This routine operates around `m_u2`, a U.2 (fixed point with two integral bits) mantissa
+//! within the range [1, 4). A table lookup provides an initial estimate, then goldschmidt
+//! iterations at various widths are used to approach the real values.
+//!
+//! For the iterations, `r` is a U0 number that approaches `1/sqrt(m_u2)`, and `s` is a U2 number
+//! that approaches `sqrt(m_u2)`. Recall that m_u2 ∈ [1, 4).
+//!
+//! With Newton-Raphson iterations, this would be:
+//!
+//! - `w = r * r           w ~ 1 / m`
+//! - `u = 3 - m * w       u ~ 3 - m * w = 3 - m / m = 2`
+//! - `r = r * u / 2       r ~ r`
+//!
+//! (Note that the righthand column does not show anything analytically meaningful (i.e. r ~ r),
+//! since the value of performing one iteration is in reducing the error representable by `~`).
+//!
+//! Instead of Newton-Raphson iterations, Goldschmidt iterations are used to calculate
+//! `s = m * r`:
+//!
+//! - `s = m * r           s ~ m / sqrt(m)`
+//! - `u = 3 - s * r       u ~ 3 - (m / sqrt(m)) * (1 / sqrt(m)) = 3 - m / m = 2`
+//! - `r = r * u / 2       r ~ r`
+//! - `s = s * u / 2       s ~ s`
+//!
+//! The above is precise because it uses the original value `m`. There is also a faster version
+//! that performs fewer steps but does not use `m`:
+//!
+//! - `u = 3 - s * r       u ~ 3 - 1`
+//! - `r = r * u / 2       r ~ r`
+//! - `s = s * u / 2       s ~ s`
+//!
+//! Rounding errors accumulate faster with the second version, so it is only used for subsequent
+//! iterations within the same width integer. The first version is always used for the first
+//! iteration at a new width in order to avoid this accumulation.
+//!
+//! Goldschmidt has the advantage over Newton-Raphson that `sqrt(x)` and `1/sqrt(x)` are
+//! computed at the same time, i.e. there is no need to calculate `1/sqrt(x)` and invert it.
+
+use super::super::support::{FpResult, IntTy, Round, Status, cold_path};
+use super::super::{CastFrom, CastInto, DInt, Float, HInt, Int, MinInt};
+
+#[inline]
+pub fn sqrt<F>(x: F) -> F
+where
+    F: Float + SqrtHelper,
+    F::Int: HInt,
+    F::Int: From<u8>,
+    F::Int: From<F::ISet2>,
+    F::Int: CastInto<F::ISet1>,
+    F::Int: CastInto<F::ISet2>,
+    u32: CastInto<F::Int>,
+{
+    sqrt_round(x, Round::Nearest).val
+}
+
+#[inline]
+pub fn sqrt_round<F>(x: F, _round: Round) -> FpResult<F>
+where
+    F: Float + SqrtHelper,
+    F::Int: HInt,
+    F::Int: From<u8>,
+    F::Int: From<F::ISet2>,
+    F::Int: CastInto<F::ISet1>,
+    F::Int: CastInto<F::ISet2>,
+    u32: CastInto<F::Int>,
+{
+    let zero = IntTy::<F>::ZERO;
+    let one = IntTy::<F>::ONE;
+
+    let mut ix = x.to_bits();
+
+    // Top is the exponent and sign, which may or may not be shifted. If the float fits into a
+    // `u32`, we can get by without paying shifting costs.
+    let noshift = F::BITS <= u32::BITS;
+    let (mut top, special_case) = if noshift {
+        let exp_lsb = one << F::SIG_BITS;
+        let special_case = ix.wrapping_sub(exp_lsb) >= F::EXP_MASK - exp_lsb;
+        (Exp::NoShift(()), special_case)
+    } else {
+        let top = u32::cast_from(ix >> F::SIG_BITS);
+        let special_case = top.wrapping_sub(1) >= F::EXP_SAT - 1;
+        (Exp::Shifted(top), special_case)
+    };
+
+    // Handle NaN, zero, and out of domain (<= 0)
+    if special_case {
+        cold_path();
+
+        // +/-0
+        if ix << 1 == zero {
+            return FpResult::ok(x);
+        }
+
+        // Positive infinity
+        if ix == F::EXP_MASK {
+            return FpResult::ok(x);
+        }
+
+        // NaN or negative
+        if ix > F::EXP_MASK {
+            return FpResult::new(F::NAN, Status::INVALID);
+        }
+
+        // Normalize subnormals by multiplying by 1.0 << SIG_BITS (e.g. 0x1p52 for doubles).
+        let scaled = x * F::from_parts(false, F::SIG_BITS + F::EXP_BIAS, zero);
+        ix = scaled.to_bits();
+        match top {
+            Exp::Shifted(ref mut v) => {
+                *v = scaled.ex();
+                *v = (*v).wrapping_sub(F::SIG_BITS);
+            }
+            Exp::NoShift(()) => {
+                ix = ix.wrapping_sub((F::SIG_BITS << F::SIG_BITS).cast());
+            }
+        }
+    }
+
+    // Reduce arguments such that `x = 4^e * m`:
+    //
+    // - m_u2 ∈ [1, 4), a fixed point U2.BITS number
+    // - 2^e is the exponent part of the result
+    let (m_u2, exp) = match top {
+        Exp::Shifted(top) => {
+            // We now know `x` is positive, so `top` is just its (biased) exponent
+            let mut e = top;
+            // Construct a fixed point representation of the mantissa.
+            let mut m_u2 = (ix | F::IMPLICIT_BIT) << F::EXP_BITS;
+            let even = (e & 1) != 0;
+            if even {
+                m_u2 >>= 1;
+            }
+            e = (e.wrapping_add(F::EXP_SAT >> 1)) >> 1;
+            (m_u2, Exp::Shifted(e))
+        }
+        Exp::NoShift(()) => {
+            let even = ix & (one << F::SIG_BITS) != zero;
+
+            // Exponent part of the return value
+            let mut e_noshift = ix >> 1;
+            // ey &= (F::EXP_MASK << 2) >> 2; // clear the top exponent bit (result = 1.0)
+            e_noshift += (F::EXP_MASK ^ (F::SIGN_MASK >> 1)) >> 1;
+            e_noshift &= F::EXP_MASK;
+
+            let m1 = (ix << F::EXP_BITS) | F::SIGN_MASK;
+            let m0 = (ix << (F::EXP_BITS - 1)) & !F::SIGN_MASK;
+            let m_u2 = if even { m0 } else { m1 };
+
+            (m_u2, Exp::NoShift(e_noshift))
+        }
+    };
+
+    // Extract the top 6 bits of the significand with the lowest bit of the exponent.
+    let i = usize::cast_from(ix >> (F::SIG_BITS - 6)) & 0b1111111;
+
+    // Start with an initial guess for `r = 1 / sqrt(m)` from the table, and shift `m` as an
+    // initial value for `s = sqrt(m)`. See the module documentation for details.
+    let r1_u0: F::ISet1 = F::ISet1::cast_from(RSQRT_TAB[i]) << (F::ISet1::BITS - 16);
+    let s1_u2: F::ISet1 = ((m_u2) >> (F::BITS - F::ISet1::BITS)).cast();
+
+    // Perform iterations, if any, at quarter width (used for `f128`).
+    let (r1_u0, _s1_u2) = goldschmidt::<F, F::ISet1>(r1_u0, s1_u2, F::SET1_ROUNDS, false);
+
+    // Widen values and perform iterations at half width (used for `f64` and `f128`).
+    let r2_u0: F::ISet2 = F::ISet2::from(r1_u0) << (F::ISet2::BITS - F::ISet1::BITS);
+    let s2_u2: F::ISet2 = ((m_u2) >> (F::BITS - F::ISet2::BITS)).cast();
+    let (r2_u0, _s2_u2) = goldschmidt::<F, F::ISet2>(r2_u0, s2_u2, F::SET2_ROUNDS, false);
+
+    // Perform final iterations at full width (used for all float types).
+    let r_u0: F::Int = F::Int::from(r2_u0) << (F::BITS - F::ISet2::BITS);
+    let s_u2: F::Int = m_u2;
+    let (_r_u0, s_u2) = goldschmidt::<F, F::Int>(r_u0, s_u2, F::FINAL_ROUNDS, true);
+
+    // Shift back to mantissa position.
+    let mut m = s_u2 >> (F::EXP_BITS - 2);
+
+    // The musl source includes the following comment (with literals replaced):
+    //
+    // > s < sqrt(m) < s + 0x1.09p-SIG_BITS
+    // > compute nearest rounded result: the nearest result to SIG_BITS bits is either s or
+    // > s+0x1p-SIG_BITS, we can decide by comparing (2^SIG_BITS s + 0.5)^2 to 2^(2*SIG_BITS) m.
+    //
+    // Expanding this with , with `SIG_BITS = p` and adjusting based on the operations done to
+    // `d0` and `d1`:
+    //
+    // - `2^(2p)m ≟ ((2^p)m + 0.5)^2`
+    // - `2^(2p)m ≟ 2^(2p)m^2 + (2^p)m + 0.25`
+    // - `2^(2p)m - m^2 ≟ (2^(2p) - 1)m^2 + (2^p)m + 0.25`
+    // - `(1 - 2^(2p))m + m^2 ≟ (1 - 2^(2p))m^2 + (1 - 2^p)m + 0.25` (?)
+    //
+    // I do not follow how the rounding bit is extracted from this comparison with the below
+    // operations. In any case, the algorithm is well tested.
+
+    // The value needed to shift `m_u2` by to create `m*2^(2p)`. `2p = 2 * F::SIG_BITS`,
+    // `F::BITS - 2` accounts for the offset that `m_u2` already has.
+    let shift = 2 * F::SIG_BITS - (F::BITS - 2);
+
+    // `2^(2p)m - m^2`
+    let d0 = (m_u2 << shift).wrapping_sub(m.wrapping_mul(m));
+    // `m - 2^(2p)m + m^2`
+    let d1 = m.wrapping_sub(d0);
+    m += d1 >> (F::BITS - 1);
+    m &= F::SIG_MASK;
+
+    match exp {
+        Exp::Shifted(e) => m |= IntTy::<F>::cast_from(e) << F::SIG_BITS,
+        Exp::NoShift(e) => m |= e,
+    };
+
+    let mut y = F::from_bits(m);
+
+    // FIXME(f16): the fenv math does not work for `f16`
+    if F::BITS > 16 {
+        // Handle rounding and inexact. `(m + 1)^2 == 2^shift m` is exact; for all other cases, add
+        // a tiny value to cause fenv effects.
+        let d2 = d1.wrapping_add(m).wrapping_add(one);
+        let mut tiny = if d2 == zero {
+            cold_path();
+            zero
+        } else {
+            F::IMPLICIT_BIT
+        };
+
+        tiny |= (d1 ^ d2) & F::SIGN_MASK;
+        let t = F::from_bits(tiny);
+        y = y + t;
+    }
+
+    FpResult::ok(y)
+}
+
+/// Multiply at the wider integer size, returning the high half.
+fn wmulh<I: HInt>(a: I, b: I) -> I {
+    a.widen_mul(b).hi()
+}
+
+/// Perform `count` goldschmidt iterations, returning `(r_u0, s_u?)`.
+///
+/// - `r_u0` is the reciprocal `r ~ 1 / sqrt(m)`, as U0.
+/// - `s_u2` is the square root, `s ~ sqrt(m)`, as U2.
+/// - `count` is the number of iterations to perform.
+/// - `final_set` should be true if this is the last round (same-sized integer). If so, the
+///   returned `s` will be U3, for later shifting. Otherwise, the returned `s` is U2.
+///
+/// Note that performance relies on the optimizer being able to unroll these loops (reasonably
+/// trivial, `count` is a constant when called).
+#[inline]
+fn goldschmidt<F, I>(mut r_u0: I, mut s_u2: I, count: u32, final_set: bool) -> (I, I)
+where
+    F: SqrtHelper,
+    I: HInt + From<u8>,
+{
+    let three_u2 = I::from(0b11u8) << (I::BITS - 2);
+    let mut u_u0 = r_u0;
+
+    for i in 0..count {
+        // First iteration: `s = m*r` (`u_u0 = r_u0` set above)
+        // Subsequent iterations: `s=s*u/2`
+        s_u2 = wmulh(s_u2, u_u0);
+
+        // Perform `s /= 2` if:
+        //
+        // 1. This is not the first iteration (the first iteration is `s = m*r`)...
+        // 2. ... and this is not the last set of iterations
+        // 3. ... or, if this is the last set, it is not the last iteration
+        //
+        // This step is not performed for the final iteration because the shift is combined with
+        // a later shift (moving `s` into the mantissa).
+        if i > 0 && (!final_set || i + 1 < count) {
+            s_u2 <<= 1;
+        }
+
+        // u = 3 - s*r
+        let d_u2 = wmulh(s_u2, r_u0);
+        u_u0 = three_u2.wrapping_sub(d_u2);
+
+        // r = r*u/2
+        r_u0 = wmulh(r_u0, u_u0) << 1;
+    }
+
+    (r_u0, s_u2)
+}
+
+/// Representation of whether we shift the exponent into a `u32`, or modify it in place to save
+/// the shift operations.
+enum Exp<T> {
+    /// The exponent has been shifted to a `u32` and is LSB-aligned.
+    Shifted(u32),
+    /// The exponent is in its natural position in integer repr.
+    NoShift(T),
+}
+
+/// Size-specific constants related to the square root routine.
+pub trait SqrtHelper: Float {
+    /// Integer for the first set of rounds. If unused, set to the same type as the next set.
+    type ISet1: HInt + Into<Self::ISet2> + CastFrom<Self::Int> + From<u8>;
+    /// Integer for the second set of rounds. If unused, set to the same type as the next set.
+    type ISet2: HInt + From<Self::ISet1> + From<u8>;
+
+    /// Number of rounds at `ISet1`.
+    const SET1_ROUNDS: u32 = 0;
+    /// Number of rounds at `ISet2`.
+    const SET2_ROUNDS: u32 = 0;
+    /// Number of rounds at `Self::Int`.
+    const FINAL_ROUNDS: u32;
+}
+
+#[cfg(f16_enabled)]
+impl SqrtHelper for f16 {
+    type ISet1 = u16; // unused
+    type ISet2 = u16; // unused
+
+    const FINAL_ROUNDS: u32 = 2;
+}
+
+impl SqrtHelper for f32 {
+    type ISet1 = u32; // unused
+    type ISet2 = u32; // unused
+
+    const FINAL_ROUNDS: u32 = 3;
+}
+
+impl SqrtHelper for f64 {
+    type ISet1 = u32; // unused
+    type ISet2 = u32;
+
+    const SET2_ROUNDS: u32 = 2;
+    const FINAL_ROUNDS: u32 = 2;
+}
+
+#[cfg(f128_enabled)]
+impl SqrtHelper for f128 {
+    type ISet1 = u32;
+    type ISet2 = u64;
+
+    const SET1_ROUNDS: u32 = 1;
+    const SET2_ROUNDS: u32 = 2;
+    const FINAL_ROUNDS: u32 = 2;
+}
+
+/// A U0.16 representation of `1/sqrt(x)`.
+///
+/// The index is a 7-bit number consisting of a single exponent bit and 6 bits of significand.
+#[rustfmt::skip]
+static RSQRT_TAB: [u16; 128] = [
+    0xb451, 0xb2f0, 0xb196, 0xb044, 0xaef9, 0xadb6, 0xac79, 0xab43,
+    0xaa14, 0xa8eb, 0xa7c8, 0xa6aa, 0xa592, 0xa480, 0xa373, 0xa26b,
+    0xa168, 0xa06a, 0x9f70, 0x9e7b, 0x9d8a, 0x9c9d, 0x9bb5, 0x9ad1,
+    0x99f0, 0x9913, 0x983a, 0x9765, 0x9693, 0x95c4, 0x94f8, 0x9430,
+    0x936b, 0x92a9, 0x91ea, 0x912e, 0x9075, 0x8fbe, 0x8f0a, 0x8e59,
+    0x8daa, 0x8cfe, 0x8c54, 0x8bac, 0x8b07, 0x8a64, 0x89c4, 0x8925,
+    0x8889, 0x87ee, 0x8756, 0x86c0, 0x862b, 0x8599, 0x8508, 0x8479,
+    0x83ec, 0x8361, 0x82d8, 0x8250, 0x81c9, 0x8145, 0x80c2, 0x8040,
+    0xff02, 0xfd0e, 0xfb25, 0xf947, 0xf773, 0xf5aa, 0xf3ea, 0xf234,
+    0xf087, 0xeee3, 0xed47, 0xebb3, 0xea27, 0xe8a3, 0xe727, 0xe5b2,
+    0xe443, 0xe2dc, 0xe17a, 0xe020, 0xdecb, 0xdd7d, 0xdc34, 0xdaf1,
+    0xd9b3, 0xd87b, 0xd748, 0xd61a, 0xd4f1, 0xd3cd, 0xd2ad, 0xd192,
+    0xd07b, 0xcf69, 0xce5b, 0xcd51, 0xcc4a, 0xcb48, 0xca4a, 0xc94f,
+    0xc858, 0xc764, 0xc674, 0xc587, 0xc49d, 0xc3b7, 0xc2d4, 0xc1f4,
+    0xc116, 0xc03c, 0xbf65, 0xbe90, 0xbdbe, 0xbcef, 0xbc23, 0xbb59,
+    0xba91, 0xb9cc, 0xb90a, 0xb84a, 0xb78c, 0xb6d0, 0xb617, 0xb560,
+];
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+
+    /// Test behavior specified in IEEE 754 `squareRoot`.
+    fn spec_test<F>()
+    where
+        F: Float + SqrtHelper,
+        F::Int: HInt,
+        F::Int: From<u8>,
+        F::Int: From<F::ISet2>,
+        F::Int: CastInto<F::ISet1>,
+        F::Int: CastInto<F::ISet2>,
+        u32: CastInto<F::Int>,
+    {
+        // Values that should return a NaN and raise invalid
+        let nan = [F::NEG_INFINITY, F::NEG_ONE, F::NAN, F::MIN];
+
+        // Values that return unaltered
+        let roundtrip = [F::ZERO, F::NEG_ZERO, F::INFINITY];
+
+        for x in nan {
+            let FpResult { val, status } = sqrt_round(x, Round::Nearest);
+            assert!(val.is_nan());
+            assert!(status == Status::INVALID);
+        }
+
+        for x in roundtrip {
+            let FpResult { val, status } = sqrt_round(x, Round::Nearest);
+            assert_biteq!(val, x);
+            assert!(status == Status::OK);
+        }
+    }
+
+    #[test]
+    #[cfg(f16_enabled)]
+    fn sanity_check_f16() {
+        assert_biteq!(sqrt(100.0f16), 10.0);
+        assert_biteq!(sqrt(4.0f16), 2.0);
+    }
+
+    #[test]
+    #[cfg(f16_enabled)]
+    fn spec_tests_f16() {
+        spec_test::<f16>();
+    }
+
+    #[test]
+    #[cfg(f16_enabled)]
+    #[allow(clippy::approx_constant)]
+    fn conformance_tests_f16() {
+        let cases = [
+            (f16::PI, 0x3f17_u16),
+            // 10_000.0, using a hex literal for MSRV hack (Rust < 1.67 checks literal widths as
+            // part of the AST, so the `cfg` is irrelevant here).
+            (f16::from_bits(0x70e2), 0x5640_u16),
+            (f16::from_bits(0x0000000f), 0x13bf_u16),
+            (f16::INFINITY, f16::INFINITY.to_bits()),
+        ];
+
+        for (input, output) in cases {
+            assert_biteq!(
+                sqrt(input),
+                f16::from_bits(output),
+                "input: {input:?} ({:#018x})",
+                input.to_bits()
+            );
+        }
+    }
+
+    #[test]
+    fn sanity_check_f32() {
+        assert_biteq!(sqrt(100.0f32), 10.0);
+        assert_biteq!(sqrt(4.0f32), 2.0);
+    }
+
+    #[test]
+    fn spec_tests_f32() {
+        spec_test::<f32>();
+    }
+
+    #[test]
+    #[allow(clippy::approx_constant)]
+    fn conformance_tests_f32() {
+        let cases = [
+            (f32::PI, 0x3fe2dfc5_u32),
+            (10000.0f32, 0x42c80000_u32),
+            (f32::from_bits(0x0000000f), 0x1b2f456f_u32),
+            (f32::INFINITY, f32::INFINITY.to_bits()),
+        ];
+
+        for (input, output) in cases {
+            assert_biteq!(
+                sqrt(input),
+                f32::from_bits(output),
+                "input: {input:?} ({:#018x})",
+                input.to_bits()
+            );
+        }
+    }
+
+    #[test]
+    fn sanity_check_f64() {
+        assert_biteq!(sqrt(100.0f64), 10.0);
+        assert_biteq!(sqrt(4.0f64), 2.0);
+    }
+
+    #[test]
+    fn spec_tests_f64() {
+        spec_test::<f64>();
+    }
+
+    #[test]
+    #[allow(clippy::approx_constant)]
+    fn conformance_tests_f64() {
+        let cases = [
+            (f64::PI, 0x3ffc5bf891b4ef6a_u64),
+            (10000.0, 0x4059000000000000_u64),
+            (f64::from_bits(0x0000000f), 0x1e7efbdeb14f4eda_u64),
+            (f64::INFINITY, f64::INFINITY.to_bits()),
+        ];
+
+        for (input, output) in cases {
+            assert_biteq!(
+                sqrt(input),
+                f64::from_bits(output),
+                "input: {input:?} ({:#018x})",
+                input.to_bits()
+            );
+        }
+    }
+
+    #[test]
+    #[cfg(f128_enabled)]
+    fn sanity_check_f128() {
+        assert_biteq!(sqrt(100.0f128), 10.0);
+        assert_biteq!(sqrt(4.0f128), 2.0);
+    }
+
+    #[test]
+    #[cfg(f128_enabled)]
+    fn spec_tests_f128() {
+        spec_test::<f128>();
+    }
+
+    #[test]
+    #[cfg(f128_enabled)]
+    #[allow(clippy::approx_constant)]
+    fn conformance_tests_f128() {
+        let cases = [
+            (f128::PI, 0x3fffc5bf891b4ef6aa79c3b0520d5db9_u128),
+            // 10_000.0, see `f16` for reasoning.
+            (
+                f128::from_bits(0x400c3880000000000000000000000000),
+                0x40059000000000000000000000000000_u128,
+            ),
+            (f128::from_bits(0x0000000f), 0x1fc9efbdeb14f4ed9b17ae807907e1e9_u128),
+            (f128::INFINITY, f128::INFINITY.to_bits()),
+        ];
+
+        for (input, output) in cases {
+            assert_biteq!(
+                sqrt(input),
+                f128::from_bits(output),
+                "input: {input:?} ({:#018x})",
+                input.to_bits()
+            );
+        }
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/generic/trunc.rs b/library/compiler-builtins/libm/src/math/generic/trunc.rs
new file mode 100644
index 00000000000..25414ecf426
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/generic/trunc.rs
@@ -0,0 +1,138 @@
+/* SPDX-License-Identifier: MIT
+ * origin: musl src/math/trunc.c */
+
+use super::super::support::{FpResult, Status};
+use super::super::{Float, Int, IntTy, MinInt};
+
+#[inline]
+pub fn trunc<F: Float>(x: F) -> F {
+    trunc_status(x).val
+}
+
+#[inline]
+pub fn trunc_status<F: Float>(x: F) -> FpResult<F> {
+    let mut xi: F::Int = x.to_bits();
+    let e: i32 = x.exp_unbiased();
+
+    // C1: The represented value has no fractional part, so no truncation is needed
+    if e >= F::SIG_BITS as i32 {
+        return FpResult::ok(x);
+    }
+
+    let mask = if e < 0 {
+        // C2: If the exponent is negative, the result will be zero so we mask out everything
+        // except the sign.
+        F::SIGN_MASK
+    } else {
+        // C3: Otherwise, we mask out the last `e` bits of the significand.
+        !(F::SIG_MASK >> e.unsigned())
+    };
+
+    // C4: If the to-be-masked-out portion is already zero, we have an exact result
+    if (xi & !mask) == IntTy::<F>::ZERO {
+        return FpResult::ok(x);
+    }
+
+    // C5: Otherwise the result is inexact and we will truncate. Raise `FE_INEXACT`, mask the
+    // result, and return.
+
+    let status = if xi & F::SIG_MASK == F::Int::ZERO { Status::OK } else { Status::INEXACT };
+    xi &= mask;
+    FpResult::new(F::from_bits(xi), status)
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+    use crate::support::Hexf;
+
+    fn spec_test<F: Float>(cases: &[(F, F, Status)]) {
+        let roundtrip = [F::ZERO, F::ONE, F::NEG_ONE, F::NEG_ZERO, F::INFINITY, F::NEG_INFINITY];
+
+        for x in roundtrip {
+            let FpResult { val, status } = trunc_status(x);
+            assert_biteq!(val, x, "{}", Hexf(x));
+            assert_eq!(status, Status::OK, "{}", Hexf(x));
+        }
+
+        for &(x, res, res_stat) in cases {
+            let FpResult { val, status } = trunc_status(x);
+            assert_biteq!(val, res, "{}", Hexf(x));
+            assert_eq!(status, res_stat, "{}", Hexf(x));
+        }
+    }
+
+    /* Skipping f16 / f128 "sanity_check"s and spec cases due to rejected literal lexing at MSRV */
+
+    #[test]
+    #[cfg(f16_enabled)]
+    fn spec_tests_f16() {
+        let cases = [];
+        spec_test::<f16>(&cases);
+    }
+
+    #[test]
+    fn sanity_check_f32() {
+        assert_eq!(trunc(0.5f32), 0.0);
+        assert_eq!(trunc(1.1f32), 1.0);
+        assert_eq!(trunc(2.9f32), 2.0);
+    }
+
+    #[test]
+    fn spec_tests_f32() {
+        let cases = [
+            (0.1, 0.0, Status::INEXACT),
+            (-0.1, -0.0, Status::INEXACT),
+            (0.9, 0.0, Status::INEXACT),
+            (-0.9, -0.0, Status::INEXACT),
+            (1.1, 1.0, Status::INEXACT),
+            (-1.1, -1.0, Status::INEXACT),
+            (1.9, 1.0, Status::INEXACT),
+            (-1.9, -1.0, Status::INEXACT),
+        ];
+        spec_test::<f32>(&cases);
+
+        assert_biteq!(trunc(1.1f32), 1.0);
+        assert_biteq!(trunc(1.1f64), 1.0);
+
+        // C1
+        assert_biteq!(trunc(hf32!("0x1p23")), hf32!("0x1p23"));
+        assert_biteq!(trunc(hf64!("0x1p52")), hf64!("0x1p52"));
+        assert_biteq!(trunc(hf32!("-0x1p23")), hf32!("-0x1p23"));
+        assert_biteq!(trunc(hf64!("-0x1p52")), hf64!("-0x1p52"));
+
+        // C2
+        assert_biteq!(trunc(hf32!("0x1p-1")), 0.0);
+        assert_biteq!(trunc(hf64!("0x1p-1")), 0.0);
+        assert_biteq!(trunc(hf32!("-0x1p-1")), -0.0);
+        assert_biteq!(trunc(hf64!("-0x1p-1")), -0.0);
+    }
+
+    #[test]
+    fn sanity_check_f64() {
+        assert_eq!(trunc(1.1f64), 1.0);
+        assert_eq!(trunc(2.9f64), 2.0);
+    }
+
+    #[test]
+    fn spec_tests_f64() {
+        let cases = [
+            (0.1, 0.0, Status::INEXACT),
+            (-0.1, -0.0, Status::INEXACT),
+            (0.9, 0.0, Status::INEXACT),
+            (-0.9, -0.0, Status::INEXACT),
+            (1.1, 1.0, Status::INEXACT),
+            (-1.1, -1.0, Status::INEXACT),
+            (1.9, 1.0, Status::INEXACT),
+            (-1.9, -1.0, Status::INEXACT),
+        ];
+        spec_test::<f64>(&cases);
+    }
+
+    #[test]
+    #[cfg(f128_enabled)]
+    fn spec_tests_f128() {
+        let cases = [];
+        spec_test::<f128>(&cases);
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/hypot.rs b/library/compiler-builtins/libm/src/math/hypot.rs
new file mode 100644
index 00000000000..da458ea1d05
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/hypot.rs
@@ -0,0 +1,74 @@
+use core::f64;
+
+use super::sqrt;
+
+const SPLIT: f64 = 134217728. + 1.; // 0x1p27 + 1 === (2 ^ 27) + 1
+
+fn sq(x: f64) -> (f64, f64) {
+    let xh: f64;
+    let xl: f64;
+    let xc: f64;
+
+    xc = x * SPLIT;
+    xh = x - xc + xc;
+    xl = x - xh;
+    let hi = x * x;
+    let lo = xh * xh - hi + 2. * xh * xl + xl * xl;
+    (hi, lo)
+}
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn hypot(mut x: f64, mut y: f64) -> f64 {
+    let x1p700 = f64::from_bits(0x6bb0000000000000); // 0x1p700 === 2 ^ 700
+    let x1p_700 = f64::from_bits(0x1430000000000000); // 0x1p-700 === 2 ^ -700
+
+    let mut uxi = x.to_bits();
+    let mut uyi = y.to_bits();
+    let uti;
+    let ex: i64;
+    let ey: i64;
+    let mut z: f64;
+
+    /* arrange |x| >= |y| */
+    uxi &= -1i64 as u64 >> 1;
+    uyi &= -1i64 as u64 >> 1;
+    if uxi < uyi {
+        uti = uxi;
+        uxi = uyi;
+        uyi = uti;
+    }
+
+    /* special cases */
+    ex = (uxi >> 52) as i64;
+    ey = (uyi >> 52) as i64;
+    x = f64::from_bits(uxi);
+    y = f64::from_bits(uyi);
+    /* note: hypot(inf,nan) == inf */
+    if ey == 0x7ff {
+        return y;
+    }
+    if ex == 0x7ff || uyi == 0 {
+        return x;
+    }
+    /* note: hypot(x,y) ~= x + y*y/x/2 with inexact for small y/x */
+    /* 64 difference is enough for ld80 double_t */
+    if ex - ey > 64 {
+        return x + y;
+    }
+
+    /* precise sqrt argument in nearest rounding mode without overflow */
+    /* xh*xh must not overflow and xl*xl must not underflow in sq */
+    z = 1.;
+    if ex > 0x3ff + 510 {
+        z = x1p700;
+        x *= x1p_700;
+        y *= x1p_700;
+    } else if ey < 0x3ff - 450 {
+        z = x1p_700;
+        x *= x1p700;
+        y *= x1p700;
+    }
+    let (hx, lx) = sq(x);
+    let (hy, ly) = sq(y);
+    z * sqrt(ly + lx + hy + hx)
+}
diff --git a/library/compiler-builtins/libm/src/math/hypotf.rs b/library/compiler-builtins/libm/src/math/hypotf.rs
new file mode 100644
index 00000000000..576eebb3343
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/hypotf.rs
@@ -0,0 +1,43 @@
+use core::f32;
+
+use super::sqrtf;
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn hypotf(mut x: f32, mut y: f32) -> f32 {
+    let x1p90 = f32::from_bits(0x6c800000); // 0x1p90f === 2 ^ 90
+    let x1p_90 = f32::from_bits(0x12800000); // 0x1p-90f === 2 ^ -90
+
+    let mut uxi = x.to_bits();
+    let mut uyi = y.to_bits();
+    let uti;
+    let mut z: f32;
+
+    uxi &= -1i32 as u32 >> 1;
+    uyi &= -1i32 as u32 >> 1;
+    if uxi < uyi {
+        uti = uxi;
+        uxi = uyi;
+        uyi = uti;
+    }
+
+    x = f32::from_bits(uxi);
+    y = f32::from_bits(uyi);
+    if uyi == 0xff << 23 {
+        return y;
+    }
+    if uxi >= 0xff << 23 || uyi == 0 || uxi - uyi >= 25 << 23 {
+        return x + y;
+    }
+
+    z = 1.;
+    if uxi >= (0x7f + 60) << 23 {
+        z = x1p90;
+        x *= x1p_90;
+        y *= x1p_90;
+    } else if uyi < (0x7f - 60) << 23 {
+        z = x1p_90;
+        x *= x1p90;
+        y *= x1p90;
+    }
+    z * sqrtf((x as f64 * x as f64 + y as f64 * y as f64) as f32)
+}
diff --git a/library/compiler-builtins/libm/src/math/ilogb.rs b/library/compiler-builtins/libm/src/math/ilogb.rs
new file mode 100644
index 00000000000..ccc4914be2b
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/ilogb.rs
@@ -0,0 +1,28 @@
+const FP_ILOGBNAN: i32 = -1 - 0x7fffffff;
+const FP_ILOGB0: i32 = FP_ILOGBNAN;
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn ilogb(x: f64) -> i32 {
+    let mut i: u64 = x.to_bits();
+    let e = ((i >> 52) & 0x7ff) as i32;
+
+    if e == 0 {
+        i <<= 12;
+        if i == 0 {
+            force_eval!(0.0 / 0.0);
+            return FP_ILOGB0;
+        }
+        /* subnormal x */
+        let mut e = -0x3ff;
+        while (i >> 63) == 0 {
+            e -= 1;
+            i <<= 1;
+        }
+        e
+    } else if e == 0x7ff {
+        force_eval!(0.0 / 0.0);
+        if (i << 12) != 0 { FP_ILOGBNAN } else { i32::MAX }
+    } else {
+        e - 0x3ff
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/ilogbf.rs b/library/compiler-builtins/libm/src/math/ilogbf.rs
new file mode 100644
index 00000000000..3585d6d36f1
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/ilogbf.rs
@@ -0,0 +1,28 @@
+const FP_ILOGBNAN: i32 = -1 - 0x7fffffff;
+const FP_ILOGB0: i32 = FP_ILOGBNAN;
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn ilogbf(x: f32) -> i32 {
+    let mut i = x.to_bits();
+    let e = ((i >> 23) & 0xff) as i32;
+
+    if e == 0 {
+        i <<= 9;
+        if i == 0 {
+            force_eval!(0.0 / 0.0);
+            return FP_ILOGB0;
+        }
+        /* subnormal x */
+        let mut e = -0x7f;
+        while (i >> 31) == 0 {
+            e -= 1;
+            i <<= 1;
+        }
+        e
+    } else if e == 0xff {
+        force_eval!(0.0 / 0.0);
+        if (i << 9) != 0 { FP_ILOGBNAN } else { i32::MAX }
+    } else {
+        e - 0x7f
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/j0.rs b/library/compiler-builtins/libm/src/math/j0.rs
new file mode 100644
index 00000000000..99d656f0d08
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/j0.rs
@@ -0,0 +1,426 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_j0.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* j0(x), y0(x)
+ * Bessel function of the first and second kinds of order zero.
+ * Method -- j0(x):
+ *      1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
+ *      2. Reduce x to |x| since j0(x)=j0(-x),  and
+ *         for x in (0,2)
+ *              j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
+ *         (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
+ *         for x in (2,inf)
+ *              j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
+ *         where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
+ *         as follow:
+ *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
+ *                      = 1/sqrt(2) * (cos(x) + sin(x))
+ *              sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
+ *                      = 1/sqrt(2) * (sin(x) - cos(x))
+ *         (To avoid cancellation, use
+ *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ *          to compute the worse one.)
+ *
+ *      3 Special cases
+ *              j0(nan)= nan
+ *              j0(0) = 1
+ *              j0(inf) = 0
+ *
+ * Method -- y0(x):
+ *      1. For x<2.
+ *         Since
+ *              y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
+ *         therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
+ *         We use the following function to approximate y0,
+ *              y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
+ *         where
+ *              U(z) = u00 + u01*z + ... + u06*z^6
+ *              V(z) = 1  + v01*z + ... + v04*z^4
+ *         with absolute approximation error bounded by 2**-72.
+ *         Note: For tiny x, U/V = u0 and j0(x)~1, hence
+ *              y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
+ *      2. For x>=2.
+ *              y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
+ *         where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
+ *         by the method mentioned above.
+ *      3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
+ */
+
+use super::{cos, fabs, get_high_word, get_low_word, log, sin, sqrt};
+const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
+const TPI: f64 = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
+
+/* common method when |x|>=2 */
+fn common(ix: u32, x: f64, y0: bool) -> f64 {
+    let s: f64;
+    let mut c: f64;
+    let mut ss: f64;
+    let mut cc: f64;
+    let z: f64;
+
+    /*
+     * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x-pi/4)-q0(x)*sin(x-pi/4))
+     * y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x-pi/4)+q0(x)*cos(x-pi/4))
+     *
+     * sin(x-pi/4) = (sin(x) - cos(x))/sqrt(2)
+     * cos(x-pi/4) = (sin(x) + cos(x))/sqrt(2)
+     * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+     */
+    s = sin(x);
+    c = cos(x);
+    if y0 {
+        c = -c;
+    }
+    cc = s + c;
+    /* avoid overflow in 2*x, big ulp error when x>=0x1p1023 */
+    if ix < 0x7fe00000 {
+        ss = s - c;
+        z = -cos(2.0 * x);
+        if s * c < 0.0 {
+            cc = z / ss;
+        } else {
+            ss = z / cc;
+        }
+        if ix < 0x48000000 {
+            if y0 {
+                ss = -ss;
+            }
+            cc = pzero(x) * cc - qzero(x) * ss;
+        }
+    }
+    return INVSQRTPI * cc / sqrt(x);
+}
+
+/* R0/S0 on [0, 2.00] */
+const R02: f64 = 1.56249999999999947958e-02; /* 0x3F8FFFFF, 0xFFFFFFFD */
+const R03: f64 = -1.89979294238854721751e-04; /* 0xBF28E6A5, 0xB61AC6E9 */
+const R04: f64 = 1.82954049532700665670e-06; /* 0x3EBEB1D1, 0x0C503919 */
+const R05: f64 = -4.61832688532103189199e-09; /* 0xBE33D5E7, 0x73D63FCE */
+const S01: f64 = 1.56191029464890010492e-02; /* 0x3F8FFCE8, 0x82C8C2A4 */
+const S02: f64 = 1.16926784663337450260e-04; /* 0x3F1EA6D2, 0xDD57DBF4 */
+const S03: f64 = 5.13546550207318111446e-07; /* 0x3EA13B54, 0xCE84D5A9 */
+const S04: f64 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
+
+/// Zeroth order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f64).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn j0(mut x: f64) -> f64 {
+    let z: f64;
+    let r: f64;
+    let s: f64;
+    let mut ix: u32;
+
+    ix = get_high_word(x);
+    ix &= 0x7fffffff;
+
+    /* j0(+-inf)=0, j0(nan)=nan */
+    if ix >= 0x7ff00000 {
+        return 1.0 / (x * x);
+    }
+    x = fabs(x);
+
+    if ix >= 0x40000000 {
+        /* |x| >= 2 */
+        /* large ulp error near zeros: 2.4, 5.52, 8.6537,.. */
+        return common(ix, x, false);
+    }
+
+    /* 1 - x*x/4 + x*x*R(x^2)/S(x^2) */
+    if ix >= 0x3f200000 {
+        /* |x| >= 2**-13 */
+        /* up to 4ulp error close to 2 */
+        z = x * x;
+        r = z * (R02 + z * (R03 + z * (R04 + z * R05)));
+        s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * S04)));
+        return (1.0 + x / 2.0) * (1.0 - x / 2.0) + z * (r / s);
+    }
+
+    /* 1 - x*x/4 */
+    /* prevent underflow */
+    /* inexact should be raised when x!=0, this is not done correctly */
+    if ix >= 0x38000000 {
+        /* |x| >= 2**-127 */
+        x = 0.25 * x * x;
+    }
+    return 1.0 - x;
+}
+
+const U00: f64 = -7.38042951086872317523e-02; /* 0xBFB2E4D6, 0x99CBD01F */
+const U01: f64 = 1.76666452509181115538e-01; /* 0x3FC69D01, 0x9DE9E3FC */
+const U02: f64 = -1.38185671945596898896e-02; /* 0xBF8C4CE8, 0xB16CFA97 */
+const U03: f64 = 3.47453432093683650238e-04; /* 0x3F36C54D, 0x20B29B6B */
+const U04: f64 = -3.81407053724364161125e-06; /* 0xBECFFEA7, 0x73D25CAD */
+const U05: f64 = 1.95590137035022920206e-08; /* 0x3E550057, 0x3B4EABD4 */
+const U06: f64 = -3.98205194132103398453e-11; /* 0xBDC5E43D, 0x693FB3C8 */
+const V01: f64 = 1.27304834834123699328e-02; /* 0x3F8A1270, 0x91C9C71A */
+const V02: f64 = 7.60068627350353253702e-05; /* 0x3F13ECBB, 0xF578C6C1 */
+const V03: f64 = 2.59150851840457805467e-07; /* 0x3E91642D, 0x7FF202FD */
+const V04: f64 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
+
+/// Zeroth order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f64).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn y0(x: f64) -> f64 {
+    let z: f64;
+    let u: f64;
+    let v: f64;
+    let ix: u32;
+    let lx: u32;
+
+    ix = get_high_word(x);
+    lx = get_low_word(x);
+
+    /* y0(nan)=nan, y0(<0)=nan, y0(0)=-inf, y0(inf)=0 */
+    if ((ix << 1) | lx) == 0 {
+        return -1.0 / 0.0;
+    }
+    if (ix >> 31) != 0 {
+        return 0.0 / 0.0;
+    }
+    if ix >= 0x7ff00000 {
+        return 1.0 / x;
+    }
+
+    if ix >= 0x40000000 {
+        /* x >= 2 */
+        /* large ulp errors near zeros: 3.958, 7.086,.. */
+        return common(ix, x, true);
+    }
+
+    /* U(x^2)/V(x^2) + (2/pi)*j0(x)*log(x) */
+    if ix >= 0x3e400000 {
+        /* x >= 2**-27 */
+        /* large ulp error near the first zero, x ~= 0.89 */
+        z = x * x;
+        u = U00 + z * (U01 + z * (U02 + z * (U03 + z * (U04 + z * (U05 + z * U06)))));
+        v = 1.0 + z * (V01 + z * (V02 + z * (V03 + z * V04)));
+        return u / v + TPI * (j0(x) * log(x));
+    }
+    return U00 + TPI * log(x);
+}
+
+/* The asymptotic expansions of pzero is
+ *      1 - 9/128 s^2 + 11025/98304 s^4 - ...,  where s = 1/x.
+ * For x >= 2, We approximate pzero by
+ *      pzero(x) = 1 + (R/S)
+ * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
+ *        S = 1 + pS0*s^2 + ... + pS4*s^10
+ * and
+ *      | pzero(x)-1-R/S | <= 2  ** ( -60.26)
+ */
+const PR8: [f64; 6] = [
+    /* for x in [inf, 8]=1/[0,0.125] */
+    0.00000000000000000000e+00,  /* 0x00000000, 0x00000000 */
+    -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
+    -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
+    -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
+    -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
+    -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
+];
+const PS8: [f64; 5] = [
+    1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
+    3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
+    4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
+    1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
+    4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
+];
+
+const PR5: [f64; 6] = [
+    /* for x in [8,4.5454]=1/[0.125,0.22001] */
+    -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
+    -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
+    -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
+    -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
+    -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
+    -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
+];
+const PS5: [f64; 5] = [
+    6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
+    1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
+    5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
+    9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
+    2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
+];
+
+const PR3: [f64; 6] = [
+    /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+    -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
+    -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
+    -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
+    -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
+    -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
+    -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
+];
+const PS3: [f64; 5] = [
+    3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
+    3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
+    1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
+    1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
+    1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
+];
+
+const PR2: [f64; 6] = [
+    /* for x in [2.8570,2]=1/[0.3499,0.5] */
+    -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
+    -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
+    -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
+    -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
+    -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
+    -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
+];
+const PS2: [f64; 5] = [
+    2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
+    1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
+    2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
+    1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
+    1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
+];
+
+fn pzero(x: f64) -> f64 {
+    let p: &[f64; 6];
+    let q: &[f64; 5];
+    let z: f64;
+    let r: f64;
+    let s: f64;
+    let mut ix: u32;
+
+    ix = get_high_word(x);
+    ix &= 0x7fffffff;
+    if ix >= 0x40200000 {
+        p = &PR8;
+        q = &PS8;
+    } else if ix >= 0x40122E8B {
+        p = &PR5;
+        q = &PS5;
+    } else if ix >= 0x4006DB6D {
+        p = &PR3;
+        q = &PS3;
+    } else
+    /*ix >= 0x40000000*/
+    {
+        p = &PR2;
+        q = &PS2;
+    }
+    z = 1.0 / (x * x);
+    r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+    s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
+    return 1.0 + r / s;
+}
+
+/* For x >= 8, the asymptotic expansions of qzero is
+ *      -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
+ * We approximate pzero by
+ *      qzero(x) = s*(-1.25 + (R/S))
+ * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
+ *        S = 1 + qS0*s^2 + ... + qS5*s^12
+ * and
+ *      | qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
+ */
+const QR8: [f64; 6] = [
+    /* for x in [inf, 8]=1/[0,0.125] */
+    0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+    7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
+    1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
+    5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
+    8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
+    3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
+];
+const QS8: [f64; 6] = [
+    1.63776026895689824414e+02,  /* 0x406478D5, 0x365B39BC */
+    8.09834494656449805916e+03,  /* 0x40BFA258, 0x4E6B0563 */
+    1.42538291419120476348e+05,  /* 0x41016652, 0x54D38C3F */
+    8.03309257119514397345e+05,  /* 0x412883DA, 0x83A52B43 */
+    8.40501579819060512818e+05,  /* 0x4129A66B, 0x28DE0B3D */
+    -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
+];
+
+const QR5: [f64; 6] = [
+    /* for x in [8,4.5454]=1/[0.125,0.22001] */
+    1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
+    7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
+    5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
+    1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
+    1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
+    1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
+];
+const QS5: [f64; 6] = [
+    8.27766102236537761883e+01,  /* 0x4054B1B3, 0xFB5E1543 */
+    2.07781416421392987104e+03,  /* 0x40A03BA0, 0xDA21C0CE */
+    1.88472887785718085070e+04,  /* 0x40D267D2, 0x7B591E6D */
+    5.67511122894947329769e+04,  /* 0x40EBB5E3, 0x97E02372 */
+    3.59767538425114471465e+04,  /* 0x40E19118, 0x1F7A54A0 */
+    -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
+];
+
+const QR3: [f64; 6] = [
+    /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+    4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
+    7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
+    3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
+    4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
+    1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
+    1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
+];
+const QS3: [f64; 6] = [
+    4.87588729724587182091e+01,  /* 0x40486122, 0xBFE343A6 */
+    7.09689221056606015736e+02,  /* 0x40862D83, 0x86544EB3 */
+    3.70414822620111362994e+03,  /* 0x40ACF04B, 0xE44DFC63 */
+    6.46042516752568917582e+03,  /* 0x40B93C6C, 0xD7C76A28 */
+    2.51633368920368957333e+03,  /* 0x40A3A8AA, 0xD94FB1C0 */
+    -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
+];
+
+const QR2: [f64; 6] = [
+    /* for x in [2.8570,2]=1/[0.3499,0.5] */
+    1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
+    7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
+    1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
+    1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
+    3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
+    1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
+];
+const QS2: [f64; 6] = [
+    3.03655848355219184498e+01,  /* 0x403E5D96, 0xF7C07AED */
+    2.69348118608049844624e+02,  /* 0x4070D591, 0xE4D14B40 */
+    8.44783757595320139444e+02,  /* 0x408A6645, 0x22B3BF22 */
+    8.82935845112488550512e+02,  /* 0x408B977C, 0x9C5CC214 */
+    2.12666388511798828631e+02,  /* 0x406A9553, 0x0E001365 */
+    -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
+];
+
+fn qzero(x: f64) -> f64 {
+    let p: &[f64; 6];
+    let q: &[f64; 6];
+    let s: f64;
+    let r: f64;
+    let z: f64;
+    let mut ix: u32;
+
+    ix = get_high_word(x);
+    ix &= 0x7fffffff;
+    if ix >= 0x40200000 {
+        p = &QR8;
+        q = &QS8;
+    } else if ix >= 0x40122E8B {
+        p = &QR5;
+        q = &QS5;
+    } else if ix >= 0x4006DB6D {
+        p = &QR3;
+        q = &QS3;
+    } else
+    /*ix >= 0x40000000*/
+    {
+        p = &QR2;
+        q = &QS2;
+    }
+    z = 1.0 / (x * x);
+    r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+    s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
+    return (-0.125 + r / s) / x;
+}
diff --git a/library/compiler-builtins/libm/src/math/j0f.rs b/library/compiler-builtins/libm/src/math/j0f.rs
new file mode 100644
index 00000000000..25e5b325c8c
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/j0f.rs
@@ -0,0 +1,363 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_j0f.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{cosf, fabsf, logf, sinf, sqrtf};
+
+const INVSQRTPI: f32 = 5.6418961287e-01; /* 0x3f106ebb */
+const TPI: f32 = 6.3661974669e-01; /* 0x3f22f983 */
+
+fn common(ix: u32, x: f32, y0: bool) -> f32 {
+    let z: f32;
+    let s: f32;
+    let mut c: f32;
+    let mut ss: f32;
+    let mut cc: f32;
+    /*
+     * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
+     * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
+     */
+    s = sinf(x);
+    c = cosf(x);
+    if y0 {
+        c = -c;
+    }
+    cc = s + c;
+    if ix < 0x7f000000 {
+        ss = s - c;
+        z = -cosf(2.0 * x);
+        if s * c < 0.0 {
+            cc = z / ss;
+        } else {
+            ss = z / cc;
+        }
+        if ix < 0x58800000 {
+            if y0 {
+                ss = -ss;
+            }
+            cc = pzerof(x) * cc - qzerof(x) * ss;
+        }
+    }
+    return INVSQRTPI * cc / sqrtf(x);
+}
+
+/* R0/S0 on [0, 2.00] */
+const R02: f32 = 1.5625000000e-02; /* 0x3c800000 */
+const R03: f32 = -1.8997929874e-04; /* 0xb947352e */
+const R04: f32 = 1.8295404516e-06; /* 0x35f58e88 */
+const R05: f32 = -4.6183270541e-09; /* 0xb19eaf3c */
+const S01: f32 = 1.5619102865e-02; /* 0x3c7fe744 */
+const S02: f32 = 1.1692678527e-04; /* 0x38f53697 */
+const S03: f32 = 5.1354652442e-07; /* 0x3509daa6 */
+const S04: f32 = 1.1661400734e-09; /* 0x30a045e8 */
+
+/// Zeroth order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f32).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn j0f(mut x: f32) -> f32 {
+    let z: f32;
+    let r: f32;
+    let s: f32;
+    let mut ix: u32;
+
+    ix = x.to_bits();
+    ix &= 0x7fffffff;
+    if ix >= 0x7f800000 {
+        return 1.0 / (x * x);
+    }
+    x = fabsf(x);
+
+    if ix >= 0x40000000 {
+        /* |x| >= 2 */
+        /* large ulp error near zeros */
+        return common(ix, x, false);
+    }
+    if ix >= 0x3a000000 {
+        /* |x| >= 2**-11 */
+        /* up to 4ulp error near 2 */
+        z = x * x;
+        r = z * (R02 + z * (R03 + z * (R04 + z * R05)));
+        s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * S04)));
+        return (1.0 + x / 2.0) * (1.0 - x / 2.0) + z * (r / s);
+    }
+    if ix >= 0x21800000 {
+        /* |x| >= 2**-60 */
+        x = 0.25 * x * x;
+    }
+    return 1.0 - x;
+}
+
+const U00: f32 = -7.3804296553e-02; /* 0xbd9726b5 */
+const U01: f32 = 1.7666645348e-01; /* 0x3e34e80d */
+const U02: f32 = -1.3818567619e-02; /* 0xbc626746 */
+const U03: f32 = 3.4745343146e-04; /* 0x39b62a69 */
+const U04: f32 = -3.8140706238e-06; /* 0xb67ff53c */
+const U05: f32 = 1.9559013964e-08; /* 0x32a802ba */
+const U06: f32 = -3.9820518410e-11; /* 0xae2f21eb */
+const V01: f32 = 1.2730483897e-02; /* 0x3c509385 */
+const V02: f32 = 7.6006865129e-05; /* 0x389f65e0 */
+const V03: f32 = 2.5915085189e-07; /* 0x348b216c */
+const V04: f32 = 4.4111031494e-10; /* 0x2ff280c2 */
+
+/// Zeroth order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f32).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn y0f(x: f32) -> f32 {
+    let z: f32;
+    let u: f32;
+    let v: f32;
+    let ix: u32;
+
+    ix = x.to_bits();
+    if (ix & 0x7fffffff) == 0 {
+        return -1.0 / 0.0;
+    }
+    if (ix >> 31) != 0 {
+        return 0.0 / 0.0;
+    }
+    if ix >= 0x7f800000 {
+        return 1.0 / x;
+    }
+    if ix >= 0x40000000 {
+        /* |x| >= 2.0 */
+        /* large ulp error near zeros */
+        return common(ix, x, true);
+    }
+    if ix >= 0x39000000 {
+        /* x >= 2**-13 */
+        /* large ulp error at x ~= 0.89 */
+        z = x * x;
+        u = U00 + z * (U01 + z * (U02 + z * (U03 + z * (U04 + z * (U05 + z * U06)))));
+        v = 1.0 + z * (V01 + z * (V02 + z * (V03 + z * V04)));
+        return u / v + TPI * (j0f(x) * logf(x));
+    }
+    return U00 + TPI * logf(x);
+}
+
+/* The asymptotic expansions of pzero is
+ *      1 - 9/128 s^2 + 11025/98304 s^4 - ...,  where s = 1/x.
+ * For x >= 2, We approximate pzero by
+ *      pzero(x) = 1 + (R/S)
+ * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
+ *        S = 1 + pS0*s^2 + ... + pS4*s^10
+ * and
+ *      | pzero(x)-1-R/S | <= 2  ** ( -60.26)
+ */
+const PR8: [f32; 6] = [
+    /* for x in [inf, 8]=1/[0,0.125] */
+    0.0000000000e+00,  /* 0x00000000 */
+    -7.0312500000e-02, /* 0xbd900000 */
+    -8.0816707611e+00, /* 0xc1014e86 */
+    -2.5706311035e+02, /* 0xc3808814 */
+    -2.4852163086e+03, /* 0xc51b5376 */
+    -5.2530439453e+03, /* 0xc5a4285a */
+];
+const PS8: [f32; 5] = [
+    1.1653436279e+02, /* 0x42e91198 */
+    3.8337448730e+03, /* 0x456f9beb */
+    4.0597855469e+04, /* 0x471e95db */
+    1.1675296875e+05, /* 0x47e4087c */
+    4.7627726562e+04, /* 0x473a0bba */
+];
+const PR5: [f32; 6] = [
+    /* for x in [8,4.5454]=1/[0.125,0.22001] */
+    -1.1412546255e-11, /* 0xad48c58a */
+    -7.0312492549e-02, /* 0xbd8fffff */
+    -4.1596107483e+00, /* 0xc0851b88 */
+    -6.7674766541e+01, /* 0xc287597b */
+    -3.3123129272e+02, /* 0xc3a59d9b */
+    -3.4643338013e+02, /* 0xc3ad3779 */
+];
+const PS5: [f32; 5] = [
+    6.0753936768e+01, /* 0x42730408 */
+    1.0512523193e+03, /* 0x44836813 */
+    5.9789707031e+03, /* 0x45bad7c4 */
+    9.6254453125e+03, /* 0x461665c8 */
+    2.4060581055e+03, /* 0x451660ee */
+];
+
+const PR3: [f32; 6] = [
+    /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+    -2.5470459075e-09, /* 0xb12f081b */
+    -7.0311963558e-02, /* 0xbd8fffb8 */
+    -2.4090321064e+00, /* 0xc01a2d95 */
+    -2.1965976715e+01, /* 0xc1afba52 */
+    -5.8079170227e+01, /* 0xc2685112 */
+    -3.1447946548e+01, /* 0xc1fb9565 */
+];
+const PS3: [f32; 5] = [
+    3.5856033325e+01, /* 0x420f6c94 */
+    3.6151397705e+02, /* 0x43b4c1ca */
+    1.1936077881e+03, /* 0x44953373 */
+    1.1279968262e+03, /* 0x448cffe6 */
+    1.7358093262e+02, /* 0x432d94b8 */
+];
+
+const PR2: [f32; 6] = [
+    /* for x in [2.8570,2]=1/[0.3499,0.5] */
+    -8.8753431271e-08, /* 0xb3be98b7 */
+    -7.0303097367e-02, /* 0xbd8ffb12 */
+    -1.4507384300e+00, /* 0xbfb9b1cc */
+    -7.6356959343e+00, /* 0xc0f4579f */
+    -1.1193166733e+01, /* 0xc1331736 */
+    -3.2336456776e+00, /* 0xc04ef40d */
+];
+const PS2: [f32; 5] = [
+    2.2220300674e+01, /* 0x41b1c32d */
+    1.3620678711e+02, /* 0x430834f0 */
+    2.7047027588e+02, /* 0x43873c32 */
+    1.5387539673e+02, /* 0x4319e01a */
+    1.4657617569e+01, /* 0x416a859a */
+];
+
+fn pzerof(x: f32) -> f32 {
+    let p: &[f32; 6];
+    let q: &[f32; 5];
+    let z: f32;
+    let r: f32;
+    let s: f32;
+    let mut ix: u32;
+
+    ix = x.to_bits();
+    ix &= 0x7fffffff;
+    if ix >= 0x41000000 {
+        p = &PR8;
+        q = &PS8;
+    } else if ix >= 0x409173eb {
+        p = &PR5;
+        q = &PS5;
+    } else if ix >= 0x4036d917 {
+        p = &PR3;
+        q = &PS3;
+    } else
+    /*ix >= 0x40000000*/
+    {
+        p = &PR2;
+        q = &PS2;
+    }
+    z = 1.0 / (x * x);
+    r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+    s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
+    return 1.0 + r / s;
+}
+
+/* For x >= 8, the asymptotic expansions of qzero is
+ *      -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
+ * We approximate pzero by
+ *      qzero(x) = s*(-1.25 + (R/S))
+ * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
+ *        S = 1 + qS0*s^2 + ... + qS5*s^12
+ * and
+ *      | qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
+ */
+const QR8: [f32; 6] = [
+    /* for x in [inf, 8]=1/[0,0.125] */
+    0.0000000000e+00, /* 0x00000000 */
+    7.3242187500e-02, /* 0x3d960000 */
+    1.1768206596e+01, /* 0x413c4a93 */
+    5.5767340088e+02, /* 0x440b6b19 */
+    8.8591972656e+03, /* 0x460a6cca */
+    3.7014625000e+04, /* 0x471096a0 */
+];
+const QS8: [f32; 6] = [
+    1.6377603149e+02,  /* 0x4323c6aa */
+    8.0983447266e+03,  /* 0x45fd12c2 */
+    1.4253829688e+05,  /* 0x480b3293 */
+    8.0330925000e+05,  /* 0x49441ed4 */
+    8.4050156250e+05,  /* 0x494d3359 */
+    -3.4389928125e+05, /* 0xc8a7eb69 */
+];
+
+const QR5: [f32; 6] = [
+    /* for x in [8,4.5454]=1/[0.125,0.22001] */
+    1.8408595828e-11, /* 0x2da1ec79 */
+    7.3242180049e-02, /* 0x3d95ffff */
+    5.8356351852e+00, /* 0x40babd86 */
+    1.3511157227e+02, /* 0x43071c90 */
+    1.0272437744e+03, /* 0x448067cd */
+    1.9899779053e+03, /* 0x44f8bf4b */
+];
+const QS5: [f32; 6] = [
+    8.2776611328e+01,  /* 0x42a58da0 */
+    2.0778142090e+03,  /* 0x4501dd07 */
+    1.8847289062e+04,  /* 0x46933e94 */
+    5.6751113281e+04,  /* 0x475daf1d */
+    3.5976753906e+04,  /* 0x470c88c1 */
+    -5.3543427734e+03, /* 0xc5a752be */
+];
+
+const QR3: [f32; 6] = [
+    /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+    4.3774099900e-09, /* 0x3196681b */
+    7.3241114616e-02, /* 0x3d95ff70 */
+    3.3442313671e+00, /* 0x405607e3 */
+    4.2621845245e+01, /* 0x422a7cc5 */
+    1.7080809021e+02, /* 0x432acedf */
+    1.6673394775e+02, /* 0x4326bbe4 */
+];
+const QS3: [f32; 6] = [
+    4.8758872986e+01,  /* 0x42430916 */
+    7.0968920898e+02,  /* 0x44316c1c */
+    3.7041481934e+03,  /* 0x4567825f */
+    6.4604252930e+03,  /* 0x45c9e367 */
+    2.5163337402e+03,  /* 0x451d4557 */
+    -1.4924745178e+02, /* 0xc3153f59 */
+];
+
+const QR2: [f32; 6] = [
+    /* for x in [2.8570,2]=1/[0.3499,0.5] */
+    1.5044444979e-07, /* 0x342189db */
+    7.3223426938e-02, /* 0x3d95f62a */
+    1.9981917143e+00, /* 0x3fffc4bf */
+    1.4495602608e+01, /* 0x4167edfd */
+    3.1666231155e+01, /* 0x41fd5471 */
+    1.6252708435e+01, /* 0x4182058c */
+];
+const QS2: [f32; 6] = [
+    3.0365585327e+01,  /* 0x41f2ecb8 */
+    2.6934811401e+02,  /* 0x4386ac8f */
+    8.4478375244e+02,  /* 0x44533229 */
+    8.8293585205e+02,  /* 0x445cbbe5 */
+    2.1266638184e+02,  /* 0x4354aa98 */
+    -5.3109550476e+00, /* 0xc0a9f358 */
+];
+
+fn qzerof(x: f32) -> f32 {
+    let p: &[f32; 6];
+    let q: &[f32; 6];
+    let s: f32;
+    let r: f32;
+    let z: f32;
+    let mut ix: u32;
+
+    ix = x.to_bits();
+    ix &= 0x7fffffff;
+    if ix >= 0x41000000 {
+        p = &QR8;
+        q = &QS8;
+    } else if ix >= 0x409173eb {
+        p = &QR5;
+        q = &QS5;
+    } else if ix >= 0x4036d917 {
+        p = &QR3;
+        q = &QS3;
+    } else
+    /*ix >= 0x40000000*/
+    {
+        p = &QR2;
+        q = &QS2;
+    }
+    z = 1.0 / (x * x);
+    r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+    s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
+    return (-0.125 + r / s) / x;
+}
diff --git a/library/compiler-builtins/libm/src/math/j1.rs b/library/compiler-builtins/libm/src/math/j1.rs
new file mode 100644
index 00000000000..9b604d9e46e
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/j1.rs
@@ -0,0 +1,418 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_j1.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* j1(x), y1(x)
+ * Bessel function of the first and second kinds of order zero.
+ * Method -- j1(x):
+ *      1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
+ *      2. Reduce x to |x| since j1(x)=-j1(-x),  and
+ *         for x in (0,2)
+ *              j1(x) = x/2 + x*z*R0/S0,  where z = x*x;
+ *         (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 )
+ *         for x in (2,inf)
+ *              j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
+ *              y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
+ *         where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
+ *         as follow:
+ *              cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
+ *                      =  1/sqrt(2) * (sin(x) - cos(x))
+ *              sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+ *                      = -1/sqrt(2) * (sin(x) + cos(x))
+ *         (To avoid cancellation, use
+ *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ *          to compute the worse one.)
+ *
+ *      3 Special cases
+ *              j1(nan)= nan
+ *              j1(0) = 0
+ *              j1(inf) = 0
+ *
+ * Method -- y1(x):
+ *      1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
+ *      2. For x<2.
+ *         Since
+ *              y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
+ *         therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
+ *         We use the following function to approximate y1,
+ *              y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
+ *         where for x in [0,2] (abs err less than 2**-65.89)
+ *              U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
+ *              V(z) = 1  + v0[0]*z + ... + v0[4]*z^5
+ *         Note: For tiny x, 1/x dominate y1 and hence
+ *              y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
+ *      3. For x>=2.
+ *              y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
+ *         where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
+ *         by method mentioned above.
+ */
+
+use super::{cos, fabs, get_high_word, get_low_word, log, sin, sqrt};
+
+const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
+const TPI: f64 = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
+
+fn common(ix: u32, x: f64, y1: bool, sign: bool) -> f64 {
+    let z: f64;
+    let mut s: f64;
+    let c: f64;
+    let mut ss: f64;
+    let mut cc: f64;
+
+    /*
+     * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x-3pi/4)-q1(x)*sin(x-3pi/4))
+     * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x-3pi/4)+q1(x)*cos(x-3pi/4))
+     *
+     * sin(x-3pi/4) = -(sin(x) + cos(x))/sqrt(2)
+     * cos(x-3pi/4) = (sin(x) - cos(x))/sqrt(2)
+     * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+     */
+    s = sin(x);
+    if y1 {
+        s = -s;
+    }
+    c = cos(x);
+    cc = s - c;
+    if ix < 0x7fe00000 {
+        /* avoid overflow in 2*x */
+        ss = -s - c;
+        z = cos(2.0 * x);
+        if s * c > 0.0 {
+            cc = z / ss;
+        } else {
+            ss = z / cc;
+        }
+        if ix < 0x48000000 {
+            if y1 {
+                ss = -ss;
+            }
+            cc = pone(x) * cc - qone(x) * ss;
+        }
+    }
+    if sign {
+        cc = -cc;
+    }
+    return INVSQRTPI * cc / sqrt(x);
+}
+
+/* R0/S0 on [0,2] */
+const R00: f64 = -6.25000000000000000000e-02; /* 0xBFB00000, 0x00000000 */
+const R01: f64 = 1.40705666955189706048e-03; /* 0x3F570D9F, 0x98472C61 */
+const R02: f64 = -1.59955631084035597520e-05; /* 0xBEF0C5C6, 0xBA169668 */
+const R03: f64 = 4.96727999609584448412e-08; /* 0x3E6AAAFA, 0x46CA0BD9 */
+const S01: f64 = 1.91537599538363460805e-02; /* 0x3F939D0B, 0x12637E53 */
+const S02: f64 = 1.85946785588630915560e-04; /* 0x3F285F56, 0xB9CDF664 */
+const S03: f64 = 1.17718464042623683263e-06; /* 0x3EB3BFF8, 0x333F8498 */
+const S04: f64 = 5.04636257076217042715e-09; /* 0x3E35AC88, 0xC97DFF2C */
+const S05: f64 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */
+
+/// First order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f64).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn j1(x: f64) -> f64 {
+    let mut z: f64;
+    let r: f64;
+    let s: f64;
+    let mut ix: u32;
+    let sign: bool;
+
+    ix = get_high_word(x);
+    sign = (ix >> 31) != 0;
+    ix &= 0x7fffffff;
+    if ix >= 0x7ff00000 {
+        return 1.0 / (x * x);
+    }
+    if ix >= 0x40000000 {
+        /* |x| >= 2 */
+        return common(ix, fabs(x), false, sign);
+    }
+    if ix >= 0x38000000 {
+        /* |x| >= 2**-127 */
+        z = x * x;
+        r = z * (R00 + z * (R01 + z * (R02 + z * R03)));
+        s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * (S04 + z * S05))));
+        z = r / s;
+    } else {
+        /* avoid underflow, raise inexact if x!=0 */
+        z = x;
+    }
+    return (0.5 + z) * x;
+}
+
+const U0: [f64; 5] = [
+    -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
+    5.04438716639811282616e-02,  /* 0x3FA9D3C7, 0x76292CD1 */
+    -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
+    2.35252600561610495928e-05,  /* 0x3EF8AB03, 0x8FA6B88E */
+    -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
+];
+const V0: [f64; 5] = [
+    1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
+    2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
+    1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
+    6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
+    1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
+];
+
+/// First order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f64).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn y1(x: f64) -> f64 {
+    let z: f64;
+    let u: f64;
+    let v: f64;
+    let ix: u32;
+    let lx: u32;
+
+    ix = get_high_word(x);
+    lx = get_low_word(x);
+
+    /* y1(nan)=nan, y1(<0)=nan, y1(0)=-inf, y1(inf)=0 */
+    if (ix << 1) | lx == 0 {
+        return -1.0 / 0.0;
+    }
+    if ix >> 31 != 0 {
+        return 0.0 / 0.0;
+    }
+    if ix >= 0x7ff00000 {
+        return 1.0 / x;
+    }
+
+    if ix >= 0x40000000 {
+        /* x >= 2 */
+        return common(ix, x, true, false);
+    }
+    if ix < 0x3c900000 {
+        /* x < 2**-54 */
+        return -TPI / x;
+    }
+    z = x * x;
+    u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * U0[4])));
+    v = 1.0 + z * (V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * V0[4]))));
+    return x * (u / v) + TPI * (j1(x) * log(x) - 1.0 / x);
+}
+
+/* For x >= 8, the asymptotic expansions of pone is
+ *      1 + 15/128 s^2 - 4725/2^15 s^4 - ...,   where s = 1/x.
+ * We approximate pone by
+ *      pone(x) = 1 + (R/S)
+ * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
+ *        S = 1 + ps0*s^2 + ... + ps4*s^10
+ * and
+ *      | pone(x)-1-R/S | <= 2  ** ( -60.06)
+ */
+
+const PR8: [f64; 6] = [
+    /* for x in [inf, 8]=1/[0,0.125] */
+    0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+    1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
+    1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
+    4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
+    3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
+    7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
+];
+const PS8: [f64; 5] = [
+    1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
+    3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
+    3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
+    9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
+    3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
+];
+
+const PR5: [f64; 6] = [
+    /* for x in [8,4.5454]=1/[0.125,0.22001] */
+    1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
+    1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
+    6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
+    1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
+    5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
+    5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
+];
+const PS5: [f64; 5] = [
+    5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
+    9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
+    5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
+    7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
+    1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
+];
+
+const PR3: [f64; 6] = [
+    3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
+    1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
+    3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
+    3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
+    9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
+    4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
+];
+const PS3: [f64; 5] = [
+    3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
+    3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
+    1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
+    8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
+    1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
+];
+
+const PR2: [f64; 6] = [
+    /* for x in [2.8570,2]=1/[0.3499,0.5] */
+    1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
+    1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
+    2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
+    1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
+    1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
+    5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
+];
+const PS2: [f64; 5] = [
+    2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
+    1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
+    2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
+    1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
+    8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
+];
+
+fn pone(x: f64) -> f64 {
+    let p: &[f64; 6];
+    let q: &[f64; 5];
+    let z: f64;
+    let r: f64;
+    let s: f64;
+    let mut ix: u32;
+
+    ix = get_high_word(x);
+    ix &= 0x7fffffff;
+    if ix >= 0x40200000 {
+        p = &PR8;
+        q = &PS8;
+    } else if ix >= 0x40122E8B {
+        p = &PR5;
+        q = &PS5;
+    } else if ix >= 0x4006DB6D {
+        p = &PR3;
+        q = &PS3;
+    } else
+    /*ix >= 0x40000000*/
+    {
+        p = &PR2;
+        q = &PS2;
+    }
+    z = 1.0 / (x * x);
+    r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+    s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
+    return 1.0 + r / s;
+}
+
+/* For x >= 8, the asymptotic expansions of qone is
+ *      3/8 s - 105/1024 s^3 - ..., where s = 1/x.
+ * We approximate pone by
+ *      qone(x) = s*(0.375 + (R/S))
+ * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
+ *        S = 1 + qs1*s^2 + ... + qs6*s^12
+ * and
+ *      | qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
+ */
+
+const QR8: [f64; 6] = [
+    /* for x in [inf, 8]=1/[0,0.125] */
+    0.00000000000000000000e+00,  /* 0x00000000, 0x00000000 */
+    -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
+    -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
+    -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
+    -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
+    -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
+];
+const QS8: [f64; 6] = [
+    1.61395369700722909556e+02,  /* 0x40642CA6, 0xDE5BCDE5 */
+    7.82538599923348465381e+03,  /* 0x40BE9162, 0xD0D88419 */
+    1.33875336287249578163e+05,  /* 0x4100579A, 0xB0B75E98 */
+    7.19657723683240939863e+05,  /* 0x4125F653, 0x72869C19 */
+    6.66601232617776375264e+05,  /* 0x412457D2, 0x7719AD5C */
+    -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
+];
+
+const QR5: [f64; 6] = [
+    /* for x in [8,4.5454]=1/[0.125,0.22001] */
+    -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
+    -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
+    -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
+    -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
+    -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
+    -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
+];
+const QS5: [f64; 6] = [
+    8.12765501384335777857e+01,  /* 0x405451B2, 0xFF5A11B2 */
+    1.99179873460485964642e+03,  /* 0x409F1F31, 0xE77BF839 */
+    1.74684851924908907677e+04,  /* 0x40D10F1F, 0x0D64CE29 */
+    4.98514270910352279316e+04,  /* 0x40E8576D, 0xAABAD197 */
+    2.79480751638918118260e+04,  /* 0x40DB4B04, 0xCF7C364B */
+    -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
+];
+
+const QR3: [f64; 6] = [
+    -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
+    -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
+    -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
+    -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
+    -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
+    -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
+];
+const QS3: [f64; 6] = [
+    4.76651550323729509273e+01,  /* 0x4047D523, 0xCCD367E4 */
+    6.73865112676699709482e+02,  /* 0x40850EEB, 0xC031EE3E */
+    3.38015286679526343505e+03,  /* 0x40AA684E, 0x448E7C9A */
+    5.54772909720722782367e+03,  /* 0x40B5ABBA, 0xA61D54A6 */
+    1.90311919338810798763e+03,  /* 0x409DBC7A, 0x0DD4DF4B */
+    -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
+];
+
+const QR2: [f64; 6] = [
+    /* for x in [2.8570,2]=1/[0.3499,0.5] */
+    -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
+    -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
+    -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
+    -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
+    -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
+    -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
+];
+const QS2: [f64; 6] = [
+    2.95333629060523854548e+01,  /* 0x403D888A, 0x78AE64FF */
+    2.52981549982190529136e+02,  /* 0x406F9F68, 0xDB821CBA */
+    7.57502834868645436472e+02,  /* 0x4087AC05, 0xCE49A0F7 */
+    7.39393205320467245656e+02,  /* 0x40871B25, 0x48D4C029 */
+    1.55949003336666123687e+02,  /* 0x40637E5E, 0x3C3ED8D4 */
+    -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
+];
+
+fn qone(x: f64) -> f64 {
+    let p: &[f64; 6];
+    let q: &[f64; 6];
+    let s: f64;
+    let r: f64;
+    let z: f64;
+    let mut ix: u32;
+
+    ix = get_high_word(x);
+    ix &= 0x7fffffff;
+    if ix >= 0x40200000 {
+        p = &QR8;
+        q = &QS8;
+    } else if ix >= 0x40122E8B {
+        p = &QR5;
+        q = &QS5;
+    } else if ix >= 0x4006DB6D {
+        p = &QR3;
+        q = &QS3;
+    } else
+    /*ix >= 0x40000000*/
+    {
+        p = &QR2;
+        q = &QS2;
+    }
+    z = 1.0 / (x * x);
+    r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+    s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
+    return (0.375 + r / s) / x;
+}
diff --git a/library/compiler-builtins/libm/src/math/j1f.rs b/library/compiler-builtins/libm/src/math/j1f.rs
new file mode 100644
index 00000000000..a47472401ee
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/j1f.rs
@@ -0,0 +1,384 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_j1f.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{cosf, fabsf, logf, sinf, sqrtf};
+
+const INVSQRTPI: f32 = 5.6418961287e-01; /* 0x3f106ebb */
+const TPI: f32 = 6.3661974669e-01; /* 0x3f22f983 */
+
+fn common(ix: u32, x: f32, y1: bool, sign: bool) -> f32 {
+    let z: f64;
+    let mut s: f64;
+    let c: f64;
+    let mut ss: f64;
+    let mut cc: f64;
+
+    s = sinf(x) as f64;
+    if y1 {
+        s = -s;
+    }
+    c = cosf(x) as f64;
+    cc = s - c;
+    if ix < 0x7f000000 {
+        ss = -s - c;
+        z = cosf(2.0 * x) as f64;
+        if s * c > 0.0 {
+            cc = z / ss;
+        } else {
+            ss = z / cc;
+        }
+        if ix < 0x58800000 {
+            if y1 {
+                ss = -ss;
+            }
+            cc = (ponef(x) as f64) * cc - (qonef(x) as f64) * ss;
+        }
+    }
+    if sign {
+        cc = -cc;
+    }
+    return (((INVSQRTPI as f64) * cc) / (sqrtf(x) as f64)) as f32;
+}
+
+/* R0/S0 on [0,2] */
+const R00: f32 = -6.2500000000e-02; /* 0xbd800000 */
+const R01: f32 = 1.4070566976e-03; /* 0x3ab86cfd */
+const R02: f32 = -1.5995563444e-05; /* 0xb7862e36 */
+const R03: f32 = 4.9672799207e-08; /* 0x335557d2 */
+const S01: f32 = 1.9153760746e-02; /* 0x3c9ce859 */
+const S02: f32 = 1.8594678841e-04; /* 0x3942fab6 */
+const S03: f32 = 1.1771846857e-06; /* 0x359dffc2 */
+const S04: f32 = 5.0463624390e-09; /* 0x31ad6446 */
+const S05: f32 = 1.2354227016e-11; /* 0x2d59567e */
+
+/// First order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f32).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn j1f(x: f32) -> f32 {
+    let mut z: f32;
+    let r: f32;
+    let s: f32;
+    let mut ix: u32;
+    let sign: bool;
+
+    ix = x.to_bits();
+    sign = (ix >> 31) != 0;
+    ix &= 0x7fffffff;
+    if ix >= 0x7f800000 {
+        return 1.0 / (x * x);
+    }
+    if ix >= 0x40000000 {
+        /* |x| >= 2 */
+        return common(ix, fabsf(x), false, sign);
+    }
+    if ix >= 0x39000000 {
+        /* |x| >= 2**-13 */
+        z = x * x;
+        r = z * (R00 + z * (R01 + z * (R02 + z * R03)));
+        s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * (S04 + z * S05))));
+        z = 0.5 + r / s;
+    } else {
+        z = 0.5;
+    }
+    return z * x;
+}
+
+const U0: [f32; 5] = [
+    -1.9605709612e-01, /* 0xbe48c331 */
+    5.0443872809e-02,  /* 0x3d4e9e3c */
+    -1.9125689287e-03, /* 0xbafaaf2a */
+    2.3525259166e-05,  /* 0x37c5581c */
+    -9.1909917899e-08, /* 0xb3c56003 */
+];
+const V0: [f32; 5] = [
+    1.9916731864e-02, /* 0x3ca3286a */
+    2.0255257550e-04, /* 0x3954644b */
+    1.3560879779e-06, /* 0x35b602d4 */
+    6.2274145840e-09, /* 0x31d5f8eb */
+    1.6655924903e-11, /* 0x2d9281cf */
+];
+
+/// First order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f32).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn y1f(x: f32) -> f32 {
+    let z: f32;
+    let u: f32;
+    let v: f32;
+    let ix: u32;
+
+    ix = x.to_bits();
+    if (ix & 0x7fffffff) == 0 {
+        return -1.0 / 0.0;
+    }
+    if (ix >> 31) != 0 {
+        return 0.0 / 0.0;
+    }
+    if ix >= 0x7f800000 {
+        return 1.0 / x;
+    }
+    if ix >= 0x40000000 {
+        /* |x| >= 2.0 */
+        return common(ix, x, true, false);
+    }
+    if ix < 0x33000000 {
+        /* x < 2**-25 */
+        return -TPI / x;
+    }
+    z = x * x;
+    u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * U0[4])));
+    v = 1.0 + z * (V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * V0[4]))));
+    return x * (u / v) + TPI * (j1f(x) * logf(x) - 1.0 / x);
+}
+
+/* For x >= 8, the asymptotic expansions of pone is
+ *      1 + 15/128 s^2 - 4725/2^15 s^4 - ...,   where s = 1/x.
+ * We approximate pone by
+ *      pone(x) = 1 + (R/S)
+ * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
+ *        S = 1 + ps0*s^2 + ... + ps4*s^10
+ * and
+ *      | pone(x)-1-R/S | <= 2  ** ( -60.06)
+ */
+
+const PR8: [f32; 6] = [
+    /* for x in [inf, 8]=1/[0,0.125] */
+    0.0000000000e+00, /* 0x00000000 */
+    1.1718750000e-01, /* 0x3df00000 */
+    1.3239480972e+01, /* 0x4153d4ea */
+    4.1205184937e+02, /* 0x43ce06a3 */
+    3.8747453613e+03, /* 0x45722bed */
+    7.9144794922e+03, /* 0x45f753d6 */
+];
+const PS8: [f32; 5] = [
+    1.1420736694e+02, /* 0x42e46a2c */
+    3.6509309082e+03, /* 0x45642ee5 */
+    3.6956207031e+04, /* 0x47105c35 */
+    9.7602796875e+04, /* 0x47bea166 */
+    3.0804271484e+04, /* 0x46f0a88b */
+];
+
+const PR5: [f32; 6] = [
+    /* for x in [8,4.5454]=1/[0.125,0.22001] */
+    1.3199052094e-11, /* 0x2d68333f */
+    1.1718749255e-01, /* 0x3defffff */
+    6.8027510643e+00, /* 0x40d9b023 */
+    1.0830818176e+02, /* 0x42d89dca */
+    5.1763616943e+02, /* 0x440168b7 */
+    5.2871520996e+02, /* 0x44042dc6 */
+];
+const PS5: [f32; 5] = [
+    5.9280597687e+01, /* 0x426d1f55 */
+    9.9140142822e+02, /* 0x4477d9b1 */
+    5.3532670898e+03, /* 0x45a74a23 */
+    7.8446904297e+03, /* 0x45f52586 */
+    1.5040468750e+03, /* 0x44bc0180 */
+];
+
+const PR3: [f32; 6] = [
+    3.0250391081e-09, /* 0x314fe10d */
+    1.1718686670e-01, /* 0x3defffab */
+    3.9329774380e+00, /* 0x407bb5e7 */
+    3.5119403839e+01, /* 0x420c7a45 */
+    9.1055007935e+01, /* 0x42b61c2a */
+    4.8559066772e+01, /* 0x42423c7c */
+];
+const PS3: [f32; 5] = [
+    3.4791309357e+01, /* 0x420b2a4d */
+    3.3676245117e+02, /* 0x43a86198 */
+    1.0468714600e+03, /* 0x4482dbe3 */
+    8.9081134033e+02, /* 0x445eb3ed */
+    1.0378793335e+02, /* 0x42cf936c */
+];
+
+const PR2: [f32; 6] = [
+    /* for x in [2.8570,2]=1/[0.3499,0.5] */
+    1.0771083225e-07, /* 0x33e74ea8 */
+    1.1717621982e-01, /* 0x3deffa16 */
+    2.3685150146e+00, /* 0x401795c0 */
+    1.2242610931e+01, /* 0x4143e1bc */
+    1.7693971634e+01, /* 0x418d8d41 */
+    5.0735230446e+00, /* 0x40a25a4d */
+];
+const PS2: [f32; 5] = [
+    2.1436485291e+01, /* 0x41ab7dec */
+    1.2529022980e+02, /* 0x42fa9499 */
+    2.3227647400e+02, /* 0x436846c7 */
+    1.1767937469e+02, /* 0x42eb5bd7 */
+    8.3646392822e+00, /* 0x4105d590 */
+];
+
+fn ponef(x: f32) -> f32 {
+    let p: &[f32; 6];
+    let q: &[f32; 5];
+    let z: f32;
+    let r: f32;
+    let s: f32;
+    let mut ix: u32;
+
+    ix = x.to_bits();
+    ix &= 0x7fffffff;
+    if ix >= 0x41000000 {
+        p = &PR8;
+        q = &PS8;
+    } else if ix >= 0x409173eb {
+        p = &PR5;
+        q = &PS5;
+    } else if ix >= 0x4036d917 {
+        p = &PR3;
+        q = &PS3;
+    } else
+    /*ix >= 0x40000000*/
+    {
+        p = &PR2;
+        q = &PS2;
+    }
+    z = 1.0 / (x * x);
+    r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+    s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
+    return 1.0 + r / s;
+}
+
+/* For x >= 8, the asymptotic expansions of qone is
+ *      3/8 s - 105/1024 s^3 - ..., where s = 1/x.
+ * We approximate pone by
+ *      qone(x) = s*(0.375 + (R/S))
+ * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
+ *        S = 1 + qs1*s^2 + ... + qs6*s^12
+ * and
+ *      | qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
+ */
+
+const QR8: [f32; 6] = [
+    /* for x in [inf, 8]=1/[0,0.125] */
+    0.0000000000e+00,  /* 0x00000000 */
+    -1.0253906250e-01, /* 0xbdd20000 */
+    -1.6271753311e+01, /* 0xc1822c8d */
+    -7.5960174561e+02, /* 0xc43de683 */
+    -1.1849806641e+04, /* 0xc639273a */
+    -4.8438511719e+04, /* 0xc73d3683 */
+];
+const QS8: [f32; 6] = [
+    1.6139537048e+02,  /* 0x43216537 */
+    7.8253862305e+03,  /* 0x45f48b17 */
+    1.3387534375e+05,  /* 0x4802bcd6 */
+    7.1965775000e+05,  /* 0x492fb29c */
+    6.6660125000e+05,  /* 0x4922be94 */
+    -2.9449025000e+05, /* 0xc88fcb48 */
+];
+
+const QR5: [f32; 6] = [
+    /* for x in [8,4.5454]=1/[0.125,0.22001] */
+    -2.0897993405e-11, /* 0xadb7d219 */
+    -1.0253904760e-01, /* 0xbdd1fffe */
+    -8.0564479828e+00, /* 0xc100e736 */
+    -1.8366960144e+02, /* 0xc337ab6b */
+    -1.3731937256e+03, /* 0xc4aba633 */
+    -2.6124443359e+03, /* 0xc523471c */
+];
+const QS5: [f32; 6] = [
+    8.1276550293e+01,  /* 0x42a28d98 */
+    1.9917987061e+03,  /* 0x44f8f98f */
+    1.7468484375e+04,  /* 0x468878f8 */
+    4.9851425781e+04,  /* 0x4742bb6d */
+    2.7948074219e+04,  /* 0x46da5826 */
+    -4.7191835938e+03, /* 0xc5937978 */
+];
+
+const QR3: [f32; 6] = [
+    -5.0783124372e-09, /* 0xb1ae7d4f */
+    -1.0253783315e-01, /* 0xbdd1ff5b */
+    -4.6101160049e+00, /* 0xc0938612 */
+    -5.7847221375e+01, /* 0xc267638e */
+    -2.2824453735e+02, /* 0xc3643e9a */
+    -2.1921012878e+02, /* 0xc35b35cb */
+];
+const QS3: [f32; 6] = [
+    4.7665153503e+01,  /* 0x423ea91e */
+    6.7386511230e+02,  /* 0x4428775e */
+    3.3801528320e+03,  /* 0x45534272 */
+    5.5477290039e+03,  /* 0x45ad5dd5 */
+    1.9031191406e+03,  /* 0x44ede3d0 */
+    -1.3520118713e+02, /* 0xc3073381 */
+];
+
+const QR2: [f32; 6] = [
+    /* for x in [2.8570,2]=1/[0.3499,0.5] */
+    -1.7838172539e-07, /* 0xb43f8932 */
+    -1.0251704603e-01, /* 0xbdd1f475 */
+    -2.7522056103e+00, /* 0xc0302423 */
+    -1.9663616180e+01, /* 0xc19d4f16 */
+    -4.2325313568e+01, /* 0xc2294d1f */
+    -2.1371921539e+01, /* 0xc1aaf9b2 */
+];
+const QS2: [f32; 6] = [
+    2.9533363342e+01,  /* 0x41ec4454 */
+    2.5298155212e+02,  /* 0x437cfb47 */
+    7.5750280762e+02,  /* 0x443d602e */
+    7.3939318848e+02,  /* 0x4438d92a */
+    1.5594900513e+02,  /* 0x431bf2f2 */
+    -4.9594988823e+00, /* 0xc09eb437 */
+];
+
+fn qonef(x: f32) -> f32 {
+    let p: &[f32; 6];
+    let q: &[f32; 6];
+    let s: f32;
+    let r: f32;
+    let z: f32;
+    let mut ix: u32;
+
+    ix = x.to_bits();
+    ix &= 0x7fffffff;
+    if ix >= 0x41000000 {
+        p = &QR8;
+        q = &QS8;
+    } else if ix >= 0x409173eb {
+        p = &QR5;
+        q = &QS5;
+    } else if ix >= 0x4036d917 {
+        p = &QR3;
+        q = &QS3;
+    } else
+    /*ix >= 0x40000000*/
+    {
+        p = &QR2;
+        q = &QS2;
+    }
+    z = 1.0 / (x * x);
+    r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+    s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
+    return (0.375 + r / s) / x;
+}
+
+// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520
+#[cfg(not(target_arch = "powerpc64"))]
+#[cfg(test)]
+mod tests {
+    use super::{j1f, y1f};
+    #[test]
+    fn test_j1f_2488() {
+        // 0x401F3E49
+        assert_eq!(j1f(2.4881766_f32), 0.49999475_f32);
+    }
+    #[test]
+    fn test_y1f_2002() {
+        //allow slightly different result on x87
+        let res = y1f(2.0000002_f32);
+        if cfg!(all(target_arch = "x86", not(target_feature = "sse2"))) && (res == -0.10703231_f32)
+        {
+            return;
+        }
+        assert_eq!(res, -0.10703229_f32);
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/jn.rs b/library/compiler-builtins/libm/src/math/jn.rs
new file mode 100644
index 00000000000..31f8d9c5382
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/jn.rs
@@ -0,0 +1,339 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * jn(n, x), yn(n, x)
+ * floating point Bessel's function of the 1st and 2nd kind
+ * of order n
+ *
+ * Special cases:
+ *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
+ *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
+ * Note 2. About jn(n,x), yn(n,x)
+ *      For n=0, j0(x) is called,
+ *      for n=1, j1(x) is called,
+ *      for n<=x, forward recursion is used starting
+ *      from values of j0(x) and j1(x).
+ *      for n>x, a continued fraction approximation to
+ *      j(n,x)/j(n-1,x) is evaluated and then backward
+ *      recursion is used starting from a supposed value
+ *      for j(n,x). The resulting value of j(0,x) is
+ *      compared with the actual value to correct the
+ *      supposed value of j(n,x).
+ *
+ *      yn(n,x) is similar in all respects, except
+ *      that forward recursion is used for all
+ *      values of n>1.
+ */
+
+use super::{cos, fabs, get_high_word, get_low_word, j0, j1, log, sin, sqrt, y0, y1};
+
+const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
+
+/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f64).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn jn(n: i32, mut x: f64) -> f64 {
+    let mut ix: u32;
+    let lx: u32;
+    let nm1: i32;
+    let mut i: i32;
+    let mut sign: bool;
+    let mut a: f64;
+    let mut b: f64;
+    let mut temp: f64;
+
+    ix = get_high_word(x);
+    lx = get_low_word(x);
+    sign = (ix >> 31) != 0;
+    ix &= 0x7fffffff;
+
+    // -lx == !lx + 1
+    if ix | ((lx | (!lx).wrapping_add(1)) >> 31) > 0x7ff00000 {
+        /* nan */
+        return x;
+    }
+
+    /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
+     * Thus, J(-n,x) = J(n,-x)
+     */
+    /* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */
+    if n == 0 {
+        return j0(x);
+    }
+    if n < 0 {
+        nm1 = -(n + 1);
+        x = -x;
+        sign = !sign;
+    } else {
+        nm1 = n - 1;
+    }
+    if nm1 == 0 {
+        return j1(x);
+    }
+
+    sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
+    x = fabs(x);
+    if (ix | lx) == 0 || ix == 0x7ff00000 {
+        /* if x is 0 or inf */
+        b = 0.0;
+    } else if (nm1 as f64) < x {
+        /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+        if ix >= 0x52d00000 {
+            /* x > 2**302 */
+            /* (x >> n**2)
+             *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+             *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+             *      Let s=sin(x), c=cos(x),
+             *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+             *
+             *             n    sin(xn)*sqt2    cos(xn)*sqt2
+             *          ----------------------------------
+             *             0     s-c             c+s
+             *             1    -s-c            -c+s
+             *             2    -s+c            -c-s
+             *             3     s+c             c-s
+             */
+            temp = match nm1 & 3 {
+                0 => -cos(x) + sin(x),
+                1 => -cos(x) - sin(x),
+                2 => cos(x) - sin(x),
+                // 3
+                _ => cos(x) + sin(x),
+            };
+            b = INVSQRTPI * temp / sqrt(x);
+        } else {
+            a = j0(x);
+            b = j1(x);
+            i = 0;
+            while i < nm1 {
+                i += 1;
+                temp = b;
+                b = b * (2.0 * (i as f64) / x) - a; /* avoid underflow */
+                a = temp;
+            }
+        }
+    } else if ix < 0x3e100000 {
+        /* x < 2**-29 */
+        /* x is tiny, return the first Taylor expansion of J(n,x)
+         * J(n,x) = 1/n!*(x/2)^n  - ...
+         */
+        if nm1 > 32 {
+            /* underflow */
+            b = 0.0;
+        } else {
+            temp = x * 0.5;
+            b = temp;
+            a = 1.0;
+            i = 2;
+            while i <= nm1 + 1 {
+                a *= i as f64; /* a = n! */
+                b *= temp; /* b = (x/2)^n */
+                i += 1;
+            }
+            b = b / a;
+        }
+    } else {
+        /* use backward recurrence */
+        /*                      x      x^2      x^2
+         *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
+         *                      2n  - 2(n+1) - 2(n+2)
+         *
+         *                      1      1        1
+         *  (for large x)   =  ----  ------   ------   .....
+         *                      2n   2(n+1)   2(n+2)
+         *                      -- - ------ - ------ -
+         *                       x     x         x
+         *
+         * Let w = 2n/x and h=2/x, then the above quotient
+         * is equal to the continued fraction:
+         *                  1
+         *      = -----------------------
+         *                     1
+         *         w - -----------------
+         *                        1
+         *              w+h - ---------
+         *                     w+2h - ...
+         *
+         * To determine how many terms needed, let
+         * Q(0) = w, Q(1) = w(w+h) - 1,
+         * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+         * When Q(k) > 1e4      good for single
+         * When Q(k) > 1e9      good for double
+         * When Q(k) > 1e17     good for quadruple
+         */
+        /* determine k */
+        let mut t: f64;
+        let mut q0: f64;
+        let mut q1: f64;
+        let mut w: f64;
+        let h: f64;
+        let mut z: f64;
+        let mut tmp: f64;
+        let nf: f64;
+
+        let mut k: i32;
+
+        nf = (nm1 as f64) + 1.0;
+        w = 2.0 * nf / x;
+        h = 2.0 / x;
+        z = w + h;
+        q0 = w;
+        q1 = w * z - 1.0;
+        k = 1;
+        while q1 < 1.0e9 {
+            k += 1;
+            z += h;
+            tmp = z * q1 - q0;
+            q0 = q1;
+            q1 = tmp;
+        }
+        t = 0.0;
+        i = k;
+        while i >= 0 {
+            t = 1.0 / (2.0 * ((i as f64) + nf) / x - t);
+            i -= 1;
+        }
+        a = t;
+        b = 1.0;
+        /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+         *  Hence, if n*(log(2n/x)) > ...
+         *  single 8.8722839355e+01
+         *  double 7.09782712893383973096e+02
+         *  long double 1.1356523406294143949491931077970765006170e+04
+         *  then recurrent value may overflow and the result is
+         *  likely underflow to zero
+         */
+        tmp = nf * log(fabs(w));
+        if tmp < 7.09782712893383973096e+02 {
+            i = nm1;
+            while i > 0 {
+                temp = b;
+                b = b * (2.0 * (i as f64)) / x - a;
+                a = temp;
+                i -= 1;
+            }
+        } else {
+            i = nm1;
+            while i > 0 {
+                temp = b;
+                b = b * (2.0 * (i as f64)) / x - a;
+                a = temp;
+                /* scale b to avoid spurious overflow */
+                let x1p500 = f64::from_bits(0x5f30000000000000); // 0x1p500 == 2^500
+                if b > x1p500 {
+                    a /= b;
+                    t /= b;
+                    b = 1.0;
+                }
+                i -= 1;
+            }
+        }
+        z = j0(x);
+        w = j1(x);
+        if fabs(z) >= fabs(w) {
+            b = t * z / b;
+        } else {
+            b = t * w / a;
+        }
+    }
+
+    if sign { -b } else { b }
+}
+
+/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f64).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn yn(n: i32, x: f64) -> f64 {
+    let mut ix: u32;
+    let lx: u32;
+    let mut ib: u32;
+    let nm1: i32;
+    let mut sign: bool;
+    let mut i: i32;
+    let mut a: f64;
+    let mut b: f64;
+    let mut temp: f64;
+
+    ix = get_high_word(x);
+    lx = get_low_word(x);
+    sign = (ix >> 31) != 0;
+    ix &= 0x7fffffff;
+
+    // -lx == !lx + 1
+    if ix | ((lx | (!lx).wrapping_add(1)) >> 31) > 0x7ff00000 {
+        /* nan */
+        return x;
+    }
+    if sign && (ix | lx) != 0 {
+        /* x < 0 */
+        return 0.0 / 0.0;
+    }
+    if ix == 0x7ff00000 {
+        return 0.0;
+    }
+
+    if n == 0 {
+        return y0(x);
+    }
+    if n < 0 {
+        nm1 = -(n + 1);
+        sign = (n & 1) != 0;
+    } else {
+        nm1 = n - 1;
+        sign = false;
+    }
+    if nm1 == 0 {
+        if sign {
+            return -y1(x);
+        } else {
+            return y1(x);
+        }
+    }
+
+    if ix >= 0x52d00000 {
+        /* x > 2**302 */
+        /* (x >> n**2)
+         *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+         *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+         *      Let s=sin(x), c=cos(x),
+         *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+         *
+         *             n    sin(xn)*sqt2    cos(xn)*sqt2
+         *          ----------------------------------
+         *             0     s-c             c+s
+         *             1    -s-c            -c+s
+         *             2    -s+c            -c-s
+         *             3     s+c             c-s
+         */
+        temp = match nm1 & 3 {
+            0 => -sin(x) - cos(x),
+            1 => -sin(x) + cos(x),
+            2 => sin(x) + cos(x),
+            // 3
+            _ => sin(x) - cos(x),
+        };
+        b = INVSQRTPI * temp / sqrt(x);
+    } else {
+        a = y0(x);
+        b = y1(x);
+        /* quit if b is -inf */
+        ib = get_high_word(b);
+        i = 0;
+        while i < nm1 && ib != 0xfff00000 {
+            i += 1;
+            temp = b;
+            b = (2.0 * (i as f64) / x) * b - a;
+            ib = get_high_word(b);
+            a = temp;
+        }
+    }
+
+    if sign { -b } else { b }
+}
diff --git a/library/compiler-builtins/libm/src/math/jnf.rs b/library/compiler-builtins/libm/src/math/jnf.rs
new file mode 100644
index 00000000000..52cf7d8a8bd
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/jnf.rs
@@ -0,0 +1,253 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{fabsf, j0f, j1f, logf, y0f, y1f};
+
+/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f32).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn jnf(n: i32, mut x: f32) -> f32 {
+    let mut ix: u32;
+    let mut nm1: i32;
+    let mut sign: bool;
+    let mut i: i32;
+    let mut a: f32;
+    let mut b: f32;
+    let mut temp: f32;
+
+    ix = x.to_bits();
+    sign = (ix >> 31) != 0;
+    ix &= 0x7fffffff;
+    if ix > 0x7f800000 {
+        /* nan */
+        return x;
+    }
+
+    /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
+    if n == 0 {
+        return j0f(x);
+    }
+    if n < 0 {
+        nm1 = -(n + 1);
+        x = -x;
+        sign = !sign;
+    } else {
+        nm1 = n - 1;
+    }
+    if nm1 == 0 {
+        return j1f(x);
+    }
+
+    sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
+    x = fabsf(x);
+    if ix == 0 || ix == 0x7f800000 {
+        /* if x is 0 or inf */
+        b = 0.0;
+    } else if (nm1 as f32) < x {
+        /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+        a = j0f(x);
+        b = j1f(x);
+        i = 0;
+        while i < nm1 {
+            i += 1;
+            temp = b;
+            b = b * (2.0 * (i as f32) / x) - a;
+            a = temp;
+        }
+    } else if ix < 0x35800000 {
+        /* x < 2**-20 */
+        /* x is tiny, return the first Taylor expansion of J(n,x)
+         * J(n,x) = 1/n!*(x/2)^n  - ...
+         */
+        if nm1 > 8 {
+            /* underflow */
+            nm1 = 8;
+        }
+        temp = 0.5 * x;
+        b = temp;
+        a = 1.0;
+        i = 2;
+        while i <= nm1 + 1 {
+            a *= i as f32; /* a = n! */
+            b *= temp; /* b = (x/2)^n */
+            i += 1;
+        }
+        b = b / a;
+    } else {
+        /* use backward recurrence */
+        /*                      x      x^2      x^2
+         *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
+         *                      2n  - 2(n+1) - 2(n+2)
+         *
+         *                      1      1        1
+         *  (for large x)   =  ----  ------   ------   .....
+         *                      2n   2(n+1)   2(n+2)
+         *                      -- - ------ - ------ -
+         *                       x     x         x
+         *
+         * Let w = 2n/x and h=2/x, then the above quotient
+         * is equal to the continued fraction:
+         *                  1
+         *      = -----------------------
+         *                     1
+         *         w - -----------------
+         *                        1
+         *              w+h - ---------
+         *                     w+2h - ...
+         *
+         * To determine how many terms needed, let
+         * Q(0) = w, Q(1) = w(w+h) - 1,
+         * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+         * When Q(k) > 1e4      good for single
+         * When Q(k) > 1e9      good for double
+         * When Q(k) > 1e17     good for quadruple
+         */
+        /* determine k */
+        let mut t: f32;
+        let mut q0: f32;
+        let mut q1: f32;
+        let mut w: f32;
+        let h: f32;
+        let mut z: f32;
+        let mut tmp: f32;
+        let nf: f32;
+        let mut k: i32;
+
+        nf = (nm1 as f32) + 1.0;
+        w = 2.0 * nf / x;
+        h = 2.0 / x;
+        z = w + h;
+        q0 = w;
+        q1 = w * z - 1.0;
+        k = 1;
+        while q1 < 1.0e4 {
+            k += 1;
+            z += h;
+            tmp = z * q1 - q0;
+            q0 = q1;
+            q1 = tmp;
+        }
+        t = 0.0;
+        i = k;
+        while i >= 0 {
+            t = 1.0 / (2.0 * ((i as f32) + nf) / x - t);
+            i -= 1;
+        }
+        a = t;
+        b = 1.0;
+        /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+         *  Hence, if n*(log(2n/x)) > ...
+         *  single 8.8722839355e+01
+         *  double 7.09782712893383973096e+02
+         *  long double 1.1356523406294143949491931077970765006170e+04
+         *  then recurrent value may overflow and the result is
+         *  likely underflow to zero
+         */
+        tmp = nf * logf(fabsf(w));
+        if tmp < 88.721679688 {
+            i = nm1;
+            while i > 0 {
+                temp = b;
+                b = 2.0 * (i as f32) * b / x - a;
+                a = temp;
+                i -= 1;
+            }
+        } else {
+            i = nm1;
+            while i > 0 {
+                temp = b;
+                b = 2.0 * (i as f32) * b / x - a;
+                a = temp;
+                /* scale b to avoid spurious overflow */
+                let x1p60 = f32::from_bits(0x5d800000); // 0x1p60 == 2^60
+                if b > x1p60 {
+                    a /= b;
+                    t /= b;
+                    b = 1.0;
+                }
+                i -= 1;
+            }
+        }
+        z = j0f(x);
+        w = j1f(x);
+        if fabsf(z) >= fabsf(w) {
+            b = t * z / b;
+        } else {
+            b = t * w / a;
+        }
+    }
+
+    if sign { -b } else { b }
+}
+
+/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f32).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn ynf(n: i32, x: f32) -> f32 {
+    let mut ix: u32;
+    let mut ib: u32;
+    let nm1: i32;
+    let mut sign: bool;
+    let mut i: i32;
+    let mut a: f32;
+    let mut b: f32;
+    let mut temp: f32;
+
+    ix = x.to_bits();
+    sign = (ix >> 31) != 0;
+    ix &= 0x7fffffff;
+    if ix > 0x7f800000 {
+        /* nan */
+        return x;
+    }
+    if sign && ix != 0 {
+        /* x < 0 */
+        return 0.0 / 0.0;
+    }
+    if ix == 0x7f800000 {
+        return 0.0;
+    }
+
+    if n == 0 {
+        return y0f(x);
+    }
+    if n < 0 {
+        nm1 = -(n + 1);
+        sign = (n & 1) != 0;
+    } else {
+        nm1 = n - 1;
+        sign = false;
+    }
+    if nm1 == 0 {
+        if sign {
+            return -y1f(x);
+        } else {
+            return y1f(x);
+        }
+    }
+
+    a = y0f(x);
+    b = y1f(x);
+    /* quit if b is -inf */
+    ib = b.to_bits();
+    i = 0;
+    while i < nm1 && ib != 0xff800000 {
+        i += 1;
+        temp = b;
+        b = (2.0 * (i as f32) / x) * b - a;
+        ib = b.to_bits();
+        a = temp;
+    }
+
+    if sign { -b } else { b }
+}
diff --git a/library/compiler-builtins/libm/src/math/k_cos.rs b/library/compiler-builtins/libm/src/math/k_cos.rs
new file mode 100644
index 00000000000..49b2fc64d86
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/k_cos.rs
@@ -0,0 +1,62 @@
+// origin: FreeBSD /usr/src/lib/msun/src/k_cos.c
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunSoft, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+
+const C1: f64 = 4.16666666666666019037e-02; /* 0x3FA55555, 0x5555554C */
+const C2: f64 = -1.38888888888741095749e-03; /* 0xBF56C16C, 0x16C15177 */
+const C3: f64 = 2.48015872894767294178e-05; /* 0x3EFA01A0, 0x19CB1590 */
+const C4: f64 = -2.75573143513906633035e-07; /* 0xBE927E4F, 0x809C52AD */
+const C5: f64 = 2.08757232129817482790e-09; /* 0x3E21EE9E, 0xBDB4B1C4 */
+const C6: f64 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
+
+// kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
+// Input x is assumed to be bounded by ~pi/4 in magnitude.
+// Input y is the tail of x.
+//
+// Algorithm
+//      1. Since cos(-x) = cos(x), we need only to consider positive x.
+//      2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
+//      3. cos(x) is approximated by a polynomial of degree 14 on
+//         [0,pi/4]
+//                                       4            14
+//              cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
+//         where the remez error is
+//
+//      |              2     4     6     8     10    12     14 |     -58
+//      |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
+//      |                                                      |
+//
+//                     4     6     8     10    12     14
+//      4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
+//             cos(x) ~ 1 - x*x/2 + r
+//         since cos(x+y) ~ cos(x) - sin(x)*y
+//                        ~ cos(x) - x*y,
+//         a correction term is necessary in cos(x) and hence
+//              cos(x+y) = 1 - (x*x/2 - (r - x*y))
+//         For better accuracy, rearrange to
+//              cos(x+y) ~ w + (tmp + (r-x*y))
+//         where w = 1 - x*x/2 and tmp is a tiny correction term
+//         (1 - x*x/2 == w + tmp exactly in infinite precision).
+//         The exactness of w + tmp in infinite precision depends on w
+//         and tmp having the same precision as x.  If they have extra
+//         precision due to compiler bugs, then the extra precision is
+//         only good provided it is retained in all terms of the final
+//         expression for cos().  Retention happens in all cases tested
+//         under FreeBSD, so don't pessimize things by forcibly clipping
+//         any extra precision in w.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn k_cos(x: f64, y: f64) -> f64 {
+    let z = x * x;
+    let w = z * z;
+    let r = z * (C1 + z * (C2 + z * C3)) + w * w * (C4 + z * (C5 + z * C6));
+    let hz = 0.5 * z;
+    let w = 1.0 - hz;
+    w + (((1.0 - w) - hz) + (z * r - x * y))
+}
diff --git a/library/compiler-builtins/libm/src/math/k_cosf.rs b/library/compiler-builtins/libm/src/math/k_cosf.rs
new file mode 100644
index 00000000000..e99f2348c00
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/k_cosf.rs
@@ -0,0 +1,29 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/k_cosf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Debugged and optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* |cos(x) - c(x)| < 2**-34.1 (~[-5.37e-11, 5.295e-11]). */
+const C0: f64 = -0.499999997251031003120; /* -0x1ffffffd0c5e81.0p-54 */
+const C1: f64 = 0.0416666233237390631894; /*  0x155553e1053a42.0p-57 */
+const C2: f64 = -0.00138867637746099294692; /* -0x16c087e80f1e27.0p-62 */
+const C3: f64 = 0.0000243904487962774090654; /*  0x199342e0ee5069.0p-68 */
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn k_cosf(x: f64) -> f32 {
+    let z = x * x;
+    let w = z * z;
+    let r = C2 + z * C3;
+    (((1.0 + z * C0) + w * C1) + (w * z) * r) as f32
+}
diff --git a/library/compiler-builtins/libm/src/math/k_expo2.rs b/library/compiler-builtins/libm/src/math/k_expo2.rs
new file mode 100644
index 00000000000..7345075f376
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/k_expo2.rs
@@ -0,0 +1,14 @@
+use super::exp;
+
+/* k is such that k*ln2 has minimal relative error and x - kln2 > log(FLT_MIN) */
+const K: i32 = 2043;
+
+/* expf(x)/2 for x >= log(FLT_MAX), slightly better than 0.5f*expf(x/2)*expf(x/2) */
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn k_expo2(x: f64) -> f64 {
+    let k_ln2 = f64::from_bits(0x40962066151add8b);
+    /* note that k is odd and scale*scale overflows */
+    let scale = f64::from_bits(((((0x3ff + K / 2) as u32) << 20) as u64) << 32);
+    /* exp(x - k ln2) * 2**(k-1) */
+    exp(x - k_ln2) * scale * scale
+}
diff --git a/library/compiler-builtins/libm/src/math/k_expo2f.rs b/library/compiler-builtins/libm/src/math/k_expo2f.rs
new file mode 100644
index 00000000000..fbd7b27d583
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/k_expo2f.rs
@@ -0,0 +1,14 @@
+use super::expf;
+
+/* k is such that k*ln2 has minimal relative error and x - kln2 > log(FLT_MIN) */
+const K: i32 = 235;
+
+/* expf(x)/2 for x >= log(FLT_MAX), slightly better than 0.5f*expf(x/2)*expf(x/2) */
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn k_expo2f(x: f32) -> f32 {
+    let k_ln2 = f32::from_bits(0x4322e3bc);
+    /* note that k is odd and scale*scale overflows */
+    let scale = f32::from_bits(((0x7f + K / 2) as u32) << 23);
+    /* exp(x - k ln2) * 2**(k-1) */
+    expf(x - k_ln2) * scale * scale
+}
diff --git a/library/compiler-builtins/libm/src/math/k_sin.rs b/library/compiler-builtins/libm/src/math/k_sin.rs
new file mode 100644
index 00000000000..42441455ff3
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/k_sin.rs
@@ -0,0 +1,53 @@
+// origin: FreeBSD /usr/src/lib/msun/src/k_sin.c
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunSoft, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+
+const S1: f64 = -1.66666666666666324348e-01; /* 0xBFC55555, 0x55555549 */
+const S2: f64 = 8.33333333332248946124e-03; /* 0x3F811111, 0x1110F8A6 */
+const S3: f64 = -1.98412698298579493134e-04; /* 0xBF2A01A0, 0x19C161D5 */
+const S4: f64 = 2.75573137070700676789e-06; /* 0x3EC71DE3, 0x57B1FE7D */
+const S5: f64 = -2.50507602534068634195e-08; /* 0xBE5AE5E6, 0x8A2B9CEB */
+const S6: f64 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
+
+// kernel sin function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
+// Input x is assumed to be bounded by ~pi/4 in magnitude.
+// Input y is the tail of x.
+// Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
+//
+// Algorithm
+//      1. Since sin(-x) = -sin(x), we need only to consider positive x.
+//      2. Callers must return sin(-0) = -0 without calling here since our
+//         odd polynomial is not evaluated in a way that preserves -0.
+//         Callers may do the optimization sin(x) ~ x for tiny x.
+//      3. sin(x) is approximated by a polynomial of degree 13 on
+//         [0,pi/4]
+//                               3            13
+//              sin(x) ~ x + S1*x + ... + S6*x
+//         where
+//
+//      |sin(x)         2     4     6     8     10     12  |     -58
+//      |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
+//      |  x                                               |
+//
+//      4. sin(x+y) = sin(x) + sin'(x')*y
+//                  ~ sin(x) + (1-x*x/2)*y
+//         For better accuracy, let
+//                   3      2      2      2      2
+//              r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
+//         then                   3    2
+//              sin(x) = x + (S1*x + (x *(r-y/2)+y))
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn k_sin(x: f64, y: f64, iy: i32) -> f64 {
+    let z = x * x;
+    let w = z * z;
+    let r = S2 + z * (S3 + z * S4) + z * w * (S5 + z * S6);
+    let v = z * x;
+    if iy == 0 { x + v * (S1 + z * r) } else { x - ((z * (0.5 * y - v * r) - y) - v * S1) }
+}
diff --git a/library/compiler-builtins/libm/src/math/k_sinf.rs b/library/compiler-builtins/libm/src/math/k_sinf.rs
new file mode 100644
index 00000000000..88d10cababc
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/k_sinf.rs
@@ -0,0 +1,30 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/k_sinf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* |sin(x)/x - s(x)| < 2**-37.5 (~[-4.89e-12, 4.824e-12]). */
+const S1: f64 = -0.166666666416265235595; /* -0x15555554cbac77.0p-55 */
+const S2: f64 = 0.0083333293858894631756; /*  0x111110896efbb2.0p-59 */
+const S3: f64 = -0.000198393348360966317347; /* -0x1a00f9e2cae774.0p-65 */
+const S4: f64 = 0.0000027183114939898219064; /*  0x16cd878c3b46a7.0p-71 */
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn k_sinf(x: f64) -> f32 {
+    let z = x * x;
+    let w = z * z;
+    let r = S3 + z * S4;
+    let s = z * x;
+    ((x + s * (S1 + z * S2)) + s * w * r) as f32
+}
diff --git a/library/compiler-builtins/libm/src/math/k_tan.rs b/library/compiler-builtins/libm/src/math/k_tan.rs
new file mode 100644
index 00000000000..d177010bb0a
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/k_tan.rs
@@ -0,0 +1,105 @@
+// origin: FreeBSD /usr/src/lib/msun/src/k_tan.c */
+//
+// ====================================================
+// Copyright 2004 Sun Microsystems, Inc.  All Rights Reserved.
+//
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+
+// kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
+// Input x is assumed to be bounded by ~pi/4 in magnitude.
+// Input y is the tail of x.
+// Input odd indicates whether tan (if odd = 0) or -1/tan (if odd = 1) is returned.
+//
+// Algorithm
+//      1. Since tan(-x) = -tan(x), we need only to consider positive x.
+//      2. Callers must return tan(-0) = -0 without calling here since our
+//         odd polynomial is not evaluated in a way that preserves -0.
+//         Callers may do the optimization tan(x) ~ x for tiny x.
+//      3. tan(x) is approximated by a odd polynomial of degree 27 on
+//         [0,0.67434]
+//                               3             27
+//              tan(x) ~ x + T1*x + ... + T13*x
+//         where
+//
+//              |tan(x)         2     4            26   |     -59.2
+//              |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
+//              |  x                                    |
+//
+//         Note: tan(x+y) = tan(x) + tan'(x)*y
+//                        ~ tan(x) + (1+x*x)*y
+//         Therefore, for better accuracy in computing tan(x+y), let
+//                   3      2      2       2       2
+//              r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
+//         then
+//                                  3    2
+//              tan(x+y) = x + (T1*x + (x *(r+y)+y))
+//
+//      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
+//              tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
+//                     = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
+static T: [f64; 13] = [
+    3.33333333333334091986e-01,  /* 3FD55555, 55555563 */
+    1.33333333333201242699e-01,  /* 3FC11111, 1110FE7A */
+    5.39682539762260521377e-02,  /* 3FABA1BA, 1BB341FE */
+    2.18694882948595424599e-02,  /* 3F9664F4, 8406D637 */
+    8.86323982359930005737e-03,  /* 3F8226E3, E96E8493 */
+    3.59207910759131235356e-03,  /* 3F6D6D22, C9560328 */
+    1.45620945432529025516e-03,  /* 3F57DBC8, FEE08315 */
+    5.88041240820264096874e-04,  /* 3F4344D8, F2F26501 */
+    2.46463134818469906812e-04,  /* 3F3026F7, 1A8D1068 */
+    7.81794442939557092300e-05,  /* 3F147E88, A03792A6 */
+    7.14072491382608190305e-05,  /* 3F12B80F, 32F0A7E9 */
+    -1.85586374855275456654e-05, /* BEF375CB, DB605373 */
+    2.59073051863633712884e-05,  /* 3EFB2A70, 74BF7AD4 */
+];
+const PIO4: f64 = 7.85398163397448278999e-01; /* 3FE921FB, 54442D18 */
+const PIO4_LO: f64 = 3.06161699786838301793e-17; /* 3C81A626, 33145C07 */
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn k_tan(mut x: f64, mut y: f64, odd: i32) -> f64 {
+    let hx = (f64::to_bits(x) >> 32) as u32;
+    let big = (hx & 0x7fffffff) >= 0x3FE59428; /* |x| >= 0.6744 */
+    if big {
+        let sign = hx >> 31;
+        if sign != 0 {
+            x = -x;
+            y = -y;
+        }
+        x = (PIO4 - x) + (PIO4_LO - y);
+        y = 0.0;
+    }
+    let z = x * x;
+    let w = z * z;
+    /*
+     * Break x^5*(T[1]+x^2*T[2]+...) into
+     * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
+     * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
+     */
+    let r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + w * T[11]))));
+    let v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + w * T[12])))));
+    let s = z * x;
+    let r = y + z * (s * (r + v) + y) + s * T[0];
+    let w = x + r;
+    if big {
+        let sign = hx >> 31;
+        let s = 1.0 - 2.0 * odd as f64;
+        let v = s - 2.0 * (x + (r - w * w / (w + s)));
+        return if sign != 0 { -v } else { v };
+    }
+    if odd == 0 {
+        return w;
+    }
+    /* -1.0/(x+r) has up to 2ulp error, so compute it accurately */
+    let w0 = zero_low_word(w);
+    let v = r - (w0 - x); /* w0+v = r+x */
+    let a = -1.0 / w;
+    let a0 = zero_low_word(a);
+    a0 + a * (1.0 + a0 * w0 + a0 * v)
+}
+
+fn zero_low_word(x: f64) -> f64 {
+    f64::from_bits(f64::to_bits(x) & 0xFFFF_FFFF_0000_0000)
+}
diff --git a/library/compiler-builtins/libm/src/math/k_tanf.rs b/library/compiler-builtins/libm/src/math/k_tanf.rs
new file mode 100644
index 00000000000..af8db539dad
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/k_tanf.rs
@@ -0,0 +1,46 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/k_tan.c */
+/*
+ * ====================================================
+ * Copyright 2004 Sun Microsystems, Inc.  All Rights Reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
+const T: [f64; 6] = [
+    0.333331395030791399758,   /* 0x15554d3418c99f.0p-54 */
+    0.133392002712976742718,   /* 0x1112fd38999f72.0p-55 */
+    0.0533812378445670393523,  /* 0x1b54c91d865afe.0p-57 */
+    0.0245283181166547278873,  /* 0x191df3908c33ce.0p-58 */
+    0.00297435743359967304927, /* 0x185dadfcecf44e.0p-61 */
+    0.00946564784943673166728, /* 0x1362b9bf971bcd.0p-59 */
+];
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn k_tanf(x: f64, odd: bool) -> f32 {
+    let z = x * x;
+    /*
+     * Split up the polynomial into small independent terms to give
+     * opportunities for parallel evaluation.  The chosen splitting is
+     * micro-optimized for Athlons (XP, X64).  It costs 2 multiplications
+     * relative to Horner's method on sequential machines.
+     *
+     * We add the small terms from lowest degree up for efficiency on
+     * non-sequential machines (the lowest degree terms tend to be ready
+     * earlier).  Apart from this, we don't care about order of
+     * operations, and don't need to to care since we have precision to
+     * spare.  However, the chosen splitting is good for accuracy too,
+     * and would give results as accurate as Horner's method if the
+     * small terms were added from highest degree down.
+     */
+    let mut r = T[4] + z * T[5];
+    let t = T[2] + z * T[3];
+    let w = z * z;
+    let s = z * x;
+    let u = T[0] + z * T[1];
+    r = (x + s * u) + (s * w) * (t + w * r);
+    (if odd { -1. / r } else { r }) as f32
+}
diff --git a/library/compiler-builtins/libm/src/math/ldexp.rs b/library/compiler-builtins/libm/src/math/ldexp.rs
new file mode 100644
index 00000000000..24899ba306a
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/ldexp.rs
@@ -0,0 +1,21 @@
+#[cfg(f16_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn ldexpf16(x: f16, n: i32) -> f16 {
+    super::scalbnf16(x, n)
+}
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn ldexpf(x: f32, n: i32) -> f32 {
+    super::scalbnf(x, n)
+}
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn ldexp(x: f64, n: i32) -> f64 {
+    super::scalbn(x, n)
+}
+
+#[cfg(f128_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn ldexpf128(x: f128, n: i32) -> f128 {
+    super::scalbnf128(x, n)
+}
diff --git a/library/compiler-builtins/libm/src/math/ldexpf.rs b/library/compiler-builtins/libm/src/math/ldexpf.rs
new file mode 100644
index 00000000000..95b27fc49d2
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/ldexpf.rs
@@ -0,0 +1,4 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn ldexpf(x: f32, n: i32) -> f32 {
+    super::scalbnf(x, n)
+}
diff --git a/library/compiler-builtins/libm/src/math/ldexpf128.rs b/library/compiler-builtins/libm/src/math/ldexpf128.rs
new file mode 100644
index 00000000000..b35277d15fb
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/ldexpf128.rs
@@ -0,0 +1,4 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn ldexpf128(x: f128, n: i32) -> f128 {
+    super::scalbnf128(x, n)
+}
diff --git a/library/compiler-builtins/libm/src/math/ldexpf16.rs b/library/compiler-builtins/libm/src/math/ldexpf16.rs
new file mode 100644
index 00000000000..8de6cffd699
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/ldexpf16.rs
@@ -0,0 +1,4 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn ldexpf16(x: f16, n: i32) -> f16 {
+    super::scalbnf16(x, n)
+}
diff --git a/library/compiler-builtins/libm/src/math/lgamma.rs b/library/compiler-builtins/libm/src/math/lgamma.rs
new file mode 100644
index 00000000000..8312dc18648
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/lgamma.rs
@@ -0,0 +1,8 @@
+use super::lgamma_r;
+
+/// The natural logarithm of the
+/// [Gamma function](https://en.wikipedia.org/wiki/Gamma_function) (f64).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn lgamma(x: f64) -> f64 {
+    lgamma_r(x).0
+}
diff --git a/library/compiler-builtins/libm/src/math/lgamma_r.rs b/library/compiler-builtins/libm/src/math/lgamma_r.rs
new file mode 100644
index 00000000000..6becaad2ce9
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/lgamma_r.rs
@@ -0,0 +1,321 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_lgamma_r.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ *
+ */
+/* lgamma_r(x, signgamp)
+ * Reentrant version of the logarithm of the Gamma function
+ * with user provide pointer for the sign of Gamma(x).
+ *
+ * Method:
+ *   1. Argument Reduction for 0 < x <= 8
+ *      Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
+ *      reduce x to a number in [1.5,2.5] by
+ *              lgamma(1+s) = log(s) + lgamma(s)
+ *      for example,
+ *              lgamma(7.3) = log(6.3) + lgamma(6.3)
+ *                          = log(6.3*5.3) + lgamma(5.3)
+ *                          = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
+ *   2. Polynomial approximation of lgamma around its
+ *      minimun ymin=1.461632144968362245 to maintain monotonicity.
+ *      On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
+ *              Let z = x-ymin;
+ *              lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
+ *      where
+ *              poly(z) is a 14 degree polynomial.
+ *   2. Rational approximation in the primary interval [2,3]
+ *      We use the following approximation:
+ *              s = x-2.0;
+ *              lgamma(x) = 0.5*s + s*P(s)/Q(s)
+ *      with accuracy
+ *              |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
+ *      Our algorithms are based on the following observation
+ *
+ *                             zeta(2)-1    2    zeta(3)-1    3
+ * lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ...
+ *                                 2                 3
+ *
+ *      where Euler = 0.5771... is the Euler constant, which is very
+ *      close to 0.5.
+ *
+ *   3. For x>=8, we have
+ *      lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
+ *      (better formula:
+ *         lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
+ *      Let z = 1/x, then we approximation
+ *              f(z) = lgamma(x) - (x-0.5)(log(x)-1)
+ *      by
+ *                                  3       5             11
+ *              w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z
+ *      where
+ *              |w - f(z)| < 2**-58.74
+ *
+ *   4. For negative x, since (G is gamma function)
+ *              -x*G(-x)*G(x) = PI/sin(PI*x),
+ *      we have
+ *              G(x) = PI/(sin(PI*x)*(-x)*G(-x))
+ *      since G(-x) is positive, sign(G(x)) = sign(sin(PI*x)) for x<0
+ *      Hence, for x<0, signgam = sign(sin(PI*x)) and
+ *              lgamma(x) = log(|Gamma(x)|)
+ *                        = log(PI/(|x*sin(PI*x)|)) - lgamma(-x);
+ *      Note: one should avoid compute PI*(-x) directly in the
+ *            computation of sin(PI*(-x)).
+ *
+ *   5. Special Cases
+ *              lgamma(2+s) ~ s*(1-Euler) for tiny s
+ *              lgamma(1) = lgamma(2) = 0
+ *              lgamma(x) ~ -log(|x|) for tiny x
+ *              lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero
+ *              lgamma(inf) = inf
+ *              lgamma(-inf) = inf (bug for bug compatible with C99!?)
+ *
+ */
+
+use super::{floor, k_cos, k_sin, log};
+
+const PI: f64 = 3.14159265358979311600e+00; /* 0x400921FB, 0x54442D18 */
+const A0: f64 = 7.72156649015328655494e-02; /* 0x3FB3C467, 0xE37DB0C8 */
+const A1: f64 = 3.22467033424113591611e-01; /* 0x3FD4A34C, 0xC4A60FAD */
+const A2: f64 = 6.73523010531292681824e-02; /* 0x3FB13E00, 0x1A5562A7 */
+const A3: f64 = 2.05808084325167332806e-02; /* 0x3F951322, 0xAC92547B */
+const A4: f64 = 7.38555086081402883957e-03; /* 0x3F7E404F, 0xB68FEFE8 */
+const A5: f64 = 2.89051383673415629091e-03; /* 0x3F67ADD8, 0xCCB7926B */
+const A6: f64 = 1.19270763183362067845e-03; /* 0x3F538A94, 0x116F3F5D */
+const A7: f64 = 5.10069792153511336608e-04; /* 0x3F40B6C6, 0x89B99C00 */
+const A8: f64 = 2.20862790713908385557e-04; /* 0x3F2CF2EC, 0xED10E54D */
+const A9: f64 = 1.08011567247583939954e-04; /* 0x3F1C5088, 0x987DFB07 */
+const A10: f64 = 2.52144565451257326939e-05; /* 0x3EFA7074, 0x428CFA52 */
+const A11: f64 = 4.48640949618915160150e-05; /* 0x3F07858E, 0x90A45837 */
+const TC: f64 = 1.46163214496836224576e+00; /* 0x3FF762D8, 0x6356BE3F */
+const TF: f64 = -1.21486290535849611461e-01; /* 0xBFBF19B9, 0xBCC38A42 */
+/* tt = -(tail of TF) */
+const TT: f64 = -3.63867699703950536541e-18; /* 0xBC50C7CA, 0xA48A971F */
+const T0: f64 = 4.83836122723810047042e-01; /* 0x3FDEF72B, 0xC8EE38A2 */
+const T1: f64 = -1.47587722994593911752e-01; /* 0xBFC2E427, 0x8DC6C509 */
+const T2: f64 = 6.46249402391333854778e-02; /* 0x3FB08B42, 0x94D5419B */
+const T3: f64 = -3.27885410759859649565e-02; /* 0xBFA0C9A8, 0xDF35B713 */
+const T4: f64 = 1.79706750811820387126e-02; /* 0x3F9266E7, 0x970AF9EC */
+const T5: f64 = -1.03142241298341437450e-02; /* 0xBF851F9F, 0xBA91EC6A */
+const T6: f64 = 6.10053870246291332635e-03; /* 0x3F78FCE0, 0xE370E344 */
+const T7: f64 = -3.68452016781138256760e-03; /* 0xBF6E2EFF, 0xB3E914D7 */
+const T8: f64 = 2.25964780900612472250e-03; /* 0x3F6282D3, 0x2E15C915 */
+const T9: f64 = -1.40346469989232843813e-03; /* 0xBF56FE8E, 0xBF2D1AF1 */
+const T10: f64 = 8.81081882437654011382e-04; /* 0x3F4CDF0C, 0xEF61A8E9 */
+const T11: f64 = -5.38595305356740546715e-04; /* 0xBF41A610, 0x9C73E0EC */
+const T12: f64 = 3.15632070903625950361e-04; /* 0x3F34AF6D, 0x6C0EBBF7 */
+const T13: f64 = -3.12754168375120860518e-04; /* 0xBF347F24, 0xECC38C38 */
+const T14: f64 = 3.35529192635519073543e-04; /* 0x3F35FD3E, 0xE8C2D3F4 */
+const U0: f64 = -7.72156649015328655494e-02; /* 0xBFB3C467, 0xE37DB0C8 */
+const U1: f64 = 6.32827064025093366517e-01; /* 0x3FE4401E, 0x8B005DFF */
+const U2: f64 = 1.45492250137234768737e+00; /* 0x3FF7475C, 0xD119BD6F */
+const U3: f64 = 9.77717527963372745603e-01; /* 0x3FEF4976, 0x44EA8450 */
+const U4: f64 = 2.28963728064692451092e-01; /* 0x3FCD4EAE, 0xF6010924 */
+const U5: f64 = 1.33810918536787660377e-02; /* 0x3F8B678B, 0xBF2BAB09 */
+const V1: f64 = 2.45597793713041134822e+00; /* 0x4003A5D7, 0xC2BD619C */
+const V2: f64 = 2.12848976379893395361e+00; /* 0x40010725, 0xA42B18F5 */
+const V3: f64 = 7.69285150456672783825e-01; /* 0x3FE89DFB, 0xE45050AF */
+const V4: f64 = 1.04222645593369134254e-01; /* 0x3FBAAE55, 0xD6537C88 */
+const V5: f64 = 3.21709242282423911810e-03; /* 0x3F6A5ABB, 0x57D0CF61 */
+const S0: f64 = -7.72156649015328655494e-02; /* 0xBFB3C467, 0xE37DB0C8 */
+const S1: f64 = 2.14982415960608852501e-01; /* 0x3FCB848B, 0x36E20878 */
+const S2: f64 = 3.25778796408930981787e-01; /* 0x3FD4D98F, 0x4F139F59 */
+const S3: f64 = 1.46350472652464452805e-01; /* 0x3FC2BB9C, 0xBEE5F2F7 */
+const S4: f64 = 2.66422703033638609560e-02; /* 0x3F9B481C, 0x7E939961 */
+const S5: f64 = 1.84028451407337715652e-03; /* 0x3F5E26B6, 0x7368F239 */
+const S6: f64 = 3.19475326584100867617e-05; /* 0x3F00BFEC, 0xDD17E945 */
+const R1: f64 = 1.39200533467621045958e+00; /* 0x3FF645A7, 0x62C4AB74 */
+const R2: f64 = 7.21935547567138069525e-01; /* 0x3FE71A18, 0x93D3DCDC */
+const R3: f64 = 1.71933865632803078993e-01; /* 0x3FC601ED, 0xCCFBDF27 */
+const R4: f64 = 1.86459191715652901344e-02; /* 0x3F9317EA, 0x742ED475 */
+const R5: f64 = 7.77942496381893596434e-04; /* 0x3F497DDA, 0xCA41A95B */
+const R6: f64 = 7.32668430744625636189e-06; /* 0x3EDEBAF7, 0xA5B38140 */
+const W0: f64 = 4.18938533204672725052e-01; /* 0x3FDACFE3, 0x90C97D69 */
+const W1: f64 = 8.33333333333329678849e-02; /* 0x3FB55555, 0x5555553B */
+const W2: f64 = -2.77777777728775536470e-03; /* 0xBF66C16C, 0x16B02E5C */
+const W3: f64 = 7.93650558643019558500e-04; /* 0x3F4A019F, 0x98CF38B6 */
+const W4: f64 = -5.95187557450339963135e-04; /* 0xBF4380CB, 0x8C0FE741 */
+const W5: f64 = 8.36339918996282139126e-04; /* 0x3F4B67BA, 0x4CDAD5D1 */
+const W6: f64 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
+
+/* sin(PI*x) assuming x > 2^-100, if sin(PI*x)==0 the sign is arbitrary */
+fn sin_pi(mut x: f64) -> f64 {
+    let mut n: i32;
+
+    /* spurious inexact if odd int */
+    x = 2.0 * (x * 0.5 - floor(x * 0.5)); /* x mod 2.0 */
+
+    n = (x * 4.0) as i32;
+    n = div!(n + 1, 2);
+    x -= (n as f64) * 0.5;
+    x *= PI;
+
+    match n {
+        1 => k_cos(x, 0.0),
+        2 => k_sin(-x, 0.0, 0),
+        3 => -k_cos(x, 0.0),
+        // 0
+        _ => k_sin(x, 0.0, 0),
+    }
+}
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn lgamma_r(mut x: f64) -> (f64, i32) {
+    let u: u64 = x.to_bits();
+    let mut t: f64;
+    let y: f64;
+    let mut z: f64;
+    let nadj: f64;
+    let p: f64;
+    let p1: f64;
+    let p2: f64;
+    let p3: f64;
+    let q: f64;
+    let mut r: f64;
+    let w: f64;
+    let ix: u32;
+    let sign: bool;
+    let i: i32;
+    let mut signgam: i32;
+
+    /* purge off +-inf, NaN, +-0, tiny and negative arguments */
+    signgam = 1;
+    sign = (u >> 63) != 0;
+    ix = ((u >> 32) as u32) & 0x7fffffff;
+    if ix >= 0x7ff00000 {
+        return (x * x, signgam);
+    }
+    if ix < (0x3ff - 70) << 20 {
+        /* |x|<2**-70, return -log(|x|) */
+        if sign {
+            x = -x;
+            signgam = -1;
+        }
+        return (-log(x), signgam);
+    }
+    if sign {
+        x = -x;
+        t = sin_pi(x);
+        if t == 0.0 {
+            /* -integer */
+            return (1.0 / (x - x), signgam);
+        }
+        if t > 0.0 {
+            signgam = -1;
+        } else {
+            t = -t;
+        }
+        nadj = log(PI / (t * x));
+    } else {
+        nadj = 0.0;
+    }
+
+    /* purge off 1 and 2 */
+    if (ix == 0x3ff00000 || ix == 0x40000000) && (u & 0xffffffff) == 0 {
+        r = 0.0;
+    }
+    /* for x < 2.0 */
+    else if ix < 0x40000000 {
+        if ix <= 0x3feccccc {
+            /* lgamma(x) = lgamma(x+1)-log(x) */
+            r = -log(x);
+            if ix >= 0x3FE76944 {
+                y = 1.0 - x;
+                i = 0;
+            } else if ix >= 0x3FCDA661 {
+                y = x - (TC - 1.0);
+                i = 1;
+            } else {
+                y = x;
+                i = 2;
+            }
+        } else {
+            r = 0.0;
+            if ix >= 0x3FFBB4C3 {
+                /* [1.7316,2] */
+                y = 2.0 - x;
+                i = 0;
+            } else if ix >= 0x3FF3B4C4 {
+                /* [1.23,1.73] */
+                y = x - TC;
+                i = 1;
+            } else {
+                y = x - 1.0;
+                i = 2;
+            }
+        }
+        match i {
+            0 => {
+                z = y * y;
+                p1 = A0 + z * (A2 + z * (A4 + z * (A6 + z * (A8 + z * A10))));
+                p2 = z * (A1 + z * (A3 + z * (A5 + z * (A7 + z * (A9 + z * A11)))));
+                p = y * p1 + p2;
+                r += p - 0.5 * y;
+            }
+            1 => {
+                z = y * y;
+                w = z * y;
+                p1 = T0 + w * (T3 + w * (T6 + w * (T9 + w * T12))); /* parallel comp */
+                p2 = T1 + w * (T4 + w * (T7 + w * (T10 + w * T13)));
+                p3 = T2 + w * (T5 + w * (T8 + w * (T11 + w * T14)));
+                p = z * p1 - (TT - w * (p2 + y * p3));
+                r += TF + p;
+            }
+            2 => {
+                p1 = y * (U0 + y * (U1 + y * (U2 + y * (U3 + y * (U4 + y * U5)))));
+                p2 = 1.0 + y * (V1 + y * (V2 + y * (V3 + y * (V4 + y * V5))));
+                r += -0.5 * y + p1 / p2;
+            }
+            #[cfg(debug_assertions)]
+            _ => unreachable!(),
+            #[cfg(not(debug_assertions))]
+            _ => {}
+        }
+    } else if ix < 0x40200000 {
+        /* x < 8.0 */
+        i = x as i32;
+        y = x - (i as f64);
+        p = y * (S0 + y * (S1 + y * (S2 + y * (S3 + y * (S4 + y * (S5 + y * S6))))));
+        q = 1.0 + y * (R1 + y * (R2 + y * (R3 + y * (R4 + y * (R5 + y * R6)))));
+        r = 0.5 * y + p / q;
+        z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */
+        // TODO: In C, this was implemented using switch jumps with fallthrough.
+        // Does this implementation have performance problems?
+        if i >= 7 {
+            z *= y + 6.0;
+        }
+        if i >= 6 {
+            z *= y + 5.0;
+        }
+        if i >= 5 {
+            z *= y + 4.0;
+        }
+        if i >= 4 {
+            z *= y + 3.0;
+        }
+        if i >= 3 {
+            z *= y + 2.0;
+            r += log(z);
+        }
+    } else if ix < 0x43900000 {
+        /* 8.0 <= x < 2**58 */
+        t = log(x);
+        z = 1.0 / x;
+        y = z * z;
+        w = W0 + z * (W1 + y * (W2 + y * (W3 + y * (W4 + y * (W5 + y * W6)))));
+        r = (x - 0.5) * (t - 1.0) + w;
+    } else {
+        /* 2**58 <= x <= inf */
+        r = x * (log(x) - 1.0);
+    }
+    if sign {
+        r = nadj - r;
+    }
+    return (r, signgam);
+}
diff --git a/library/compiler-builtins/libm/src/math/lgammaf.rs b/library/compiler-builtins/libm/src/math/lgammaf.rs
new file mode 100644
index 00000000000..d37512397cb
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/lgammaf.rs
@@ -0,0 +1,8 @@
+use super::lgammaf_r;
+
+/// The natural logarithm of the
+/// [Gamma function](https://en.wikipedia.org/wiki/Gamma_function) (f32).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn lgammaf(x: f32) -> f32 {
+    lgammaf_r(x).0
+}
diff --git a/library/compiler-builtins/libm/src/math/lgammaf_r.rs b/library/compiler-builtins/libm/src/math/lgammaf_r.rs
new file mode 100644
index 00000000000..10cecee541c
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/lgammaf_r.rs
@@ -0,0 +1,256 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_lgammaf_r.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{floorf, k_cosf, k_sinf, logf};
+
+const PI: f32 = 3.1415927410e+00; /* 0x40490fdb */
+const A0: f32 = 7.7215664089e-02; /* 0x3d9e233f */
+const A1: f32 = 3.2246702909e-01; /* 0x3ea51a66 */
+const A2: f32 = 6.7352302372e-02; /* 0x3d89f001 */
+const A3: f32 = 2.0580807701e-02; /* 0x3ca89915 */
+const A4: f32 = 7.3855509982e-03; /* 0x3bf2027e */
+const A5: f32 = 2.8905137442e-03; /* 0x3b3d6ec6 */
+const A6: f32 = 1.1927076848e-03; /* 0x3a9c54a1 */
+const A7: f32 = 5.1006977446e-04; /* 0x3a05b634 */
+const A8: f32 = 2.2086278477e-04; /* 0x39679767 */
+const A9: f32 = 1.0801156895e-04; /* 0x38e28445 */
+const A10: f32 = 2.5214456400e-05; /* 0x37d383a2 */
+const A11: f32 = 4.4864096708e-05; /* 0x383c2c75 */
+const TC: f32 = 1.4616321325e+00; /* 0x3fbb16c3 */
+const TF: f32 = -1.2148628384e-01; /* 0xbdf8cdcd */
+/* TT = -(tail of TF) */
+const TT: f32 = 6.6971006518e-09; /* 0x31e61c52 */
+const T0: f32 = 4.8383611441e-01; /* 0x3ef7b95e */
+const T1: f32 = -1.4758771658e-01; /* 0xbe17213c */
+const T2: f32 = 6.4624942839e-02; /* 0x3d845a15 */
+const T3: f32 = -3.2788541168e-02; /* 0xbd064d47 */
+const T4: f32 = 1.7970675603e-02; /* 0x3c93373d */
+const T5: f32 = -1.0314224288e-02; /* 0xbc28fcfe */
+const T6: f32 = 6.1005386524e-03; /* 0x3bc7e707 */
+const T7: f32 = -3.6845202558e-03; /* 0xbb7177fe */
+const T8: f32 = 2.2596477065e-03; /* 0x3b141699 */
+const T9: f32 = -1.4034647029e-03; /* 0xbab7f476 */
+const T10: f32 = 8.8108185446e-04; /* 0x3a66f867 */
+const T11: f32 = -5.3859531181e-04; /* 0xba0d3085 */
+const T12: f32 = 3.1563205994e-04; /* 0x39a57b6b */
+const T13: f32 = -3.1275415677e-04; /* 0xb9a3f927 */
+const T14: f32 = 3.3552918467e-04; /* 0x39afe9f7 */
+const U0: f32 = -7.7215664089e-02; /* 0xbd9e233f */
+const U1: f32 = 6.3282704353e-01; /* 0x3f2200f4 */
+const U2: f32 = 1.4549225569e+00; /* 0x3fba3ae7 */
+const U3: f32 = 9.7771751881e-01; /* 0x3f7a4bb2 */
+const U4: f32 = 2.2896373272e-01; /* 0x3e6a7578 */
+const U5: f32 = 1.3381091878e-02; /* 0x3c5b3c5e */
+const V1: f32 = 2.4559779167e+00; /* 0x401d2ebe */
+const V2: f32 = 2.1284897327e+00; /* 0x4008392d */
+const V3: f32 = 7.6928514242e-01; /* 0x3f44efdf */
+const V4: f32 = 1.0422264785e-01; /* 0x3dd572af */
+const V5: f32 = 3.2170924824e-03; /* 0x3b52d5db */
+const S0: f32 = -7.7215664089e-02; /* 0xbd9e233f */
+const S1: f32 = 2.1498242021e-01; /* 0x3e5c245a */
+const S2: f32 = 3.2577878237e-01; /* 0x3ea6cc7a */
+const S3: f32 = 1.4635047317e-01; /* 0x3e15dce6 */
+const S4: f32 = 2.6642270386e-02; /* 0x3cda40e4 */
+const S5: f32 = 1.8402845599e-03; /* 0x3af135b4 */
+const S6: f32 = 3.1947532989e-05; /* 0x3805ff67 */
+const R1: f32 = 1.3920053244e+00; /* 0x3fb22d3b */
+const R2: f32 = 7.2193557024e-01; /* 0x3f38d0c5 */
+const R3: f32 = 1.7193385959e-01; /* 0x3e300f6e */
+const R4: f32 = 1.8645919859e-02; /* 0x3c98bf54 */
+const R5: f32 = 7.7794247773e-04; /* 0x3a4beed6 */
+const R6: f32 = 7.3266842264e-06; /* 0x36f5d7bd */
+const W0: f32 = 4.1893854737e-01; /* 0x3ed67f1d */
+const W1: f32 = 8.3333335817e-02; /* 0x3daaaaab */
+const W2: f32 = -2.7777778450e-03; /* 0xbb360b61 */
+const W3: f32 = 7.9365057172e-04; /* 0x3a500cfd */
+const W4: f32 = -5.9518753551e-04; /* 0xba1c065c */
+const W5: f32 = 8.3633989561e-04; /* 0x3a5b3dd2 */
+const W6: f32 = -1.6309292987e-03; /* 0xbad5c4e8 */
+
+/* sin(PI*x) assuming x > 2^-100, if sin(PI*x)==0 the sign is arbitrary */
+fn sin_pi(mut x: f32) -> f32 {
+    let mut y: f64;
+    let mut n: isize;
+
+    /* spurious inexact if odd int */
+    x = 2.0 * (x * 0.5 - floorf(x * 0.5)); /* x mod 2.0 */
+
+    n = (x * 4.0) as isize;
+    n = div!(n + 1, 2);
+    y = (x as f64) - (n as f64) * 0.5;
+    y *= 3.14159265358979323846;
+    match n {
+        1 => k_cosf(y),
+        2 => k_sinf(-y),
+        3 => -k_cosf(y),
+        // 0
+        _ => k_sinf(y),
+    }
+}
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn lgammaf_r(mut x: f32) -> (f32, i32) {
+    let u = x.to_bits();
+    let mut t: f32;
+    let y: f32;
+    let mut z: f32;
+    let nadj: f32;
+    let p: f32;
+    let p1: f32;
+    let p2: f32;
+    let p3: f32;
+    let q: f32;
+    let mut r: f32;
+    let w: f32;
+    let ix: u32;
+    let i: i32;
+    let sign: bool;
+    let mut signgam: i32;
+
+    /* purge off +-inf, NaN, +-0, tiny and negative arguments */
+    signgam = 1;
+    sign = (u >> 31) != 0;
+    ix = u & 0x7fffffff;
+    if ix >= 0x7f800000 {
+        return (x * x, signgam);
+    }
+    if ix < 0x35000000 {
+        /* |x| < 2**-21, return -log(|x|) */
+        if sign {
+            signgam = -1;
+            x = -x;
+        }
+        return (-logf(x), signgam);
+    }
+    if sign {
+        x = -x;
+        t = sin_pi(x);
+        if t == 0.0 {
+            /* -integer */
+            return (1.0 / (x - x), signgam);
+        }
+        if t > 0.0 {
+            signgam = -1;
+        } else {
+            t = -t;
+        }
+        nadj = logf(PI / (t * x));
+    } else {
+        nadj = 0.0;
+    }
+
+    /* purge off 1 and 2 */
+    if ix == 0x3f800000 || ix == 0x40000000 {
+        r = 0.0;
+    }
+    /* for x < 2.0 */
+    else if ix < 0x40000000 {
+        if ix <= 0x3f666666 {
+            /* lgamma(x) = lgamma(x+1)-log(x) */
+            r = -logf(x);
+            if ix >= 0x3f3b4a20 {
+                y = 1.0 - x;
+                i = 0;
+            } else if ix >= 0x3e6d3308 {
+                y = x - (TC - 1.0);
+                i = 1;
+            } else {
+                y = x;
+                i = 2;
+            }
+        } else {
+            r = 0.0;
+            if ix >= 0x3fdda618 {
+                /* [1.7316,2] */
+                y = 2.0 - x;
+                i = 0;
+            } else if ix >= 0x3F9da620 {
+                /* [1.23,1.73] */
+                y = x - TC;
+                i = 1;
+            } else {
+                y = x - 1.0;
+                i = 2;
+            }
+        }
+        match i {
+            0 => {
+                z = y * y;
+                p1 = A0 + z * (A2 + z * (A4 + z * (A6 + z * (A8 + z * A10))));
+                p2 = z * (A1 + z * (A3 + z * (A5 + z * (A7 + z * (A9 + z * A11)))));
+                p = y * p1 + p2;
+                r += p - 0.5 * y;
+            }
+            1 => {
+                z = y * y;
+                w = z * y;
+                p1 = T0 + w * (T3 + w * (T6 + w * (T9 + w * T12))); /* parallel comp */
+                p2 = T1 + w * (T4 + w * (T7 + w * (T10 + w * T13)));
+                p3 = T2 + w * (T5 + w * (T8 + w * (T11 + w * T14)));
+                p = z * p1 - (TT - w * (p2 + y * p3));
+                r += TF + p;
+            }
+            2 => {
+                p1 = y * (U0 + y * (U1 + y * (U2 + y * (U3 + y * (U4 + y * U5)))));
+                p2 = 1.0 + y * (V1 + y * (V2 + y * (V3 + y * (V4 + y * V5))));
+                r += -0.5 * y + p1 / p2;
+            }
+            #[cfg(debug_assertions)]
+            _ => unreachable!(),
+            #[cfg(not(debug_assertions))]
+            _ => {}
+        }
+    } else if ix < 0x41000000 {
+        /* x < 8.0 */
+        i = x as i32;
+        y = x - (i as f32);
+        p = y * (S0 + y * (S1 + y * (S2 + y * (S3 + y * (S4 + y * (S5 + y * S6))))));
+        q = 1.0 + y * (R1 + y * (R2 + y * (R3 + y * (R4 + y * (R5 + y * R6)))));
+        r = 0.5 * y + p / q;
+        z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */
+        // TODO: In C, this was implemented using switch jumps with fallthrough.
+        // Does this implementation have performance problems?
+        if i >= 7 {
+            z *= y + 6.0;
+        }
+        if i >= 6 {
+            z *= y + 5.0;
+        }
+        if i >= 5 {
+            z *= y + 4.0;
+        }
+        if i >= 4 {
+            z *= y + 3.0;
+        }
+        if i >= 3 {
+            z *= y + 2.0;
+            r += logf(z);
+        }
+    } else if ix < 0x5c800000 {
+        /* 8.0 <= x < 2**58 */
+        t = logf(x);
+        z = 1.0 / x;
+        y = z * z;
+        w = W0 + z * (W1 + y * (W2 + y * (W3 + y * (W4 + y * (W5 + y * W6)))));
+        r = (x - 0.5) * (t - 1.0) + w;
+    } else {
+        /* 2**58 <= x <= inf */
+        r = x * (logf(x) - 1.0);
+    }
+    if sign {
+        r = nadj - r;
+    }
+    return (r, signgam);
+}
diff --git a/library/compiler-builtins/libm/src/math/log.rs b/library/compiler-builtins/libm/src/math/log.rs
new file mode 100644
index 00000000000..f2dc47ec5cc
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/log.rs
@@ -0,0 +1,118 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* log(x)
+ * Return the logarithm of x
+ *
+ * Method :
+ *   1. Argument Reduction: find k and f such that
+ *                      x = 2^k * (1+f),
+ *         where  sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ *   2. Approximation of log(1+f).
+ *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+ *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+ *               = 2s + s*R
+ *      We use a special Remez algorithm on [0,0.1716] to generate
+ *      a polynomial of degree 14 to approximate R The maximum error
+ *      of this polynomial approximation is bounded by 2**-58.45. In
+ *      other words,
+ *                      2      4      6      8      10      12      14
+ *          R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
+ *      (the values of Lg1 to Lg7 are listed in the program)
+ *      and
+ *          |      2          14          |     -58.45
+ *          | Lg1*s +...+Lg7*s    -  R(z) | <= 2
+ *          |                             |
+ *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+ *      In order to guarantee error in log below 1ulp, we compute log
+ *      by
+ *              log(1+f) = f - s*(f - R)        (if f is not too large)
+ *              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
+ *
+ *      3. Finally,  log(x) = k*ln2 + log(1+f).
+ *                          = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
+ *         Here ln2 is split into two floating point number:
+ *                      ln2_hi + ln2_lo,
+ *         where n*ln2_hi is always exact for |n| < 2000.
+ *
+ * Special cases:
+ *      log(x) is NaN with signal if x < 0 (including -INF) ;
+ *      log(+INF) is +INF; log(0) is -INF with signal;
+ *      log(NaN) is that NaN with no signal.
+ *
+ * Accuracy:
+ *      according to an error analysis, the error is always less than
+ *      1 ulp (unit in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
+const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
+const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
+const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
+const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
+const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
+const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
+const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
+const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+/// The natural logarithm of `x` (f64).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn log(mut x: f64) -> f64 {
+    let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54
+
+    let mut ui = x.to_bits();
+    let mut hx: u32 = (ui >> 32) as u32;
+    let mut k: i32 = 0;
+
+    if (hx < 0x00100000) || ((hx >> 31) != 0) {
+        /* x < 2**-126  */
+        if ui << 1 == 0 {
+            return -1. / (x * x); /* log(+-0)=-inf */
+        }
+        if hx >> 31 != 0 {
+            return (x - x) / 0.0; /* log(-#) = NaN */
+        }
+        /* subnormal number, scale x up */
+        k -= 54;
+        x *= x1p54;
+        ui = x.to_bits();
+        hx = (ui >> 32) as u32;
+    } else if hx >= 0x7ff00000 {
+        return x;
+    } else if hx == 0x3ff00000 && ui << 32 == 0 {
+        return 0.;
+    }
+
+    /* reduce x into [sqrt(2)/2, sqrt(2)] */
+    hx += 0x3ff00000 - 0x3fe6a09e;
+    k += ((hx >> 20) as i32) - 0x3ff;
+    hx = (hx & 0x000fffff) + 0x3fe6a09e;
+    ui = ((hx as u64) << 32) | (ui & 0xffffffff);
+    x = f64::from_bits(ui);
+
+    let f: f64 = x - 1.0;
+    let hfsq: f64 = 0.5 * f * f;
+    let s: f64 = f / (2.0 + f);
+    let z: f64 = s * s;
+    let w: f64 = z * z;
+    let t1: f64 = w * (LG2 + w * (LG4 + w * LG6));
+    let t2: f64 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
+    let r: f64 = t2 + t1;
+    let dk: f64 = k as f64;
+    s * (hfsq + r) + dk * LN2_LO - hfsq + f + dk * LN2_HI
+}
diff --git a/library/compiler-builtins/libm/src/math/log10.rs b/library/compiler-builtins/libm/src/math/log10.rs
new file mode 100644
index 00000000000..8c9d68c492d
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/log10.rs
@@ -0,0 +1,118 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_log10.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * Return the base 10 logarithm of x.  See log.c for most comments.
+ *
+ * Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
+ * as in log.c, then combine and scale in extra precision:
+ *    log10(x) = (f - f*f/2 + r)/log(10) + k*log10(2)
+ */
+
+use core::f64;
+
+const IVLN10HI: f64 = 4.34294481878168880939e-01; /* 0x3fdbcb7b, 0x15200000 */
+const IVLN10LO: f64 = 2.50829467116452752298e-11; /* 0x3dbb9438, 0xca9aadd5 */
+const LOG10_2HI: f64 = 3.01029995663611771306e-01; /* 0x3FD34413, 0x509F6000 */
+const LOG10_2LO: f64 = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
+const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
+const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
+const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
+const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
+const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
+const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
+const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+/// The base 10 logarithm of `x` (f64).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn log10(mut x: f64) -> f64 {
+    let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54
+
+    let mut ui: u64 = x.to_bits();
+    let hfsq: f64;
+    let f: f64;
+    let s: f64;
+    let z: f64;
+    let r: f64;
+    let mut w: f64;
+    let t1: f64;
+    let t2: f64;
+    let dk: f64;
+    let y: f64;
+    let mut hi: f64;
+    let lo: f64;
+    let mut val_hi: f64;
+    let mut val_lo: f64;
+    let mut hx: u32;
+    let mut k: i32;
+
+    hx = (ui >> 32) as u32;
+    k = 0;
+    if hx < 0x00100000 || (hx >> 31) > 0 {
+        if ui << 1 == 0 {
+            return -1. / (x * x); /* log(+-0)=-inf */
+        }
+        if (hx >> 31) > 0 {
+            return (x - x) / 0.0; /* log(-#) = NaN */
+        }
+        /* subnormal number, scale x up */
+        k -= 54;
+        x *= x1p54;
+        ui = x.to_bits();
+        hx = (ui >> 32) as u32;
+    } else if hx >= 0x7ff00000 {
+        return x;
+    } else if hx == 0x3ff00000 && ui << 32 == 0 {
+        return 0.;
+    }
+
+    /* reduce x into [sqrt(2)/2, sqrt(2)] */
+    hx += 0x3ff00000 - 0x3fe6a09e;
+    k += (hx >> 20) as i32 - 0x3ff;
+    hx = (hx & 0x000fffff) + 0x3fe6a09e;
+    ui = ((hx as u64) << 32) | (ui & 0xffffffff);
+    x = f64::from_bits(ui);
+
+    f = x - 1.0;
+    hfsq = 0.5 * f * f;
+    s = f / (2.0 + f);
+    z = s * s;
+    w = z * z;
+    t1 = w * (LG2 + w * (LG4 + w * LG6));
+    t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
+    r = t2 + t1;
+
+    /* See log2.c for details. */
+    /* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
+    hi = f - hfsq;
+    ui = hi.to_bits();
+    ui &= (-1i64 as u64) << 32;
+    hi = f64::from_bits(ui);
+    lo = f - hi - hfsq + s * (hfsq + r);
+
+    /* val_hi+val_lo ~ log10(1+f) + k*log10(2) */
+    val_hi = hi * IVLN10HI;
+    dk = k as f64;
+    y = dk * LOG10_2HI;
+    val_lo = dk * LOG10_2LO + (lo + hi) * IVLN10LO + lo * IVLN10HI;
+
+    /*
+     * Extra precision in for adding y is not strictly needed
+     * since there is no very large cancellation near x = sqrt(2) or
+     * x = 1/sqrt(2), but we do it anyway since it costs little on CPUs
+     * with some parallelism and it reduces the error for many args.
+     */
+    w = y + val_hi;
+    val_lo += (y - w) + val_hi;
+    val_hi = w;
+
+    val_lo + val_hi
+}
diff --git a/library/compiler-builtins/libm/src/math/log10f.rs b/library/compiler-builtins/libm/src/math/log10f.rs
new file mode 100644
index 00000000000..18bf8fcc832
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/log10f.rs
@@ -0,0 +1,92 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_log10f.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * See comments in log10.c.
+ */
+
+use core::f32;
+
+const IVLN10HI: f32 = 4.3432617188e-01; /* 0x3ede6000 */
+const IVLN10LO: f32 = -3.1689971365e-05; /* 0xb804ead9 */
+const LOG10_2HI: f32 = 3.0102920532e-01; /* 0x3e9a2080 */
+const LOG10_2LO: f32 = 7.9034151668e-07; /* 0x355427db */
+/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
+const LG1: f32 = 0.66666662693; /* 0xaaaaaa.0p-24 */
+const LG2: f32 = 0.40000972152; /* 0xccce13.0p-25 */
+const LG3: f32 = 0.28498786688; /* 0x91e9ee.0p-25 */
+const LG4: f32 = 0.24279078841; /* 0xf89e26.0p-26 */
+
+/// The base 10 logarithm of `x` (f32).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn log10f(mut x: f32) -> f32 {
+    let x1p25f = f32::from_bits(0x4c000000); // 0x1p25f === 2 ^ 25
+
+    let mut ui: u32 = x.to_bits();
+    let hfsq: f32;
+    let f: f32;
+    let s: f32;
+    let z: f32;
+    let r: f32;
+    let w: f32;
+    let t1: f32;
+    let t2: f32;
+    let dk: f32;
+    let mut hi: f32;
+    let lo: f32;
+    let mut ix: u32;
+    let mut k: i32;
+
+    ix = ui;
+    k = 0;
+    if ix < 0x00800000 || (ix >> 31) > 0 {
+        /* x < 2**-126  */
+        if ix << 1 == 0 {
+            return -1. / (x * x); /* log(+-0)=-inf */
+        }
+        if (ix >> 31) > 0 {
+            return (x - x) / 0.0; /* log(-#) = NaN */
+        }
+        /* subnormal number, scale up x */
+        k -= 25;
+        x *= x1p25f;
+        ui = x.to_bits();
+        ix = ui;
+    } else if ix >= 0x7f800000 {
+        return x;
+    } else if ix == 0x3f800000 {
+        return 0.;
+    }
+
+    /* reduce x into [sqrt(2)/2, sqrt(2)] */
+    ix += 0x3f800000 - 0x3f3504f3;
+    k += (ix >> 23) as i32 - 0x7f;
+    ix = (ix & 0x007fffff) + 0x3f3504f3;
+    ui = ix;
+    x = f32::from_bits(ui);
+
+    f = x - 1.0;
+    s = f / (2.0 + f);
+    z = s * s;
+    w = z * z;
+    t1 = w * (LG2 + w * LG4);
+    t2 = z * (LG1 + w * LG3);
+    r = t2 + t1;
+    hfsq = 0.5 * f * f;
+
+    hi = f - hfsq;
+    ui = hi.to_bits();
+    ui &= 0xfffff000;
+    hi = f32::from_bits(ui);
+    lo = f - hi - hfsq + s * (hfsq + r);
+    dk = k as f32;
+    dk * LOG10_2LO + (lo + hi) * IVLN10LO + lo * IVLN10HI + hi * IVLN10HI + dk * LOG10_2HI
+}
diff --git a/library/compiler-builtins/libm/src/math/log1p.rs b/library/compiler-builtins/libm/src/math/log1p.rs
new file mode 100644
index 00000000000..b7f3fb09e15
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/log1p.rs
@@ -0,0 +1,140 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* double log1p(double x)
+ * Return the natural logarithm of 1+x.
+ *
+ * Method :
+ *   1. Argument Reduction: find k and f such that
+ *                      1+x = 2^k * (1+f),
+ *         where  sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ *      Note. If k=0, then f=x is exact. However, if k!=0, then f
+ *      may not be representable exactly. In that case, a correction
+ *      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
+ *      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
+ *      and add back the correction term c/u.
+ *      (Note: when x > 2**53, one can simply return log(x))
+ *
+ *   2. Approximation of log(1+f): See log.c
+ *
+ *   3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
+ *
+ * Special cases:
+ *      log1p(x) is NaN with signal if x < -1 (including -INF) ;
+ *      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
+ *      log1p(NaN) is that NaN with no signal.
+ *
+ * Accuracy:
+ *      according to an error analysis, the error is always less than
+ *      1 ulp (unit in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ *
+ * Note: Assuming log() return accurate answer, the following
+ *       algorithm can be used to compute log1p(x) to within a few ULP:
+ *
+ *              u = 1+x;
+ *              if(u==1.0) return x ; else
+ *                         return log(u)*(x/(u-1.0));
+ *
+ *       See HP-15C Advanced Functions Handbook, p.193.
+ */
+
+use core::f64;
+
+const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
+const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
+const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
+const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
+const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
+const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
+const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
+const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
+const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+/// The natural logarithm of 1+`x` (f64).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn log1p(x: f64) -> f64 {
+    let mut ui: u64 = x.to_bits();
+    let hfsq: f64;
+    let mut f: f64 = 0.;
+    let mut c: f64 = 0.;
+    let s: f64;
+    let z: f64;
+    let r: f64;
+    let w: f64;
+    let t1: f64;
+    let t2: f64;
+    let dk: f64;
+    let hx: u32;
+    let mut hu: u32;
+    let mut k: i32;
+
+    hx = (ui >> 32) as u32;
+    k = 1;
+    if hx < 0x3fda827a || (hx >> 31) > 0 {
+        /* 1+x < sqrt(2)+ */
+        if hx >= 0xbff00000 {
+            /* x <= -1.0 */
+            if x == -1. {
+                return x / 0.0; /* log1p(-1) = -inf */
+            }
+            return (x - x) / 0.0; /* log1p(x<-1) = NaN */
+        }
+        if hx << 1 < 0x3ca00000 << 1 {
+            /* |x| < 2**-53 */
+            /* underflow if subnormal */
+            if (hx & 0x7ff00000) == 0 {
+                force_eval!(x as f32);
+            }
+            return x;
+        }
+        if hx <= 0xbfd2bec4 {
+            /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
+            k = 0;
+            c = 0.;
+            f = x;
+        }
+    } else if hx >= 0x7ff00000 {
+        return x;
+    }
+    if k > 0 {
+        ui = (1. + x).to_bits();
+        hu = (ui >> 32) as u32;
+        hu += 0x3ff00000 - 0x3fe6a09e;
+        k = (hu >> 20) as i32 - 0x3ff;
+        /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
+        if k < 54 {
+            c = if k >= 2 { 1. - (f64::from_bits(ui) - x) } else { x - (f64::from_bits(ui) - 1.) };
+            c /= f64::from_bits(ui);
+        } else {
+            c = 0.;
+        }
+        /* reduce u into [sqrt(2)/2, sqrt(2)] */
+        hu = (hu & 0x000fffff) + 0x3fe6a09e;
+        ui = ((hu as u64) << 32) | (ui & 0xffffffff);
+        f = f64::from_bits(ui) - 1.;
+    }
+    hfsq = 0.5 * f * f;
+    s = f / (2.0 + f);
+    z = s * s;
+    w = z * z;
+    t1 = w * (LG2 + w * (LG4 + w * LG6));
+    t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
+    r = t2 + t1;
+    dk = k as f64;
+    s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI
+}
diff --git a/library/compiler-builtins/libm/src/math/log1pf.rs b/library/compiler-builtins/libm/src/math/log1pf.rs
new file mode 100644
index 00000000000..bba5b8a2f21
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/log1pf.rs
@@ -0,0 +1,95 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_log1pf.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use core::f32;
+
+const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */
+const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */
+/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
+const LG1: f32 = 0.66666662693; /* 0xaaaaaa.0p-24 */
+const LG2: f32 = 0.40000972152; /* 0xccce13.0p-25 */
+const LG3: f32 = 0.28498786688; /* 0x91e9ee.0p-25 */
+const LG4: f32 = 0.24279078841; /* 0xf89e26.0p-26 */
+
+/// The natural logarithm of 1+`x` (f32).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn log1pf(x: f32) -> f32 {
+    let mut ui: u32 = x.to_bits();
+    let hfsq: f32;
+    let mut f: f32 = 0.;
+    let mut c: f32 = 0.;
+    let s: f32;
+    let z: f32;
+    let r: f32;
+    let w: f32;
+    let t1: f32;
+    let t2: f32;
+    let dk: f32;
+    let ix: u32;
+    let mut iu: u32;
+    let mut k: i32;
+
+    ix = ui;
+    k = 1;
+    if ix < 0x3ed413d0 || (ix >> 31) > 0 {
+        /* 1+x < sqrt(2)+  */
+        if ix >= 0xbf800000 {
+            /* x <= -1.0 */
+            if x == -1. {
+                return x / 0.0; /* log1p(-1)=+inf */
+            }
+            return (x - x) / 0.0; /* log1p(x<-1)=NaN */
+        }
+        if ix << 1 < 0x33800000 << 1 {
+            /* |x| < 2**-24 */
+            /* underflow if subnormal */
+            if (ix & 0x7f800000) == 0 {
+                force_eval!(x * x);
+            }
+            return x;
+        }
+        if ix <= 0xbe95f619 {
+            /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
+            k = 0;
+            c = 0.;
+            f = x;
+        }
+    } else if ix >= 0x7f800000 {
+        return x;
+    }
+    if k > 0 {
+        ui = (1. + x).to_bits();
+        iu = ui;
+        iu += 0x3f800000 - 0x3f3504f3;
+        k = (iu >> 23) as i32 - 0x7f;
+        /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
+        if k < 25 {
+            c = if k >= 2 { 1. - (f32::from_bits(ui) - x) } else { x - (f32::from_bits(ui) - 1.) };
+            c /= f32::from_bits(ui);
+        } else {
+            c = 0.;
+        }
+        /* reduce u into [sqrt(2)/2, sqrt(2)] */
+        iu = (iu & 0x007fffff) + 0x3f3504f3;
+        ui = iu;
+        f = f32::from_bits(ui) - 1.;
+    }
+    s = f / (2.0 + f);
+    z = s * s;
+    w = z * z;
+    t1 = w * (LG2 + w * LG4);
+    t2 = z * (LG1 + w * LG3);
+    r = t2 + t1;
+    hfsq = 0.5 * f * f;
+    dk = k as f32;
+    s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI
+}
diff --git a/library/compiler-builtins/libm/src/math/log2.rs b/library/compiler-builtins/libm/src/math/log2.rs
new file mode 100644
index 00000000000..701f63c25e7
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/log2.rs
@@ -0,0 +1,107 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_log2.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * Return the base 2 logarithm of x.  See log.c for most comments.
+ *
+ * Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
+ * as in log.c, then combine and scale in extra precision:
+ *    log2(x) = (f - f*f/2 + r)/log(2) + k
+ */
+
+use core::f64;
+
+const IVLN2HI: f64 = 1.44269504072144627571e+00; /* 0x3ff71547, 0x65200000 */
+const IVLN2LO: f64 = 1.67517131648865118353e-10; /* 0x3de705fc, 0x2eefa200 */
+const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
+const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
+const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
+const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
+const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
+const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
+const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+/// The base 2 logarithm of `x` (f64).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn log2(mut x: f64) -> f64 {
+    let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54
+
+    let mut ui: u64 = x.to_bits();
+    let hfsq: f64;
+    let f: f64;
+    let s: f64;
+    let z: f64;
+    let r: f64;
+    let mut w: f64;
+    let t1: f64;
+    let t2: f64;
+    let y: f64;
+    let mut hi: f64;
+    let lo: f64;
+    let mut val_hi: f64;
+    let mut val_lo: f64;
+    let mut hx: u32;
+    let mut k: i32;
+
+    hx = (ui >> 32) as u32;
+    k = 0;
+    if hx < 0x00100000 || (hx >> 31) > 0 {
+        if ui << 1 == 0 {
+            return -1. / (x * x); /* log(+-0)=-inf */
+        }
+        if (hx >> 31) > 0 {
+            return (x - x) / 0.0; /* log(-#) = NaN */
+        }
+        /* subnormal number, scale x up */
+        k -= 54;
+        x *= x1p54;
+        ui = x.to_bits();
+        hx = (ui >> 32) as u32;
+    } else if hx >= 0x7ff00000 {
+        return x;
+    } else if hx == 0x3ff00000 && ui << 32 == 0 {
+        return 0.;
+    }
+
+    /* reduce x into [sqrt(2)/2, sqrt(2)] */
+    hx += 0x3ff00000 - 0x3fe6a09e;
+    k += (hx >> 20) as i32 - 0x3ff;
+    hx = (hx & 0x000fffff) + 0x3fe6a09e;
+    ui = ((hx as u64) << 32) | (ui & 0xffffffff);
+    x = f64::from_bits(ui);
+
+    f = x - 1.0;
+    hfsq = 0.5 * f * f;
+    s = f / (2.0 + f);
+    z = s * s;
+    w = z * z;
+    t1 = w * (LG2 + w * (LG4 + w * LG6));
+    t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
+    r = t2 + t1;
+
+    /* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
+    hi = f - hfsq;
+    ui = hi.to_bits();
+    ui &= (-1i64 as u64) << 32;
+    hi = f64::from_bits(ui);
+    lo = f - hi - hfsq + s * (hfsq + r);
+
+    val_hi = hi * IVLN2HI;
+    val_lo = (lo + hi) * IVLN2LO + lo * IVLN2HI;
+
+    /* spadd(val_hi, val_lo, y), except for not using double_t: */
+    y = k.into();
+    w = y + val_hi;
+    val_lo += (y - w) + val_hi;
+    val_hi = w;
+
+    val_lo + val_hi
+}
diff --git a/library/compiler-builtins/libm/src/math/log2f.rs b/library/compiler-builtins/libm/src/math/log2f.rs
new file mode 100644
index 00000000000..5ba2427d1d4
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/log2f.rs
@@ -0,0 +1,88 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_log2f.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * See comments in log2.c.
+ */
+
+use core::f32;
+
+const IVLN2HI: f32 = 1.4428710938e+00; /* 0x3fb8b000 */
+const IVLN2LO: f32 = -1.7605285393e-04; /* 0xb9389ad4 */
+/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
+const LG1: f32 = 0.66666662693; /* 0xaaaaaa.0p-24 */
+const LG2: f32 = 0.40000972152; /* 0xccce13.0p-25 */
+const LG3: f32 = 0.28498786688; /* 0x91e9ee.0p-25 */
+const LG4: f32 = 0.24279078841; /* 0xf89e26.0p-26 */
+
+/// The base 2 logarithm of `x` (f32).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn log2f(mut x: f32) -> f32 {
+    let x1p25f = f32::from_bits(0x4c000000); // 0x1p25f === 2 ^ 25
+
+    let mut ui: u32 = x.to_bits();
+    let hfsq: f32;
+    let f: f32;
+    let s: f32;
+    let z: f32;
+    let r: f32;
+    let w: f32;
+    let t1: f32;
+    let t2: f32;
+    let mut hi: f32;
+    let lo: f32;
+    let mut ix: u32;
+    let mut k: i32;
+
+    ix = ui;
+    k = 0;
+    if ix < 0x00800000 || (ix >> 31) > 0 {
+        /* x < 2**-126  */
+        if ix << 1 == 0 {
+            return -1. / (x * x); /* log(+-0)=-inf */
+        }
+        if (ix >> 31) > 0 {
+            return (x - x) / 0.0; /* log(-#) = NaN */
+        }
+        /* subnormal number, scale up x */
+        k -= 25;
+        x *= x1p25f;
+        ui = x.to_bits();
+        ix = ui;
+    } else if ix >= 0x7f800000 {
+        return x;
+    } else if ix == 0x3f800000 {
+        return 0.;
+    }
+
+    /* reduce x into [sqrt(2)/2, sqrt(2)] */
+    ix += 0x3f800000 - 0x3f3504f3;
+    k += (ix >> 23) as i32 - 0x7f;
+    ix = (ix & 0x007fffff) + 0x3f3504f3;
+    ui = ix;
+    x = f32::from_bits(ui);
+
+    f = x - 1.0;
+    s = f / (2.0 + f);
+    z = s * s;
+    w = z * z;
+    t1 = w * (LG2 + w * LG4);
+    t2 = z * (LG1 + w * LG3);
+    r = t2 + t1;
+    hfsq = 0.5 * f * f;
+
+    hi = f - hfsq;
+    ui = hi.to_bits();
+    ui &= 0xfffff000;
+    hi = f32::from_bits(ui);
+    lo = f - hi - hfsq + s * (hfsq + r);
+    (lo + hi) * IVLN2LO + lo * IVLN2HI + hi * IVLN2HI + k as f32
+}
diff --git a/library/compiler-builtins/libm/src/math/logf.rs b/library/compiler-builtins/libm/src/math/logf.rs
new file mode 100644
index 00000000000..68d1943025e
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/logf.rs
@@ -0,0 +1,66 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_logf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */
+const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */
+/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
+const LG1: f32 = 0.66666662693; /*  0xaaaaaa.0p-24*/
+const LG2: f32 = 0.40000972152; /*  0xccce13.0p-25 */
+const LG3: f32 = 0.28498786688; /*  0x91e9ee.0p-25 */
+const LG4: f32 = 0.24279078841; /*  0xf89e26.0p-26 */
+
+/// The natural logarithm of `x` (f32).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn logf(mut x: f32) -> f32 {
+    let x1p25 = f32::from_bits(0x4c000000); // 0x1p25f === 2 ^ 25
+
+    let mut ix = x.to_bits();
+    let mut k = 0i32;
+
+    if (ix < 0x00800000) || ((ix >> 31) != 0) {
+        /* x < 2**-126  */
+        if ix << 1 == 0 {
+            return -1. / (x * x); /* log(+-0)=-inf */
+        }
+        if (ix >> 31) != 0 {
+            return (x - x) / 0.; /* log(-#) = NaN */
+        }
+        /* subnormal number, scale up x */
+        k -= 25;
+        x *= x1p25;
+        ix = x.to_bits();
+    } else if ix >= 0x7f800000 {
+        return x;
+    } else if ix == 0x3f800000 {
+        return 0.;
+    }
+
+    /* reduce x into [sqrt(2)/2, sqrt(2)] */
+    ix += 0x3f800000 - 0x3f3504f3;
+    k += ((ix >> 23) as i32) - 0x7f;
+    ix = (ix & 0x007fffff) + 0x3f3504f3;
+    x = f32::from_bits(ix);
+
+    let f = x - 1.;
+    let s = f / (2. + f);
+    let z = s * s;
+    let w = z * z;
+    let t1 = w * (LG2 + w * LG4);
+    let t2 = z * (LG1 + w * LG3);
+    let r = t2 + t1;
+    let hfsq = 0.5 * f * f;
+    let dk = k as f32;
+    s * (hfsq + r) + dk * LN2_LO - hfsq + f + dk * LN2_HI
+}
diff --git a/library/compiler-builtins/libm/src/math/mod.rs b/library/compiler-builtins/libm/src/math/mod.rs
new file mode 100644
index 00000000000..949c18b4000
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/mod.rs
@@ -0,0 +1,396 @@
+macro_rules! force_eval {
+    ($e:expr) => {
+        unsafe { ::core::ptr::read_volatile(&$e) }
+    };
+}
+
+#[cfg(not(debug_assertions))]
+macro_rules! i {
+    ($array:expr, $index:expr) => {
+        unsafe { *$array.get_unchecked($index) }
+    };
+    ($array:expr, $index:expr, = , $rhs:expr) => {
+        unsafe {
+            *$array.get_unchecked_mut($index) = $rhs;
+        }
+    };
+    ($array:expr, $index:expr, += , $rhs:expr) => {
+        unsafe {
+            *$array.get_unchecked_mut($index) += $rhs;
+        }
+    };
+    ($array:expr, $index:expr, -= , $rhs:expr) => {
+        unsafe {
+            *$array.get_unchecked_mut($index) -= $rhs;
+        }
+    };
+    ($array:expr, $index:expr, &= , $rhs:expr) => {
+        unsafe {
+            *$array.get_unchecked_mut($index) &= $rhs;
+        }
+    };
+    ($array:expr, $index:expr, == , $rhs:expr) => {
+        unsafe { *$array.get_unchecked_mut($index) == $rhs }
+    };
+}
+
+#[cfg(debug_assertions)]
+macro_rules! i {
+    ($array:expr, $index:expr) => {
+        *$array.get($index).unwrap()
+    };
+    ($array:expr, $index:expr, = , $rhs:expr) => {
+        *$array.get_mut($index).unwrap() = $rhs;
+    };
+    ($array:expr, $index:expr, -= , $rhs:expr) => {
+        *$array.get_mut($index).unwrap() -= $rhs;
+    };
+    ($array:expr, $index:expr, += , $rhs:expr) => {
+        *$array.get_mut($index).unwrap() += $rhs;
+    };
+    ($array:expr, $index:expr, &= , $rhs:expr) => {
+        *$array.get_mut($index).unwrap() &= $rhs;
+    };
+    ($array:expr, $index:expr, == , $rhs:expr) => {
+        *$array.get_mut($index).unwrap() == $rhs
+    };
+}
+
+// Temporary macro to avoid panic codegen for division (in debug mode too). At
+// the time of this writing this is only used in a few places, and once
+// rust-lang/rust#72751 is fixed then this macro will no longer be necessary and
+// the native `/` operator can be used and panics won't be codegen'd.
+#[cfg(any(debug_assertions, not(intrinsics_enabled)))]
+macro_rules! div {
+    ($a:expr, $b:expr) => {
+        $a / $b
+    };
+}
+
+#[cfg(all(not(debug_assertions), intrinsics_enabled))]
+macro_rules! div {
+    ($a:expr, $b:expr) => {
+        unsafe { core::intrinsics::unchecked_div($a, $b) }
+    };
+}
+
+// `support` may be public for testing
+#[macro_use]
+#[cfg(feature = "unstable-public-internals")]
+pub mod support;
+
+#[macro_use]
+#[cfg(not(feature = "unstable-public-internals"))]
+pub(crate) mod support;
+
+cfg_if! {
+    if #[cfg(feature = "unstable-public-internals")] {
+        pub mod generic;
+    } else {
+        mod generic;
+    }
+}
+
+// Private modules
+mod arch;
+mod expo2;
+mod k_cos;
+mod k_cosf;
+mod k_expo2;
+mod k_expo2f;
+mod k_sin;
+mod k_sinf;
+mod k_tan;
+mod k_tanf;
+mod rem_pio2;
+mod rem_pio2_large;
+mod rem_pio2f;
+
+// Private re-imports
+use self::expo2::expo2;
+use self::k_cos::k_cos;
+use self::k_cosf::k_cosf;
+use self::k_expo2::k_expo2;
+use self::k_expo2f::k_expo2f;
+use self::k_sin::k_sin;
+use self::k_sinf::k_sinf;
+use self::k_tan::k_tan;
+use self::k_tanf::k_tanf;
+use self::rem_pio2::rem_pio2;
+use self::rem_pio2_large::rem_pio2_large;
+use self::rem_pio2f::rem_pio2f;
+#[allow(unused_imports)]
+use self::support::{CastFrom, CastInto, DFloat, DInt, Float, HFloat, HInt, Int, IntTy, MinInt};
+
+// Public modules
+mod acos;
+mod acosf;
+mod acosh;
+mod acoshf;
+mod asin;
+mod asinf;
+mod asinh;
+mod asinhf;
+mod atan;
+mod atan2;
+mod atan2f;
+mod atanf;
+mod atanh;
+mod atanhf;
+mod cbrt;
+mod cbrtf;
+mod ceil;
+mod copysign;
+mod cos;
+mod cosf;
+mod cosh;
+mod coshf;
+mod erf;
+mod erff;
+mod exp;
+mod exp10;
+mod exp10f;
+mod exp2;
+mod exp2f;
+mod expf;
+mod expm1;
+mod expm1f;
+mod fabs;
+mod fdim;
+mod floor;
+mod fma;
+mod fma_wide;
+mod fmin_fmax;
+mod fminimum_fmaximum;
+mod fminimum_fmaximum_num;
+mod fmod;
+mod frexp;
+mod frexpf;
+mod hypot;
+mod hypotf;
+mod ilogb;
+mod ilogbf;
+mod j0;
+mod j0f;
+mod j1;
+mod j1f;
+mod jn;
+mod jnf;
+mod ldexp;
+mod lgamma;
+mod lgamma_r;
+mod lgammaf;
+mod lgammaf_r;
+mod log;
+mod log10;
+mod log10f;
+mod log1p;
+mod log1pf;
+mod log2;
+mod log2f;
+mod logf;
+mod modf;
+mod modff;
+mod nextafter;
+mod nextafterf;
+mod pow;
+mod powf;
+mod remainder;
+mod remainderf;
+mod remquo;
+mod remquof;
+mod rint;
+mod round;
+mod roundeven;
+mod scalbn;
+mod sin;
+mod sincos;
+mod sincosf;
+mod sinf;
+mod sinh;
+mod sinhf;
+mod sqrt;
+mod tan;
+mod tanf;
+mod tanh;
+mod tanhf;
+mod tgamma;
+mod tgammaf;
+mod trunc;
+
+// Use separated imports instead of {}-grouped imports for easier merging.
+pub use self::acos::acos;
+pub use self::acosf::acosf;
+pub use self::acosh::acosh;
+pub use self::acoshf::acoshf;
+pub use self::asin::asin;
+pub use self::asinf::asinf;
+pub use self::asinh::asinh;
+pub use self::asinhf::asinhf;
+pub use self::atan::atan;
+pub use self::atan2::atan2;
+pub use self::atan2f::atan2f;
+pub use self::atanf::atanf;
+pub use self::atanh::atanh;
+pub use self::atanhf::atanhf;
+pub use self::cbrt::cbrt;
+pub use self::cbrtf::cbrtf;
+pub use self::ceil::{ceil, ceilf};
+pub use self::copysign::{copysign, copysignf};
+pub use self::cos::cos;
+pub use self::cosf::cosf;
+pub use self::cosh::cosh;
+pub use self::coshf::coshf;
+pub use self::erf::{erf, erfc};
+pub use self::erff::{erfcf, erff};
+pub use self::exp::exp;
+pub use self::exp2::exp2;
+pub use self::exp2f::exp2f;
+pub use self::exp10::exp10;
+pub use self::exp10f::exp10f;
+pub use self::expf::expf;
+pub use self::expm1::expm1;
+pub use self::expm1f::expm1f;
+pub use self::fabs::{fabs, fabsf};
+pub use self::fdim::{fdim, fdimf};
+pub use self::floor::{floor, floorf};
+pub use self::fma::fma;
+pub use self::fma_wide::fmaf;
+pub use self::fmin_fmax::{fmax, fmaxf, fmin, fminf};
+pub use self::fminimum_fmaximum::{fmaximum, fmaximumf, fminimum, fminimumf};
+pub use self::fminimum_fmaximum_num::{fmaximum_num, fmaximum_numf, fminimum_num, fminimum_numf};
+pub use self::fmod::{fmod, fmodf};
+pub use self::frexp::frexp;
+pub use self::frexpf::frexpf;
+pub use self::hypot::hypot;
+pub use self::hypotf::hypotf;
+pub use self::ilogb::ilogb;
+pub use self::ilogbf::ilogbf;
+pub use self::j0::{j0, y0};
+pub use self::j0f::{j0f, y0f};
+pub use self::j1::{j1, y1};
+pub use self::j1f::{j1f, y1f};
+pub use self::jn::{jn, yn};
+pub use self::jnf::{jnf, ynf};
+pub use self::ldexp::{ldexp, ldexpf};
+pub use self::lgamma::lgamma;
+pub use self::lgamma_r::lgamma_r;
+pub use self::lgammaf::lgammaf;
+pub use self::lgammaf_r::lgammaf_r;
+pub use self::log::log;
+pub use self::log1p::log1p;
+pub use self::log1pf::log1pf;
+pub use self::log2::log2;
+pub use self::log2f::log2f;
+pub use self::log10::log10;
+pub use self::log10f::log10f;
+pub use self::logf::logf;
+pub use self::modf::modf;
+pub use self::modff::modff;
+pub use self::nextafter::nextafter;
+pub use self::nextafterf::nextafterf;
+pub use self::pow::pow;
+pub use self::powf::powf;
+pub use self::remainder::remainder;
+pub use self::remainderf::remainderf;
+pub use self::remquo::remquo;
+pub use self::remquof::remquof;
+pub use self::rint::{rint, rintf};
+pub use self::round::{round, roundf};
+pub use self::roundeven::{roundeven, roundevenf};
+pub use self::scalbn::{scalbn, scalbnf};
+pub use self::sin::sin;
+pub use self::sincos::sincos;
+pub use self::sincosf::sincosf;
+pub use self::sinf::sinf;
+pub use self::sinh::sinh;
+pub use self::sinhf::sinhf;
+pub use self::sqrt::{sqrt, sqrtf};
+pub use self::tan::tan;
+pub use self::tanf::tanf;
+pub use self::tanh::tanh;
+pub use self::tanhf::tanhf;
+pub use self::tgamma::tgamma;
+pub use self::tgammaf::tgammaf;
+pub use self::trunc::{trunc, truncf};
+
+cfg_if! {
+    if #[cfg(f16_enabled)] {
+        // verify-sorted-start
+        pub use self::ceil::ceilf16;
+        pub use self::copysign::copysignf16;
+        pub use self::fabs::fabsf16;
+        pub use self::fdim::fdimf16;
+        pub use self::floor::floorf16;
+        pub use self::fmin_fmax::{fmaxf16, fminf16};
+        pub use self::fminimum_fmaximum::{fmaximumf16, fminimumf16};
+        pub use self::fminimum_fmaximum_num::{fmaximum_numf16, fminimum_numf16};
+        pub use self::fmod::fmodf16;
+        pub use self::ldexp::ldexpf16;
+        pub use self::rint::rintf16;
+        pub use self::round::roundf16;
+        pub use self::roundeven::roundevenf16;
+        pub use self::scalbn::scalbnf16;
+        pub use self::sqrt::sqrtf16;
+        pub use self::trunc::truncf16;
+        // verify-sorted-end
+
+        #[allow(unused_imports)]
+        pub(crate) use self::fma_wide::fmaf16;
+    }
+}
+
+cfg_if! {
+    if #[cfg(f128_enabled)] {
+        // verify-sorted-start
+        pub use self::ceil::ceilf128;
+        pub use self::copysign::copysignf128;
+        pub use self::fabs::fabsf128;
+        pub use self::fdim::fdimf128;
+        pub use self::floor::floorf128;
+        pub use self::fma::fmaf128;
+        pub use self::fmin_fmax::{fmaxf128, fminf128};
+        pub use self::fminimum_fmaximum::{fmaximumf128, fminimumf128};
+        pub use self::fminimum_fmaximum_num::{fmaximum_numf128, fminimum_numf128};
+        pub use self::fmod::fmodf128;
+        pub use self::ldexp::ldexpf128;
+        pub use self::rint::rintf128;
+        pub use self::round::roundf128;
+        pub use self::roundeven::roundevenf128;
+        pub use self::scalbn::scalbnf128;
+        pub use self::sqrt::sqrtf128;
+        pub use self::trunc::truncf128;
+        // verify-sorted-end
+    }
+}
+
+#[inline]
+fn get_high_word(x: f64) -> u32 {
+    (x.to_bits() >> 32) as u32
+}
+
+#[inline]
+fn get_low_word(x: f64) -> u32 {
+    x.to_bits() as u32
+}
+
+#[inline]
+fn with_set_high_word(f: f64, hi: u32) -> f64 {
+    let mut tmp = f.to_bits();
+    tmp &= 0x00000000_ffffffff;
+    tmp |= (hi as u64) << 32;
+    f64::from_bits(tmp)
+}
+
+#[inline]
+fn with_set_low_word(f: f64, lo: u32) -> f64 {
+    let mut tmp = f.to_bits();
+    tmp &= 0xffffffff_00000000;
+    tmp |= lo as u64;
+    f64::from_bits(tmp)
+}
+
+#[inline]
+fn combine_words(hi: u32, lo: u32) -> f64 {
+    f64::from_bits(((hi as u64) << 32) | lo as u64)
+}
diff --git a/library/compiler-builtins/libm/src/math/modf.rs b/library/compiler-builtins/libm/src/math/modf.rs
new file mode 100644
index 00000000000..6541862cdd9
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/modf.rs
@@ -0,0 +1,35 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn modf(x: f64) -> (f64, f64) {
+    let rv2: f64;
+    let mut u = x.to_bits();
+    let mask: u64;
+    let e = (((u >> 52) & 0x7ff) as i32) - 0x3ff;
+
+    /* no fractional part */
+    if e >= 52 {
+        rv2 = x;
+        if e == 0x400 && (u << 12) != 0 {
+            /* nan */
+            return (x, rv2);
+        }
+        u &= 1 << 63;
+        return (f64::from_bits(u), rv2);
+    }
+
+    /* no integral part*/
+    if e < 0 {
+        u &= 1 << 63;
+        rv2 = f64::from_bits(u);
+        return (x, rv2);
+    }
+
+    mask = ((!0) >> 12) >> e;
+    if (u & mask) == 0 {
+        rv2 = x;
+        u &= 1 << 63;
+        return (f64::from_bits(u), rv2);
+    }
+    u &= !mask;
+    rv2 = f64::from_bits(u);
+    return (x - rv2, rv2);
+}
diff --git a/library/compiler-builtins/libm/src/math/modff.rs b/library/compiler-builtins/libm/src/math/modff.rs
new file mode 100644
index 00000000000..90c6bca7d8d
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/modff.rs
@@ -0,0 +1,34 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn modff(x: f32) -> (f32, f32) {
+    let rv2: f32;
+    let mut u: u32 = x.to_bits();
+    let mask: u32;
+    let e = (((u >> 23) & 0xff) as i32) - 0x7f;
+
+    /* no fractional part */
+    if e >= 23 {
+        rv2 = x;
+        if e == 0x80 && (u << 9) != 0 {
+            /* nan */
+            return (x, rv2);
+        }
+        u &= 0x80000000;
+        return (f32::from_bits(u), rv2);
+    }
+    /* no integral part */
+    if e < 0 {
+        u &= 0x80000000;
+        rv2 = f32::from_bits(u);
+        return (x, rv2);
+    }
+
+    mask = 0x007fffff >> e;
+    if (u & mask) == 0 {
+        rv2 = x;
+        u &= 0x80000000;
+        return (f32::from_bits(u), rv2);
+    }
+    u &= !mask;
+    rv2 = f32::from_bits(u);
+    return (x - rv2, rv2);
+}
diff --git a/library/compiler-builtins/libm/src/math/nextafter.rs b/library/compiler-builtins/libm/src/math/nextafter.rs
new file mode 100644
index 00000000000..c991ff6f233
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/nextafter.rs
@@ -0,0 +1,37 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn nextafter(x: f64, y: f64) -> f64 {
+    if x.is_nan() || y.is_nan() {
+        return x + y;
+    }
+
+    let mut ux_i = x.to_bits();
+    let uy_i = y.to_bits();
+    if ux_i == uy_i {
+        return y;
+    }
+
+    let ax = ux_i & (!1_u64 / 2);
+    let ay = uy_i & (!1_u64 / 2);
+    if ax == 0 {
+        if ay == 0 {
+            return y;
+        }
+        ux_i = (uy_i & (1_u64 << 63)) | 1;
+    } else if ax > ay || ((ux_i ^ uy_i) & (1_u64 << 63)) != 0 {
+        ux_i -= 1;
+    } else {
+        ux_i += 1;
+    }
+
+    let e = (ux_i >> 52) & 0x7ff;
+    // raise overflow if ux.f is infinite and x is finite
+    if e == 0x7ff {
+        force_eval!(x + x);
+    }
+    let ux_f = f64::from_bits(ux_i);
+    // raise underflow if ux.f is subnormal or zero
+    if e == 0 {
+        force_eval!(x * x + ux_f * ux_f);
+    }
+    ux_f
+}
diff --git a/library/compiler-builtins/libm/src/math/nextafterf.rs b/library/compiler-builtins/libm/src/math/nextafterf.rs
new file mode 100644
index 00000000000..8ba3833562f
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/nextafterf.rs
@@ -0,0 +1,37 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn nextafterf(x: f32, y: f32) -> f32 {
+    if x.is_nan() || y.is_nan() {
+        return x + y;
+    }
+
+    let mut ux_i = x.to_bits();
+    let uy_i = y.to_bits();
+    if ux_i == uy_i {
+        return y;
+    }
+
+    let ax = ux_i & 0x7fff_ffff_u32;
+    let ay = uy_i & 0x7fff_ffff_u32;
+    if ax == 0 {
+        if ay == 0 {
+            return y;
+        }
+        ux_i = (uy_i & 0x8000_0000_u32) | 1;
+    } else if ax > ay || ((ux_i ^ uy_i) & 0x8000_0000_u32) != 0 {
+        ux_i -= 1;
+    } else {
+        ux_i += 1;
+    }
+
+    let e = ux_i & 0x7f80_0000_u32;
+    // raise overflow if ux_f is infinite and x is finite
+    if e == 0x7f80_0000_u32 {
+        force_eval!(x + x);
+    }
+    let ux_f = f32::from_bits(ux_i);
+    // raise underflow if ux_f is subnormal or zero
+    if e == 0 {
+        force_eval!(x * x + ux_f * ux_f);
+    }
+    ux_f
+}
diff --git a/library/compiler-builtins/libm/src/math/pow.rs b/library/compiler-builtins/libm/src/math/pow.rs
new file mode 100644
index 00000000000..80b2a24999c
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/pow.rs
@@ -0,0 +1,607 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */
+/*
+ * ====================================================
+ * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+// pow(x,y) return x**y
+//
+//                    n
+// Method:  Let x =  2   * (1+f)
+//      1. Compute and return log2(x) in two pieces:
+//              log2(x) = w1 + w2,
+//         where w1 has 53-24 = 29 bit trailing zeros.
+//      2. Perform y*log2(x) = n+y' by simulating multi-precision
+//         arithmetic, where |y'|<=0.5.
+//      3. Return x**y = 2**n*exp(y'*log2)
+//
+// Special cases:
+//      1.  (anything) ** 0  is 1
+//      2.  1 ** (anything)  is 1
+//      3.  (anything except 1) ** NAN is NAN
+//      4.  NAN ** (anything except 0) is NAN
+//      5.  +-(|x| > 1) **  +INF is +INF
+//      6.  +-(|x| > 1) **  -INF is +0
+//      7.  +-(|x| < 1) **  +INF is +0
+//      8.  +-(|x| < 1) **  -INF is +INF
+//      9.  -1          ** +-INF is 1
+//      10. +0 ** (+anything except 0, NAN)               is +0
+//      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
+//      12. +0 ** (-anything except 0, NAN)               is +INF, raise divbyzero
+//      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF, raise divbyzero
+//      14. -0 ** (+odd integer) is -0
+//      15. -0 ** (-odd integer) is -INF, raise divbyzero
+//      16. +INF ** (+anything except 0,NAN) is +INF
+//      17. +INF ** (-anything except 0,NAN) is +0
+//      18. -INF ** (+odd integer) is -INF
+//      19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer)
+//      20. (anything) ** 1 is (anything)
+//      21. (anything) ** -1 is 1/(anything)
+//      22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
+//      23. (-anything except 0 and inf) ** (non-integer) is NAN
+//
+// Accuracy:
+//      pow(x,y) returns x**y nearly rounded. In particular
+//                      pow(integer,integer)
+//      always returns the correct integer provided it is
+//      representable.
+//
+// Constants :
+// The hexadecimal values are the intended ones for the following
+// constants. The decimal values may be used, provided that the
+// compiler will convert from decimal to binary accurately enough
+// to produce the hexadecimal values shown.
+//
+use super::{fabs, get_high_word, scalbn, sqrt, with_set_high_word, with_set_low_word};
+
+const BP: [f64; 2] = [1.0, 1.5];
+const DP_H: [f64; 2] = [0.0, 5.84962487220764160156e-01]; /* 0x3fe2b803_40000000 */
+const DP_L: [f64; 2] = [0.0, 1.35003920212974897128e-08]; /* 0x3E4CFDEB, 0x43CFD006 */
+const TWO53: f64 = 9007199254740992.0; /* 0x43400000_00000000 */
+const HUGE: f64 = 1.0e300;
+const TINY: f64 = 1.0e-300;
+
+// poly coefs for (3/2)*(log(x)-2s-2/3*s**3:
+const L1: f64 = 5.99999999999994648725e-01; /* 0x3fe33333_33333303 */
+const L2: f64 = 4.28571428578550184252e-01; /* 0x3fdb6db6_db6fabff */
+const L3: f64 = 3.33333329818377432918e-01; /* 0x3fd55555_518f264d */
+const L4: f64 = 2.72728123808534006489e-01; /* 0x3fd17460_a91d4101 */
+const L5: f64 = 2.30660745775561754067e-01; /* 0x3fcd864a_93c9db65 */
+const L6: f64 = 2.06975017800338417784e-01; /* 0x3fca7e28_4a454eef */
+const P1: f64 = 1.66666666666666019037e-01; /* 0x3fc55555_5555553e */
+const P2: f64 = -2.77777777770155933842e-03; /* 0xbf66c16c_16bebd93 */
+const P3: f64 = 6.61375632143793436117e-05; /* 0x3f11566a_af25de2c */
+const P4: f64 = -1.65339022054652515390e-06; /* 0xbebbbd41_c5d26bf1 */
+const P5: f64 = 4.13813679705723846039e-08; /* 0x3e663769_72bea4d0 */
+const LG2: f64 = 6.93147180559945286227e-01; /* 0x3fe62e42_fefa39ef */
+const LG2_H: f64 = 6.93147182464599609375e-01; /* 0x3fe62e43_00000000 */
+const LG2_L: f64 = -1.90465429995776804525e-09; /* 0xbe205c61_0ca86c39 */
+const OVT: f64 = 8.0085662595372944372e-017; /* -(1024-log2(ovfl+.5ulp)) */
+const CP: f64 = 9.61796693925975554329e-01; /* 0x3feec709_dc3a03fd =2/(3ln2) */
+const CP_H: f64 = 9.61796700954437255859e-01; /* 0x3feec709_e0000000 =(float)cp */
+const CP_L: f64 = -7.02846165095275826516e-09; /* 0xbe3e2fe0_145b01f5 =tail of cp_h*/
+const IVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547_652b82fe =1/ln2 */
+const IVLN2_H: f64 = 1.44269502162933349609e+00; /* 0x3ff71547_60000000 =24b 1/ln2*/
+const IVLN2_L: f64 = 1.92596299112661746887e-08; /* 0x3e54ae0b_f85ddf44 =1/ln2 tail*/
+
+/// Returns `x` to the power of `y` (f64).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn pow(x: f64, y: f64) -> f64 {
+    let t1: f64;
+    let t2: f64;
+
+    let (hx, lx): (i32, u32) = ((x.to_bits() >> 32) as i32, x.to_bits() as u32);
+    let (hy, ly): (i32, u32) = ((y.to_bits() >> 32) as i32, y.to_bits() as u32);
+
+    let mut ix: i32 = hx & 0x7fffffff_i32;
+    let iy: i32 = hy & 0x7fffffff_i32;
+
+    /* x**0 = 1, even if x is NaN */
+    if ((iy as u32) | ly) == 0 {
+        return 1.0;
+    }
+
+    /* 1**y = 1, even if y is NaN */
+    if hx == 0x3ff00000 && lx == 0 {
+        return 1.0;
+    }
+
+    /* NaN if either arg is NaN */
+    if ix > 0x7ff00000
+        || (ix == 0x7ff00000 && lx != 0)
+        || iy > 0x7ff00000
+        || (iy == 0x7ff00000 && ly != 0)
+    {
+        return x + y;
+    }
+
+    /* determine if y is an odd int when x < 0
+     * yisint = 0       ... y is not an integer
+     * yisint = 1       ... y is an odd int
+     * yisint = 2       ... y is an even int
+     */
+    let mut yisint: i32 = 0;
+    let mut k: i32;
+    let mut j: i32;
+    if hx < 0 {
+        if iy >= 0x43400000 {
+            yisint = 2; /* even integer y */
+        } else if iy >= 0x3ff00000 {
+            k = (iy >> 20) - 0x3ff; /* exponent */
+
+            if k > 20 {
+                j = (ly >> (52 - k)) as i32;
+
+                if (j << (52 - k)) == (ly as i32) {
+                    yisint = 2 - (j & 1);
+                }
+            } else if ly == 0 {
+                j = iy >> (20 - k);
+
+                if (j << (20 - k)) == iy {
+                    yisint = 2 - (j & 1);
+                }
+            }
+        }
+    }
+
+    if ly == 0 {
+        /* special value of y */
+        if iy == 0x7ff00000 {
+            /* y is +-inf */
+
+            return if ((ix - 0x3ff00000) | (lx as i32)) == 0 {
+                /* (-1)**+-inf is 1 */
+                1.0
+            } else if ix >= 0x3ff00000 {
+                /* (|x|>1)**+-inf = inf,0 */
+                if hy >= 0 { y } else { 0.0 }
+            } else {
+                /* (|x|<1)**+-inf = 0,inf */
+                if hy >= 0 { 0.0 } else { -y }
+            };
+        }
+
+        if iy == 0x3ff00000 {
+            /* y is +-1 */
+            return if hy >= 0 { x } else { 1.0 / x };
+        }
+
+        if hy == 0x40000000 {
+            /* y is 2 */
+            return x * x;
+        }
+
+        if hy == 0x3fe00000 {
+            /* y is 0.5 */
+            if hx >= 0 {
+                /* x >= +0 */
+                return sqrt(x);
+            }
+        }
+    }
+
+    let mut ax: f64 = fabs(x);
+    if lx == 0 {
+        /* special value of x */
+        if ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000 {
+            /* x is +-0,+-inf,+-1 */
+            let mut z: f64 = ax;
+
+            if hy < 0 {
+                /* z = (1/|x|) */
+                z = 1.0 / z;
+            }
+
+            if hx < 0 {
+                if ((ix - 0x3ff00000) | yisint) == 0 {
+                    z = (z - z) / (z - z); /* (-1)**non-int is NaN */
+                } else if yisint == 1 {
+                    z = -z; /* (x<0)**odd = -(|x|**odd) */
+                }
+            }
+
+            return z;
+        }
+    }
+
+    let mut s: f64 = 1.0; /* sign of result */
+    if hx < 0 {
+        if yisint == 0 {
+            /* (x<0)**(non-int) is NaN */
+            return (x - x) / (x - x);
+        }
+
+        if yisint == 1 {
+            /* (x<0)**(odd int) */
+            s = -1.0;
+        }
+    }
+
+    /* |y| is HUGE */
+    if iy > 0x41e00000 {
+        /* if |y| > 2**31 */
+        if iy > 0x43f00000 {
+            /* if |y| > 2**64, must o/uflow */
+            if ix <= 0x3fefffff {
+                return if hy < 0 { HUGE * HUGE } else { TINY * TINY };
+            }
+
+            if ix >= 0x3ff00000 {
+                return if hy > 0 { HUGE * HUGE } else { TINY * TINY };
+            }
+        }
+
+        /* over/underflow if x is not close to one */
+        if ix < 0x3fefffff {
+            return if hy < 0 { s * HUGE * HUGE } else { s * TINY * TINY };
+        }
+        if ix > 0x3ff00000 {
+            return if hy > 0 { s * HUGE * HUGE } else { s * TINY * TINY };
+        }
+
+        /* now |1-x| is TINY <= 2**-20, suffice to compute
+        log(x) by x-x^2/2+x^3/3-x^4/4 */
+        let t: f64 = ax - 1.0; /* t has 20 trailing zeros */
+        let w: f64 = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
+        let u: f64 = IVLN2_H * t; /* ivln2_h has 21 sig. bits */
+        let v: f64 = t * IVLN2_L - w * IVLN2;
+        t1 = with_set_low_word(u + v, 0);
+        t2 = v - (t1 - u);
+    } else {
+        // double ss,s2,s_h,s_l,t_h,t_l;
+        let mut n: i32 = 0;
+
+        if ix < 0x00100000 {
+            /* take care subnormal number */
+            ax *= TWO53;
+            n -= 53;
+            ix = get_high_word(ax) as i32;
+        }
+
+        n += (ix >> 20) - 0x3ff;
+        j = ix & 0x000fffff;
+
+        /* determine interval */
+        let k: i32;
+        ix = j | 0x3ff00000; /* normalize ix */
+        if j <= 0x3988E {
+            /* |x|<sqrt(3/2) */
+            k = 0;
+        } else if j < 0xBB67A {
+            /* |x|<sqrt(3)   */
+            k = 1;
+        } else {
+            k = 0;
+            n += 1;
+            ix -= 0x00100000;
+        }
+        ax = with_set_high_word(ax, ix as u32);
+
+        /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
+        let u: f64 = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */
+        let v: f64 = 1.0 / (ax + i!(BP, k as usize));
+        let ss: f64 = u * v;
+        let s_h = with_set_low_word(ss, 0);
+
+        /* t_h=ax+bp[k] High */
+        let t_h: f64 = with_set_high_word(
+            0.0,
+            ((ix as u32 >> 1) | 0x20000000) + 0x00080000 + ((k as u32) << 18),
+        );
+        let t_l: f64 = ax - (t_h - i!(BP, k as usize));
+        let s_l: f64 = v * ((u - s_h * t_h) - s_h * t_l);
+
+        /* compute log(ax) */
+        let s2: f64 = ss * ss;
+        let mut r: f64 = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
+        r += s_l * (s_h + ss);
+        let s2: f64 = s_h * s_h;
+        let t_h: f64 = with_set_low_word(3.0 + s2 + r, 0);
+        let t_l: f64 = r - ((t_h - 3.0) - s2);
+
+        /* u+v = ss*(1+...) */
+        let u: f64 = s_h * t_h;
+        let v: f64 = s_l * t_h + t_l * ss;
+
+        /* 2/(3log2)*(ss+...) */
+        let p_h: f64 = with_set_low_word(u + v, 0);
+        let p_l = v - (p_h - u);
+        let z_h: f64 = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */
+        let z_l: f64 = CP_L * p_h + p_l * CP + i!(DP_L, k as usize);
+
+        /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
+        let t: f64 = n as f64;
+        t1 = with_set_low_word(((z_h + z_l) + i!(DP_H, k as usize)) + t, 0);
+        t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h);
+    }
+
+    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
+    let y1: f64 = with_set_low_word(y, 0);
+    let p_l: f64 = (y - y1) * t1 + y * t2;
+    let mut p_h: f64 = y1 * t1;
+    let z: f64 = p_l + p_h;
+    let mut j: i32 = (z.to_bits() >> 32) as i32;
+    let i: i32 = z.to_bits() as i32;
+    // let (j, i): (i32, i32) = ((z.to_bits() >> 32) as i32, z.to_bits() as i32);
+
+    if j >= 0x40900000 {
+        /* z >= 1024 */
+        if (j - 0x40900000) | i != 0 {
+            /* if z > 1024 */
+            return s * HUGE * HUGE; /* overflow */
+        }
+
+        if p_l + OVT > z - p_h {
+            return s * HUGE * HUGE; /* overflow */
+        }
+    } else if (j & 0x7fffffff) >= 0x4090cc00 {
+        /* z <= -1075 */
+        // FIXME: instead of abs(j) use unsigned j
+
+        if (((j as u32) - 0xc090cc00) | (i as u32)) != 0 {
+            /* z < -1075 */
+            return s * TINY * TINY; /* underflow */
+        }
+
+        if p_l <= z - p_h {
+            return s * TINY * TINY; /* underflow */
+        }
+    }
+
+    /* compute 2**(p_h+p_l) */
+    let i: i32 = j & 0x7fffffff_i32;
+    k = (i >> 20) - 0x3ff;
+    let mut n: i32 = 0;
+
+    if i > 0x3fe00000 {
+        /* if |z| > 0.5, set n = [z+0.5] */
+        n = j + (0x00100000 >> (k + 1));
+        k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */
+        let t: f64 = with_set_high_word(0.0, (n & !(0x000fffff >> k)) as u32);
+        n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
+        if j < 0 {
+            n = -n;
+        }
+        p_h -= t;
+    }
+
+    let t: f64 = with_set_low_word(p_l + p_h, 0);
+    let u: f64 = t * LG2_H;
+    let v: f64 = (p_l - (t - p_h)) * LG2 + t * LG2_L;
+    let mut z: f64 = u + v;
+    let w: f64 = v - (z - u);
+    let t: f64 = z * z;
+    let t1: f64 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
+    let r: f64 = (z * t1) / (t1 - 2.0) - (w + z * w);
+    z = 1.0 - (r - z);
+    j = get_high_word(z) as i32;
+    j += n << 20;
+
+    if (j >> 20) <= 0 {
+        /* subnormal output */
+        z = scalbn(z, n);
+    } else {
+        z = with_set_high_word(z, j as u32);
+    }
+
+    s * z
+}
+
+#[cfg(test)]
+mod tests {
+    extern crate core;
+
+    use self::core::f64::consts::{E, PI};
+    use super::pow;
+
+    const POS_ZERO: &[f64] = &[0.0];
+    const NEG_ZERO: &[f64] = &[-0.0];
+    const POS_ONE: &[f64] = &[1.0];
+    const NEG_ONE: &[f64] = &[-1.0];
+    const POS_FLOATS: &[f64] = &[99.0 / 70.0, E, PI];
+    const NEG_FLOATS: &[f64] = &[-99.0 / 70.0, -E, -PI];
+    const POS_SMALL_FLOATS: &[f64] = &[(1.0 / 2.0), f64::MIN_POSITIVE, f64::EPSILON];
+    const NEG_SMALL_FLOATS: &[f64] = &[-(1.0 / 2.0), -f64::MIN_POSITIVE, -f64::EPSILON];
+    const POS_EVENS: &[f64] = &[2.0, 6.0, 8.0, 10.0, 22.0, 100.0, f64::MAX];
+    const NEG_EVENS: &[f64] = &[f64::MIN, -100.0, -22.0, -10.0, -8.0, -6.0, -2.0];
+    const POS_ODDS: &[f64] = &[3.0, 7.0];
+    const NEG_ODDS: &[f64] = &[-7.0, -3.0];
+    const NANS: &[f64] = &[f64::NAN];
+    const POS_INF: &[f64] = &[f64::INFINITY];
+    const NEG_INF: &[f64] = &[f64::NEG_INFINITY];
+
+    const ALL: &[&[f64]] = &[
+        POS_ZERO,
+        NEG_ZERO,
+        NANS,
+        NEG_SMALL_FLOATS,
+        POS_SMALL_FLOATS,
+        NEG_FLOATS,
+        POS_FLOATS,
+        NEG_EVENS,
+        POS_EVENS,
+        NEG_ODDS,
+        POS_ODDS,
+        NEG_INF,
+        POS_INF,
+        NEG_ONE,
+        POS_ONE,
+    ];
+    const POS: &[&[f64]] = &[POS_ZERO, POS_ODDS, POS_ONE, POS_FLOATS, POS_EVENS, POS_INF];
+    const NEG: &[&[f64]] = &[NEG_ZERO, NEG_ODDS, NEG_ONE, NEG_FLOATS, NEG_EVENS, NEG_INF];
+
+    fn pow_test(base: f64, exponent: f64, expected: f64) {
+        let res = pow(base, exponent);
+        assert!(
+            if expected.is_nan() { res.is_nan() } else { pow(base, exponent) == expected },
+            "{} ** {} was {} instead of {}",
+            base,
+            exponent,
+            res,
+            expected
+        );
+    }
+
+    fn test_sets_as_base(sets: &[&[f64]], exponent: f64, expected: f64) {
+        sets.iter().for_each(|s| s.iter().for_each(|val| pow_test(*val, exponent, expected)));
+    }
+
+    fn test_sets_as_exponent(base: f64, sets: &[&[f64]], expected: f64) {
+        sets.iter().for_each(|s| s.iter().for_each(|val| pow_test(base, *val, expected)));
+    }
+
+    fn test_sets(sets: &[&[f64]], computed: &dyn Fn(f64) -> f64, expected: &dyn Fn(f64) -> f64) {
+        sets.iter().for_each(|s| {
+            s.iter().for_each(|val| {
+                let exp = expected(*val);
+                let res = computed(*val);
+
+                #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
+                let exp = force_eval!(exp);
+                #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
+                let res = force_eval!(res);
+                assert!(
+                    if exp.is_nan() { res.is_nan() } else { exp == res },
+                    "test for {} was {} instead of {}",
+                    val,
+                    res,
+                    exp
+                );
+            })
+        });
+    }
+
+    #[test]
+    fn zero_as_exponent() {
+        test_sets_as_base(ALL, 0.0, 1.0);
+        test_sets_as_base(ALL, -0.0, 1.0);
+    }
+
+    #[test]
+    fn one_as_base() {
+        test_sets_as_exponent(1.0, ALL, 1.0);
+    }
+
+    #[test]
+    fn nan_inputs() {
+        // NAN as the base:
+        // (f64::NAN ^ anything *but 0* should be f64::NAN)
+        test_sets_as_exponent(f64::NAN, &ALL[2..], f64::NAN);
+
+        // f64::NAN as the exponent:
+        // (anything *but 1* ^ f64::NAN should be f64::NAN)
+        test_sets_as_base(&ALL[..(ALL.len() - 2)], f64::NAN, f64::NAN);
+    }
+
+    #[test]
+    fn infinity_as_base() {
+        // Positive Infinity as the base:
+        // (+Infinity ^ positive anything but 0 and f64::NAN should be +Infinity)
+        test_sets_as_exponent(f64::INFINITY, &POS[1..], f64::INFINITY);
+
+        // (+Infinity ^ negative anything except 0 and f64::NAN should be 0.0)
+        test_sets_as_exponent(f64::INFINITY, &NEG[1..], 0.0);
+
+        // Negative Infinity as the base:
+        // (-Infinity ^ positive odd ints should be -Infinity)
+        test_sets_as_exponent(f64::NEG_INFINITY, &[POS_ODDS], f64::NEG_INFINITY);
+
+        // (-Infinity ^ anything but odd ints should be == -0 ^ (-anything))
+        // We can lump in pos/neg odd ints here because they don't seem to
+        // cause panics (div by zero) in release mode (I think).
+        test_sets(ALL, &|v: f64| pow(f64::NEG_INFINITY, v), &|v: f64| pow(-0.0, -v));
+    }
+
+    #[test]
+    fn infinity_as_exponent() {
+        // Positive/Negative base greater than 1:
+        // (pos/neg > 1 ^ Infinity should be Infinity - note this excludes f64::NAN as the base)
+        test_sets_as_base(&ALL[5..(ALL.len() - 2)], f64::INFINITY, f64::INFINITY);
+
+        // (pos/neg > 1 ^ -Infinity should be 0.0)
+        test_sets_as_base(&ALL[5..ALL.len() - 2], f64::NEG_INFINITY, 0.0);
+
+        // Positive/Negative base less than 1:
+        let base_below_one = &[POS_ZERO, NEG_ZERO, NEG_SMALL_FLOATS, POS_SMALL_FLOATS];
+
+        // (pos/neg < 1 ^ Infinity should be 0.0 - this also excludes f64::NAN as the base)
+        test_sets_as_base(base_below_one, f64::INFINITY, 0.0);
+
+        // (pos/neg < 1 ^ -Infinity should be Infinity)
+        test_sets_as_base(base_below_one, f64::NEG_INFINITY, f64::INFINITY);
+
+        // Positive/Negative 1 as the base:
+        // (pos/neg 1 ^ Infinity should be 1)
+        test_sets_as_base(&[NEG_ONE, POS_ONE], f64::INFINITY, 1.0);
+
+        // (pos/neg 1 ^ -Infinity should be 1)
+        test_sets_as_base(&[NEG_ONE, POS_ONE], f64::NEG_INFINITY, 1.0);
+    }
+
+    #[test]
+    fn zero_as_base() {
+        // Positive Zero as the base:
+        // (+0 ^ anything positive but 0 and f64::NAN should be +0)
+        test_sets_as_exponent(0.0, &POS[1..], 0.0);
+
+        // (+0 ^ anything negative but 0 and f64::NAN should be Infinity)
+        // (this should panic because we're dividing by zero)
+        test_sets_as_exponent(0.0, &NEG[1..], f64::INFINITY);
+
+        // Negative Zero as the base:
+        // (-0 ^ anything positive but 0, f64::NAN, and odd ints should be +0)
+        test_sets_as_exponent(-0.0, &POS[3..], 0.0);
+
+        // (-0 ^ anything negative but 0, f64::NAN, and odd ints should be Infinity)
+        // (should panic because of divide by zero)
+        test_sets_as_exponent(-0.0, &NEG[3..], f64::INFINITY);
+
+        // (-0 ^ positive odd ints should be -0)
+        test_sets_as_exponent(-0.0, &[POS_ODDS], -0.0);
+
+        // (-0 ^ negative odd ints should be -Infinity)
+        // (should panic because of divide by zero)
+        test_sets_as_exponent(-0.0, &[NEG_ODDS], f64::NEG_INFINITY);
+    }
+
+    #[test]
+    fn special_cases() {
+        // One as the exponent:
+        // (anything ^ 1 should be anything - i.e. the base)
+        test_sets(ALL, &|v: f64| pow(v, 1.0), &|v: f64| v);
+
+        // Negative One as the exponent:
+        // (anything ^ -1 should be 1/anything)
+        test_sets(ALL, &|v: f64| pow(v, -1.0), &|v: f64| 1.0 / v);
+
+        // Factoring -1 out:
+        // (negative anything ^ integer should be (-1 ^ integer) * (positive anything ^ integer))
+        [POS_ZERO, NEG_ZERO, POS_ONE, NEG_ONE, POS_EVENS, NEG_EVENS].iter().for_each(|int_set| {
+            int_set.iter().for_each(|int| {
+                test_sets(ALL, &|v: f64| pow(-v, *int), &|v: f64| pow(-1.0, *int) * pow(v, *int));
+            })
+        });
+
+        // Negative base (imaginary results):
+        // (-anything except 0 and Infinity ^ non-integer should be NAN)
+        NEG[1..(NEG.len() - 1)].iter().for_each(|set| {
+            set.iter().for_each(|val| {
+                test_sets(&ALL[3..7], &|v: f64| pow(*val, v), &|_| f64::NAN);
+            })
+        });
+    }
+
+    #[test]
+    fn normal_cases() {
+        assert_eq!(pow(2.0, 20.0), (1 << 20) as f64);
+        assert_eq!(pow(-1.0, 9.0), -1.0);
+        assert!(pow(-1.0, 2.2).is_nan());
+        assert!(pow(-1.0, -1.14).is_nan());
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/powf.rs b/library/compiler-builtins/libm/src/math/powf.rs
new file mode 100644
index 00000000000..839c6c23d43
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/powf.rs
@@ -0,0 +1,335 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_powf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use core::cmp::Ordering;
+
+use super::{fabsf, scalbnf, sqrtf};
+
+const BP: [f32; 2] = [1.0, 1.5];
+const DP_H: [f32; 2] = [0.0, 5.84960938e-01]; /* 0x3f15c000 */
+const DP_L: [f32; 2] = [0.0, 1.56322085e-06]; /* 0x35d1cfdc */
+const TWO24: f32 = 16777216.0; /* 0x4b800000 */
+const HUGE: f32 = 1.0e30;
+const TINY: f32 = 1.0e-30;
+const L1: f32 = 6.0000002384e-01; /* 0x3f19999a */
+const L2: f32 = 4.2857143283e-01; /* 0x3edb6db7 */
+const L3: f32 = 3.3333334327e-01; /* 0x3eaaaaab */
+const L4: f32 = 2.7272811532e-01; /* 0x3e8ba305 */
+const L5: f32 = 2.3066075146e-01; /* 0x3e6c3255 */
+const L6: f32 = 2.0697501302e-01; /* 0x3e53f142 */
+const P1: f32 = 1.6666667163e-01; /* 0x3e2aaaab */
+const P2: f32 = -2.7777778450e-03; /* 0xbb360b61 */
+const P3: f32 = 6.6137559770e-05; /* 0x388ab355 */
+const P4: f32 = -1.6533901999e-06; /* 0xb5ddea0e */
+const P5: f32 = 4.1381369442e-08; /* 0x3331bb4c */
+const LG2: f32 = 6.9314718246e-01; /* 0x3f317218 */
+const LG2_H: f32 = 6.93145752e-01; /* 0x3f317200 */
+const LG2_L: f32 = 1.42860654e-06; /* 0x35bfbe8c */
+const OVT: f32 = 4.2995665694e-08; /* -(128-log2(ovfl+.5ulp)) */
+const CP: f32 = 9.6179670095e-01; /* 0x3f76384f =2/(3ln2) */
+const CP_H: f32 = 9.6191406250e-01; /* 0x3f764000 =12b cp */
+const CP_L: f32 = -1.1736857402e-04; /* 0xb8f623c6 =tail of cp_h */
+const IVLN2: f32 = 1.4426950216e+00;
+const IVLN2_H: f32 = 1.4426879883e+00;
+const IVLN2_L: f32 = 7.0526075433e-06;
+
+/// Returns `x` to the power of `y` (f32).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn powf(x: f32, y: f32) -> f32 {
+    let mut z: f32;
+    let mut ax: f32;
+    let z_h: f32;
+    let z_l: f32;
+    let mut p_h: f32;
+    let mut p_l: f32;
+    let y1: f32;
+    let mut t1: f32;
+    let t2: f32;
+    let mut r: f32;
+    let s: f32;
+    let mut sn: f32;
+    let mut t: f32;
+    let mut u: f32;
+    let mut v: f32;
+    let mut w: f32;
+    let i: i32;
+    let mut j: i32;
+    let mut k: i32;
+    let mut yisint: i32;
+    let mut n: i32;
+    let hx: i32;
+    let hy: i32;
+    let mut ix: i32;
+    let iy: i32;
+    let mut is: i32;
+
+    hx = x.to_bits() as i32;
+    hy = y.to_bits() as i32;
+
+    ix = hx & 0x7fffffff;
+    iy = hy & 0x7fffffff;
+
+    /* x**0 = 1, even if x is NaN */
+    if iy == 0 {
+        return 1.0;
+    }
+
+    /* 1**y = 1, even if y is NaN */
+    if hx == 0x3f800000 {
+        return 1.0;
+    }
+
+    /* NaN if either arg is NaN */
+    if ix > 0x7f800000 || iy > 0x7f800000 {
+        return x + y;
+    }
+
+    /* determine if y is an odd int when x < 0
+     * yisint = 0       ... y is not an integer
+     * yisint = 1       ... y is an odd int
+     * yisint = 2       ... y is an even int
+     */
+    yisint = 0;
+    if hx < 0 {
+        if iy >= 0x4b800000 {
+            yisint = 2; /* even integer y */
+        } else if iy >= 0x3f800000 {
+            k = (iy >> 23) - 0x7f; /* exponent */
+            j = iy >> (23 - k);
+            if (j << (23 - k)) == iy {
+                yisint = 2 - (j & 1);
+            }
+        }
+    }
+
+    /* special value of y */
+    if iy == 0x7f800000 {
+        /* y is +-inf */
+        match ix.cmp(&0x3f800000) {
+            /* (-1)**+-inf is 1 */
+            Ordering::Equal => return 1.0,
+            /* (|x|>1)**+-inf = inf,0 */
+            Ordering::Greater => return if hy >= 0 { y } else { 0.0 },
+            /* (|x|<1)**+-inf = 0,inf */
+            Ordering::Less => return if hy >= 0 { 0.0 } else { -y },
+        }
+    }
+    if iy == 0x3f800000 {
+        /* y is +-1 */
+        return if hy >= 0 { x } else { 1.0 / x };
+    }
+
+    if hy == 0x40000000 {
+        /* y is 2 */
+        return x * x;
+    }
+
+    if hy == 0x3f000000
+       /* y is  0.5 */
+       && hx >= 0
+    {
+        /* x >= +0 */
+        return sqrtf(x);
+    }
+
+    ax = fabsf(x);
+    /* special value of x */
+    if ix == 0x7f800000 || ix == 0 || ix == 0x3f800000 {
+        /* x is +-0,+-inf,+-1 */
+        z = ax;
+        if hy < 0 {
+            /* z = (1/|x|) */
+            z = 1.0 / z;
+        }
+
+        if hx < 0 {
+            if ((ix - 0x3f800000) | yisint) == 0 {
+                z = (z - z) / (z - z); /* (-1)**non-int is NaN */
+            } else if yisint == 1 {
+                z = -z; /* (x<0)**odd = -(|x|**odd) */
+            }
+        }
+        return z;
+    }
+
+    sn = 1.0; /* sign of result */
+    if hx < 0 {
+        if yisint == 0 {
+            /* (x<0)**(non-int) is NaN */
+            return (x - x) / (x - x);
+        }
+
+        if yisint == 1 {
+            /* (x<0)**(odd int) */
+            sn = -1.0;
+        }
+    }
+
+    /* |y| is HUGE */
+    if iy > 0x4d000000 {
+        /* if |y| > 2**27 */
+        /* over/underflow if x is not close to one */
+        if ix < 0x3f7ffff8 {
+            return if hy < 0 { sn * HUGE * HUGE } else { sn * TINY * TINY };
+        }
+
+        if ix > 0x3f800007 {
+            return if hy > 0 { sn * HUGE * HUGE } else { sn * TINY * TINY };
+        }
+
+        /* now |1-x| is TINY <= 2**-20, suffice to compute
+        log(x) by x-x^2/2+x^3/3-x^4/4 */
+        t = ax - 1.; /* t has 20 trailing zeros */
+        w = (t * t) * (0.5 - t * (0.333333333333 - t * 0.25));
+        u = IVLN2_H * t; /* IVLN2_H has 16 sig. bits */
+        v = t * IVLN2_L - w * IVLN2;
+        t1 = u + v;
+        is = t1.to_bits() as i32;
+        t1 = f32::from_bits(is as u32 & 0xfffff000);
+        t2 = v - (t1 - u);
+    } else {
+        let mut s2: f32;
+        let mut s_h: f32;
+        let s_l: f32;
+        let mut t_h: f32;
+        let mut t_l: f32;
+
+        n = 0;
+        /* take care subnormal number */
+        if ix < 0x00800000 {
+            ax *= TWO24;
+            n -= 24;
+            ix = ax.to_bits() as i32;
+        }
+        n += ((ix) >> 23) - 0x7f;
+        j = ix & 0x007fffff;
+        /* determine interval */
+        ix = j | 0x3f800000; /* normalize ix */
+        if j <= 0x1cc471 {
+            /* |x|<sqrt(3/2) */
+            k = 0;
+        } else if j < 0x5db3d7 {
+            /* |x|<sqrt(3)   */
+            k = 1;
+        } else {
+            k = 0;
+            n += 1;
+            ix -= 0x00800000;
+        }
+        ax = f32::from_bits(ix as u32);
+
+        /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
+        u = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */
+        v = 1.0 / (ax + i!(BP, k as usize));
+        s = u * v;
+        s_h = s;
+        is = s_h.to_bits() as i32;
+        s_h = f32::from_bits(is as u32 & 0xfffff000);
+        /* t_h=ax+bp[k] High */
+        is = (((ix as u32 >> 1) & 0xfffff000) | 0x20000000) as i32;
+        t_h = f32::from_bits(is as u32 + 0x00400000 + ((k as u32) << 21));
+        t_l = ax - (t_h - i!(BP, k as usize));
+        s_l = v * ((u - s_h * t_h) - s_h * t_l);
+        /* compute log(ax) */
+        s2 = s * s;
+        r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
+        r += s_l * (s_h + s);
+        s2 = s_h * s_h;
+        t_h = 3.0 + s2 + r;
+        is = t_h.to_bits() as i32;
+        t_h = f32::from_bits(is as u32 & 0xfffff000);
+        t_l = r - ((t_h - 3.0) - s2);
+        /* u+v = s*(1+...) */
+        u = s_h * t_h;
+        v = s_l * t_h + t_l * s;
+        /* 2/(3log2)*(s+...) */
+        p_h = u + v;
+        is = p_h.to_bits() as i32;
+        p_h = f32::from_bits(is as u32 & 0xfffff000);
+        p_l = v - (p_h - u);
+        z_h = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */
+        z_l = CP_L * p_h + p_l * CP + i!(DP_L, k as usize);
+        /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
+        t = n as f32;
+        t1 = ((z_h + z_l) + i!(DP_H, k as usize)) + t;
+        is = t1.to_bits() as i32;
+        t1 = f32::from_bits(is as u32 & 0xfffff000);
+        t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h);
+    };
+
+    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
+    is = y.to_bits() as i32;
+    y1 = f32::from_bits(is as u32 & 0xfffff000);
+    p_l = (y - y1) * t1 + y * t2;
+    p_h = y1 * t1;
+    z = p_l + p_h;
+    j = z.to_bits() as i32;
+    if j > 0x43000000 {
+        /* if z > 128 */
+        return sn * HUGE * HUGE; /* overflow */
+    } else if j == 0x43000000 {
+        /* if z == 128 */
+        if p_l + OVT > z - p_h {
+            return sn * HUGE * HUGE; /* overflow */
+        }
+    } else if (j & 0x7fffffff) > 0x43160000 {
+        /* z < -150 */
+        // FIXME: check should be  (uint32_t)j > 0xc3160000
+        return sn * TINY * TINY; /* underflow */
+    } else if j as u32 == 0xc3160000
+              /* z == -150 */
+              && p_l <= z - p_h
+    {
+        return sn * TINY * TINY; /* underflow */
+    }
+
+    /*
+     * compute 2**(p_h+p_l)
+     */
+    i = j & 0x7fffffff;
+    k = (i >> 23) - 0x7f;
+    n = 0;
+    if i > 0x3f000000 {
+        /* if |z| > 0.5, set n = [z+0.5] */
+        n = j + (0x00800000 >> (k + 1));
+        k = ((n & 0x7fffffff) >> 23) - 0x7f; /* new k for n */
+        t = f32::from_bits(n as u32 & !(0x007fffff >> k));
+        n = ((n & 0x007fffff) | 0x00800000) >> (23 - k);
+        if j < 0 {
+            n = -n;
+        }
+        p_h -= t;
+    }
+    t = p_l + p_h;
+    is = t.to_bits() as i32;
+    t = f32::from_bits(is as u32 & 0xffff8000);
+    u = t * LG2_H;
+    v = (p_l - (t - p_h)) * LG2 + t * LG2_L;
+    z = u + v;
+    w = v - (z - u);
+    t = z * z;
+    t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
+    r = (z * t1) / (t1 - 2.0) - (w + z * w);
+    z = 1.0 - (r - z);
+    j = z.to_bits() as i32;
+    j += n << 23;
+    if (j >> 23) <= 0 {
+        /* subnormal output */
+        z = scalbnf(z, n);
+    } else {
+        z = f32::from_bits(j as u32);
+    }
+    sn * z
+}
diff --git a/library/compiler-builtins/libm/src/math/rem_pio2.rs b/library/compiler-builtins/libm/src/math/rem_pio2.rs
new file mode 100644
index 00000000000..917e90819a5
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/rem_pio2.rs
@@ -0,0 +1,223 @@
+// origin: FreeBSD /usr/src/lib/msun/src/e_rem_pio2.c
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+// Optimized by Bruce D. Evans. */
+use super::rem_pio2_large;
+
+// #if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
+// #define EPS DBL_EPSILON
+const EPS: f64 = 2.2204460492503131e-16;
+// #elif FLT_EVAL_METHOD==2
+// #define EPS LDBL_EPSILON
+// #endif
+
+// TODO: Support FLT_EVAL_METHOD?
+
+const TO_INT: f64 = 1.5 / EPS;
+/// 53 bits of 2/pi
+const INV_PIO2: f64 = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
+/// first 33 bits of pi/2
+const PIO2_1: f64 = 1.57079632673412561417e+00; /* 0x3FF921FB, 0x54400000 */
+/// pi/2 - PIO2_1
+const PIO2_1T: f64 = 6.07710050650619224932e-11; /* 0x3DD0B461, 0x1A626331 */
+/// second 33 bits of pi/2
+const PIO2_2: f64 = 6.07710050630396597660e-11; /* 0x3DD0B461, 0x1A600000 */
+/// pi/2 - (PIO2_1+PIO2_2)
+const PIO2_2T: f64 = 2.02226624879595063154e-21; /* 0x3BA3198A, 0x2E037073 */
+/// third 33 bits of pi/2
+const PIO2_3: f64 = 2.02226624871116645580e-21; /* 0x3BA3198A, 0x2E000000 */
+/// pi/2 - (PIO2_1+PIO2_2+PIO2_3)
+const PIO2_3T: f64 = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
+
+// return the remainder of x rem pi/2 in y[0]+y[1]
+// use rem_pio2_large() for large x
+//
+// caller must handle the case when reduction is not needed: |x| ~<= pi/4 */
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn rem_pio2(x: f64) -> (i32, f64, f64) {
+    let x1p24 = f64::from_bits(0x4170000000000000);
+
+    let sign = (f64::to_bits(x) >> 63) as i32;
+    let ix = (f64::to_bits(x) >> 32) as u32 & 0x7fffffff;
+
+    fn medium(x: f64, ix: u32) -> (i32, f64, f64) {
+        /* rint(x/(pi/2)), Assume round-to-nearest. */
+        let tmp = x * INV_PIO2 + TO_INT;
+        // force rounding of tmp to it's storage format on x87 to avoid
+        // excess precision issues.
+        #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
+        let tmp = force_eval!(tmp);
+        let f_n = tmp - TO_INT;
+        let n = f_n as i32;
+        let mut r = x - f_n * PIO2_1;
+        let mut w = f_n * PIO2_1T; /* 1st round, good to 85 bits */
+        let mut y0 = r - w;
+        let ui = f64::to_bits(y0);
+        let ey = (ui >> 52) as i32 & 0x7ff;
+        let ex = (ix >> 20) as i32;
+        if ex - ey > 16 {
+            /* 2nd round, good to 118 bits */
+            let t = r;
+            w = f_n * PIO2_2;
+            r = t - w;
+            w = f_n * PIO2_2T - ((t - r) - w);
+            y0 = r - w;
+            let ey = (f64::to_bits(y0) >> 52) as i32 & 0x7ff;
+            if ex - ey > 49 {
+                /* 3rd round, good to 151 bits, covers all cases */
+                let t = r;
+                w = f_n * PIO2_3;
+                r = t - w;
+                w = f_n * PIO2_3T - ((t - r) - w);
+                y0 = r - w;
+            }
+        }
+        let y1 = (r - y0) - w;
+        (n, y0, y1)
+    }
+
+    if ix <= 0x400f6a7a {
+        /* |x| ~<= 5pi/4 */
+        if (ix & 0xfffff) == 0x921fb {
+            /* |x| ~= pi/2 or 2pi/2 */
+            return medium(x, ix); /* cancellation -- use medium case */
+        }
+        if ix <= 0x4002d97c {
+            /* |x| ~<= 3pi/4 */
+            if sign == 0 {
+                let z = x - PIO2_1; /* one round good to 85 bits */
+                let y0 = z - PIO2_1T;
+                let y1 = (z - y0) - PIO2_1T;
+                return (1, y0, y1);
+            } else {
+                let z = x + PIO2_1;
+                let y0 = z + PIO2_1T;
+                let y1 = (z - y0) + PIO2_1T;
+                return (-1, y0, y1);
+            }
+        } else if sign == 0 {
+            let z = x - 2.0 * PIO2_1;
+            let y0 = z - 2.0 * PIO2_1T;
+            let y1 = (z - y0) - 2.0 * PIO2_1T;
+            return (2, y0, y1);
+        } else {
+            let z = x + 2.0 * PIO2_1;
+            let y0 = z + 2.0 * PIO2_1T;
+            let y1 = (z - y0) + 2.0 * PIO2_1T;
+            return (-2, y0, y1);
+        }
+    }
+    if ix <= 0x401c463b {
+        /* |x| ~<= 9pi/4 */
+        if ix <= 0x4015fdbc {
+            /* |x| ~<= 7pi/4 */
+            if ix == 0x4012d97c {
+                /* |x| ~= 3pi/2 */
+                return medium(x, ix);
+            }
+            if sign == 0 {
+                let z = x - 3.0 * PIO2_1;
+                let y0 = z - 3.0 * PIO2_1T;
+                let y1 = (z - y0) - 3.0 * PIO2_1T;
+                return (3, y0, y1);
+            } else {
+                let z = x + 3.0 * PIO2_1;
+                let y0 = z + 3.0 * PIO2_1T;
+                let y1 = (z - y0) + 3.0 * PIO2_1T;
+                return (-3, y0, y1);
+            }
+        } else {
+            if ix == 0x401921fb {
+                /* |x| ~= 4pi/2 */
+                return medium(x, ix);
+            }
+            if sign == 0 {
+                let z = x - 4.0 * PIO2_1;
+                let y0 = z - 4.0 * PIO2_1T;
+                let y1 = (z - y0) - 4.0 * PIO2_1T;
+                return (4, y0, y1);
+            } else {
+                let z = x + 4.0 * PIO2_1;
+                let y0 = z + 4.0 * PIO2_1T;
+                let y1 = (z - y0) + 4.0 * PIO2_1T;
+                return (-4, y0, y1);
+            }
+        }
+    }
+    if ix < 0x413921fb {
+        /* |x| ~< 2^20*(pi/2), medium size */
+        return medium(x, ix);
+    }
+    /*
+     * all other (large) arguments
+     */
+    if ix >= 0x7ff00000 {
+        /* x is inf or NaN */
+        let y0 = x - x;
+        let y1 = y0;
+        return (0, y0, y1);
+    }
+    /* set z = scalbn(|x|,-ilogb(x)+23) */
+    let mut ui = f64::to_bits(x);
+    ui &= (!1) >> 12;
+    ui |= (0x3ff + 23) << 52;
+    let mut z = f64::from_bits(ui);
+    let mut tx = [0.0; 3];
+    for i in 0..2 {
+        i!(tx,i, =, z as i32 as f64);
+        z = (z - i!(tx, i)) * x1p24;
+    }
+    i!(tx,2, =, z);
+    /* skip zero terms, first term is non-zero */
+    let mut i = 2;
+    while i != 0 && i!(tx, i) == 0.0 {
+        i -= 1;
+    }
+    let mut ty = [0.0; 3];
+    let n = rem_pio2_large(&tx[..=i], &mut ty, ((ix as i32) >> 20) - (0x3ff + 23), 1);
+    if sign != 0 {
+        return (-n, -i!(ty, 0), -i!(ty, 1));
+    }
+    (n, i!(ty, 0), i!(ty, 1))
+}
+
+#[cfg(test)]
+mod tests {
+    use super::rem_pio2;
+
+    #[test]
+    // FIXME(correctness): inaccurate results on i586
+    #[cfg_attr(all(target_arch = "x86", not(target_feature = "sse")), ignore)]
+    fn test_near_pi() {
+        let arg = 3.141592025756836;
+        let arg = force_eval!(arg);
+        assert_eq!(rem_pio2(arg), (2, -6.278329573009626e-7, -2.1125998133974653e-23));
+        let arg = 3.141592033207416;
+        let arg = force_eval!(arg);
+        assert_eq!(rem_pio2(arg), (2, -6.20382377148128e-7, -2.1125998133974653e-23));
+        let arg = 3.141592144966125;
+        let arg = force_eval!(arg);
+        assert_eq!(rem_pio2(arg), (2, -5.086236681942706e-7, -2.1125998133974653e-23));
+        let arg = 3.141592979431152;
+        let arg = force_eval!(arg);
+        assert_eq!(rem_pio2(arg), (2, 3.2584135866119817e-7, -2.1125998133974653e-23));
+    }
+
+    #[test]
+    fn test_overflow_b9b847() {
+        let _ = rem_pio2(-3054214.5490637687);
+    }
+
+    #[test]
+    fn test_overflow_4747b9() {
+        let _ = rem_pio2(917340800458.2274);
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/rem_pio2_large.rs b/library/compiler-builtins/libm/src/math/rem_pio2_large.rs
new file mode 100644
index 00000000000..6d679bbe98c
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/rem_pio2_large.rs
@@ -0,0 +1,468 @@
+#![allow(unused_unsafe)]
+/* origin: FreeBSD /usr/src/lib/msun/src/k_rem_pio2.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{floor, scalbn};
+
+// initial value for jk
+const INIT_JK: [usize; 4] = [3, 4, 4, 6];
+
+// Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
+//
+//              integer array, contains the (24*i)-th to (24*i+23)-th
+//              bit of 2/pi after binary point. The corresponding
+//              floating value is
+//
+//                      ipio2[i] * 2^(-24(i+1)).
+//
+// NB: This table must have at least (e0-3)/24 + jk terms.
+//     For quad precision (e0 <= 16360, jk = 6), this is 686.
+#[cfg(any(target_pointer_width = "32", target_pointer_width = "16"))]
+const IPIO2: [i32; 66] = [
+    0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, 0x439041, 0xFE5163,
+    0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
+    0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C,
+    0x845F8B, 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
+    0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 0xF17B3D, 0x0739F7, 0x8A5292,
+    0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
+    0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA,
+    0x73A8C9, 0x60E27B, 0xC08C6B,
+];
+
+#[cfg(target_pointer_width = "64")]
+const IPIO2: [i32; 690] = [
+    0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, 0x439041, 0xFE5163,
+    0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
+    0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C,
+    0x845F8B, 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
+    0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 0xF17B3D, 0x0739F7, 0x8A5292,
+    0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
+    0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA,
+    0x73A8C9, 0x60E27B, 0xC08C6B, 0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
+    0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2, 0xDE4F98, 0x327DBB, 0xC33D26,
+    0xEF6B1E, 0x5EF89F, 0x3A1F35, 0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,
+    0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C, 0x467D86, 0x2D71E3, 0x9AC69B,
+    0x006233, 0x7CD2B4, 0x97A7B4, 0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
+    0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7, 0xCB2324, 0x778AD6, 0x23545A,
+    0xB91F00, 0x1B0AF1, 0xDFCE19, 0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,
+    0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16, 0xDE3B58, 0x929BDE, 0x2822D2,
+    0xE88628, 0x4D58E2, 0x32CAC6, 0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,
+    0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48, 0xD36710, 0xD8DDAA, 0x425FAE,
+    0xCE616A, 0xA4280A, 0xB499D3, 0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,
+    0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55, 0x36D9CA, 0xD2A828, 0x8D61C2,
+    0x77C912, 0x142604, 0x9B4612, 0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,
+    0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC, 0xC3E7B3, 0x28F8C7, 0x940593,
+    0x3E71C1, 0xB3092E, 0xF3450B, 0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,
+    0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4, 0x9794E8, 0x84E6E2, 0x973199,
+    0x6BED88, 0x365F5F, 0x0EFDBB, 0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,
+    0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C, 0x90AA47, 0x02E774, 0x24D6BD,
+    0xA67DF7, 0x72486E, 0xEF169F, 0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
+    0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437, 0x10D86D, 0x324832, 0x754C5B,
+    0xD4714E, 0x6E5445, 0xC1090B, 0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,
+    0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD, 0x6AE290, 0x89D988, 0x50722C,
+    0xBEA404, 0x940777, 0x7030F3, 0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,
+    0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717, 0x3BDF08, 0x2B3715, 0xA0805C,
+    0x93805A, 0x921110, 0xD8E80F, 0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,
+    0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB, 0xAA140A, 0x2F2689, 0x768364,
+    0x333B09, 0x1A940E, 0xAA3A51, 0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,
+    0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C, 0x5BC3D8, 0xC492F5, 0x4BADC6,
+    0xA5CA4E, 0xCD37A7, 0x36A9E6, 0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,
+    0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED, 0x306529, 0xBF5657, 0x3AFF47,
+    0xB9F96A, 0xF3BE75, 0xDF9328, 0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,
+    0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0, 0xA8654F, 0xA5C1D2, 0x0F3F0B,
+    0xCD785B, 0x76F923, 0x048B7B, 0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
+    0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3, 0xDA4886, 0xA05DF7, 0xF480C6,
+    0x2FF0AC, 0x9AECDD, 0xBC5C3F, 0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,
+    0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B, 0x2A1216, 0x2DB7DC, 0xFDE5FA,
+    0xFEDB89, 0xFDBE89, 0x6C76E4, 0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,
+    0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31, 0x48D784, 0x16DF30, 0x432DC7,
+    0x356125, 0xCE70C9, 0xB8CB30, 0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,
+    0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E, 0xC4F133, 0x5F6E13, 0xE4305D,
+    0xA92E85, 0xC3B21D, 0x3632A1, 0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,
+    0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4, 0xCBDA11, 0xD0BE7D, 0xC1DB9B,
+    0xBD17AB, 0x81A2CA, 0x5C6A08, 0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,
+    0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9, 0x4F6A68, 0xA82A4A, 0x5AC44F,
+    0xBCF82D, 0x985AD7, 0x95C7F4, 0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,
+    0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C, 0xD0C0B2, 0x485551, 0x0EFB1E,
+    0xC37295, 0x3B06A3, 0x3540C0, 0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
+    0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0, 0x3C3ABA, 0x461846, 0x5F7555,
+    0xF5BDD2, 0xC6926E, 0x5D2EAC, 0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,
+    0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893, 0x745D7C, 0xB2AD6B, 0x9D6ECD,
+    0x7B723E, 0x6A11C6, 0xA9CFF7, 0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,
+    0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F, 0xBEFDFD, 0xEF4556, 0x367ED9,
+    0x13D9EC, 0xB9BA8B, 0xFC97C4, 0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,
+    0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B, 0x9C2A3E, 0xCC5F11, 0x4A0BFD,
+    0xFBF4E1, 0x6D3B8E, 0x2C86E2, 0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,
+    0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E, 0xCC2254, 0xDC552A, 0xD6C6C0,
+    0x96190B, 0xB8701A, 0x649569, 0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,
+    0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9, 0x9B5861, 0xBC57E1, 0xC68351,
+    0x103ED8, 0x4871DD, 0xDD1C2D, 0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,
+    0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855, 0x382682, 0x9BE7CA, 0xA40D51,
+    0xB13399, 0x0ED7A9, 0x480569, 0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
+    0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE, 0x5FD45E, 0xA4677B, 0x7AACBA,
+    0xA2F655, 0x23882B, 0x55BA41, 0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,
+    0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F, 0xAE5ADB, 0x86C547, 0x624385,
+    0x3B8621, 0x94792C, 0x876110, 0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,
+    0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365, 0xB1933D, 0x0B7CBD, 0xDC51A4,
+    0x63DD27, 0xDDE169, 0x19949A, 0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,
+    0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5, 0x4D7E6F, 0x5119A5, 0xABF9B5,
+    0xD6DF82, 0x61DD96, 0x023616, 0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
+    0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
+];
+
+const PIO2: [f64; 8] = [
+    1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
+    7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
+    5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
+    3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
+    1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
+    1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
+    2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
+    2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
+];
+
+// fn rem_pio2_large(x : &[f64], y : &mut [f64], e0 : i32, prec : usize) -> i32
+//
+// Input parameters:
+//      x[]     The input value (must be positive) is broken into nx
+//              pieces of 24-bit integers in double precision format.
+//              x[i] will be the i-th 24 bit of x. The scaled exponent
+//              of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
+//              match x's up to 24 bits.
+//
+//              Example of breaking a double positive z into x[0]+x[1]+x[2]:
+//                      e0 = ilogb(z)-23
+//                      z  = scalbn(z,-e0)
+//              for i = 0,1,2
+//                      x[i] = floor(z)
+//                      z    = (z-x[i])*2**24
+//
+//      y[]     ouput result in an array of double precision numbers.
+//              The dimension of y[] is:
+//                      24-bit  precision       1
+//                      53-bit  precision       2
+//                      64-bit  precision       2
+//                      113-bit precision       3
+//              The actual value is the sum of them. Thus for 113-bit
+//              precison, one may have to do something like:
+//
+//              long double t,w,r_head, r_tail;
+//              t = (long double)y[2] + (long double)y[1];
+//              w = (long double)y[0];
+//              r_head = t+w;
+//              r_tail = w - (r_head - t);
+//
+//      e0      The exponent of x[0]. Must be <= 16360 or you need to
+//              expand the ipio2 table.
+//
+//      prec    an integer indicating the precision:
+//                      0       24  bits (single)
+//                      1       53  bits (double)
+//                      2       64  bits (extended)
+//                      3       113 bits (quad)
+//
+// Here is the description of some local variables:
+//
+//      jk      jk+1 is the initial number of terms of ipio2[] needed
+//              in the computation. The minimum and recommended value
+//              for jk is 3,4,4,6 for single, double, extended, and quad.
+//              jk+1 must be 2 larger than you might expect so that our
+//              recomputation test works. (Up to 24 bits in the integer
+//              part (the 24 bits of it that we compute) and 23 bits in
+//              the fraction part may be lost to cancelation before we
+//              recompute.)
+//
+//      jz      local integer variable indicating the number of
+//              terms of ipio2[] used.
+//
+//      jx      nx - 1
+//
+//      jv      index for pointing to the suitable ipio2[] for the
+//              computation. In general, we want
+//                      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
+//              is an integer. Thus
+//                      e0-3-24*jv >= 0 or (e0-3)/24 >= jv
+//              Hence jv = max(0,(e0-3)/24).
+//
+//      jp      jp+1 is the number of terms in PIo2[] needed, jp = jk.
+//
+//      q[]     double array with integral value, representing the
+//              24-bits chunk of the product of x and 2/pi.
+//
+//      q0      the corresponding exponent of q[0]. Note that the
+//              exponent for q[i] would be q0-24*i.
+//
+//      PIo2[]  double precision array, obtained by cutting pi/2
+//              into 24 bits chunks.
+//
+//      f[]     ipio2[] in floating point
+//
+//      iq[]    integer array by breaking up q[] in 24-bits chunk.
+//
+//      fq[]    final product of x*(2/pi) in fq[0],..,fq[jk]
+//
+//      ih      integer. If >0 it indicates q[] is >= 0.5, hence
+//              it also indicates the *sign* of the result.
+
+/// Return the last three digits of N with y = x - N*pi/2
+/// so that |y| < pi/2.
+///
+/// The method is to compute the integer (mod 8) and fraction parts of
+/// (2/pi)*x without doing the full multiplication. In general we
+/// skip the part of the product that are known to be a huge integer (
+/// more accurately, = 0 mod 8 ). Thus the number of operations are
+/// independent of the exponent of the input.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn rem_pio2_large(x: &[f64], y: &mut [f64], e0: i32, prec: usize) -> i32 {
+    let x1p24 = f64::from_bits(0x4170000000000000); // 0x1p24 === 2 ^ 24
+    let x1p_24 = f64::from_bits(0x3e70000000000000); // 0x1p_24 === 2 ^ (-24)
+
+    if cfg!(target_pointer_width = "64") {
+        debug_assert!(e0 <= 16360);
+    }
+
+    let nx = x.len();
+
+    let mut fw: f64;
+    let mut n: i32;
+    let mut ih: i32;
+    let mut z: f64;
+    let mut f: [f64; 20] = [0.; 20];
+    let mut fq: [f64; 20] = [0.; 20];
+    let mut q: [f64; 20] = [0.; 20];
+    let mut iq: [i32; 20] = [0; 20];
+
+    /* initialize jk*/
+    let jk = i!(INIT_JK, prec);
+    let jp = jk;
+
+    /* determine jx,jv,q0, note that 3>q0 */
+    let jx = nx - 1;
+    let mut jv = div!(e0 - 3, 24);
+    if jv < 0 {
+        jv = 0;
+    }
+    let mut q0 = e0 - 24 * (jv + 1);
+    let jv = jv as usize;
+
+    /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
+    let mut j = (jv as i32) - (jx as i32);
+    let m = jx + jk;
+    for i in 0..=m {
+        i!(f, i, =, if j < 0 {
+            0.
+        } else {
+            i!(IPIO2, j as usize) as f64
+        });
+        j += 1;
+    }
+
+    /* compute q[0],q[1],...q[jk] */
+    for i in 0..=jk {
+        fw = 0f64;
+        for j in 0..=jx {
+            fw += i!(x, j) * i!(f, jx + i - j);
+        }
+        i!(q, i, =, fw);
+    }
+
+    let mut jz = jk;
+
+    'recompute: loop {
+        /* distill q[] into iq[] reversingly */
+        let mut i = 0i32;
+        z = i!(q, jz);
+        for j in (1..=jz).rev() {
+            fw = (x1p_24 * z) as i32 as f64;
+            i!(iq, i as usize, =, (z - x1p24 * fw) as i32);
+            z = i!(q, j - 1) + fw;
+            i += 1;
+        }
+
+        /* compute n */
+        z = scalbn(z, q0); /* actual value of z */
+        z -= 8.0 * floor(z * 0.125); /* trim off integer >= 8 */
+        n = z as i32;
+        z -= n as f64;
+        ih = 0;
+        if q0 > 0 {
+            /* need iq[jz-1] to determine n */
+            i = i!(iq, jz - 1) >> (24 - q0);
+            n += i;
+            i!(iq, jz - 1, -=, i << (24 - q0));
+            ih = i!(iq, jz - 1) >> (23 - q0);
+        } else if q0 == 0 {
+            ih = i!(iq, jz - 1) >> 23;
+        } else if z >= 0.5 {
+            ih = 2;
+        }
+
+        if ih > 0 {
+            /* q > 0.5 */
+            n += 1;
+            let mut carry = 0i32;
+            for i in 0..jz {
+                /* compute 1-q */
+                let j = i!(iq, i);
+                if carry == 0 {
+                    if j != 0 {
+                        carry = 1;
+                        i!(iq, i, =, 0x1000000 - j);
+                    }
+                } else {
+                    i!(iq, i, =, 0xffffff - j);
+                }
+            }
+            if q0 > 0 {
+                /* rare case: chance is 1 in 12 */
+                match q0 {
+                    1 => {
+                        i!(iq, jz - 1, &=, 0x7fffff);
+                    }
+                    2 => {
+                        i!(iq, jz - 1, &=, 0x3fffff);
+                    }
+                    _ => {}
+                }
+            }
+            if ih == 2 {
+                z = 1. - z;
+                if carry != 0 {
+                    z -= scalbn(1., q0);
+                }
+            }
+        }
+
+        /* check if recomputation is needed */
+        if z == 0. {
+            let mut j = 0;
+            for i in (jk..=jz - 1).rev() {
+                j |= i!(iq, i);
+            }
+            if j == 0 {
+                /* need recomputation */
+                let mut k = 1;
+                while i!(iq, jk - k, ==, 0) {
+                    k += 1; /* k = no. of terms needed */
+                }
+
+                for i in (jz + 1)..=(jz + k) {
+                    /* add q[jz+1] to q[jz+k] */
+                    i!(f, jx + i, =, i!(IPIO2, jv + i) as f64);
+                    fw = 0f64;
+                    for j in 0..=jx {
+                        fw += i!(x, j) * i!(f, jx + i - j);
+                    }
+                    i!(q, i, =, fw);
+                }
+                jz += k;
+                continue 'recompute;
+            }
+        }
+
+        break;
+    }
+
+    /* chop off zero terms */
+    if z == 0. {
+        jz -= 1;
+        q0 -= 24;
+        while i!(iq, jz) == 0 {
+            jz -= 1;
+            q0 -= 24;
+        }
+    } else {
+        /* break z into 24-bit if necessary */
+        z = scalbn(z, -q0);
+        if z >= x1p24 {
+            fw = (x1p_24 * z) as i32 as f64;
+            i!(iq, jz, =, (z - x1p24 * fw) as i32);
+            jz += 1;
+            q0 += 24;
+            i!(iq, jz, =, fw as i32);
+        } else {
+            i!(iq, jz, =, z as i32);
+        }
+    }
+
+    /* convert integer "bit" chunk to floating-point value */
+    fw = scalbn(1., q0);
+    for i in (0..=jz).rev() {
+        i!(q, i, =, fw * (i!(iq, i) as f64));
+        fw *= x1p_24;
+    }
+
+    /* compute PIo2[0,...,jp]*q[jz,...,0] */
+    for i in (0..=jz).rev() {
+        fw = 0f64;
+        let mut k = 0;
+        while (k <= jp) && (k <= jz - i) {
+            fw += i!(PIO2, k) * i!(q, i + k);
+            k += 1;
+        }
+        i!(fq, jz - i, =, fw);
+    }
+
+    /* compress fq[] into y[] */
+    match prec {
+        0 => {
+            fw = 0f64;
+            for i in (0..=jz).rev() {
+                fw += i!(fq, i);
+            }
+            i!(y, 0, =, if ih == 0 { fw } else { -fw });
+        }
+        1 | 2 => {
+            fw = 0f64;
+            for i in (0..=jz).rev() {
+                fw += i!(fq, i);
+            }
+            i!(y, 0, =, if ih == 0 { fw } else { -fw });
+            fw = i!(fq, 0) - fw;
+            for i in 1..=jz {
+                fw += i!(fq, i);
+            }
+            i!(y, 1, =, if ih == 0 { fw } else { -fw });
+        }
+        3 => {
+            /* painful */
+            for i in (1..=jz).rev() {
+                fw = i!(fq, i - 1) + i!(fq, i);
+                i!(fq, i, +=, i!(fq, i - 1) - fw);
+                i!(fq, i - 1, =, fw);
+            }
+            for i in (2..=jz).rev() {
+                fw = i!(fq, i - 1) + i!(fq, i);
+                i!(fq, i, +=, i!(fq, i - 1) - fw);
+                i!(fq, i - 1, =, fw);
+            }
+            fw = 0f64;
+            for i in (2..=jz).rev() {
+                fw += i!(fq, i);
+            }
+            if ih == 0 {
+                i!(y, 0, =, i!(fq, 0));
+                i!(y, 1, =, i!(fq, 1));
+                i!(y, 2, =, fw);
+            } else {
+                i!(y, 0, =, -i!(fq, 0));
+                i!(y, 1, =, -i!(fq, 1));
+                i!(y, 2, =, -fw);
+            }
+        }
+        #[cfg(debug_assertions)]
+        _ => unreachable!(),
+        #[cfg(not(debug_assertions))]
+        _ => {}
+    }
+    n & 7
+}
diff --git a/library/compiler-builtins/libm/src/math/rem_pio2f.rs b/library/compiler-builtins/libm/src/math/rem_pio2f.rs
new file mode 100644
index 00000000000..3c658fe3dbc
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/rem_pio2f.rs
@@ -0,0 +1,67 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_rem_pio2f.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Debugged and optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use core::f64;
+
+use super::rem_pio2_large;
+
+const TOINT: f64 = 1.5 / f64::EPSILON;
+
+/// 53 bits of 2/pi
+const INV_PIO2: f64 = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
+/// first 25 bits of pi/2
+const PIO2_1: f64 = 1.57079631090164184570e+00; /* 0x3FF921FB, 0x50000000 */
+/// pi/2 - pio2_1
+const PIO2_1T: f64 = 1.58932547735281966916e-08; /* 0x3E5110b4, 0x611A6263 */
+
+/// Return the remainder of x rem pi/2 in *y
+///
+/// use double precision for everything except passing x
+/// use __rem_pio2_large() for large x
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn rem_pio2f(x: f32) -> (i32, f64) {
+    let x64 = x as f64;
+
+    let mut tx: [f64; 1] = [0.];
+    let mut ty: [f64; 1] = [0.];
+
+    let ix = x.to_bits() & 0x7fffffff;
+    /* 25+53 bit pi is good enough for medium size */
+    if ix < 0x4dc90fdb {
+        /* |x| ~< 2^28*(pi/2), medium size */
+        /* Use a specialized rint() to get fn.  Assume round-to-nearest. */
+        let tmp = x64 * INV_PIO2 + TOINT;
+        // force rounding of tmp to it's storage format on x87 to avoid
+        // excess precision issues.
+        #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
+        let tmp = force_eval!(tmp);
+        let f_n = tmp - TOINT;
+        return (f_n as i32, x64 - f_n * PIO2_1 - f_n * PIO2_1T);
+    }
+    if ix >= 0x7f800000 {
+        /* x is inf or NaN */
+        return (0, x64 - x64);
+    }
+    /* scale x into [2^23, 2^24-1] */
+    let sign = (x.to_bits() >> 31) != 0;
+    let e0 = ((ix >> 23) - (0x7f + 23)) as i32; /* e0 = ilogb(|x|)-23, positive */
+    tx[0] = f32::from_bits(ix - (e0 << 23) as u32) as f64;
+    let n = rem_pio2_large(&tx, &mut ty, e0, 0);
+    if sign {
+        return (-n, -ty[0]);
+    }
+    (n, ty[0])
+}
diff --git a/library/compiler-builtins/libm/src/math/remainder.rs b/library/compiler-builtins/libm/src/math/remainder.rs
new file mode 100644
index 00000000000..9e966c9ed7f
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/remainder.rs
@@ -0,0 +1,5 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn remainder(x: f64, y: f64) -> f64 {
+    let (result, _) = super::remquo(x, y);
+    result
+}
diff --git a/library/compiler-builtins/libm/src/math/remainderf.rs b/library/compiler-builtins/libm/src/math/remainderf.rs
new file mode 100644
index 00000000000..b1407cf2ace
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/remainderf.rs
@@ -0,0 +1,5 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn remainderf(x: f32, y: f32) -> f32 {
+    let (result, _) = super::remquof(x, y);
+    result
+}
diff --git a/library/compiler-builtins/libm/src/math/remquo.rs b/library/compiler-builtins/libm/src/math/remquo.rs
new file mode 100644
index 00000000000..4c11e848746
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/remquo.rs
@@ -0,0 +1,106 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn remquo(mut x: f64, mut y: f64) -> (f64, i32) {
+    let ux: u64 = x.to_bits();
+    let mut uy: u64 = y.to_bits();
+    let mut ex = ((ux >> 52) & 0x7ff) as i32;
+    let mut ey = ((uy >> 52) & 0x7ff) as i32;
+    let sx = (ux >> 63) != 0;
+    let sy = (uy >> 63) != 0;
+    let mut q: u32;
+    let mut i: u64;
+    let mut uxi: u64 = ux;
+
+    if (uy << 1) == 0 || y.is_nan() || ex == 0x7ff {
+        return ((x * y) / (x * y), 0);
+    }
+    if (ux << 1) == 0 {
+        return (x, 0);
+    }
+
+    /* normalize x and y */
+    if ex == 0 {
+        i = uxi << 12;
+        while (i >> 63) == 0 {
+            ex -= 1;
+            i <<= 1;
+        }
+        uxi <<= -ex + 1;
+    } else {
+        uxi &= (!0) >> 12;
+        uxi |= 1 << 52;
+    }
+    if ey == 0 {
+        i = uy << 12;
+        while (i >> 63) == 0 {
+            ey -= 1;
+            i <<= 1;
+        }
+        uy <<= -ey + 1;
+    } else {
+        uy &= (!0) >> 12;
+        uy |= 1 << 52;
+    }
+
+    q = 0;
+
+    if ex + 1 != ey {
+        if ex < ey {
+            return (x, 0);
+        }
+        /* x mod y */
+        while ex > ey {
+            i = uxi.wrapping_sub(uy);
+            if (i >> 63) == 0 {
+                uxi = i;
+                q += 1;
+            }
+            uxi <<= 1;
+            q <<= 1;
+            ex -= 1;
+        }
+        i = uxi.wrapping_sub(uy);
+        if (i >> 63) == 0 {
+            uxi = i;
+            q += 1;
+        }
+        if uxi == 0 {
+            ex = -60;
+        } else {
+            while (uxi >> 52) == 0 {
+                uxi <<= 1;
+                ex -= 1;
+            }
+        }
+    }
+
+    /* scale result and decide between |x| and |x|-|y| */
+    if ex > 0 {
+        uxi -= 1 << 52;
+        uxi |= (ex as u64) << 52;
+    } else {
+        uxi >>= -ex + 1;
+    }
+    x = f64::from_bits(uxi);
+    if sy {
+        y = -y;
+    }
+    if ex == ey || (ex + 1 == ey && (2.0 * x > y || (2.0 * x == y && (q % 2) != 0))) {
+        x -= y;
+        // TODO: this matches musl behavior, but it is incorrect
+        q = q.wrapping_add(1);
+    }
+    q &= 0x7fffffff;
+    let quo = if sx ^ sy { -(q as i32) } else { q as i32 };
+    if sx { (-x, quo) } else { (x, quo) }
+}
+
+#[cfg(test)]
+mod tests {
+    use super::remquo;
+
+    #[test]
+    fn test_q_overflow() {
+        // 0xc000000000000001, 0x04c0000000000004
+        let _ = remquo(-2.0000000000000004, 8.406091369059082e-286);
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/remquof.rs b/library/compiler-builtins/libm/src/math/remquof.rs
new file mode 100644
index 00000000000..b0e85ca6611
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/remquof.rs
@@ -0,0 +1,93 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn remquof(mut x: f32, mut y: f32) -> (f32, i32) {
+    let ux: u32 = x.to_bits();
+    let mut uy: u32 = y.to_bits();
+    let mut ex = ((ux >> 23) & 0xff) as i32;
+    let mut ey = ((uy >> 23) & 0xff) as i32;
+    let sx = (ux >> 31) != 0;
+    let sy = (uy >> 31) != 0;
+    let mut q: u32;
+    let mut i: u32;
+    let mut uxi: u32 = ux;
+
+    if (uy << 1) == 0 || y.is_nan() || ex == 0xff {
+        return ((x * y) / (x * y), 0);
+    }
+    if (ux << 1) == 0 {
+        return (x, 0);
+    }
+
+    /* normalize x and y */
+    if ex == 0 {
+        i = uxi << 9;
+        while (i >> 31) == 0 {
+            ex -= 1;
+            i <<= 1;
+        }
+        uxi <<= -ex + 1;
+    } else {
+        uxi &= (!0) >> 9;
+        uxi |= 1 << 23;
+    }
+    if ey == 0 {
+        i = uy << 9;
+        while (i >> 31) == 0 {
+            ey -= 1;
+            i <<= 1;
+        }
+        uy <<= -ey + 1;
+    } else {
+        uy &= (!0) >> 9;
+        uy |= 1 << 23;
+    }
+
+    q = 0;
+    if ex + 1 != ey {
+        if ex < ey {
+            return (x, 0);
+        }
+        /* x mod y */
+        while ex > ey {
+            i = uxi.wrapping_sub(uy);
+            if (i >> 31) == 0 {
+                uxi = i;
+                q += 1;
+            }
+            uxi <<= 1;
+            q <<= 1;
+            ex -= 1;
+        }
+        i = uxi.wrapping_sub(uy);
+        if (i >> 31) == 0 {
+            uxi = i;
+            q += 1;
+        }
+        if uxi == 0 {
+            ex = -30;
+        } else {
+            while (uxi >> 23) == 0 {
+                uxi <<= 1;
+                ex -= 1;
+            }
+        }
+    }
+
+    /* scale result and decide between |x| and |x|-|y| */
+    if ex > 0 {
+        uxi -= 1 << 23;
+        uxi |= (ex as u32) << 23;
+    } else {
+        uxi >>= -ex + 1;
+    }
+    x = f32::from_bits(uxi);
+    if sy {
+        y = -y;
+    }
+    if ex == ey || (ex + 1 == ey && (2.0 * x > y || (2.0 * x == y && (q % 2) != 0))) {
+        x -= y;
+        q += 1;
+    }
+    q &= 0x7fffffff;
+    let quo = if sx ^ sy { -(q as i32) } else { q as i32 };
+    if sx { (-x, quo) } else { (x, quo) }
+}
diff --git a/library/compiler-builtins/libm/src/math/rint.rs b/library/compiler-builtins/libm/src/math/rint.rs
new file mode 100644
index 00000000000..e1c32c94355
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/rint.rs
@@ -0,0 +1,51 @@
+use super::support::Round;
+
+/// Round `x` to the nearest integer, breaking ties toward even.
+#[cfg(f16_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn rintf16(x: f16) -> f16 {
+    select_implementation! {
+        name: rintf16,
+        use_arch: all(target_arch = "aarch64", target_feature = "fp16"),
+        args: x,
+    }
+
+    super::generic::rint_round(x, Round::Nearest).val
+}
+
+/// Round `x` to the nearest integer, breaking ties toward even.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn rintf(x: f32) -> f32 {
+    select_implementation! {
+        name: rintf,
+        use_arch: any(
+            all(target_arch = "aarch64", target_feature = "neon"),
+            all(target_arch = "wasm32", intrinsics_enabled),
+        ),
+        args: x,
+    }
+
+    super::generic::rint_round(x, Round::Nearest).val
+}
+
+/// Round `x` to the nearest integer, breaking ties toward even.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn rint(x: f64) -> f64 {
+    select_implementation! {
+        name: rint,
+        use_arch: any(
+            all(target_arch = "aarch64", target_feature = "neon"),
+            all(target_arch = "wasm32", intrinsics_enabled),
+        ),
+        args: x,
+    }
+
+    super::generic::rint_round(x, Round::Nearest).val
+}
+
+/// Round `x` to the nearest integer, breaking ties toward even.
+#[cfg(f128_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn rintf128(x: f128) -> f128 {
+    super::generic::rint_round(x, Round::Nearest).val
+}
diff --git a/library/compiler-builtins/libm/src/math/round.rs b/library/compiler-builtins/libm/src/math/round.rs
new file mode 100644
index 00000000000..6cd091cd73c
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/round.rs
@@ -0,0 +1,25 @@
+/// Round `x` to the nearest integer, breaking ties away from zero.
+#[cfg(f16_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn roundf16(x: f16) -> f16 {
+    super::generic::round(x)
+}
+
+/// Round `x` to the nearest integer, breaking ties away from zero.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn roundf(x: f32) -> f32 {
+    super::generic::round(x)
+}
+
+/// Round `x` to the nearest integer, breaking ties away from zero.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn round(x: f64) -> f64 {
+    super::generic::round(x)
+}
+
+/// Round `x` to the nearest integer, breaking ties away from zero.
+#[cfg(f128_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn roundf128(x: f128) -> f128 {
+    super::generic::round(x)
+}
diff --git a/library/compiler-builtins/libm/src/math/roundeven.rs b/library/compiler-builtins/libm/src/math/roundeven.rs
new file mode 100644
index 00000000000..6e621d7628f
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/roundeven.rs
@@ -0,0 +1,36 @@
+use super::support::{Float, Round};
+
+/// Round `x` to the nearest integer, breaking ties toward even. This is IEEE 754
+/// `roundToIntegralTiesToEven`.
+#[cfg(f16_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn roundevenf16(x: f16) -> f16 {
+    roundeven_impl(x)
+}
+
+/// Round `x` to the nearest integer, breaking ties toward even. This is IEEE 754
+/// `roundToIntegralTiesToEven`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn roundevenf(x: f32) -> f32 {
+    roundeven_impl(x)
+}
+
+/// Round `x` to the nearest integer, breaking ties toward even. This is IEEE 754
+/// `roundToIntegralTiesToEven`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn roundeven(x: f64) -> f64 {
+    roundeven_impl(x)
+}
+
+/// Round `x` to the nearest integer, breaking ties toward even. This is IEEE 754
+/// `roundToIntegralTiesToEven`.
+#[cfg(f128_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn roundevenf128(x: f128) -> f128 {
+    roundeven_impl(x)
+}
+
+#[inline]
+pub fn roundeven_impl<F: Float>(x: F) -> F {
+    super::generic::rint_round(x, Round::Nearest).val
+}
diff --git a/library/compiler-builtins/libm/src/math/roundf.rs b/library/compiler-builtins/libm/src/math/roundf.rs
new file mode 100644
index 00000000000..b5d7c9d693e
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/roundf.rs
@@ -0,0 +1,5 @@
+/// Round `x` to the nearest integer, breaking ties away from zero.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn roundf(x: f32) -> f32 {
+    super::generic::round(x)
+}
diff --git a/library/compiler-builtins/libm/src/math/roundf128.rs b/library/compiler-builtins/libm/src/math/roundf128.rs
new file mode 100644
index 00000000000..fc3164929fe
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/roundf128.rs
@@ -0,0 +1,5 @@
+/// Round `x` to the nearest integer, breaking ties away from zero.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn roundf128(x: f128) -> f128 {
+    super::generic::round(x)
+}
diff --git a/library/compiler-builtins/libm/src/math/roundf16.rs b/library/compiler-builtins/libm/src/math/roundf16.rs
new file mode 100644
index 00000000000..8b356eaabee
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/roundf16.rs
@@ -0,0 +1,5 @@
+/// Round `x` to the nearest integer, breaking ties away from zero.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn roundf16(x: f16) -> f16 {
+    super::generic::round(x)
+}
diff --git a/library/compiler-builtins/libm/src/math/scalbn.rs b/library/compiler-builtins/libm/src/math/scalbn.rs
new file mode 100644
index 00000000000..ed73c3f94f0
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/scalbn.rs
@@ -0,0 +1,87 @@
+#[cfg(f16_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn scalbnf16(x: f16, n: i32) -> f16 {
+    super::generic::scalbn(x, n)
+}
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn scalbnf(x: f32, n: i32) -> f32 {
+    super::generic::scalbn(x, n)
+}
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn scalbn(x: f64, n: i32) -> f64 {
+    super::generic::scalbn(x, n)
+}
+
+#[cfg(f128_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn scalbnf128(x: f128, n: i32) -> f128 {
+    super::generic::scalbn(x, n)
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+    use crate::support::{CastFrom, CastInto, Float};
+
+    // Tests against N3220
+    fn spec_test<F: Float>(f: impl Fn(F, i32) -> F)
+    where
+        u32: CastInto<F::Int>,
+        F::Int: CastFrom<i32>,
+        F::Int: CastFrom<u32>,
+    {
+        // `scalbn(±0, n)` returns `±0`.
+        assert_biteq!(f(F::NEG_ZERO, 10), F::NEG_ZERO);
+        assert_biteq!(f(F::NEG_ZERO, 0), F::NEG_ZERO);
+        assert_biteq!(f(F::NEG_ZERO, -10), F::NEG_ZERO);
+        assert_biteq!(f(F::ZERO, 10), F::ZERO);
+        assert_biteq!(f(F::ZERO, 0), F::ZERO);
+        assert_biteq!(f(F::ZERO, -10), F::ZERO);
+
+        // `scalbn(x, 0)` returns `x`.
+        assert_biteq!(f(F::MIN, 0), F::MIN);
+        assert_biteq!(f(F::MAX, 0), F::MAX);
+        assert_biteq!(f(F::INFINITY, 0), F::INFINITY);
+        assert_biteq!(f(F::NEG_INFINITY, 0), F::NEG_INFINITY);
+        assert_biteq!(f(F::ZERO, 0), F::ZERO);
+        assert_biteq!(f(F::NEG_ZERO, 0), F::NEG_ZERO);
+
+        // `scalbn(±∞, n)` returns `±∞`.
+        assert_biteq!(f(F::INFINITY, 10), F::INFINITY);
+        assert_biteq!(f(F::INFINITY, -10), F::INFINITY);
+        assert_biteq!(f(F::NEG_INFINITY, 10), F::NEG_INFINITY);
+        assert_biteq!(f(F::NEG_INFINITY, -10), F::NEG_INFINITY);
+
+        // NaN should remain NaNs.
+        assert!(f(F::NAN, 10).is_nan());
+        assert!(f(F::NAN, 0).is_nan());
+        assert!(f(F::NAN, -10).is_nan());
+        assert!(f(-F::NAN, 10).is_nan());
+        assert!(f(-F::NAN, 0).is_nan());
+        assert!(f(-F::NAN, -10).is_nan());
+    }
+
+    #[test]
+    #[cfg(f16_enabled)]
+    fn spec_test_f16() {
+        spec_test::<f16>(scalbnf16);
+    }
+
+    #[test]
+    fn spec_test_f32() {
+        spec_test::<f32>(scalbnf);
+    }
+
+    #[test]
+    fn spec_test_f64() {
+        spec_test::<f64>(scalbn);
+    }
+
+    #[test]
+    #[cfg(f128_enabled)]
+    fn spec_test_f128() {
+        spec_test::<f128>(scalbnf128);
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/scalbnf.rs b/library/compiler-builtins/libm/src/math/scalbnf.rs
new file mode 100644
index 00000000000..57e7ba76f60
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/scalbnf.rs
@@ -0,0 +1,4 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn scalbnf(x: f32, n: i32) -> f32 {
+    super::generic::scalbn(x, n)
+}
diff --git a/library/compiler-builtins/libm/src/math/scalbnf128.rs b/library/compiler-builtins/libm/src/math/scalbnf128.rs
new file mode 100644
index 00000000000..c1d2b485585
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/scalbnf128.rs
@@ -0,0 +1,4 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn scalbnf128(x: f128, n: i32) -> f128 {
+    super::generic::scalbn(x, n)
+}
diff --git a/library/compiler-builtins/libm/src/math/scalbnf16.rs b/library/compiler-builtins/libm/src/math/scalbnf16.rs
new file mode 100644
index 00000000000..2209e1a1795
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/scalbnf16.rs
@@ -0,0 +1,4 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn scalbnf16(x: f16, n: i32) -> f16 {
+    super::generic::scalbn(x, n)
+}
diff --git a/library/compiler-builtins/libm/src/math/sin.rs b/library/compiler-builtins/libm/src/math/sin.rs
new file mode 100644
index 00000000000..229fa4bef08
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/sin.rs
@@ -0,0 +1,95 @@
+// origin: FreeBSD /usr/src/lib/msun/src/s_sin.c */
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+
+use super::{k_cos, k_sin, rem_pio2};
+
+// sin(x)
+// Return sine function of x.
+//
+// kernel function:
+//      k_sin            ... sine function on [-pi/4,pi/4]
+//      k_cos            ... cose function on [-pi/4,pi/4]
+//      rem_pio2         ... argument reduction routine
+//
+// Method.
+//      Let S,C and T denote the sin, cos and tan respectively on
+//      [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+//      in [-pi/4 , +pi/4], and let n = k mod 4.
+//      We have
+//
+//          n        sin(x)      cos(x)        tan(x)
+//     ----------------------------------------------------------
+//          0          S           C             T
+//          1          C          -S            -1/T
+//          2         -S          -C             T
+//          3         -C           S            -1/T
+//     ----------------------------------------------------------
+//
+// Special cases:
+//      Let trig be any of sin, cos, or tan.
+//      trig(+-INF)  is NaN, with signals;
+//      trig(NaN)    is that NaN;
+//
+// Accuracy:
+//      TRIG(x) returns trig(x) nearly rounded
+
+/// The sine of `x` (f64).
+///
+/// `x` is specified in radians.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn sin(x: f64) -> f64 {
+    let x1p120 = f64::from_bits(0x4770000000000000); // 0x1p120f === 2 ^ 120
+
+    /* High word of x. */
+    let ix = (f64::to_bits(x) >> 32) as u32 & 0x7fffffff;
+
+    /* |x| ~< pi/4 */
+    if ix <= 0x3fe921fb {
+        if ix < 0x3e500000 {
+            /* |x| < 2**-26 */
+            /* raise inexact if x != 0 and underflow if subnormal*/
+            if ix < 0x00100000 {
+                force_eval!(x / x1p120);
+            } else {
+                force_eval!(x + x1p120);
+            }
+            return x;
+        }
+        return k_sin(x, 0.0, 0);
+    }
+
+    /* sin(Inf or NaN) is NaN */
+    if ix >= 0x7ff00000 {
+        return x - x;
+    }
+
+    /* argument reduction needed */
+    let (n, y0, y1) = rem_pio2(x);
+    match n & 3 {
+        0 => k_sin(y0, y1, 1),
+        1 => k_cos(y0, y1),
+        2 => -k_sin(y0, y1, 1),
+        _ => -k_cos(y0, y1),
+    }
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+
+    #[test]
+    #[cfg_attr(x86_no_sse, ignore = "FIXME(i586): possible incorrect rounding")]
+    fn test_near_pi() {
+        let x = f64::from_bits(0x400921fb000FD5DD); // 3.141592026217707
+        let sx = f64::from_bits(0x3ea50d15ced1a4a2); // 6.273720864039205e-7
+        assert_eq!(sin(x), sx);
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/sincos.rs b/library/compiler-builtins/libm/src/math/sincos.rs
new file mode 100644
index 00000000000..ebf482f2df3
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/sincos.rs
@@ -0,0 +1,137 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_sin.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{get_high_word, k_cos, k_sin, rem_pio2};
+
+/// Both the sine and cosine of `x` (f64).
+///
+/// `x` is specified in radians and the return value is (sin(x), cos(x)).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn sincos(x: f64) -> (f64, f64) {
+    let s: f64;
+    let c: f64;
+    let mut ix: u32;
+
+    ix = get_high_word(x);
+    ix &= 0x7fffffff;
+
+    /* |x| ~< pi/4 */
+    if ix <= 0x3fe921fb {
+        /* if |x| < 2**-27 * sqrt(2) */
+        if ix < 0x3e46a09e {
+            /* raise inexact if x!=0 and underflow if subnormal */
+            let x1p120 = f64::from_bits(0x4770000000000000); // 0x1p120 == 2^120
+            if ix < 0x00100000 {
+                force_eval!(x / x1p120);
+            } else {
+                force_eval!(x + x1p120);
+            }
+            return (x, 1.0);
+        }
+        return (k_sin(x, 0.0, 0), k_cos(x, 0.0));
+    }
+
+    /* sincos(Inf or NaN) is NaN */
+    if ix >= 0x7ff00000 {
+        let rv = x - x;
+        return (rv, rv);
+    }
+
+    /* argument reduction needed */
+    let (n, y0, y1) = rem_pio2(x);
+    s = k_sin(y0, y1, 1);
+    c = k_cos(y0, y1);
+    match n & 3 {
+        0 => (s, c),
+        1 => (c, -s),
+        2 => (-s, -c),
+        3 => (-c, s),
+        #[cfg(debug_assertions)]
+        _ => unreachable!(),
+        #[cfg(not(debug_assertions))]
+        _ => (0.0, 1.0),
+    }
+}
+
+// These tests are based on those from sincosf.rs
+#[cfg(test)]
+mod tests {
+    use super::sincos;
+
+    const TOLERANCE: f64 = 1e-6;
+
+    #[test]
+    fn with_pi() {
+        let (s, c) = sincos(core::f64::consts::PI);
+        assert!(
+            (s - 0.0).abs() < TOLERANCE,
+            "|{} - {}| = {} >= {}",
+            s,
+            0.0,
+            (s - 0.0).abs(),
+            TOLERANCE
+        );
+        assert!(
+            (c + 1.0).abs() < TOLERANCE,
+            "|{} + {}| = {} >= {}",
+            c,
+            1.0,
+            (s + 1.0).abs(),
+            TOLERANCE
+        );
+    }
+
+    #[test]
+    fn rotational_symmetry() {
+        use core::f64::consts::PI;
+        const N: usize = 24;
+        for n in 0..N {
+            let theta = 2. * PI * (n as f64) / (N as f64);
+            let (s, c) = sincos(theta);
+            let (s_plus, c_plus) = sincos(theta + 2. * PI);
+            let (s_minus, c_minus) = sincos(theta - 2. * PI);
+
+            assert!(
+                (s - s_plus).abs() < TOLERANCE,
+                "|{} - {}| = {} >= {}",
+                s,
+                s_plus,
+                (s - s_plus).abs(),
+                TOLERANCE
+            );
+            assert!(
+                (s - s_minus).abs() < TOLERANCE,
+                "|{} - {}| = {} >= {}",
+                s,
+                s_minus,
+                (s - s_minus).abs(),
+                TOLERANCE
+            );
+            assert!(
+                (c - c_plus).abs() < TOLERANCE,
+                "|{} - {}| = {} >= {}",
+                c,
+                c_plus,
+                (c - c_plus).abs(),
+                TOLERANCE
+            );
+            assert!(
+                (c - c_minus).abs() < TOLERANCE,
+                "|{} - {}| = {} >= {}",
+                c,
+                c_minus,
+                (c - c_minus).abs(),
+                TOLERANCE
+            );
+        }
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/sincosf.rs b/library/compiler-builtins/libm/src/math/sincosf.rs
new file mode 100644
index 00000000000..f3360767683
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/sincosf.rs
@@ -0,0 +1,176 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_sinf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{k_cosf, k_sinf, rem_pio2f};
+
+/* Small multiples of pi/2 rounded to double precision. */
+const PI_2: f64 = 0.5 * 3.1415926535897931160E+00;
+const S1PIO2: f64 = 1.0 * PI_2; /* 0x3FF921FB, 0x54442D18 */
+const S2PIO2: f64 = 2.0 * PI_2; /* 0x400921FB, 0x54442D18 */
+const S3PIO2: f64 = 3.0 * PI_2; /* 0x4012D97C, 0x7F3321D2 */
+const S4PIO2: f64 = 4.0 * PI_2; /* 0x401921FB, 0x54442D18 */
+
+/// Both the sine and cosine of `x` (f32).
+///
+/// `x` is specified in radians and the return value is (sin(x), cos(x)).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn sincosf(x: f32) -> (f32, f32) {
+    let s: f32;
+    let c: f32;
+    let mut ix: u32;
+    let sign: bool;
+
+    ix = x.to_bits();
+    sign = (ix >> 31) != 0;
+    ix &= 0x7fffffff;
+
+    /* |x| ~<= pi/4 */
+    if ix <= 0x3f490fda {
+        /* |x| < 2**-12 */
+        if ix < 0x39800000 {
+            /* raise inexact if x!=0 and underflow if subnormal */
+
+            let x1p120 = f32::from_bits(0x7b800000); // 0x1p120 == 2^120
+            if ix < 0x00100000 {
+                force_eval!(x / x1p120);
+            } else {
+                force_eval!(x + x1p120);
+            }
+            return (x, 1.0);
+        }
+        return (k_sinf(x as f64), k_cosf(x as f64));
+    }
+
+    /* |x| ~<= 5*pi/4 */
+    if ix <= 0x407b53d1 {
+        if ix <= 0x4016cbe3 {
+            /* |x| ~<= 3pi/4 */
+            if sign {
+                s = -k_cosf(x as f64 + S1PIO2);
+                c = k_sinf(x as f64 + S1PIO2);
+            } else {
+                s = k_cosf(S1PIO2 - x as f64);
+                c = k_sinf(S1PIO2 - x as f64);
+            }
+        }
+        /* -sin(x+c) is not correct if x+c could be 0: -0 vs +0 */
+        else if sign {
+            s = -k_sinf(x as f64 + S2PIO2);
+            c = -k_cosf(x as f64 + S2PIO2);
+        } else {
+            s = -k_sinf(x as f64 - S2PIO2);
+            c = -k_cosf(x as f64 - S2PIO2);
+        }
+
+        return (s, c);
+    }
+
+    /* |x| ~<= 9*pi/4 */
+    if ix <= 0x40e231d5 {
+        if ix <= 0x40afeddf {
+            /* |x| ~<= 7*pi/4 */
+            if sign {
+                s = k_cosf(x as f64 + S3PIO2);
+                c = -k_sinf(x as f64 + S3PIO2);
+            } else {
+                s = -k_cosf(x as f64 - S3PIO2);
+                c = k_sinf(x as f64 - S3PIO2);
+            }
+        } else if sign {
+            s = k_sinf(x as f64 + S4PIO2);
+            c = k_cosf(x as f64 + S4PIO2);
+        } else {
+            s = k_sinf(x as f64 - S4PIO2);
+            c = k_cosf(x as f64 - S4PIO2);
+        }
+
+        return (s, c);
+    }
+
+    /* sin(Inf or NaN) is NaN */
+    if ix >= 0x7f800000 {
+        let rv = x - x;
+        return (rv, rv);
+    }
+
+    /* general argument reduction needed */
+    let (n, y) = rem_pio2f(x);
+    s = k_sinf(y);
+    c = k_cosf(y);
+    match n & 3 {
+        0 => (s, c),
+        1 => (c, -s),
+        2 => (-s, -c),
+        3 => (-c, s),
+        #[cfg(debug_assertions)]
+        _ => unreachable!(),
+        #[cfg(not(debug_assertions))]
+        _ => (0.0, 1.0),
+    }
+}
+
+// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520
+#[cfg(not(target_arch = "powerpc64"))]
+#[cfg(test)]
+mod tests {
+    use super::sincosf;
+
+    #[test]
+    fn rotational_symmetry() {
+        use core::f32::consts::PI;
+        const N: usize = 24;
+        for n in 0..N {
+            let theta = 2. * PI * (n as f32) / (N as f32);
+            let (s, c) = sincosf(theta);
+            let (s_plus, c_plus) = sincosf(theta + 2. * PI);
+            let (s_minus, c_minus) = sincosf(theta - 2. * PI);
+
+            const TOLERANCE: f32 = 1e-6;
+            assert!(
+                (s - s_plus).abs() < TOLERANCE,
+                "|{} - {}| = {} >= {}",
+                s,
+                s_plus,
+                (s - s_plus).abs(),
+                TOLERANCE
+            );
+            assert!(
+                (s - s_minus).abs() < TOLERANCE,
+                "|{} - {}| = {} >= {}",
+                s,
+                s_minus,
+                (s - s_minus).abs(),
+                TOLERANCE
+            );
+            assert!(
+                (c - c_plus).abs() < TOLERANCE,
+                "|{} - {}| = {} >= {}",
+                c,
+                c_plus,
+                (c - c_plus).abs(),
+                TOLERANCE
+            );
+            assert!(
+                (c - c_minus).abs() < TOLERANCE,
+                "|{} - {}| = {} >= {}",
+                c,
+                c_minus,
+                (c - c_minus).abs(),
+                TOLERANCE
+            );
+        }
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/sinf.rs b/library/compiler-builtins/libm/src/math/sinf.rs
new file mode 100644
index 00000000000..b8fae2c9801
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/sinf.rs
@@ -0,0 +1,88 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_sinf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use core::f64::consts::FRAC_PI_2;
+
+use super::{k_cosf, k_sinf, rem_pio2f};
+
+/* Small multiples of pi/2 rounded to double precision. */
+const S1_PIO2: f64 = 1. * FRAC_PI_2; /* 0x3FF921FB, 0x54442D18 */
+const S2_PIO2: f64 = 2. * FRAC_PI_2; /* 0x400921FB, 0x54442D18 */
+const S3_PIO2: f64 = 3. * FRAC_PI_2; /* 0x4012D97C, 0x7F3321D2 */
+const S4_PIO2: f64 = 4. * FRAC_PI_2; /* 0x401921FB, 0x54442D18 */
+
+/// The sine of `x` (f32).
+///
+/// `x` is specified in radians.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn sinf(x: f32) -> f32 {
+    let x64 = x as f64;
+
+    let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120
+
+    let mut ix = x.to_bits();
+    let sign = (ix >> 31) != 0;
+    ix &= 0x7fffffff;
+
+    if ix <= 0x3f490fda {
+        /* |x| ~<= pi/4 */
+        if ix < 0x39800000 {
+            /* |x| < 2**-12 */
+            /* raise inexact if x!=0 and underflow if subnormal */
+            force_eval!(if ix < 0x00800000 { x / x1p120 } else { x + x1p120 });
+            return x;
+        }
+        return k_sinf(x64);
+    }
+    if ix <= 0x407b53d1 {
+        /* |x| ~<= 5*pi/4 */
+        if ix <= 0x4016cbe3 {
+            /* |x| ~<= 3pi/4 */
+            if sign {
+                return -k_cosf(x64 + S1_PIO2);
+            } else {
+                return k_cosf(x64 - S1_PIO2);
+            }
+        }
+        return k_sinf(if sign { -(x64 + S2_PIO2) } else { -(x64 - S2_PIO2) });
+    }
+    if ix <= 0x40e231d5 {
+        /* |x| ~<= 9*pi/4 */
+        if ix <= 0x40afeddf {
+            /* |x| ~<= 7*pi/4 */
+            if sign {
+                return k_cosf(x64 + S3_PIO2);
+            } else {
+                return -k_cosf(x64 - S3_PIO2);
+            }
+        }
+        return k_sinf(if sign { x64 + S4_PIO2 } else { x64 - S4_PIO2 });
+    }
+
+    /* sin(Inf or NaN) is NaN */
+    if ix >= 0x7f800000 {
+        return x - x;
+    }
+
+    /* general argument reduction needed */
+    let (n, y) = rem_pio2f(x);
+    match n & 3 {
+        0 => k_sinf(y),
+        1 => k_cosf(y),
+        2 => k_sinf(-y),
+        _ => -k_cosf(y),
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/sinh.rs b/library/compiler-builtins/libm/src/math/sinh.rs
new file mode 100644
index 00000000000..79184198263
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/sinh.rs
@@ -0,0 +1,51 @@
+use super::{expm1, expo2};
+
+// sinh(x) = (exp(x) - 1/exp(x))/2
+//         = (exp(x)-1 + (exp(x)-1)/exp(x))/2
+//         = x + x^3/6 + o(x^5)
+//
+
+/// The hyperbolic sine of `x` (f64).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn sinh(x: f64) -> f64 {
+    // union {double f; uint64_t i;} u = {.f = x};
+    // uint32_t w;
+    // double t, h, absx;
+
+    let mut uf: f64 = x;
+    let mut ui: u64 = f64::to_bits(uf);
+    let w: u32;
+    let t: f64;
+    let mut h: f64;
+    let absx: f64;
+
+    h = 0.5;
+    if ui >> 63 != 0 {
+        h = -h;
+    }
+    /* |x| */
+    ui &= !1 / 2;
+    uf = f64::from_bits(ui);
+    absx = uf;
+    w = (ui >> 32) as u32;
+
+    /* |x| < log(DBL_MAX) */
+    if w < 0x40862e42 {
+        t = expm1(absx);
+        if w < 0x3ff00000 {
+            if w < 0x3ff00000 - (26 << 20) {
+                /* note: inexact and underflow are raised by expm1 */
+                /* note: this branch avoids spurious underflow */
+                return x;
+            }
+            return h * (2.0 * t - t * t / (t + 1.0));
+        }
+        /* note: |x|>log(0x1p26)+eps could be just h*exp(x) */
+        return h * (t + t / (t + 1.0));
+    }
+
+    /* |x| > log(DBL_MAX) or nan */
+    /* note: the result is stored to handle overflow */
+    t = 2.0 * h * expo2(absx);
+    t
+}
diff --git a/library/compiler-builtins/libm/src/math/sinhf.rs b/library/compiler-builtins/libm/src/math/sinhf.rs
new file mode 100644
index 00000000000..44d2e3560d5
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/sinhf.rs
@@ -0,0 +1,30 @@
+use super::{expm1f, k_expo2f};
+
+/// The hyperbolic sine of `x` (f32).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn sinhf(x: f32) -> f32 {
+    let mut h = 0.5f32;
+    let mut ix = x.to_bits();
+    if (ix >> 31) != 0 {
+        h = -h;
+    }
+    /* |x| */
+    ix &= 0x7fffffff;
+    let absx = f32::from_bits(ix);
+    let w = ix;
+
+    /* |x| < log(FLT_MAX) */
+    if w < 0x42b17217 {
+        let t = expm1f(absx);
+        if w < 0x3f800000 {
+            if w < (0x3f800000 - (12 << 23)) {
+                return x;
+            }
+            return h * (2. * t - t * t / (t + 1.));
+        }
+        return h * (t + t / (t + 1.));
+    }
+
+    /* |x| > logf(FLT_MAX) or nan */
+    2. * h * k_expo2f(absx)
+}
diff --git a/library/compiler-builtins/libm/src/math/sqrt.rs b/library/compiler-builtins/libm/src/math/sqrt.rs
new file mode 100644
index 00000000000..76bc240cf01
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/sqrt.rs
@@ -0,0 +1,51 @@
+/// The square root of `x` (f16).
+#[cfg(f16_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn sqrtf16(x: f16) -> f16 {
+    select_implementation! {
+        name: sqrtf16,
+        use_arch: all(target_arch = "aarch64", target_feature = "fp16"),
+        args: x,
+    }
+
+    return super::generic::sqrt(x);
+}
+
+/// The square root of `x` (f32).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn sqrtf(x: f32) -> f32 {
+    select_implementation! {
+        name: sqrtf,
+        use_arch: any(
+            all(target_arch = "aarch64", target_feature = "neon"),
+            all(target_arch = "wasm32", intrinsics_enabled),
+            target_feature = "sse2"
+        ),
+        args: x,
+    }
+
+    super::generic::sqrt(x)
+}
+
+/// The square root of `x` (f64).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn sqrt(x: f64) -> f64 {
+    select_implementation! {
+        name: sqrt,
+        use_arch: any(
+            all(target_arch = "aarch64", target_feature = "neon"),
+            all(target_arch = "wasm32", intrinsics_enabled),
+            target_feature = "sse2"
+        ),
+        args: x,
+    }
+
+    super::generic::sqrt(x)
+}
+
+/// The square root of `x` (f128).
+#[cfg(f128_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn sqrtf128(x: f128) -> f128 {
+    return super::generic::sqrt(x);
+}
diff --git a/library/compiler-builtins/libm/src/math/sqrtf.rs b/library/compiler-builtins/libm/src/math/sqrtf.rs
new file mode 100644
index 00000000000..c28a705e378
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/sqrtf.rs
@@ -0,0 +1,15 @@
+/// The square root of `x` (f32).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn sqrtf(x: f32) -> f32 {
+    select_implementation! {
+        name: sqrtf,
+        use_arch: any(
+            all(target_arch = "aarch64", target_feature = "neon"),
+            all(target_arch = "wasm32", intrinsics_enabled),
+            target_feature = "sse2"
+        ),
+        args: x,
+    }
+
+    super::generic::sqrt(x)
+}
diff --git a/library/compiler-builtins/libm/src/math/sqrtf128.rs b/library/compiler-builtins/libm/src/math/sqrtf128.rs
new file mode 100644
index 00000000000..eaef6ae0c1c
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/sqrtf128.rs
@@ -0,0 +1,5 @@
+/// The square root of `x` (f128).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn sqrtf128(x: f128) -> f128 {
+    return super::generic::sqrt(x);
+}
diff --git a/library/compiler-builtins/libm/src/math/sqrtf16.rs b/library/compiler-builtins/libm/src/math/sqrtf16.rs
new file mode 100644
index 00000000000..7bedb7f8bbb
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/sqrtf16.rs
@@ -0,0 +1,11 @@
+/// The square root of `x` (f16).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn sqrtf16(x: f16) -> f16 {
+    select_implementation! {
+        name: sqrtf16,
+        use_arch: all(target_arch = "aarch64", target_feature = "fp16"),
+        args: x,
+    }
+
+    return super::generic::sqrt(x);
+}
diff --git a/library/compiler-builtins/libm/src/math/support/big.rs b/library/compiler-builtins/libm/src/math/support/big.rs
new file mode 100644
index 00000000000..eae08238e09
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/support/big.rs
@@ -0,0 +1,239 @@
+//! Integers used for wide operations, larger than `u128`.
+
+#[cfg(test)]
+mod tests;
+
+use core::ops;
+
+use super::{DInt, HInt, Int, MinInt};
+
+const U128_LO_MASK: u128 = u64::MAX as u128;
+
+/// A 256-bit unsigned integer represented as two 128-bit native-endian limbs.
+#[allow(non_camel_case_types)]
+#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
+pub struct u256 {
+    pub lo: u128,
+    pub hi: u128,
+}
+
+impl u256 {
+    #[cfg(any(test, feature = "unstable-public-internals"))]
+    pub const MAX: Self = Self { lo: u128::MAX, hi: u128::MAX };
+
+    /// Reinterpret as a signed integer
+    pub fn signed(self) -> i256 {
+        i256 { lo: self.lo, hi: self.hi }
+    }
+}
+
+/// A 256-bit signed integer represented as two 128-bit native-endian limbs.
+#[allow(non_camel_case_types)]
+#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
+pub struct i256 {
+    pub lo: u128,
+    pub hi: u128,
+}
+
+impl i256 {
+    /// Reinterpret as an unsigned integer
+    #[cfg(any(test, feature = "unstable-public-internals"))]
+    pub fn unsigned(self) -> u256 {
+        u256 { lo: self.lo, hi: self.hi }
+    }
+}
+
+impl MinInt for u256 {
+    type OtherSign = i256;
+
+    type Unsigned = u256;
+
+    const SIGNED: bool = false;
+    const BITS: u32 = 256;
+    const ZERO: Self = Self { lo: 0, hi: 0 };
+    const ONE: Self = Self { lo: 1, hi: 0 };
+    const MIN: Self = Self { lo: 0, hi: 0 };
+    const MAX: Self = Self { lo: u128::MAX, hi: u128::MAX };
+}
+
+impl MinInt for i256 {
+    type OtherSign = u256;
+
+    type Unsigned = u256;
+
+    const SIGNED: bool = false;
+    const BITS: u32 = 256;
+    const ZERO: Self = Self { lo: 0, hi: 0 };
+    const ONE: Self = Self { lo: 1, hi: 0 };
+    const MIN: Self = Self { lo: 0, hi: 1 << 127 };
+    const MAX: Self = Self { lo: u128::MAX, hi: u128::MAX << 1 };
+}
+
+macro_rules! impl_common {
+    ($ty:ty) => {
+        impl ops::BitOr for $ty {
+            type Output = Self;
+
+            fn bitor(mut self, rhs: Self) -> Self::Output {
+                self.lo |= rhs.lo;
+                self.hi |= rhs.hi;
+                self
+            }
+        }
+
+        impl ops::Not for $ty {
+            type Output = Self;
+
+            fn not(mut self) -> Self::Output {
+                self.lo = !self.lo;
+                self.hi = !self.hi;
+                self
+            }
+        }
+
+        impl ops::Shl<u32> for $ty {
+            type Output = Self;
+
+            fn shl(self, _rhs: u32) -> Self::Output {
+                unimplemented!("only used to meet trait bounds")
+            }
+        }
+    };
+}
+
+impl_common!(i256);
+impl_common!(u256);
+
+impl ops::Add<Self> for u256 {
+    type Output = Self;
+
+    fn add(self, rhs: Self) -> Self::Output {
+        let (lo, carry) = self.lo.overflowing_add(rhs.lo);
+        let hi = self.hi.wrapping_add(carry as u128).wrapping_add(rhs.hi);
+
+        Self { lo, hi }
+    }
+}
+
+impl ops::Shr<u32> for u256 {
+    type Output = Self;
+
+    fn shr(mut self, rhs: u32) -> Self::Output {
+        debug_assert!(rhs < Self::BITS, "attempted to shift right with overflow");
+        if rhs >= Self::BITS {
+            return Self::ZERO;
+        }
+
+        if rhs == 0 {
+            return self;
+        }
+
+        if rhs < 128 {
+            self.lo >>= rhs;
+            self.lo |= self.hi << (128 - rhs);
+        } else {
+            self.lo = self.hi >> (rhs - 128);
+        }
+
+        if rhs < 128 {
+            self.hi >>= rhs;
+        } else {
+            self.hi = 0;
+        }
+
+        self
+    }
+}
+
+impl HInt for u128 {
+    type D = u256;
+
+    fn widen(self) -> Self::D {
+        u256 { lo: self, hi: 0 }
+    }
+
+    fn zero_widen(self) -> Self::D {
+        self.widen()
+    }
+
+    fn zero_widen_mul(self, rhs: Self) -> Self::D {
+        let l0 = self & U128_LO_MASK;
+        let l1 = rhs & U128_LO_MASK;
+        let h0 = self >> 64;
+        let h1 = rhs >> 64;
+
+        let p_ll: u128 = l0.overflowing_mul(l1).0;
+        let p_lh: u128 = l0.overflowing_mul(h1).0;
+        let p_hl: u128 = h0.overflowing_mul(l1).0;
+        let p_hh: u128 = h0.overflowing_mul(h1).0;
+
+        let s0 = p_hl + (p_ll >> 64);
+        let s1 = (p_ll & U128_LO_MASK) + (s0 << 64);
+        let s2 = p_lh + (s1 >> 64);
+
+        let lo = (p_ll & U128_LO_MASK) + (s2 << 64);
+        let hi = p_hh + (s0 >> 64) + (s2 >> 64);
+
+        u256 { lo, hi }
+    }
+
+    fn widen_mul(self, rhs: Self) -> Self::D {
+        self.zero_widen_mul(rhs)
+    }
+
+    fn widen_hi(self) -> Self::D {
+        self.widen() << <Self as MinInt>::BITS
+    }
+}
+
+impl HInt for i128 {
+    type D = i256;
+
+    fn widen(self) -> Self::D {
+        let mut ret = self.unsigned().zero_widen().signed();
+        if self.is_negative() {
+            ret.hi = u128::MAX;
+        }
+        ret
+    }
+
+    fn zero_widen(self) -> Self::D {
+        self.unsigned().zero_widen().signed()
+    }
+
+    fn zero_widen_mul(self, rhs: Self) -> Self::D {
+        self.unsigned().zero_widen_mul(rhs.unsigned()).signed()
+    }
+
+    fn widen_mul(self, _rhs: Self) -> Self::D {
+        unimplemented!("signed i128 widening multiply is not used")
+    }
+
+    fn widen_hi(self) -> Self::D {
+        self.widen() << <Self as MinInt>::BITS
+    }
+}
+
+impl DInt for u256 {
+    type H = u128;
+
+    fn lo(self) -> Self::H {
+        self.lo
+    }
+
+    fn hi(self) -> Self::H {
+        self.hi
+    }
+}
+
+impl DInt for i256 {
+    type H = i128;
+
+    fn lo(self) -> Self::H {
+        self.lo as i128
+    }
+
+    fn hi(self) -> Self::H {
+        self.hi as i128
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/support/big/tests.rs b/library/compiler-builtins/libm/src/math/support/big/tests.rs
new file mode 100644
index 00000000000..2c71191ba53
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/support/big/tests.rs
@@ -0,0 +1,149 @@
+extern crate std;
+use std::string::String;
+use std::{eprintln, format};
+
+use super::{HInt, MinInt, i256, u256};
+
+const LOHI_SPLIT: u128 = 0xaaaaaaaaaaaaaaaaffffffffffffffff;
+
+/// Print a `u256` as hex since we can't add format implementations
+fn hexu(v: u256) -> String {
+    format!("0x{:032x}{:032x}", v.hi, v.lo)
+}
+
+#[test]
+fn widen_u128() {
+    assert_eq!(u128::MAX.widen(), u256 { lo: u128::MAX, hi: 0 });
+    assert_eq!(LOHI_SPLIT.widen(), u256 { lo: LOHI_SPLIT, hi: 0 });
+}
+
+#[test]
+fn widen_i128() {
+    assert_eq!((-1i128).widen(), u256::MAX.signed());
+    assert_eq!((LOHI_SPLIT as i128).widen(), i256 { lo: LOHI_SPLIT, hi: u128::MAX });
+    assert_eq!((-1i128).zero_widen().unsigned(), (u128::MAX).widen());
+}
+
+#[test]
+fn widen_mul_u128() {
+    let tests = [
+        (u128::MAX / 2, 2_u128, u256 { lo: u128::MAX - 1, hi: 0 }),
+        (u128::MAX, 2_u128, u256 { lo: u128::MAX - 1, hi: 1 }),
+        (u128::MAX, u128::MAX, u256 { lo: 1, hi: u128::MAX - 1 }),
+        (0, 0, u256::ZERO),
+        (1234u128, 0, u256::ZERO),
+        (0, 1234, u256::ZERO),
+    ];
+
+    let mut has_errors = false;
+    let mut add_error = |i, a, b, expected, actual| {
+        has_errors = true;
+        eprintln!(
+            "\
+            FAILURE ({i}): {a:#034x} * {b:#034x}\n\
+            expected: {}\n\
+            got:      {}\
+            ",
+            hexu(expected),
+            hexu(actual)
+        );
+    };
+
+    for (i, (a, b, exp)) in tests.iter().copied().enumerate() {
+        let res = a.widen_mul(b);
+        let res_z = a.zero_widen_mul(b);
+        assert_eq!(res, res_z);
+        if res != exp {
+            add_error(i, a, b, exp, res);
+        }
+    }
+
+    assert!(!has_errors);
+}
+
+#[test]
+fn not_u256() {
+    assert_eq!(!u256::ZERO, u256::MAX);
+}
+
+#[test]
+fn shr_u256() {
+    let only_low = [1, u16::MAX.into(), u32::MAX.into(), u64::MAX.into(), u128::MAX];
+    let mut has_errors = false;
+
+    let mut add_error = |a, b, expected, actual| {
+        has_errors = true;
+        eprintln!(
+            "\
+            FAILURE:  {} >> {b}\n\
+            expected: {}\n\
+            actual:   {}\
+            ",
+            hexu(a),
+            hexu(expected),
+            hexu(actual),
+        );
+    };
+
+    for a in only_low {
+        for perturb in 0..10 {
+            let a = a.saturating_add(perturb);
+            for shift in 0..128 {
+                let res = a.widen() >> shift;
+                let expected = (a >> shift).widen();
+                if res != expected {
+                    add_error(a.widen(), shift, expected, res);
+                }
+            }
+        }
+    }
+
+    let check = [
+        (u256::MAX, 1, u256 { lo: u128::MAX, hi: u128::MAX >> 1 }),
+        (u256::MAX, 5, u256 { lo: u128::MAX, hi: u128::MAX >> 5 }),
+        (u256::MAX, 63, u256 { lo: u128::MAX, hi: u64::MAX as u128 | (1 << 64) }),
+        (u256::MAX, 64, u256 { lo: u128::MAX, hi: u64::MAX as u128 }),
+        (u256::MAX, 65, u256 { lo: u128::MAX, hi: (u64::MAX >> 1) as u128 }),
+        (u256::MAX, 127, u256 { lo: u128::MAX, hi: 1 }),
+        (u256::MAX, 128, u256 { lo: u128::MAX, hi: 0 }),
+        (u256::MAX, 129, u256 { lo: u128::MAX >> 1, hi: 0 }),
+        (u256::MAX, 191, u256 { lo: u64::MAX as u128 | 1 << 64, hi: 0 }),
+        (u256::MAX, 192, u256 { lo: u64::MAX as u128, hi: 0 }),
+        (u256::MAX, 193, u256 { lo: u64::MAX as u128 >> 1, hi: 0 }),
+        (u256::MAX, 254, u256 { lo: 0b11, hi: 0 }),
+        (u256::MAX, 255, u256 { lo: 1, hi: 0 }),
+        (
+            u256 { hi: LOHI_SPLIT, lo: 0 },
+            64,
+            u256 { lo: 0xffffffffffffffff0000000000000000, hi: 0xaaaaaaaaaaaaaaaa },
+        ),
+    ];
+
+    for (input, shift, expected) in check {
+        let res = input >> shift;
+        if res != expected {
+            add_error(input, shift, expected, res);
+        }
+    }
+
+    assert!(!has_errors);
+}
+
+#[test]
+#[should_panic]
+#[cfg(debug_assertions)]
+// FIXME(ppc): ppc64le seems to have issues with `should_panic` tests.
+#[cfg(not(all(target_arch = "powerpc64", target_endian = "little")))]
+fn shr_u256_overflow() {
+    // Like regular shr, panic on overflow with debug assertions
+    let _ = u256::MAX >> 256;
+}
+
+#[test]
+#[cfg(not(debug_assertions))]
+fn shr_u256_overflow() {
+    // No panic without debug assertions
+    assert_eq!(u256::MAX >> 256, u256::ZERO);
+    assert_eq!(u256::MAX >> 257, u256::ZERO);
+    assert_eq!(u256::MAX >> u32::MAX, u256::ZERO);
+}
diff --git a/library/compiler-builtins/libm/src/math/support/env.rs b/library/compiler-builtins/libm/src/math/support/env.rs
new file mode 100644
index 00000000000..796309372a5
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/support/env.rs
@@ -0,0 +1,127 @@
+//! Support for rounding directions and status flags as specified by IEEE 754.
+//!
+//! Rust does not support the floating point environment so rounding mode is passed as an argument
+//! and status flags are returned as part of the result. There is currently not much support for
+//! this; most existing ports from musl use a form of `force_eval!` to raise exceptions, but this
+//! has no side effects in Rust. Further, correct behavior relies on elementary operations making
+//! use of the correct rounding and raising relevant exceptions, which is not the case for Rust.
+//!
+//! This module exists so no functionality is lost when porting algorithms that respect floating
+//! point environment, and so that some functionality may be tested (that which does not rely on
+//! side effects from elementary operations). Full support would require wrappers around basic
+//! operations, but there is no plan to add this at the current time.
+
+/// A value combined with a floating point status.
+pub struct FpResult<T> {
+    pub val: T,
+    #[cfg_attr(not(feature = "unstable-public-internals"), allow(dead_code))]
+    pub status: Status,
+}
+
+impl<T> FpResult<T> {
+    pub fn new(val: T, status: Status) -> Self {
+        Self { val, status }
+    }
+
+    /// Return `val` with `Status::OK`.
+    pub fn ok(val: T) -> Self {
+        Self { val, status: Status::OK }
+    }
+}
+
+/// IEEE 754 rounding mode, excluding the optional `roundTiesToAway` version of nearest.
+///
+/// Integer representation comes from what CORE-MATH uses for indexing.
+#[cfg_attr(not(feature = "unstable-public-internals"), allow(dead_code))]
+#[derive(Clone, Copy, Debug, PartialEq)]
+pub enum Round {
+    /// IEEE 754 nearest, `roundTiesToEven`.
+    Nearest = 0,
+    /// IEEE 754 `roundTowardNegative`.
+    Negative = 1,
+    /// IEEE 754 `roundTowardPositive`.
+    Positive = 2,
+    /// IEEE 754 `roundTowardZero`.
+    Zero = 3,
+}
+
+/// IEEE 754 exception status flags.
+#[derive(Clone, Copy, Debug, PartialEq, Eq)]
+pub struct Status(u8);
+
+impl Status {
+    /// Default status indicating no errors.
+    pub const OK: Self = Self(0);
+
+    /// No definable result.
+    ///
+    /// Includes:
+    /// - Any ops on sNaN, with a few exceptions.
+    /// - `0 * inf`, `inf * 0`.
+    /// - `fma(0, inf, c)` or `fma(inf, 0, c)`, possibly excluding `c = qNaN`.
+    /// - `+inf + -inf` and similar (includes subtraction and fma).
+    /// - `0.0 / 0.0`, `inf / inf`
+    /// - `remainder(x, y)` if `y == 0.0` or `x == inf`, and neither is NaN.
+    /// - `sqrt(x)` with `x < 0.0`.
+    pub const INVALID: Self = Self(1);
+
+    /// Division by zero.
+    ///
+    /// The default result for division is +/-inf based on operand sign. For `logB`, the default
+    /// result is -inf.
+    /// `x / y` when `x != 0.0` and `y == 0.0`,
+    #[cfg_attr(not(feature = "unstable-public-internals"), allow(dead_code))]
+    pub const DIVIDE_BY_ZERO: Self = Self(1 << 2);
+
+    /// The result exceeds the maximum finite value.
+    ///
+    /// The default result depends on rounding mode. `Nearest*` rounds to +/- infinity, sign based
+    /// on the intermediate result. `Zero` rounds to the signed maximum finite. `Positive` and
+    /// `Negative` round to signed maximum finite in one direction, signed infinity in the other.
+    #[cfg_attr(not(feature = "unstable-public-internals"), allow(dead_code))]
+    pub const OVERFLOW: Self = Self(1 << 3);
+
+    /// The result is subnormal and lost precision.
+    pub const UNDERFLOW: Self = Self(1 << 4);
+
+    /// The finite-precision result does not match that of infinite precision, and the reason
+    /// is not represented by one of the other flags.
+    pub const INEXACT: Self = Self(1 << 5);
+
+    /// True if `UNDERFLOW` is set.
+    #[cfg_attr(not(feature = "unstable-public-internals"), allow(dead_code))]
+    pub const fn underflow(self) -> bool {
+        self.0 & Self::UNDERFLOW.0 != 0
+    }
+
+    /// True if `OVERFLOW` is set.
+    #[cfg_attr(not(feature = "unstable-public-internals"), allow(dead_code))]
+    pub const fn overflow(self) -> bool {
+        self.0 & Self::OVERFLOW.0 != 0
+    }
+
+    pub fn set_underflow(&mut self, val: bool) {
+        self.set_flag(val, Self::UNDERFLOW);
+    }
+
+    /// True if `INEXACT` is set.
+    pub const fn inexact(self) -> bool {
+        self.0 & Self::INEXACT.0 != 0
+    }
+
+    pub fn set_inexact(&mut self, val: bool) {
+        self.set_flag(val, Self::INEXACT);
+    }
+
+    fn set_flag(&mut self, val: bool, mask: Self) {
+        if val {
+            self.0 |= mask.0;
+        } else {
+            self.0 &= !mask.0;
+        }
+    }
+
+    pub(crate) const fn with(self, rhs: Self) -> Self {
+        Self(self.0 | rhs.0)
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/support/float_traits.rs b/library/compiler-builtins/libm/src/math/support/float_traits.rs
new file mode 100644
index 00000000000..fac10483237
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/support/float_traits.rs
@@ -0,0 +1,484 @@
+use core::{fmt, mem, ops};
+
+use super::int_traits::{CastFrom, Int, MinInt};
+
+/// Trait for some basic operations on floats
+// #[allow(dead_code)]
+pub trait Float:
+    Copy
+    + fmt::Debug
+    + PartialEq
+    + PartialOrd
+    + ops::AddAssign
+    + ops::MulAssign
+    + ops::Add<Output = Self>
+    + ops::Sub<Output = Self>
+    + ops::Mul<Output = Self>
+    + ops::Div<Output = Self>
+    + ops::Rem<Output = Self>
+    + ops::Neg<Output = Self>
+    + 'static
+{
+    /// A uint of the same width as the float
+    type Int: Int<OtherSign = Self::SignedInt, Unsigned = Self::Int>;
+
+    /// A int of the same width as the float
+    type SignedInt: Int
+        + MinInt<OtherSign = Self::Int, Unsigned = Self::Int>
+        + ops::Neg<Output = Self::SignedInt>;
+
+    const ZERO: Self;
+    const NEG_ZERO: Self;
+    const ONE: Self;
+    const NEG_ONE: Self;
+    const INFINITY: Self;
+    const NEG_INFINITY: Self;
+    const NAN: Self;
+    const NEG_NAN: Self;
+    const MAX: Self;
+    const MIN: Self;
+    const EPSILON: Self;
+    const PI: Self;
+    const NEG_PI: Self;
+    const FRAC_PI_2: Self;
+
+    const MIN_POSITIVE_NORMAL: Self;
+
+    /// The bitwidth of the float type
+    const BITS: u32;
+
+    /// The bitwidth of the significand
+    const SIG_BITS: u32;
+
+    /// The bitwidth of the exponent
+    const EXP_BITS: u32 = Self::BITS - Self::SIG_BITS - 1;
+
+    /// The saturated (maximum bitpattern) value of the exponent, i.e. the infinite
+    /// representation.
+    ///
+    /// This shifted fully right, use `EXP_MASK` for the shifted value.
+    const EXP_SAT: u32 = (1 << Self::EXP_BITS) - 1;
+
+    /// The exponent bias value
+    const EXP_BIAS: u32 = Self::EXP_SAT >> 1;
+
+    /// Maximum unbiased exponent value.
+    const EXP_MAX: i32 = Self::EXP_BIAS as i32;
+
+    /// Minimum *NORMAL* unbiased exponent value.
+    const EXP_MIN: i32 = -(Self::EXP_MAX - 1);
+
+    /// Minimum subnormal exponent value.
+    const EXP_MIN_SUBNORM: i32 = Self::EXP_MIN - Self::SIG_BITS as i32;
+
+    /// A mask for the sign bit
+    const SIGN_MASK: Self::Int;
+
+    /// A mask for the significand
+    const SIG_MASK: Self::Int;
+
+    /// A mask for the exponent
+    const EXP_MASK: Self::Int;
+
+    /// The implicit bit of the float format
+    const IMPLICIT_BIT: Self::Int;
+
+    /// Returns `self` transmuted to `Self::Int`
+    fn to_bits(self) -> Self::Int;
+
+    /// Returns `self` transmuted to `Self::SignedInt`
+    #[allow(dead_code)]
+    fn to_bits_signed(self) -> Self::SignedInt {
+        self.to_bits().signed()
+    }
+
+    /// Check bitwise equality.
+    #[allow(dead_code)]
+    fn biteq(self, rhs: Self) -> bool {
+        self.to_bits() == rhs.to_bits()
+    }
+
+    /// Checks if two floats have the same bit representation. *Except* for NaNs! NaN can be
+    /// represented in multiple different ways.
+    ///
+    /// This method returns `true` if two NaNs are compared. Use [`biteq`](Self::biteq) instead
+    /// if `NaN` should not be treated separately.
+    #[allow(dead_code)]
+    fn eq_repr(self, rhs: Self) -> bool {
+        if self.is_nan() && rhs.is_nan() { true } else { self.biteq(rhs) }
+    }
+
+    /// Returns true if the value is NaN.
+    fn is_nan(self) -> bool;
+
+    /// Returns true if the value is +inf or -inf.
+    fn is_infinite(self) -> bool;
+
+    /// Returns true if the sign is negative. Extracts the sign bit regardless of zero or NaN.
+    fn is_sign_negative(self) -> bool;
+
+    /// Returns true if the sign is positive. Extracts the sign bit regardless of zero or NaN.
+    fn is_sign_positive(self) -> bool {
+        !self.is_sign_negative()
+    }
+
+    /// Returns if `self` is subnormal.
+    #[allow(dead_code)]
+    fn is_subnormal(self) -> bool {
+        (self.to_bits() & Self::EXP_MASK) == Self::Int::ZERO
+    }
+
+    /// Returns the exponent, not adjusting for bias, not accounting for subnormals or zero.
+    fn ex(self) -> u32 {
+        u32::cast_from(self.to_bits() >> Self::SIG_BITS) & Self::EXP_SAT
+    }
+
+    /// Extract the exponent and adjust it for bias, not accounting for subnormals or zero.
+    fn exp_unbiased(self) -> i32 {
+        self.ex().signed() - (Self::EXP_BIAS as i32)
+    }
+
+    /// Returns the significand with no implicit bit (or the "fractional" part)
+    #[allow(dead_code)]
+    fn frac(self) -> Self::Int {
+        self.to_bits() & Self::SIG_MASK
+    }
+
+    /// Returns a `Self::Int` transmuted back to `Self`
+    fn from_bits(a: Self::Int) -> Self;
+
+    /// Constructs a `Self` from its parts. Inputs are treated as bits and shifted into position.
+    fn from_parts(negative: bool, exponent: u32, significand: Self::Int) -> Self {
+        let sign = if negative { Self::Int::ONE } else { Self::Int::ZERO };
+        Self::from_bits(
+            (sign << (Self::BITS - 1))
+                | (Self::Int::cast_from(exponent & Self::EXP_SAT) << Self::SIG_BITS)
+                | (significand & Self::SIG_MASK),
+        )
+    }
+
+    #[allow(dead_code)]
+    fn abs(self) -> Self;
+
+    /// Returns a number composed of the magnitude of self and the sign of sign.
+    fn copysign(self, other: Self) -> Self;
+
+    /// Fused multiply add, rounding once.
+    fn fma(self, y: Self, z: Self) -> Self;
+
+    /// Returns (normalized exponent, normalized significand)
+    #[allow(dead_code)]
+    fn normalize(significand: Self::Int) -> (i32, Self::Int);
+
+    /// Returns a number that represents the sign of self.
+    #[allow(dead_code)]
+    fn signum(self) -> Self {
+        if self.is_nan() { self } else { Self::ONE.copysign(self) }
+    }
+}
+
+/// Access the associated `Int` type from a float (helper to avoid ambiguous associated types).
+pub type IntTy<F> = <F as Float>::Int;
+
+macro_rules! float_impl {
+    (
+        $ty:ident,
+        $ity:ident,
+        $sity:ident,
+        $bits:expr,
+        $significand_bits:expr,
+        $from_bits:path,
+        $to_bits:path,
+        $fma_fn:ident,
+        $fma_intrinsic:ident
+    ) => {
+        impl Float for $ty {
+            type Int = $ity;
+            type SignedInt = $sity;
+
+            const ZERO: Self = 0.0;
+            const NEG_ZERO: Self = -0.0;
+            const ONE: Self = 1.0;
+            const NEG_ONE: Self = -1.0;
+            const INFINITY: Self = Self::INFINITY;
+            const NEG_INFINITY: Self = Self::NEG_INFINITY;
+            const NAN: Self = Self::NAN;
+            // NAN isn't guaranteed to be positive but it usually is. We only use this for
+            // tests.
+            const NEG_NAN: Self = $from_bits($to_bits(Self::NAN) | Self::SIGN_MASK);
+            const MAX: Self = -Self::MIN;
+            // Sign bit set, saturated mantissa, saturated exponent with last bit zeroed
+            const MIN: Self = $from_bits(Self::Int::MAX & !(1 << Self::SIG_BITS));
+            const EPSILON: Self = <$ty>::EPSILON;
+
+            // Exponent is a 1 in the LSB
+            const MIN_POSITIVE_NORMAL: Self = $from_bits(1 << Self::SIG_BITS);
+
+            const PI: Self = core::$ty::consts::PI;
+            const NEG_PI: Self = -Self::PI;
+            const FRAC_PI_2: Self = core::$ty::consts::FRAC_PI_2;
+
+            const BITS: u32 = $bits;
+            const SIG_BITS: u32 = $significand_bits;
+
+            const SIGN_MASK: Self::Int = 1 << (Self::BITS - 1);
+            const SIG_MASK: Self::Int = (1 << Self::SIG_BITS) - 1;
+            const EXP_MASK: Self::Int = !(Self::SIGN_MASK | Self::SIG_MASK);
+            const IMPLICIT_BIT: Self::Int = 1 << Self::SIG_BITS;
+
+            fn to_bits(self) -> Self::Int {
+                self.to_bits()
+            }
+            fn is_nan(self) -> bool {
+                self.is_nan()
+            }
+            fn is_infinite(self) -> bool {
+                self.is_infinite()
+            }
+            fn is_sign_negative(self) -> bool {
+                self.is_sign_negative()
+            }
+            fn from_bits(a: Self::Int) -> Self {
+                Self::from_bits(a)
+            }
+            fn abs(self) -> Self {
+                cfg_if! {
+                    // FIXME(msrv): `abs` is available in `core` starting with 1.85.
+                    if #[cfg(intrinsics_enabled)] {
+                        self.abs()
+                    } else {
+                        super::super::generic::fabs(self)
+                    }
+                }
+            }
+            fn copysign(self, other: Self) -> Self {
+                cfg_if! {
+                    // FIXME(msrv): `copysign` is available in `core` starting with 1.85.
+                    if #[cfg(intrinsics_enabled)] {
+                        self.copysign(other)
+                    } else {
+                        super::super::generic::copysign(self, other)
+                    }
+                }
+            }
+            fn fma(self, y: Self, z: Self) -> Self {
+                cfg_if! {
+                    // fma is not yet available in `core`
+                    if #[cfg(intrinsics_enabled)] {
+                        unsafe{ core::intrinsics::$fma_intrinsic(self, y, z) }
+                    } else {
+                        super::super::$fma_fn(self, y, z)
+                    }
+                }
+            }
+            fn normalize(significand: Self::Int) -> (i32, Self::Int) {
+                let shift = significand.leading_zeros().wrapping_sub(Self::EXP_BITS);
+                (1i32.wrapping_sub(shift as i32), significand << shift as Self::Int)
+            }
+        }
+    };
+}
+
+#[cfg(f16_enabled)]
+float_impl!(f16, u16, i16, 16, 10, f16::from_bits, f16::to_bits, fmaf16, fmaf16);
+float_impl!(f32, u32, i32, 32, 23, f32_from_bits, f32_to_bits, fmaf, fmaf32);
+float_impl!(f64, u64, i64, 64, 52, f64_from_bits, f64_to_bits, fma, fmaf64);
+#[cfg(f128_enabled)]
+float_impl!(f128, u128, i128, 128, 112, f128::from_bits, f128::to_bits, fmaf128, fmaf128);
+
+/* FIXME(msrv): vendor some things that are not const stable at our MSRV */
+
+/// `f32::from_bits`
+pub const fn f32_from_bits(bits: u32) -> f32 {
+    // SAFETY: POD cast with no preconditions
+    unsafe { mem::transmute::<u32, f32>(bits) }
+}
+
+/// `f32::to_bits`
+pub const fn f32_to_bits(x: f32) -> u32 {
+    // SAFETY: POD cast with no preconditions
+    unsafe { mem::transmute::<f32, u32>(x) }
+}
+
+/// `f64::from_bits`
+pub const fn f64_from_bits(bits: u64) -> f64 {
+    // SAFETY: POD cast with no preconditions
+    unsafe { mem::transmute::<u64, f64>(bits) }
+}
+
+/// `f64::to_bits`
+pub const fn f64_to_bits(x: f64) -> u64 {
+    // SAFETY: POD cast with no preconditions
+    unsafe { mem::transmute::<f64, u64>(x) }
+}
+
+/// Trait for floats twice the bit width of another integer.
+pub trait DFloat: Float {
+    /// Float that is half the bit width of the floatthis trait is implemented for.
+    type H: HFloat<D = Self>;
+
+    /// Narrow the float type.
+    fn narrow(self) -> Self::H;
+}
+
+/// Trait for floats half the bit width of another float.
+pub trait HFloat: Float {
+    /// Float that is double the bit width of the float this trait is implemented for.
+    type D: DFloat<H = Self>;
+
+    /// Widen the float type.
+    fn widen(self) -> Self::D;
+}
+
+macro_rules! impl_d_float {
+    ($($X:ident $D:ident),*) => {
+        $(
+            impl DFloat for $D {
+                type H = $X;
+
+                fn narrow(self) -> Self::H {
+                    self as $X
+                }
+            }
+        )*
+    };
+}
+
+macro_rules! impl_h_float {
+    ($($H:ident $X:ident),*) => {
+        $(
+            impl HFloat for $H {
+                type D = $X;
+
+                fn widen(self) -> Self::D {
+                    self as $X
+                }
+            }
+        )*
+    };
+}
+
+impl_d_float!(f32 f64);
+#[cfg(f16_enabled)]
+impl_d_float!(f16 f32);
+#[cfg(f128_enabled)]
+impl_d_float!(f64 f128);
+
+impl_h_float!(f32 f64);
+#[cfg(f16_enabled)]
+impl_h_float!(f16 f32);
+#[cfg(f128_enabled)]
+impl_h_float!(f64 f128);
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+
+    #[test]
+    #[cfg(f16_enabled)]
+    fn check_f16() {
+        // Constants
+        assert_eq!(f16::EXP_SAT, 0b11111);
+        assert_eq!(f16::EXP_BIAS, 15);
+        assert_eq!(f16::EXP_MAX, 15);
+        assert_eq!(f16::EXP_MIN, -14);
+        assert_eq!(f16::EXP_MIN_SUBNORM, -24);
+
+        // `exp_unbiased`
+        assert_eq!(f16::FRAC_PI_2.exp_unbiased(), 0);
+        assert_eq!((1.0f16 / 2.0).exp_unbiased(), -1);
+        assert_eq!(f16::MAX.exp_unbiased(), 15);
+        assert_eq!(f16::MIN.exp_unbiased(), 15);
+        assert_eq!(f16::MIN_POSITIVE.exp_unbiased(), -14);
+        // This is a convenience method and not ldexp, `exp_unbiased` does not return correct
+        // results for zero and subnormals.
+        assert_eq!(f16::ZERO.exp_unbiased(), -15);
+        assert_eq!(f16::from_bits(0x1).exp_unbiased(), -15);
+        assert_eq!(f16::MIN_POSITIVE, f16::MIN_POSITIVE_NORMAL);
+
+        // `from_parts`
+        assert_biteq!(f16::from_parts(true, f16::EXP_BIAS, 0), -1.0f16);
+        assert_biteq!(f16::from_parts(false, 0, 1), f16::from_bits(0x1));
+    }
+
+    #[test]
+    fn check_f32() {
+        // Constants
+        assert_eq!(f32::EXP_SAT, 0b11111111);
+        assert_eq!(f32::EXP_BIAS, 127);
+        assert_eq!(f32::EXP_MAX, 127);
+        assert_eq!(f32::EXP_MIN, -126);
+        assert_eq!(f32::EXP_MIN_SUBNORM, -149);
+
+        // `exp_unbiased`
+        assert_eq!(f32::FRAC_PI_2.exp_unbiased(), 0);
+        assert_eq!((1.0f32 / 2.0).exp_unbiased(), -1);
+        assert_eq!(f32::MAX.exp_unbiased(), 127);
+        assert_eq!(f32::MIN.exp_unbiased(), 127);
+        assert_eq!(f32::MIN_POSITIVE.exp_unbiased(), -126);
+        // This is a convenience method and not ldexp, `exp_unbiased` does not return correct
+        // results for zero and subnormals.
+        assert_eq!(f32::ZERO.exp_unbiased(), -127);
+        assert_eq!(f32::from_bits(0x1).exp_unbiased(), -127);
+        assert_eq!(f32::MIN_POSITIVE, f32::MIN_POSITIVE_NORMAL);
+
+        // `from_parts`
+        assert_biteq!(f32::from_parts(true, f32::EXP_BIAS, 0), -1.0f32);
+        assert_biteq!(f32::from_parts(false, 10 + f32::EXP_BIAS, 0), hf32!("0x1p10"));
+        assert_biteq!(f32::from_parts(false, 0, 1), f32::from_bits(0x1));
+    }
+
+    #[test]
+    fn check_f64() {
+        // Constants
+        assert_eq!(f64::EXP_SAT, 0b11111111111);
+        assert_eq!(f64::EXP_BIAS, 1023);
+        assert_eq!(f64::EXP_MAX, 1023);
+        assert_eq!(f64::EXP_MIN, -1022);
+        assert_eq!(f64::EXP_MIN_SUBNORM, -1074);
+
+        // `exp_unbiased`
+        assert_eq!(f64::FRAC_PI_2.exp_unbiased(), 0);
+        assert_eq!((1.0f64 / 2.0).exp_unbiased(), -1);
+        assert_eq!(f64::MAX.exp_unbiased(), 1023);
+        assert_eq!(f64::MIN.exp_unbiased(), 1023);
+        assert_eq!(f64::MIN_POSITIVE.exp_unbiased(), -1022);
+        // This is a convenience method and not ldexp, `exp_unbiased` does not return correct
+        // results for zero and subnormals.
+        assert_eq!(f64::ZERO.exp_unbiased(), -1023);
+        assert_eq!(f64::from_bits(0x1).exp_unbiased(), -1023);
+        assert_eq!(f64::MIN_POSITIVE, f64::MIN_POSITIVE_NORMAL);
+
+        // `from_parts`
+        assert_biteq!(f64::from_parts(true, f64::EXP_BIAS, 0), -1.0f64);
+        assert_biteq!(f64::from_parts(false, 10 + f64::EXP_BIAS, 0), hf64!("0x1p10"));
+        assert_biteq!(f64::from_parts(false, 0, 1), f64::from_bits(0x1));
+    }
+
+    #[test]
+    #[cfg(f128_enabled)]
+    fn check_f128() {
+        // Constants
+        assert_eq!(f128::EXP_SAT, 0b111111111111111);
+        assert_eq!(f128::EXP_BIAS, 16383);
+        assert_eq!(f128::EXP_MAX, 16383);
+        assert_eq!(f128::EXP_MIN, -16382);
+        assert_eq!(f128::EXP_MIN_SUBNORM, -16494);
+
+        // `exp_unbiased`
+        assert_eq!(f128::FRAC_PI_2.exp_unbiased(), 0);
+        assert_eq!((1.0f128 / 2.0).exp_unbiased(), -1);
+        assert_eq!(f128::MAX.exp_unbiased(), 16383);
+        assert_eq!(f128::MIN.exp_unbiased(), 16383);
+        assert_eq!(f128::MIN_POSITIVE.exp_unbiased(), -16382);
+        // This is a convenience method and not ldexp, `exp_unbiased` does not return correct
+        // results for zero and subnormals.
+        assert_eq!(f128::ZERO.exp_unbiased(), -16383);
+        assert_eq!(f128::from_bits(0x1).exp_unbiased(), -16383);
+        assert_eq!(f128::MIN_POSITIVE, f128::MIN_POSITIVE_NORMAL);
+
+        // `from_parts`
+        assert_biteq!(f128::from_parts(true, f128::EXP_BIAS, 0), -1.0f128);
+        assert_biteq!(f128::from_parts(false, 0, 1), f128::from_bits(0x1));
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/support/hex_float.rs b/library/compiler-builtins/libm/src/math/support/hex_float.rs
new file mode 100644
index 00000000000..819e2f56e36
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/support/hex_float.rs
@@ -0,0 +1,1155 @@
+//! Utilities for working with hex float formats.
+
+use core::fmt;
+
+use super::{Float, Round, Status, f32_from_bits, f64_from_bits};
+
+/// Construct a 16-bit float from hex float representation (C-style)
+#[cfg(f16_enabled)]
+pub const fn hf16(s: &str) -> f16 {
+    match parse_hex_exact(s, 16, 10) {
+        Ok(bits) => f16::from_bits(bits as u16),
+        Err(HexFloatParseError(s)) => panic!("{}", s),
+    }
+}
+
+/// Construct a 32-bit float from hex float representation (C-style)
+#[allow(unused)]
+pub const fn hf32(s: &str) -> f32 {
+    match parse_hex_exact(s, 32, 23) {
+        Ok(bits) => f32_from_bits(bits as u32),
+        Err(HexFloatParseError(s)) => panic!("{}", s),
+    }
+}
+
+/// Construct a 64-bit float from hex float representation (C-style)
+pub const fn hf64(s: &str) -> f64 {
+    match parse_hex_exact(s, 64, 52) {
+        Ok(bits) => f64_from_bits(bits as u64),
+        Err(HexFloatParseError(s)) => panic!("{}", s),
+    }
+}
+
+/// Construct a 128-bit float from hex float representation (C-style)
+#[cfg(f128_enabled)]
+pub const fn hf128(s: &str) -> f128 {
+    match parse_hex_exact(s, 128, 112) {
+        Ok(bits) => f128::from_bits(bits),
+        Err(HexFloatParseError(s)) => panic!("{}", s),
+    }
+}
+#[derive(Copy, Clone, Debug)]
+pub struct HexFloatParseError(&'static str);
+
+/// Parses any float to its bitwise representation, returning an error if it cannot be represented exactly
+pub const fn parse_hex_exact(
+    s: &str,
+    bits: u32,
+    sig_bits: u32,
+) -> Result<u128, HexFloatParseError> {
+    match parse_any(s, bits, sig_bits, Round::Nearest) {
+        Err(e) => Err(e),
+        Ok((bits, Status::OK)) => Ok(bits),
+        Ok((_, status)) if status.overflow() => Err(HexFloatParseError("the value is too huge")),
+        Ok((_, status)) if status.underflow() => Err(HexFloatParseError("the value is too tiny")),
+        Ok((_, status)) if status.inexact() => Err(HexFloatParseError("the value is too precise")),
+        Ok(_) => unreachable!(),
+    }
+}
+
+/// Parse any float from hex to its bitwise representation.
+pub const fn parse_any(
+    s: &str,
+    bits: u32,
+    sig_bits: u32,
+    round: Round,
+) -> Result<(u128, Status), HexFloatParseError> {
+    let mut b = s.as_bytes();
+
+    if sig_bits > 119 || bits > 128 || bits < sig_bits + 3 || bits > sig_bits + 30 {
+        return Err(HexFloatParseError("unsupported target float configuration"));
+    }
+
+    let neg = matches!(b, [b'-', ..]);
+    if let &[b'-' | b'+', ref rest @ ..] = b {
+        b = rest;
+    }
+
+    let sign_bit = 1 << (bits - 1);
+    let quiet_bit = 1 << (sig_bits - 1);
+    let nan = sign_bit - quiet_bit;
+    let inf = nan - quiet_bit;
+
+    let (mut x, status) = match *b {
+        [b'i' | b'I', b'n' | b'N', b'f' | b'F'] => (inf, Status::OK),
+        [b'n' | b'N', b'a' | b'A', b'n' | b'N'] => (nan, Status::OK),
+        [b'0', b'x' | b'X', ref rest @ ..] => {
+            let round = match (neg, round) {
+                // parse("-x", Round::Positive) == -parse("x", Round::Negative)
+                (true, Round::Positive) => Round::Negative,
+                (true, Round::Negative) => Round::Positive,
+                // rounding toward nearest or zero are symmetric
+                (true, Round::Nearest | Round::Zero) | (false, _) => round,
+            };
+            match parse_finite(rest, bits, sig_bits, round) {
+                Err(e) => return Err(e),
+                Ok(res) => res,
+            }
+        }
+        _ => return Err(HexFloatParseError("no hex indicator")),
+    };
+
+    if neg {
+        x ^= sign_bit;
+    }
+
+    Ok((x, status))
+}
+
+const fn parse_finite(
+    b: &[u8],
+    bits: u32,
+    sig_bits: u32,
+    rounding_mode: Round,
+) -> Result<(u128, Status), HexFloatParseError> {
+    let exp_bits: u32 = bits - sig_bits - 1;
+    let max_msb: i32 = (1 << (exp_bits - 1)) - 1;
+    // The exponent of one ULP in the subnormals
+    let min_lsb: i32 = 1 - max_msb - sig_bits as i32;
+
+    let (mut sig, mut exp) = match parse_hex(b) {
+        Err(e) => return Err(e),
+        Ok(Parsed { sig: 0, .. }) => return Ok((0, Status::OK)),
+        Ok(Parsed { sig, exp }) => (sig, exp),
+    };
+
+    let mut round_bits = u128_ilog2(sig) as i32 - sig_bits as i32;
+
+    // Round at least up to min_lsb
+    if exp < min_lsb - round_bits {
+        round_bits = min_lsb - exp;
+    }
+
+    let mut status = Status::OK;
+
+    exp += round_bits;
+
+    if round_bits > 0 {
+        // first, prepare for rounding exactly two bits
+        if round_bits == 1 {
+            sig <<= 1;
+        } else if round_bits > 2 {
+            sig = shr_odd_rounding(sig, (round_bits - 2) as u32);
+        }
+
+        if sig & 0b11 != 0 {
+            status = Status::INEXACT;
+        }
+
+        sig = shr2_round(sig, rounding_mode);
+    } else if round_bits < 0 {
+        sig <<= -round_bits;
+    }
+
+    // The parsed value is X = sig * 2^exp
+    // Expressed as a multiple U of the smallest subnormal value:
+    // X = U * 2^min_lsb, so U = sig * 2^(exp-min_lsb)
+    let uexp = (exp - min_lsb) as u128;
+    let uexp = uexp << sig_bits;
+
+    // Note that it is possible for the exponent bits to equal 2 here
+    // if the value rounded up, but that means the mantissa is all zeroes
+    // so the value is still correct
+    debug_assert!(sig <= 2 << sig_bits);
+
+    let inf = ((1 << exp_bits) - 1) << sig_bits;
+
+    let bits = match sig.checked_add(uexp) {
+        Some(bits) if bits < inf => {
+            // inexact subnormal or zero?
+            if status.inexact() && bits < (1 << sig_bits) {
+                status = status.with(Status::UNDERFLOW);
+            }
+            bits
+        }
+        _ => {
+            // overflow to infinity
+            status = status.with(Status::OVERFLOW).with(Status::INEXACT);
+            match rounding_mode {
+                Round::Positive | Round::Nearest => inf,
+                Round::Negative | Round::Zero => inf - 1,
+            }
+        }
+    };
+    Ok((bits, status))
+}
+
+/// Shift right, rounding all inexact divisions to the nearest odd number
+/// E.g. (0 >> 4) -> 0, (1..=31 >> 4) -> 1, (32 >> 4) -> 2, ...
+///
+/// Useful for reducing a number before rounding the last two bits, since
+/// the result of the final rounding is preserved for all rounding modes.
+const fn shr_odd_rounding(x: u128, k: u32) -> u128 {
+    if k < 128 {
+        let inexact = x.trailing_zeros() < k;
+        (x >> k) | (inexact as u128)
+    } else {
+        (x != 0) as u128
+    }
+}
+
+/// Divide by 4, rounding with the given mode
+const fn shr2_round(mut x: u128, round: Round) -> u128 {
+    let t = (x as u32) & 0b111;
+    x >>= 2;
+    match round {
+        // Look-up-table on the last three bits for when to round up
+        Round::Nearest => x + ((0b11001000_u8 >> t) & 1) as u128,
+
+        Round::Negative => x,
+        Round::Zero => x,
+        Round::Positive => x + (t & 0b11 != 0) as u128,
+    }
+}
+
+/// A parsed finite and unsigned floating point number.
+struct Parsed {
+    /// Absolute value sig * 2^exp
+    sig: u128,
+    exp: i32,
+}
+
+/// Parse a hexadecimal float x
+const fn parse_hex(mut b: &[u8]) -> Result<Parsed, HexFloatParseError> {
+    let mut sig: u128 = 0;
+    let mut exp: i32 = 0;
+
+    let mut seen_point = false;
+    let mut some_digits = false;
+    let mut inexact = false;
+
+    while let &[c, ref rest @ ..] = b {
+        b = rest;
+
+        match c {
+            b'.' => {
+                if seen_point {
+                    return Err(HexFloatParseError("unexpected '.' parsing fractional digits"));
+                }
+                seen_point = true;
+                continue;
+            }
+            b'p' | b'P' => break,
+            c => {
+                let digit = match hex_digit(c) {
+                    Some(d) => d,
+                    None => return Err(HexFloatParseError("expected hexadecimal digit")),
+                };
+                some_digits = true;
+
+                if (sig >> 124) == 0 {
+                    sig <<= 4;
+                    sig |= digit as u128;
+                } else {
+                    // FIXME: it is technically possible for exp to overflow if parsing a string with >500M digits
+                    exp += 4;
+                    inexact |= digit != 0;
+                }
+                // Up until the fractional point, the value grows
+                // with more digits, but after it the exponent is
+                // compensated to match.
+                if seen_point {
+                    exp -= 4;
+                }
+            }
+        }
+    }
+    // If we've set inexact, the exact value has more than 125
+    // significant bits, and lies somewhere between sig and sig + 1.
+    // Because we'll round off at least two of the trailing bits,
+    // setting the last bit gives correct rounding for inexact values.
+    sig |= inexact as u128;
+
+    if !some_digits {
+        return Err(HexFloatParseError("at least one digit is required"));
+    };
+
+    some_digits = false;
+
+    let negate_exp = matches!(b, [b'-', ..]);
+    if let &[b'-' | b'+', ref rest @ ..] = b {
+        b = rest;
+    }
+
+    let mut pexp: u32 = 0;
+    while let &[c, ref rest @ ..] = b {
+        b = rest;
+        let digit = match dec_digit(c) {
+            Some(d) => d,
+            None => return Err(HexFloatParseError("expected decimal digit")),
+        };
+        some_digits = true;
+        pexp = pexp.saturating_mul(10);
+        pexp += digit as u32;
+    }
+
+    if !some_digits {
+        return Err(HexFloatParseError("at least one exponent digit is required"));
+    };
+
+    {
+        let e;
+        if negate_exp {
+            e = (exp as i64) - (pexp as i64);
+        } else {
+            e = (exp as i64) + (pexp as i64);
+        };
+
+        exp = if e < i32::MIN as i64 {
+            i32::MIN
+        } else if e > i32::MAX as i64 {
+            i32::MAX
+        } else {
+            e as i32
+        };
+    }
+    /* FIXME(msrv): once MSRV >= 1.66, replace the above workaround block with:
+    if negate_exp {
+        exp = exp.saturating_sub_unsigned(pexp);
+    } else {
+        exp = exp.saturating_add_unsigned(pexp);
+    };
+    */
+
+    Ok(Parsed { sig, exp })
+}
+
+const fn dec_digit(c: u8) -> Option<u8> {
+    match c {
+        b'0'..=b'9' => Some(c - b'0'),
+        _ => None,
+    }
+}
+
+const fn hex_digit(c: u8) -> Option<u8> {
+    match c {
+        b'0'..=b'9' => Some(c - b'0'),
+        b'a'..=b'f' => Some(c - b'a' + 10),
+        b'A'..=b'F' => Some(c - b'A' + 10),
+        _ => None,
+    }
+}
+
+/* FIXME(msrv): vendor some things that are not const stable at our MSRV */
+
+/// `u128::ilog2`
+const fn u128_ilog2(v: u128) -> u32 {
+    assert!(v != 0);
+    u128::BITS - 1 - v.leading_zeros()
+}
+
+/// Format a floating point number as its IEEE hex (`%a`) representation.
+pub struct Hexf<F>(pub F);
+
+// Adapted from https://github.com/ericseppanen/hexfloat2/blob/a5c27932f0ff/src/format.rs
+#[cfg(not(feature = "compiler-builtins"))]
+fn fmt_any_hex<F: Float>(x: &F, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+    if x.is_sign_negative() {
+        write!(f, "-")?;
+    }
+
+    if x.is_nan() {
+        return write!(f, "NaN");
+    } else if x.is_infinite() {
+        return write!(f, "inf");
+    } else if *x == F::ZERO {
+        return write!(f, "0x0p+0");
+    }
+
+    let mut exponent = x.exp_unbiased();
+    let sig = x.to_bits() & F::SIG_MASK;
+
+    let bias = F::EXP_BIAS as i32;
+    // The mantissa MSB needs to be shifted up to the nearest nibble.
+    let mshift = (4 - (F::SIG_BITS % 4)) % 4;
+    let sig = sig << mshift;
+    // The width is rounded up to the nearest char (4 bits)
+    let mwidth = (F::SIG_BITS as usize + 3) / 4;
+    let leading = if exponent == -bias {
+        // subnormal number means we shift our output by 1 bit.
+        exponent += 1;
+        "0."
+    } else {
+        "1."
+    };
+
+    write!(f, "0x{leading}{sig:0mwidth$x}p{exponent:+}")
+}
+
+#[cfg(feature = "compiler-builtins")]
+fn fmt_any_hex<F: Float>(_x: &F, _f: &mut fmt::Formatter<'_>) -> fmt::Result {
+    unimplemented!()
+}
+
+impl<F: Float> fmt::LowerHex for Hexf<F> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        cfg_if! {
+            if #[cfg(feature = "compiler-builtins")] {
+                let _ = f;
+                unimplemented!()
+            } else {
+                fmt_any_hex(&self.0, f)
+            }
+        }
+    }
+}
+
+impl<F: Float> fmt::LowerHex for Hexf<(F, F)> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        cfg_if! {
+            if #[cfg(feature = "compiler-builtins")] {
+                let _ = f;
+                unimplemented!()
+            } else {
+                write!(f, "({:x}, {:x})", Hexf(self.0.0), Hexf(self.0.1))
+            }
+        }
+    }
+}
+
+impl<F: Float> fmt::LowerHex for Hexf<(F, i32)> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        cfg_if! {
+            if #[cfg(feature = "compiler-builtins")] {
+                let _ = f;
+                unimplemented!()
+            } else {
+                write!(f, "({:x}, {:x})", Hexf(self.0.0), Hexf(self.0.1))
+            }
+        }
+    }
+}
+
+impl fmt::LowerHex for Hexf<i32> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        cfg_if! {
+            if #[cfg(feature = "compiler-builtins")] {
+                let _ = f;
+                unimplemented!()
+            } else {
+                fmt::LowerHex::fmt(&self.0, f)
+            }
+        }
+    }
+}
+
+impl<T> fmt::Debug for Hexf<T>
+where
+    Hexf<T>: fmt::LowerHex,
+{
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        cfg_if! {
+            if #[cfg(feature = "compiler-builtins")] {
+                let _ = f;
+                unimplemented!()
+            } else {
+                fmt::LowerHex::fmt(self, f)
+            }
+        }
+    }
+}
+
+impl<T> fmt::Display for Hexf<T>
+where
+    Hexf<T>: fmt::LowerHex,
+{
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        cfg_if! {
+            if #[cfg(feature = "compiler-builtins")] {
+                let _ = f;
+                unimplemented!()
+            } else {
+                fmt::LowerHex::fmt(self, f)
+            }
+        }
+    }
+}
+
+#[cfg(test)]
+mod parse_tests {
+    extern crate std;
+    use std::{format, println};
+
+    use super::*;
+
+    #[cfg(f16_enabled)]
+    fn rounding_properties(s: &str) -> Result<(), HexFloatParseError> {
+        let (xd, s0) = parse_any(s, 16, 10, Round::Negative)?;
+        let (xu, s1) = parse_any(s, 16, 10, Round::Positive)?;
+        let (xz, s2) = parse_any(s, 16, 10, Round::Zero)?;
+        let (xn, s3) = parse_any(s, 16, 10, Round::Nearest)?;
+
+        // FIXME: A value between the least normal and largest subnormal
+        // could have underflow status depend on rounding mode.
+
+        if let Status::OK = s0 {
+            // an exact result is the same for all rounding modes
+            assert_eq!(s0, s1);
+            assert_eq!(s0, s2);
+            assert_eq!(s0, s3);
+
+            assert_eq!(xd, xu);
+            assert_eq!(xd, xz);
+            assert_eq!(xd, xn);
+        } else {
+            assert!([s0, s1, s2, s3].into_iter().all(Status::inexact));
+
+            let xd = f16::from_bits(xd as u16);
+            let xu = f16::from_bits(xu as u16);
+            let xz = f16::from_bits(xz as u16);
+            let xn = f16::from_bits(xn as u16);
+
+            assert_biteq!(xd.next_up(), xu, "s={s}, xd={xd:?}, xu={xu:?}");
+
+            let signs = [xd, xu, xz, xn].map(f16::is_sign_negative);
+
+            if signs == [true; 4] {
+                assert_biteq!(xz, xu);
+            } else {
+                assert_eq!(signs, [false; 4]);
+                assert_biteq!(xz, xd);
+            }
+
+            if xn.to_bits() != xd.to_bits() {
+                assert_biteq!(xn, xu);
+            }
+        }
+        Ok(())
+    }
+    #[test]
+    #[cfg(f16_enabled)]
+    fn test_rounding() {
+        let n = 1_i32 << 14;
+        for i in -n..n {
+            let u = i.rotate_right(11) as u32;
+            let s = format!("{}", Hexf(f32::from_bits(u)));
+            assert!(rounding_properties(&s).is_ok());
+        }
+    }
+
+    #[test]
+    fn test_parse_any() {
+        for k in -149..=127 {
+            let s = format!("0x1p{k}");
+            let x = hf32(&s);
+            let y = if k < 0 { 0.5f32.powi(-k) } else { 2.0f32.powi(k) };
+            assert_eq!(x, y);
+        }
+
+        let mut s = *b"0x.0000000p-121";
+        for e in 0..40 {
+            for k in 0..(1 << 15) {
+                let expected = f32::from_bits(k) * 2.0f32.powi(e);
+                let x = hf32(std::str::from_utf8(&s).unwrap());
+                assert_eq!(
+                    x.to_bits(),
+                    expected.to_bits(),
+                    "\
+                    e={e}\n\
+                    k={k}\n\
+                    x={x}\n\
+                    expected={expected}\n\
+                    s={}\n\
+                    f32::from_bits(k)={}\n\
+                    2.0f32.powi(e)={}\
+                    ",
+                    std::str::from_utf8(&s).unwrap(),
+                    f32::from_bits(k),
+                    2.0f32.powi(e),
+                );
+                for i in (3..10).rev() {
+                    if s[i] == b'f' {
+                        s[i] = b'0';
+                    } else if s[i] == b'9' {
+                        s[i] = b'a';
+                        break;
+                    } else {
+                        s[i] += 1;
+                        break;
+                    }
+                }
+            }
+            for i in (12..15).rev() {
+                if s[i] == b'0' {
+                    s[i] = b'9';
+                } else {
+                    s[i] -= 1;
+                    break;
+                }
+            }
+            for i in (3..10).rev() {
+                s[i] = b'0';
+            }
+        }
+    }
+
+    // FIXME: this test is causing failures that are likely UB on various platforms
+    #[cfg(all(target_arch = "x86_64", target_os = "linux"))]
+    #[test]
+    #[cfg(f128_enabled)]
+    fn rounding() {
+        let pi = std::f128::consts::PI;
+        let s = format!("{}", Hexf(pi));
+
+        for k in 0..=111 {
+            let (bits, status) = parse_any(&s, 128 - k, 112 - k, Round::Nearest).unwrap();
+            let scale = (1u128 << (112 - k - 1)) as f128;
+            let expected = (pi * scale).round_ties_even() / scale;
+            assert_eq!(bits << k, expected.to_bits(), "k = {k}, s = {s}");
+            assert_eq!(expected != pi, status.inexact());
+        }
+    }
+    #[test]
+    fn rounding_extreme_underflow() {
+        for k in 1..1000 {
+            let s = format!("0x1p{}", -149 - k);
+            let Ok((bits, status)) = parse_any(&s, 32, 23, Round::Nearest) else { unreachable!() };
+            assert_eq!(bits, 0, "{s} should round to zero, got bits={bits}");
+            assert!(status.underflow(), "should indicate underflow when parsing {s}");
+            assert!(status.inexact(), "should indicate inexact when parsing {s}");
+        }
+    }
+    #[test]
+    fn long_tail() {
+        for k in 1..1000 {
+            let s = format!("0x1.{}p0", "0".repeat(k));
+            let Ok(bits) = parse_hex_exact(&s, 32, 23) else { panic!("parsing {s} failed") };
+            assert_eq!(f32::from_bits(bits as u32), 1.0);
+
+            let s = format!("0x1.{}1p0", "0".repeat(k));
+            let Ok((bits, status)) = parse_any(&s, 32, 23, Round::Nearest) else { unreachable!() };
+            if status.inexact() {
+                assert!(1.0 == f32::from_bits(bits as u32));
+            } else {
+                assert!(1.0 < f32::from_bits(bits as u32));
+            }
+        }
+    }
+    // HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to
+    // hide them from the AST.
+    #[cfg(f16_enabled)]
+    macro_rules! f16_tests {
+        () => {
+            #[test]
+            fn test_f16() {
+                let checks = [
+                    ("0x.1234p+16", (0x1234 as f16).to_bits()),
+                    ("0x1.234p+12", (0x1234 as f16).to_bits()),
+                    ("0x12.34p+8", (0x1234 as f16).to_bits()),
+                    ("0x123.4p+4", (0x1234 as f16).to_bits()),
+                    ("0x1234p+0", (0x1234 as f16).to_bits()),
+                    ("0x1234.p+0", (0x1234 as f16).to_bits()),
+                    ("0x1234.0p+0", (0x1234 as f16).to_bits()),
+                    ("0x1.ffcp+15", f16::MAX.to_bits()),
+                    ("0x1.0p+1", 2.0f16.to_bits()),
+                    ("0x1.0p+0", 1.0f16.to_bits()),
+                    ("0x1.ffp+8", 0x5ffc),
+                    ("+0x1.ffp+8", 0x5ffc),
+                    ("0x1p+0", 0x3c00),
+                    ("0x1.998p-4", 0x2e66),
+                    ("0x1.9p+6", 0x5640),
+                    ("0x0.0p0", 0.0f16.to_bits()),
+                    ("-0x0.0p0", (-0.0f16).to_bits()),
+                    ("0x1.0p0", 1.0f16.to_bits()),
+                    ("0x1.998p-4", (0.1f16).to_bits()),
+                    ("-0x1.998p-4", (-0.1f16).to_bits()),
+                    ("0x0.123p-12", 0x0123),
+                    ("0x1p-24", 0x0001),
+                    ("nan", f16::NAN.to_bits()),
+                    ("-nan", (-f16::NAN).to_bits()),
+                    ("inf", f16::INFINITY.to_bits()),
+                    ("-inf", f16::NEG_INFINITY.to_bits()),
+                ];
+                for (s, exp) in checks {
+                    println!("parsing {s}");
+                    assert!(rounding_properties(s).is_ok());
+                    let act = hf16(s).to_bits();
+                    assert_eq!(
+                        act, exp,
+                        "parsing {s}: {act:#06x} != {exp:#06x}\nact: {act:#018b}\nexp: {exp:#018b}"
+                    );
+                }
+            }
+
+            #[test]
+            fn test_macros_f16() {
+                assert_eq!(hf16!("0x1.ffp+8").to_bits(), 0x5ffc_u16);
+            }
+        };
+    }
+
+    #[cfg(f16_enabled)]
+    f16_tests!();
+
+    #[test]
+    fn test_f32() {
+        let checks = [
+            ("0x.1234p+16", (0x1234 as f32).to_bits()),
+            ("0x1.234p+12", (0x1234 as f32).to_bits()),
+            ("0x12.34p+8", (0x1234 as f32).to_bits()),
+            ("0x123.4p+4", (0x1234 as f32).to_bits()),
+            ("0x1234p+0", (0x1234 as f32).to_bits()),
+            ("0x1234.p+0", (0x1234 as f32).to_bits()),
+            ("0x1234.0p+0", (0x1234 as f32).to_bits()),
+            ("0x1.fffffep+127", f32::MAX.to_bits()),
+            ("0x1.0p+1", 2.0f32.to_bits()),
+            ("0x1.0p+0", 1.0f32.to_bits()),
+            ("0x1.ffep+8", 0x43fff000),
+            ("+0x1.ffep+8", 0x43fff000),
+            ("0x1p+0", 0x3f800000),
+            ("0x1.99999ap-4", 0x3dcccccd),
+            ("0x1.9p+6", 0x42c80000),
+            ("0x1.2d5ed2p+20", 0x4996af69),
+            ("-0x1.348eb8p+10", 0xc49a475c),
+            ("-0x1.33dcfep-33", 0xaf19ee7f),
+            ("0x0.0p0", 0.0f32.to_bits()),
+            ("-0x0.0p0", (-0.0f32).to_bits()),
+            ("0x1.0p0", 1.0f32.to_bits()),
+            ("0x1.99999ap-4", (0.1f32).to_bits()),
+            ("-0x1.99999ap-4", (-0.1f32).to_bits()),
+            ("0x1.111114p-127", 0x00444445),
+            ("0x1.23456p-130", 0x00091a2b),
+            ("0x1p-149", 0x00000001),
+            ("nan", f32::NAN.to_bits()),
+            ("-nan", (-f32::NAN).to_bits()),
+            ("inf", f32::INFINITY.to_bits()),
+            ("-inf", f32::NEG_INFINITY.to_bits()),
+        ];
+        for (s, exp) in checks {
+            println!("parsing {s}");
+            let act = hf32(s).to_bits();
+            assert_eq!(
+                act, exp,
+                "parsing {s}: {act:#010x} != {exp:#010x}\nact: {act:#034b}\nexp: {exp:#034b}"
+            );
+        }
+    }
+
+    #[test]
+    fn test_f64() {
+        let checks = [
+            ("0x.1234p+16", (0x1234 as f64).to_bits()),
+            ("0x1.234p+12", (0x1234 as f64).to_bits()),
+            ("0x12.34p+8", (0x1234 as f64).to_bits()),
+            ("0x123.4p+4", (0x1234 as f64).to_bits()),
+            ("0x1234p+0", (0x1234 as f64).to_bits()),
+            ("0x1234.p+0", (0x1234 as f64).to_bits()),
+            ("0x1234.0p+0", (0x1234 as f64).to_bits()),
+            ("0x1.ffep+8", 0x407ffe0000000000),
+            ("0x1p+0", 0x3ff0000000000000),
+            ("0x1.999999999999ap-4", 0x3fb999999999999a),
+            ("0x1.9p+6", 0x4059000000000000),
+            ("0x1.2d5ed1fe1da7bp+20", 0x4132d5ed1fe1da7b),
+            ("-0x1.348eb851eb852p+10", 0xc09348eb851eb852),
+            ("-0x1.33dcfe54a3803p-33", 0xbde33dcfe54a3803),
+            ("0x1.0p0", 1.0f64.to_bits()),
+            ("0x0.0p0", 0.0f64.to_bits()),
+            ("-0x0.0p0", (-0.0f64).to_bits()),
+            ("0x1.999999999999ap-4", 0.1f64.to_bits()),
+            ("0x1.999999999998ap-4", (0.1f64 - f64::EPSILON).to_bits()),
+            ("-0x1.999999999999ap-4", (-0.1f64).to_bits()),
+            ("-0x1.999999999998ap-4", (-0.1f64 + f64::EPSILON).to_bits()),
+            ("0x0.8000000000001p-1022", 0x0008000000000001),
+            ("0x0.123456789abcdp-1022", 0x000123456789abcd),
+            ("0x0.0000000000002p-1022", 0x0000000000000002),
+            ("nan", f64::NAN.to_bits()),
+            ("-nan", (-f64::NAN).to_bits()),
+            ("inf", f64::INFINITY.to_bits()),
+            ("-inf", f64::NEG_INFINITY.to_bits()),
+        ];
+        for (s, exp) in checks {
+            println!("parsing {s}");
+            let act = hf64(s).to_bits();
+            assert_eq!(
+                act, exp,
+                "parsing {s}: {act:#018x} != {exp:#018x}\nact: {act:#066b}\nexp: {exp:#066b}"
+            );
+        }
+    }
+
+    // HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to
+    // hide them from the AST.
+    #[cfg(f128_enabled)]
+    macro_rules! f128_tests {
+        () => {
+            #[test]
+            fn test_f128() {
+                let checks = [
+                    ("0x.1234p+16", (0x1234 as f128).to_bits()),
+                    ("0x1.234p+12", (0x1234 as f128).to_bits()),
+                    ("0x12.34p+8", (0x1234 as f128).to_bits()),
+                    ("0x123.4p+4", (0x1234 as f128).to_bits()),
+                    ("0x1234p+0", (0x1234 as f128).to_bits()),
+                    ("0x1234.p+0", (0x1234 as f128).to_bits()),
+                    ("0x1234.0p+0", (0x1234 as f128).to_bits()),
+                    ("0x1.ffffffffffffffffffffffffffffp+16383", f128::MAX.to_bits()),
+                    ("0x1.0p+1", 2.0f128.to_bits()),
+                    ("0x1.0p+0", 1.0f128.to_bits()),
+                    ("0x1.ffep+8", 0x4007ffe0000000000000000000000000),
+                    ("+0x1.ffep+8", 0x4007ffe0000000000000000000000000),
+                    ("0x1p+0", 0x3fff0000000000000000000000000000),
+                    ("0x1.999999999999999999999999999ap-4", 0x3ffb999999999999999999999999999a),
+                    ("0x1.9p+6", 0x40059000000000000000000000000000),
+                    ("0x0.0p0", 0.0f128.to_bits()),
+                    ("-0x0.0p0", (-0.0f128).to_bits()),
+                    ("0x1.0p0", 1.0f128.to_bits()),
+                    ("0x1.999999999999999999999999999ap-4", (0.1f128).to_bits()),
+                    ("-0x1.999999999999999999999999999ap-4", (-0.1f128).to_bits()),
+                    ("0x0.abcdef0123456789abcdef012345p-16382", 0x0000abcdef0123456789abcdef012345),
+                    ("0x1p-16494", 0x00000000000000000000000000000001),
+                    ("nan", f128::NAN.to_bits()),
+                    ("-nan", (-f128::NAN).to_bits()),
+                    ("inf", f128::INFINITY.to_bits()),
+                    ("-inf", f128::NEG_INFINITY.to_bits()),
+                ];
+                for (s, exp) in checks {
+                    println!("parsing {s}");
+                    let act = hf128(s).to_bits();
+                    assert_eq!(
+                        act, exp,
+                        "parsing {s}: {act:#034x} != {exp:#034x}\nact: {act:#0130b}\nexp: {exp:#0130b}"
+                    );
+                }
+            }
+
+            #[test]
+            fn test_macros_f128() {
+                assert_eq!(hf128!("0x1.ffep+8").to_bits(), 0x4007ffe0000000000000000000000000_u128);
+            }
+        }
+    }
+
+    #[cfg(f128_enabled)]
+    f128_tests!();
+
+    #[test]
+    fn test_macros() {
+        #[cfg(f16_enabled)]
+        assert_eq!(hf16!("0x1.ffp+8").to_bits(), 0x5ffc_u16);
+        assert_eq!(hf32!("0x1.ffep+8").to_bits(), 0x43fff000_u32);
+        assert_eq!(hf64!("0x1.ffep+8").to_bits(), 0x407ffe0000000000_u64);
+        #[cfg(f128_enabled)]
+        assert_eq!(hf128!("0x1.ffep+8").to_bits(), 0x4007ffe0000000000000000000000000_u128);
+    }
+}
+
+#[cfg(test)]
+// FIXME(ppc): something with `should_panic` tests cause a SIGILL with ppc64le
+#[cfg(not(all(target_arch = "powerpc64", target_endian = "little")))]
+mod tests_panicking {
+    extern crate std;
+    use super::*;
+
+    // HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to
+    // hide them from the AST.
+    #[cfg(f16_enabled)]
+    macro_rules! f16_tests {
+        () => {
+            #[test]
+            fn test_f16_almost_extra_precision() {
+                // Exact maximum precision allowed
+                hf16("0x1.ffcp+0");
+            }
+
+            #[test]
+            #[should_panic(expected = "the value is too precise")]
+            fn test_f16_extra_precision() {
+                // One bit more than the above.
+                hf16("0x1.ffdp+0");
+            }
+
+            #[test]
+            #[should_panic(expected = "the value is too huge")]
+            fn test_f16_overflow() {
+                // One bit more than the above.
+                hf16("0x1p+16");
+            }
+
+            #[test]
+            fn test_f16_tiniest() {
+                let x = hf16("0x1.p-24");
+                let y = hf16("0x0.001p-12");
+                let z = hf16("0x0.8p-23");
+                assert_eq!(x, y);
+                assert_eq!(x, z);
+            }
+
+            #[test]
+            #[should_panic(expected = "the value is too tiny")]
+            fn test_f16_too_tiny() {
+                hf16("0x1.p-25");
+            }
+
+            #[test]
+            #[should_panic(expected = "the value is too tiny")]
+            fn test_f16_also_too_tiny() {
+                hf16("0x0.8p-24");
+            }
+
+            #[test]
+            #[should_panic(expected = "the value is too tiny")]
+            fn test_f16_again_too_tiny() {
+                hf16("0x0.001p-13");
+            }
+        };
+    }
+
+    #[cfg(f16_enabled)]
+    f16_tests!();
+
+    #[test]
+    fn test_f32_almost_extra_precision() {
+        // Exact maximum precision allowed
+        hf32("0x1.abcdeep+0");
+    }
+
+    #[test]
+    #[should_panic]
+    fn test_f32_extra_precision2() {
+        // One bit more than the above.
+        hf32("0x1.ffffffp+127");
+    }
+
+    #[test]
+    #[should_panic(expected = "the value is too huge")]
+    fn test_f32_overflow() {
+        // One bit more than the above.
+        hf32("0x1p+128");
+    }
+
+    #[test]
+    #[should_panic(expected = "the value is too precise")]
+    fn test_f32_extra_precision() {
+        // One bit more than the above.
+        hf32("0x1.abcdefp+0");
+    }
+
+    #[test]
+    fn test_f32_tiniest() {
+        let x = hf32("0x1.p-149");
+        let y = hf32("0x0.0000000000000001p-85");
+        let z = hf32("0x0.8p-148");
+        assert_eq!(x, y);
+        assert_eq!(x, z);
+    }
+
+    #[test]
+    #[should_panic(expected = "the value is too tiny")]
+    fn test_f32_too_tiny() {
+        hf32("0x1.p-150");
+    }
+
+    #[test]
+    #[should_panic(expected = "the value is too tiny")]
+    fn test_f32_also_too_tiny() {
+        hf32("0x0.8p-149");
+    }
+
+    #[test]
+    #[should_panic(expected = "the value is too tiny")]
+    fn test_f32_again_too_tiny() {
+        hf32("0x0.0000000000000001p-86");
+    }
+
+    #[test]
+    fn test_f64_almost_extra_precision() {
+        // Exact maximum precision allowed
+        hf64("0x1.abcdabcdabcdfp+0");
+    }
+
+    #[test]
+    #[should_panic(expected = "the value is too precise")]
+    fn test_f64_extra_precision() {
+        // One bit more than the above.
+        hf64("0x1.abcdabcdabcdf8p+0");
+    }
+
+    // HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to
+    // hide them from the AST.
+    #[cfg(f128_enabled)]
+    macro_rules! f128_tests {
+        () => {
+            #[test]
+            fn test_f128_almost_extra_precision() {
+                // Exact maximum precision allowed
+                hf128("0x1.ffffffffffffffffffffffffffffp+16383");
+            }
+
+            #[test]
+            #[should_panic(expected = "the value is too precise")]
+            fn test_f128_extra_precision() {
+                // Just below the maximum finite.
+                hf128("0x1.fffffffffffffffffffffffffffe8p+16383");
+            }
+            #[test]
+            #[should_panic(expected = "the value is too huge")]
+            fn test_f128_extra_precision_overflow() {
+                // One bit more than the above. Should overflow.
+                hf128("0x1.ffffffffffffffffffffffffffff8p+16383");
+            }
+
+            #[test]
+            #[should_panic(expected = "the value is too huge")]
+            fn test_f128_overflow() {
+                // One bit more than the above.
+                hf128("0x1p+16384");
+            }
+
+            #[test]
+            fn test_f128_tiniest() {
+                let x = hf128("0x1.p-16494");
+                let y = hf128("0x0.0000000000000001p-16430");
+                let z = hf128("0x0.8p-16493");
+                assert_eq!(x, y);
+                assert_eq!(x, z);
+            }
+
+            #[test]
+            #[should_panic(expected = "the value is too tiny")]
+            fn test_f128_too_tiny() {
+                hf128("0x1.p-16495");
+            }
+
+            #[test]
+            #[should_panic(expected = "the value is too tiny")]
+            fn test_f128_again_too_tiny() {
+                hf128("0x0.0000000000000001p-16431");
+            }
+
+            #[test]
+            #[should_panic(expected = "the value is too tiny")]
+            fn test_f128_also_too_tiny() {
+                hf128("0x0.8p-16494");
+            }
+        };
+    }
+
+    #[cfg(f128_enabled)]
+    f128_tests!();
+}
+
+#[cfg(test)]
+mod print_tests {
+    extern crate std;
+    use std::string::ToString;
+
+    use super::*;
+
+    #[test]
+    #[cfg(f16_enabled)]
+    fn test_f16() {
+        use std::format;
+        // Exhaustively check that `f16` roundtrips.
+        for x in 0..=u16::MAX {
+            let f = f16::from_bits(x);
+            let s = format!("{}", Hexf(f));
+            let from_s = hf16(&s);
+
+            if f.is_nan() && from_s.is_nan() {
+                continue;
+            }
+
+            assert_eq!(
+                f.to_bits(),
+                from_s.to_bits(),
+                "{f:?} formatted as {s} but parsed as {from_s:?}"
+            );
+        }
+    }
+
+    #[test]
+    #[cfg(f16_enabled)]
+    fn test_f16_to_f32() {
+        use std::format;
+        // Exhaustively check that these are equivalent for all `f16`:
+        //  - `f16 -> f32`
+        //  - `f16 -> str -> f32`
+        //  - `f16 -> f32 -> str -> f32`
+        //  - `f16 -> f32 -> str -> f16 -> f32`
+        for x in 0..=u16::MAX {
+            let f16 = f16::from_bits(x);
+            let s16 = format!("{}", Hexf(f16));
+            let f32 = f16 as f32;
+            let s32 = format!("{}", Hexf(f32));
+
+            let a = hf32(&s16);
+            let b = hf32(&s32);
+            let c = hf16(&s32);
+
+            if f32.is_nan() && a.is_nan() && b.is_nan() && c.is_nan() {
+                continue;
+            }
+
+            assert_eq!(
+                f32.to_bits(),
+                a.to_bits(),
+                "{f16:?} : f16 formatted as {s16} which parsed as {a:?} : f16"
+            );
+            assert_eq!(
+                f32.to_bits(),
+                b.to_bits(),
+                "{f32:?} : f32 formatted as {s32} which parsed as {b:?} : f32"
+            );
+            assert_eq!(
+                f32.to_bits(),
+                (c as f32).to_bits(),
+                "{f32:?} : f32 formatted as {s32} which parsed as {c:?} : f16"
+            );
+        }
+    }
+    #[test]
+    fn spot_checks() {
+        assert_eq!(Hexf(f32::MAX).to_string(), "0x1.fffffep+127");
+        assert_eq!(Hexf(f64::MAX).to_string(), "0x1.fffffffffffffp+1023");
+
+        assert_eq!(Hexf(f32::MIN).to_string(), "-0x1.fffffep+127");
+        assert_eq!(Hexf(f64::MIN).to_string(), "-0x1.fffffffffffffp+1023");
+
+        assert_eq!(Hexf(f32::ZERO).to_string(), "0x0p+0");
+        assert_eq!(Hexf(f64::ZERO).to_string(), "0x0p+0");
+
+        assert_eq!(Hexf(f32::NEG_ZERO).to_string(), "-0x0p+0");
+        assert_eq!(Hexf(f64::NEG_ZERO).to_string(), "-0x0p+0");
+
+        assert_eq!(Hexf(f32::NAN).to_string(), "NaN");
+        assert_eq!(Hexf(f64::NAN).to_string(), "NaN");
+
+        assert_eq!(Hexf(f32::INFINITY).to_string(), "inf");
+        assert_eq!(Hexf(f64::INFINITY).to_string(), "inf");
+
+        assert_eq!(Hexf(f32::NEG_INFINITY).to_string(), "-inf");
+        assert_eq!(Hexf(f64::NEG_INFINITY).to_string(), "-inf");
+
+        #[cfg(f16_enabled)]
+        {
+            assert_eq!(Hexf(f16::MAX).to_string(), "0x1.ffcp+15");
+            assert_eq!(Hexf(f16::MIN).to_string(), "-0x1.ffcp+15");
+            assert_eq!(Hexf(f16::ZERO).to_string(), "0x0p+0");
+            assert_eq!(Hexf(f16::NEG_ZERO).to_string(), "-0x0p+0");
+            assert_eq!(Hexf(f16::NAN).to_string(), "NaN");
+            assert_eq!(Hexf(f16::INFINITY).to_string(), "inf");
+            assert_eq!(Hexf(f16::NEG_INFINITY).to_string(), "-inf");
+        }
+
+        #[cfg(f128_enabled)]
+        {
+            assert_eq!(Hexf(f128::MAX).to_string(), "0x1.ffffffffffffffffffffffffffffp+16383");
+            assert_eq!(Hexf(f128::MIN).to_string(), "-0x1.ffffffffffffffffffffffffffffp+16383");
+            assert_eq!(Hexf(f128::ZERO).to_string(), "0x0p+0");
+            assert_eq!(Hexf(f128::NEG_ZERO).to_string(), "-0x0p+0");
+            assert_eq!(Hexf(f128::NAN).to_string(), "NaN");
+            assert_eq!(Hexf(f128::INFINITY).to_string(), "inf");
+            assert_eq!(Hexf(f128::NEG_INFINITY).to_string(), "-inf");
+        }
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/support/int_traits.rs b/library/compiler-builtins/libm/src/math/support/int_traits.rs
new file mode 100644
index 00000000000..491adb1f22c
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/support/int_traits.rs
@@ -0,0 +1,451 @@
+use core::{cmp, fmt, ops};
+
+/// Minimal integer implementations needed on all integer types, including wide integers.
+pub trait MinInt:
+    Copy
+    + fmt::Debug
+    + ops::BitOr<Output = Self>
+    + ops::Not<Output = Self>
+    + ops::Shl<u32, Output = Self>
+{
+    /// Type with the same width but other signedness
+    type OtherSign: MinInt;
+    /// Unsigned version of Self
+    type Unsigned: MinInt;
+
+    /// If `Self` is a signed integer
+    const SIGNED: bool;
+
+    /// The bitwidth of the int type
+    const BITS: u32;
+
+    const ZERO: Self;
+    const ONE: Self;
+    const MIN: Self;
+    const MAX: Self;
+}
+
+/// Access the associated `OtherSign` type from an int (helper to avoid ambiguous associated
+/// types).
+pub type OtherSign<I> = <I as MinInt>::OtherSign;
+
+/// Trait for some basic operations on integers
+#[allow(dead_code)]
+pub trait Int:
+    MinInt
+    + fmt::Display
+    + fmt::Binary
+    + fmt::LowerHex
+    + PartialEq
+    + PartialOrd
+    + ops::AddAssign
+    + ops::SubAssign
+    + ops::BitAndAssign
+    + ops::BitOrAssign
+    + ops::BitXorAssign
+    + ops::ShlAssign<i32>
+    + ops::ShlAssign<u32>
+    + ops::ShrAssign<u32>
+    + ops::ShrAssign<i32>
+    + ops::Add<Output = Self>
+    + ops::Sub<Output = Self>
+    + ops::Mul<Output = Self>
+    + ops::Div<Output = Self>
+    + ops::Shl<i32, Output = Self>
+    + ops::Shl<u32, Output = Self>
+    + ops::Shr<i32, Output = Self>
+    + ops::Shr<u32, Output = Self>
+    + ops::BitXor<Output = Self>
+    + ops::BitAnd<Output = Self>
+    + cmp::Ord
+    + From<bool>
+    + CastFrom<i32>
+    + CastFrom<u16>
+    + CastFrom<u32>
+    + CastFrom<u8>
+    + CastFrom<usize>
+    + CastInto<i32>
+    + CastInto<u16>
+    + CastInto<u32>
+    + CastInto<u8>
+    + CastInto<usize>
+{
+    fn signed(self) -> OtherSign<Self::Unsigned>;
+    fn unsigned(self) -> Self::Unsigned;
+    fn from_unsigned(unsigned: Self::Unsigned) -> Self;
+    fn abs(self) -> Self;
+
+    fn from_bool(b: bool) -> Self;
+
+    /// Prevents the need for excessive conversions between signed and unsigned
+    fn logical_shr(self, other: u32) -> Self;
+
+    /// Absolute difference between two integers.
+    fn abs_diff(self, other: Self) -> Self::Unsigned;
+
+    // copied from primitive integers, but put in a trait
+    fn is_zero(self) -> bool;
+    fn checked_add(self, other: Self) -> Option<Self>;
+    fn checked_sub(self, other: Self) -> Option<Self>;
+    fn wrapping_neg(self) -> Self;
+    fn wrapping_add(self, other: Self) -> Self;
+    fn wrapping_mul(self, other: Self) -> Self;
+    fn wrapping_sub(self, other: Self) -> Self;
+    fn wrapping_shl(self, other: u32) -> Self;
+    fn wrapping_shr(self, other: u32) -> Self;
+    fn rotate_left(self, other: u32) -> Self;
+    fn overflowing_add(self, other: Self) -> (Self, bool);
+    fn overflowing_sub(self, other: Self) -> (Self, bool);
+    fn leading_zeros(self) -> u32;
+    fn ilog2(self) -> u32;
+}
+
+macro_rules! int_impl_common {
+    ($ty:ty) => {
+        fn from_bool(b: bool) -> Self {
+            b as $ty
+        }
+
+        fn logical_shr(self, other: u32) -> Self {
+            Self::from_unsigned(self.unsigned().wrapping_shr(other))
+        }
+
+        fn is_zero(self) -> bool {
+            self == Self::ZERO
+        }
+
+        fn checked_add(self, other: Self) -> Option<Self> {
+            self.checked_add(other)
+        }
+
+        fn checked_sub(self, other: Self) -> Option<Self> {
+            self.checked_sub(other)
+        }
+
+        fn wrapping_neg(self) -> Self {
+            <Self>::wrapping_neg(self)
+        }
+
+        fn wrapping_add(self, other: Self) -> Self {
+            <Self>::wrapping_add(self, other)
+        }
+
+        fn wrapping_mul(self, other: Self) -> Self {
+            <Self>::wrapping_mul(self, other)
+        }
+
+        fn wrapping_sub(self, other: Self) -> Self {
+            <Self>::wrapping_sub(self, other)
+        }
+
+        fn wrapping_shl(self, other: u32) -> Self {
+            <Self>::wrapping_shl(self, other)
+        }
+
+        fn wrapping_shr(self, other: u32) -> Self {
+            <Self>::wrapping_shr(self, other)
+        }
+
+        fn rotate_left(self, other: u32) -> Self {
+            <Self>::rotate_left(self, other)
+        }
+
+        fn overflowing_add(self, other: Self) -> (Self, bool) {
+            <Self>::overflowing_add(self, other)
+        }
+
+        fn overflowing_sub(self, other: Self) -> (Self, bool) {
+            <Self>::overflowing_sub(self, other)
+        }
+
+        fn leading_zeros(self) -> u32 {
+            <Self>::leading_zeros(self)
+        }
+
+        fn ilog2(self) -> u32 {
+            // On our older MSRV, this resolves to the trait method. Which won't actually work,
+            // but this is only called behind other gates.
+            #[allow(clippy::incompatible_msrv)]
+            <Self>::ilog2(self)
+        }
+    };
+}
+
+macro_rules! int_impl {
+    ($ity:ty, $uty:ty) => {
+        impl MinInt for $uty {
+            type OtherSign = $ity;
+            type Unsigned = $uty;
+
+            const BITS: u32 = <Self as MinInt>::ZERO.count_zeros();
+            const SIGNED: bool = Self::MIN != Self::ZERO;
+
+            const ZERO: Self = 0;
+            const ONE: Self = 1;
+            const MIN: Self = <Self>::MIN;
+            const MAX: Self = <Self>::MAX;
+        }
+
+        impl Int for $uty {
+            fn signed(self) -> $ity {
+                self as $ity
+            }
+
+            fn unsigned(self) -> Self {
+                self
+            }
+
+            fn abs(self) -> Self {
+                unimplemented!()
+            }
+
+            // It makes writing macros easier if this is implemented for both signed and unsigned
+            #[allow(clippy::wrong_self_convention)]
+            fn from_unsigned(me: $uty) -> Self {
+                me
+            }
+
+            fn abs_diff(self, other: Self) -> Self {
+                self.abs_diff(other)
+            }
+
+            int_impl_common!($uty);
+        }
+
+        impl MinInt for $ity {
+            type OtherSign = $uty;
+            type Unsigned = $uty;
+
+            const BITS: u32 = <Self as MinInt>::ZERO.count_zeros();
+            const SIGNED: bool = Self::MIN != Self::ZERO;
+
+            const ZERO: Self = 0;
+            const ONE: Self = 1;
+            const MIN: Self = <Self>::MIN;
+            const MAX: Self = <Self>::MAX;
+        }
+
+        impl Int for $ity {
+            fn signed(self) -> Self {
+                self
+            }
+
+            fn unsigned(self) -> $uty {
+                self as $uty
+            }
+
+            fn abs(self) -> Self {
+                self.abs()
+            }
+
+            fn from_unsigned(me: $uty) -> Self {
+                me as $ity
+            }
+
+            fn abs_diff(self, other: Self) -> $uty {
+                self.abs_diff(other)
+            }
+
+            int_impl_common!($ity);
+        }
+    };
+}
+
+int_impl!(isize, usize);
+int_impl!(i8, u8);
+int_impl!(i16, u16);
+int_impl!(i32, u32);
+int_impl!(i64, u64);
+int_impl!(i128, u128);
+
+/// Trait for integers twice the bit width of another integer. This is implemented for all
+/// primitives except for `u8`, because there is not a smaller primitive.
+pub trait DInt: MinInt {
+    /// Integer that is half the bit width of the integer this trait is implemented for
+    type H: HInt<D = Self>;
+
+    /// Returns the low half of `self`
+    fn lo(self) -> Self::H;
+    /// Returns the high half of `self`
+    fn hi(self) -> Self::H;
+    /// Returns the low and high halves of `self` as a tuple
+    fn lo_hi(self) -> (Self::H, Self::H) {
+        (self.lo(), self.hi())
+    }
+    /// Constructs an integer using lower and higher half parts
+    #[allow(unused)]
+    fn from_lo_hi(lo: Self::H, hi: Self::H) -> Self {
+        lo.zero_widen() | hi.widen_hi()
+    }
+}
+
+/// Trait for integers half the bit width of another integer. This is implemented for all
+/// primitives except for `u128`, because it there is not a larger primitive.
+pub trait HInt: Int {
+    /// Integer that is double the bit width of the integer this trait is implemented for
+    type D: DInt<H = Self> + MinInt;
+
+    // NB: some of the below methods could have default implementations (e.g. `widen_hi`), but for
+    // unknown reasons this can cause infinite recursion when optimizations are disabled. See
+    // <https://github.com/rust-lang/compiler-builtins/pull/707> for context.
+
+    /// Widens (using default extension) the integer to have double bit width
+    fn widen(self) -> Self::D;
+    /// Widens (zero extension only) the integer to have double bit width. This is needed to get
+    /// around problems with associated type bounds (such as `Int<Othersign: DInt>`) being unstable
+    fn zero_widen(self) -> Self::D;
+    /// Widens the integer to have double bit width and shifts the integer into the higher bits
+    #[allow(unused)]
+    fn widen_hi(self) -> Self::D;
+    /// Widening multiplication with zero widening. This cannot overflow.
+    fn zero_widen_mul(self, rhs: Self) -> Self::D;
+    /// Widening multiplication. This cannot overflow.
+    fn widen_mul(self, rhs: Self) -> Self::D;
+}
+
+macro_rules! impl_d_int {
+    ($($X:ident $D:ident),*) => {
+        $(
+            impl DInt for $D {
+                type H = $X;
+
+                fn lo(self) -> Self::H {
+                    self as $X
+                }
+                fn hi(self) -> Self::H {
+                    (self >> <$X as MinInt>::BITS) as $X
+                }
+            }
+        )*
+    };
+}
+
+macro_rules! impl_h_int {
+    ($($H:ident $uH:ident $X:ident),*) => {
+        $(
+            impl HInt for $H {
+                type D = $X;
+
+                fn widen(self) -> Self::D {
+                    self as $X
+                }
+                fn zero_widen(self) -> Self::D {
+                    (self as $uH) as $X
+                }
+                fn zero_widen_mul(self, rhs: Self) -> Self::D {
+                    self.zero_widen().wrapping_mul(rhs.zero_widen())
+                }
+                fn widen_mul(self, rhs: Self) -> Self::D {
+                    self.widen().wrapping_mul(rhs.widen())
+                }
+                fn widen_hi(self) -> Self::D {
+                    (self as $X) << <Self as MinInt>::BITS
+                }
+            }
+        )*
+    };
+}
+
+impl_d_int!(u8 u16, u16 u32, u32 u64, u64 u128, i8 i16, i16 i32, i32 i64, i64 i128);
+impl_h_int!(
+    u8 u8 u16,
+    u16 u16 u32,
+    u32 u32 u64,
+    u64 u64 u128,
+    i8 u8 i16,
+    i16 u16 i32,
+    i32 u32 i64,
+    i64 u64 i128
+);
+
+/// Trait to express (possibly lossy) casting of integers
+pub trait CastInto<T: Copy>: Copy {
+    /// By default, casts should be exact.
+    fn cast(self) -> T;
+
+    /// Call for casts that are expected to truncate.
+    fn cast_lossy(self) -> T;
+}
+
+pub trait CastFrom<T: Copy>: Copy {
+    /// By default, casts should be exact.
+    fn cast_from(value: T) -> Self;
+
+    /// Call for casts that are expected to truncate.
+    fn cast_from_lossy(value: T) -> Self;
+}
+
+impl<T: Copy, U: CastInto<T> + Copy> CastFrom<U> for T {
+    fn cast_from(value: U) -> Self {
+        value.cast()
+    }
+
+    fn cast_from_lossy(value: U) -> Self {
+        value.cast_lossy()
+    }
+}
+
+macro_rules! cast_into {
+    ($ty:ty) => {
+        cast_into!($ty; usize, isize, u8, i8, u16, i16, u32, i32, u64, i64, u128, i128);
+    };
+    ($ty:ty; $($into:ty),*) => {$(
+        impl CastInto<$into> for $ty {
+            fn cast(self) -> $into {
+                // All we can really do to enforce casting rules is check the rules when in
+                // debug mode.
+                #[cfg(not(feature = "compiler-builtins"))]
+                debug_assert!(<$into>::try_from(self).is_ok(), "failed cast from {self}");
+                self as $into
+            }
+
+            fn cast_lossy(self) -> $into {
+                self as $into
+            }
+        }
+    )*};
+}
+
+macro_rules! cast_into_float {
+    ($ty:ty) => {
+        #[cfg(f16_enabled)]
+        cast_into_float!($ty; f16);
+
+        cast_into_float!($ty; f32, f64);
+
+        #[cfg(f128_enabled)]
+        cast_into_float!($ty; f128);
+    };
+    ($ty:ty; $($into:ty),*) => {$(
+        impl CastInto<$into> for $ty {
+            fn cast(self) -> $into {
+                #[cfg(not(feature = "compiler-builtins"))]
+                debug_assert_eq!(self as $into as $ty, self, "inexact float cast");
+                self as $into
+            }
+
+            fn cast_lossy(self) -> $into {
+                self as $into
+            }
+        }
+    )*};
+}
+
+cast_into!(usize);
+cast_into!(isize);
+cast_into!(u8);
+cast_into!(i8);
+cast_into!(u16);
+cast_into!(i16);
+cast_into!(u32);
+cast_into!(i32);
+cast_into!(u64);
+cast_into!(i64);
+cast_into!(u128);
+cast_into!(i128);
+
+cast_into_float!(i8);
+cast_into_float!(i16);
+cast_into_float!(i32);
+cast_into_float!(i64);
+cast_into_float!(i128);
diff --git a/library/compiler-builtins/libm/src/math/support/macros.rs b/library/compiler-builtins/libm/src/math/support/macros.rs
new file mode 100644
index 00000000000..0b72db0e46e
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/support/macros.rs
@@ -0,0 +1,157 @@
+/// `libm` cannot have dependencies, so this is vendored directly from the `cfg-if` crate
+/// (with some comments stripped for compactness).
+macro_rules! cfg_if {
+    // match if/else chains with a final `else`
+    ($(
+        if #[cfg($meta:meta)] { $($tokens:tt)* }
+    ) else * else {
+        $($tokens2:tt)*
+    }) => {
+        cfg_if! { @__items () ; $( ( ($meta) ($($tokens)*) ), )* ( () ($($tokens2)*) ), }
+    };
+
+    // match if/else chains lacking a final `else`
+    (
+        if #[cfg($i_met:meta)] { $($i_tokens:tt)* }
+        $( else if #[cfg($e_met:meta)] { $($e_tokens:tt)* } )*
+    ) => {
+        cfg_if! {
+            @__items
+            () ;
+            ( ($i_met) ($($i_tokens)*) ),
+            $( ( ($e_met) ($($e_tokens)*) ), )*
+            ( () () ),
+        }
+    };
+
+    // Internal and recursive macro to emit all the items
+    //
+    // Collects all the negated cfgs in a list at the beginning and after the
+    // semicolon is all the remaining items
+    (@__items ($($not:meta,)*) ; ) => {};
+    (@__items ($($not:meta,)*) ; ( ($($m:meta),*) ($($tokens:tt)*) ), $($rest:tt)*) => {
+        #[cfg(all($($m,)* not(any($($not),*))))] cfg_if! { @__identity $($tokens)* }
+        cfg_if! { @__items ($($not,)* $($m,)*) ; $($rest)* }
+    };
+
+    // Internal macro to make __apply work out right for different match types,
+    // because of how macros matching/expand stuff.
+    (@__identity $($tokens:tt)*) => { $($tokens)* };
+}
+
+/// Choose between using an arch-specific implementation and the function body. Returns directly
+/// if the arch implementation is used, otherwise continue with the rest of the function.
+///
+/// Specify a `use_arch` meta field if an architecture-specific implementation is provided.
+/// These live in the `math::arch::some_target_arch` module.
+///
+/// Specify a `use_arch_required` meta field if something architecture-specific must be used
+/// regardless of feature configuration (`force-soft-floats`).
+///
+/// The passed meta options do not need to account for the `arch` target feature.
+macro_rules! select_implementation {
+    (
+        name: $fn_name:ident,
+        // Configuration meta for when to use arch-specific implementation that requires hard
+        // float ops
+        $( use_arch: $use_arch:meta, )?
+        // Configuration meta for when to use the arch module regardless of whether softfloats
+        // have been requested.
+        $( use_arch_required: $use_arch_required:meta, )?
+        args: $($arg:ident),+ ,
+    ) => {
+        // FIXME: these use paths that are a pretty fragile (`super`). We should figure out
+        // something better w.r.t. how this is vendored into compiler-builtins.
+
+        // However, we do need a few things from `arch` that are used even with soft floats.
+        select_implementation! {
+            @cfg $($use_arch_required)?;
+            if true {
+                return  super::arch::$fn_name( $($arg),+ );
+            }
+        }
+
+        // By default, never use arch-specific implementations if we have force-soft-floats
+        #[cfg(arch_enabled)]
+        select_implementation! {
+            @cfg $($use_arch)?;
+            // Wrap in `if true` to avoid unused warnings
+            if true {
+                return  super::arch::$fn_name( $($arg),+ );
+            }
+        }
+    };
+
+    // Coalesce helper to construct an expression only if a config is provided
+    (@cfg ; $ex:expr) => { };
+    (@cfg $provided:meta; $ex:expr) => { #[cfg($provided)] $ex };
+}
+
+/// Construct a 16-bit float from hex float representation (C-style), guaranteed to
+/// evaluate at compile time.
+#[cfg(f16_enabled)]
+#[cfg_attr(feature = "unstable-public-internals", macro_export)]
+#[allow(unused_macros)]
+macro_rules! hf16 {
+    ($s:literal) => {{
+        const X: f16 = $crate::support::hf16($s);
+        X
+    }};
+}
+
+/// Construct a 32-bit float from hex float representation (C-style), guaranteed to
+/// evaluate at compile time.
+#[allow(unused_macros)]
+#[cfg_attr(feature = "unstable-public-internals", macro_export)]
+macro_rules! hf32 {
+    ($s:literal) => {{
+        const X: f32 = $crate::support::hf32($s);
+        X
+    }};
+}
+
+/// Construct a 64-bit float from hex float representation (C-style), guaranteed to
+/// evaluate at compile time.
+#[allow(unused_macros)]
+#[cfg_attr(feature = "unstable-public-internals", macro_export)]
+macro_rules! hf64 {
+    ($s:literal) => {{
+        const X: f64 = $crate::support::hf64($s);
+        X
+    }};
+}
+
+/// Construct a 128-bit float from hex float representation (C-style), guaranteed to
+/// evaluate at compile time.
+#[cfg(f128_enabled)]
+#[allow(unused_macros)]
+#[cfg_attr(feature = "unstable-public-internals", macro_export)]
+macro_rules! hf128 {
+    ($s:literal) => {{
+        const X: f128 = $crate::support::hf128($s);
+        X
+    }};
+}
+
+/// Assert `F::biteq` with better messages.
+#[cfg(test)]
+macro_rules! assert_biteq {
+    ($left:expr, $right:expr, $($tt:tt)*) => {{
+        use $crate::support::Int;
+        let l = $left;
+        let r = $right;
+        let bits = Int::leading_zeros(l.to_bits() - l.to_bits()); // hack to get the width from the value
+        assert!(
+            l.biteq(r),
+            "{}\nl: {l:?} ({lb:#0width$x})\nr: {r:?} ({rb:#0width$x})",
+            format_args!($($tt)*),
+            lb = l.to_bits(),
+            rb = r.to_bits(),
+            width = ((bits / 4) + 2) as usize,
+
+        );
+    }};
+    ($left:expr, $right:expr $(,)?) => {
+        assert_biteq!($left, $right, "")
+    };
+}
diff --git a/library/compiler-builtins/libm/src/math/support/mod.rs b/library/compiler-builtins/libm/src/math/support/mod.rs
new file mode 100644
index 00000000000..ee3f2bbdf02
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/support/mod.rs
@@ -0,0 +1,29 @@
+#[macro_use]
+pub mod macros;
+mod big;
+mod env;
+mod float_traits;
+pub mod hex_float;
+mod int_traits;
+
+#[allow(unused_imports)]
+pub use big::{i256, u256};
+pub use env::{FpResult, Round, Status};
+#[allow(unused_imports)]
+pub use float_traits::{DFloat, Float, HFloat, IntTy};
+pub(crate) use float_traits::{f32_from_bits, f64_from_bits};
+#[cfg(f16_enabled)]
+#[allow(unused_imports)]
+pub use hex_float::hf16;
+#[cfg(f128_enabled)]
+#[allow(unused_imports)]
+pub use hex_float::hf128;
+#[allow(unused_imports)]
+pub use hex_float::{Hexf, hf32, hf64};
+pub use int_traits::{CastFrom, CastInto, DInt, HInt, Int, MinInt};
+
+/// Hint to the compiler that the current path is cold.
+pub fn cold_path() {
+    #[cfg(intrinsics_enabled)]
+    core::intrinsics::cold_path();
+}
diff --git a/library/compiler-builtins/libm/src/math/tan.rs b/library/compiler-builtins/libm/src/math/tan.rs
new file mode 100644
index 00000000000..a074ca5540a
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/tan.rs
@@ -0,0 +1,70 @@
+// origin: FreeBSD /usr/src/lib/msun/src/s_tan.c */
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+
+use super::{k_tan, rem_pio2};
+
+// tan(x)
+// Return tangent function of x.
+//
+// kernel function:
+//      k_tan           ... tangent function on [-pi/4,pi/4]
+//      rem_pio2        ... argument reduction routine
+//
+// Method.
+//      Let S,C and T denote the sin, cos and tan respectively on
+//      [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+//      in [-pi/4 , +pi/4], and let n = k mod 4.
+//      We have
+//
+//          n        sin(x)      cos(x)        tan(x)
+//     ----------------------------------------------------------
+//          0          S           C             T
+//          1          C          -S            -1/T
+//          2         -S          -C             T
+//          3         -C           S            -1/T
+//     ----------------------------------------------------------
+//
+// Special cases:
+//      Let trig be any of sin, cos, or tan.
+//      trig(+-INF)  is NaN, with signals;
+//      trig(NaN)    is that NaN;
+//
+// Accuracy:
+//      TRIG(x) returns trig(x) nearly rounded
+
+/// The tangent of `x` (f64).
+///
+/// `x` is specified in radians.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn tan(x: f64) -> f64 {
+    let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120
+
+    let ix = (f64::to_bits(x) >> 32) as u32 & 0x7fffffff;
+    /* |x| ~< pi/4 */
+    if ix <= 0x3fe921fb {
+        if ix < 0x3e400000 {
+            /* |x| < 2**-27 */
+            /* raise inexact if x!=0 and underflow if subnormal */
+            force_eval!(if ix < 0x00100000 { x / x1p120 as f64 } else { x + x1p120 as f64 });
+            return x;
+        }
+        return k_tan(x, 0.0, 0);
+    }
+
+    /* tan(Inf or NaN) is NaN */
+    if ix >= 0x7ff00000 {
+        return x - x;
+    }
+
+    /* argument reduction */
+    let (n, y0, y1) = rem_pio2(x);
+    k_tan(y0, y1, n & 1)
+}
diff --git a/library/compiler-builtins/libm/src/math/tanf.rs b/library/compiler-builtins/libm/src/math/tanf.rs
new file mode 100644
index 00000000000..7586aae4c7e
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/tanf.rs
@@ -0,0 +1,77 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_tanf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use core::f64::consts::FRAC_PI_2;
+
+use super::{k_tanf, rem_pio2f};
+
+/* Small multiples of pi/2 rounded to double precision. */
+const T1_PIO2: f64 = 1. * FRAC_PI_2; /* 0x3FF921FB, 0x54442D18 */
+const T2_PIO2: f64 = 2. * FRAC_PI_2; /* 0x400921FB, 0x54442D18 */
+const T3_PIO2: f64 = 3. * FRAC_PI_2; /* 0x4012D97C, 0x7F3321D2 */
+const T4_PIO2: f64 = 4. * FRAC_PI_2; /* 0x401921FB, 0x54442D18 */
+
+/// The tangent of `x` (f32).
+///
+/// `x` is specified in radians.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn tanf(x: f32) -> f32 {
+    let x64 = x as f64;
+
+    let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120
+
+    let mut ix = x.to_bits();
+    let sign = (ix >> 31) != 0;
+    ix &= 0x7fffffff;
+
+    if ix <= 0x3f490fda {
+        /* |x| ~<= pi/4 */
+        if ix < 0x39800000 {
+            /* |x| < 2**-12 */
+            /* raise inexact if x!=0 and underflow if subnormal */
+            force_eval!(if ix < 0x00800000 { x / x1p120 } else { x + x1p120 });
+            return x;
+        }
+        return k_tanf(x64, false);
+    }
+    if ix <= 0x407b53d1 {
+        /* |x| ~<= 5*pi/4 */
+        if ix <= 0x4016cbe3 {
+            /* |x| ~<= 3pi/4 */
+            return k_tanf(if sign { x64 + T1_PIO2 } else { x64 - T1_PIO2 }, true);
+        } else {
+            return k_tanf(if sign { x64 + T2_PIO2 } else { x64 - T2_PIO2 }, false);
+        }
+    }
+    if ix <= 0x40e231d5 {
+        /* |x| ~<= 9*pi/4 */
+        if ix <= 0x40afeddf {
+            /* |x| ~<= 7*pi/4 */
+            return k_tanf(if sign { x64 + T3_PIO2 } else { x64 - T3_PIO2 }, true);
+        } else {
+            return k_tanf(if sign { x64 + T4_PIO2 } else { x64 - T4_PIO2 }, false);
+        }
+    }
+
+    /* tan(Inf or NaN) is NaN */
+    if ix >= 0x7f800000 {
+        return x - x;
+    }
+
+    /* argument reduction */
+    let (n, y) = rem_pio2f(x);
+    k_tanf(y, n & 1 != 0)
+}
diff --git a/library/compiler-builtins/libm/src/math/tanh.rs b/library/compiler-builtins/libm/src/math/tanh.rs
new file mode 100644
index 00000000000..cc0abe4fcb2
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/tanh.rs
@@ -0,0 +1,53 @@
+use super::expm1;
+
+/* tanh(x) = (exp(x) - exp(-x))/(exp(x) + exp(-x))
+ *         = (exp(2*x) - 1)/(exp(2*x) - 1 + 2)
+ *         = (1 - exp(-2*x))/(exp(-2*x) - 1 + 2)
+ */
+
+/// The hyperbolic tangent of `x` (f64).
+///
+/// `x` is specified in radians.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn tanh(mut x: f64) -> f64 {
+    let mut uf: f64 = x;
+    let mut ui: u64 = f64::to_bits(uf);
+
+    let w: u32;
+    let sign: bool;
+    let mut t: f64;
+
+    /* x = |x| */
+    sign = ui >> 63 != 0;
+    ui &= !1 / 2;
+    uf = f64::from_bits(ui);
+    x = uf;
+    w = (ui >> 32) as u32;
+
+    if w > 0x3fe193ea {
+        /* |x| > log(3)/2 ~= 0.5493 or nan */
+        if w > 0x40340000 {
+            /* |x| > 20 or nan */
+            /* note: this branch avoids raising overflow */
+            t = 1.0 - 0.0 / x;
+        } else {
+            t = expm1(2.0 * x);
+            t = 1.0 - 2.0 / (t + 2.0);
+        }
+    } else if w > 0x3fd058ae {
+        /* |x| > log(5/3)/2 ~= 0.2554 */
+        t = expm1(2.0 * x);
+        t = t / (t + 2.0);
+    } else if w >= 0x00100000 {
+        /* |x| >= 0x1p-1022, up to 2ulp error in [0.1,0.2554] */
+        t = expm1(-2.0 * x);
+        t = -t / (t + 2.0);
+    } else {
+        /* |x| is subnormal */
+        /* note: the branch above would not raise underflow in [0x1p-1023,0x1p-1022) */
+        force_eval!(x as f32);
+        t = x;
+    }
+
+    if sign { -t } else { t }
+}
diff --git a/library/compiler-builtins/libm/src/math/tanhf.rs b/library/compiler-builtins/libm/src/math/tanhf.rs
new file mode 100644
index 00000000000..fffbba6c6ec
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/tanhf.rs
@@ -0,0 +1,38 @@
+use super::expm1f;
+
+/// The hyperbolic tangent of `x` (f32).
+///
+/// `x` is specified in radians.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn tanhf(mut x: f32) -> f32 {
+    /* x = |x| */
+    let mut ix = x.to_bits();
+    let sign = (ix >> 31) != 0;
+    ix &= 0x7fffffff;
+    x = f32::from_bits(ix);
+    let w = ix;
+
+    let tt = if w > 0x3f0c9f54 {
+        /* |x| > log(3)/2 ~= 0.5493 or nan */
+        if w > 0x41200000 {
+            /* |x| > 10 */
+            1. + 0. / x
+        } else {
+            let t = expm1f(2. * x);
+            1. - 2. / (t + 2.)
+        }
+    } else if w > 0x3e82c578 {
+        /* |x| > log(5/3)/2 ~= 0.2554 */
+        let t = expm1f(2. * x);
+        t / (t + 2.)
+    } else if w >= 0x00800000 {
+        /* |x| >= 0x1p-126 */
+        let t = expm1f(-2. * x);
+        -t / (t + 2.)
+    } else {
+        /* |x| is subnormal */
+        force_eval!(x * x);
+        x
+    };
+    if sign { -tt } else { tt }
+}
diff --git a/library/compiler-builtins/libm/src/math/tgamma.rs b/library/compiler-builtins/libm/src/math/tgamma.rs
new file mode 100644
index 00000000000..3059860646a
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/tgamma.rs
@@ -0,0 +1,209 @@
+/*
+"A Precision Approximation of the Gamma Function" - Cornelius Lanczos (1964)
+"Lanczos Implementation of the Gamma Function" - Paul Godfrey (2001)
+"An Analysis of the Lanczos Gamma Approximation" - Glendon Ralph Pugh (2004)
+
+approximation method:
+
+                        (x - 0.5)         S(x)
+Gamma(x) = (x + g - 0.5)         *  ----------------
+                                    exp(x + g - 0.5)
+
+with
+                 a1      a2      a3            aN
+S(x) ~= [ a0 + ----- + ----- + ----- + ... + ----- ]
+               x + 1   x + 2   x + 3         x + N
+
+with a0, a1, a2, a3,.. aN constants which depend on g.
+
+for x < 0 the following reflection formula is used:
+
+Gamma(x)*Gamma(-x) = -pi/(x sin(pi x))
+
+most ideas and constants are from boost and python
+*/
+use super::{exp, floor, k_cos, k_sin, pow};
+
+const PI: f64 = 3.141592653589793238462643383279502884;
+
+/* sin(pi x) with x > 0x1p-100, if sin(pi*x)==0 the sign is arbitrary */
+fn sinpi(mut x: f64) -> f64 {
+    let mut n: isize;
+
+    /* argument reduction: x = |x| mod 2 */
+    /* spurious inexact when x is odd int */
+    x = x * 0.5;
+    x = 2.0 * (x - floor(x));
+
+    /* reduce x into [-.25,.25] */
+    n = (4.0 * x) as isize;
+    n = div!(n + 1, 2);
+    x -= (n as f64) * 0.5;
+
+    x *= PI;
+    match n {
+        1 => k_cos(x, 0.0),
+        2 => k_sin(-x, 0.0, 0),
+        3 => -k_cos(x, 0.0),
+        // 0
+        _ => k_sin(x, 0.0, 0),
+    }
+}
+
+const N: usize = 12;
+//static const double g = 6.024680040776729583740234375;
+const GMHALF: f64 = 5.524680040776729583740234375;
+const SNUM: [f64; N + 1] = [
+    23531376880.410759688572007674451636754734846804940,
+    42919803642.649098768957899047001988850926355848959,
+    35711959237.355668049440185451547166705960488635843,
+    17921034426.037209699919755754458931112671403265390,
+    6039542586.3520280050642916443072979210699388420708,
+    1439720407.3117216736632230727949123939715485786772,
+    248874557.86205415651146038641322942321632125127801,
+    31426415.585400194380614231628318205362874684987640,
+    2876370.6289353724412254090516208496135991145378768,
+    186056.26539522349504029498971604569928220784236328,
+    8071.6720023658162106380029022722506138218516325024,
+    210.82427775157934587250973392071336271166969580291,
+    2.5066282746310002701649081771338373386264310793408,
+];
+const SDEN: [f64; N + 1] = [
+    0.0,
+    39916800.0,
+    120543840.0,
+    150917976.0,
+    105258076.0,
+    45995730.0,
+    13339535.0,
+    2637558.0,
+    357423.0,
+    32670.0,
+    1925.0,
+    66.0,
+    1.0,
+];
+/* n! for small integer n */
+const FACT: [f64; 23] = [
+    1.0,
+    1.0,
+    2.0,
+    6.0,
+    24.0,
+    120.0,
+    720.0,
+    5040.0,
+    40320.0,
+    362880.0,
+    3628800.0,
+    39916800.0,
+    479001600.0,
+    6227020800.0,
+    87178291200.0,
+    1307674368000.0,
+    20922789888000.0,
+    355687428096000.0,
+    6402373705728000.0,
+    121645100408832000.0,
+    2432902008176640000.0,
+    51090942171709440000.0,
+    1124000727777607680000.0,
+];
+
+/* S(x) rational function for positive x */
+fn s(x: f64) -> f64 {
+    let mut num: f64 = 0.0;
+    let mut den: f64 = 0.0;
+
+    /* to avoid overflow handle large x differently */
+    if x < 8.0 {
+        for i in (0..=N).rev() {
+            num = num * x + i!(SNUM, i);
+            den = den * x + i!(SDEN, i);
+        }
+    } else {
+        for i in 0..=N {
+            num = num / x + i!(SNUM, i);
+            den = den / x + i!(SDEN, i);
+        }
+    }
+    return num / den;
+}
+
+/// The [Gamma function](https://en.wikipedia.org/wiki/Gamma_function) (f64).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn tgamma(mut x: f64) -> f64 {
+    let u: u64 = x.to_bits();
+    let absx: f64;
+    let mut y: f64;
+    let mut dy: f64;
+    let mut z: f64;
+    let mut r: f64;
+    let ix: u32 = ((u >> 32) as u32) & 0x7fffffff;
+    let sign: bool = (u >> 63) != 0;
+
+    /* special cases */
+    if ix >= 0x7ff00000 {
+        /* tgamma(nan)=nan, tgamma(inf)=inf, tgamma(-inf)=nan with invalid */
+        return x + f64::INFINITY;
+    }
+    if ix < ((0x3ff - 54) << 20) {
+        /* |x| < 2^-54: tgamma(x) ~ 1/x, +-0 raises div-by-zero */
+        return 1.0 / x;
+    }
+
+    /* integer arguments */
+    /* raise inexact when non-integer */
+    if x == floor(x) {
+        if sign {
+            return 0.0 / 0.0;
+        }
+        if x <= FACT.len() as f64 {
+            return i!(FACT, (x as usize) - 1);
+        }
+    }
+
+    /* x >= 172: tgamma(x)=inf with overflow */
+    /* x =< -184: tgamma(x)=+-0 with underflow */
+    if ix >= 0x40670000 {
+        /* |x| >= 184 */
+        if sign {
+            let x1p_126 = f64::from_bits(0x3810000000000000); // 0x1p-126 == 2^-126
+            force_eval!((x1p_126 / x) as f32);
+            if floor(x) * 0.5 == floor(x * 0.5) {
+                return 0.0;
+            } else {
+                return -0.0;
+            }
+        }
+        let x1p1023 = f64::from_bits(0x7fe0000000000000); // 0x1p1023 == 2^1023
+        x *= x1p1023;
+        return x;
+    }
+
+    absx = if sign { -x } else { x };
+
+    /* handle the error of x + g - 0.5 */
+    y = absx + GMHALF;
+    if absx > GMHALF {
+        dy = y - absx;
+        dy -= GMHALF;
+    } else {
+        dy = y - GMHALF;
+        dy -= absx;
+    }
+
+    z = absx - 0.5;
+    r = s(absx) * exp(-y);
+    if x < 0.0 {
+        /* reflection formula for negative x */
+        /* sinpi(absx) is not 0, integers are already handled */
+        r = -PI / (sinpi(absx) * absx * r);
+        dy = -dy;
+        z = -z;
+    }
+    r += dy * (GMHALF + 0.5) * r / y;
+    z = pow(y, 0.5 * z);
+    y = r * z * z;
+    return y;
+}
diff --git a/library/compiler-builtins/libm/src/math/tgammaf.rs b/library/compiler-builtins/libm/src/math/tgammaf.rs
new file mode 100644
index 00000000000..fe178f7a3c0
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/tgammaf.rs
@@ -0,0 +1,7 @@
+use super::tgamma;
+
+/// The [Gamma function](https://en.wikipedia.org/wiki/Gamma_function) (f32).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn tgammaf(x: f32) -> f32 {
+    tgamma(x as f64) as f32
+}
diff --git a/library/compiler-builtins/libm/src/math/trunc.rs b/library/compiler-builtins/libm/src/math/trunc.rs
new file mode 100644
index 00000000000..fa50d55e136
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/trunc.rs
@@ -0,0 +1,53 @@
+/// Rounds the number toward 0 to the closest integral value (f16).
+///
+/// This effectively removes the decimal part of the number, leaving the integral part.
+#[cfg(f16_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn truncf16(x: f16) -> f16 {
+    super::generic::trunc(x)
+}
+
+/// Rounds the number toward 0 to the closest integral value (f32).
+///
+/// This effectively removes the decimal part of the number, leaving the integral part.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn truncf(x: f32) -> f32 {
+    select_implementation! {
+        name: truncf,
+        use_arch: all(target_arch = "wasm32", intrinsics_enabled),
+        args: x,
+    }
+
+    super::generic::trunc(x)
+}
+
+/// Rounds the number toward 0 to the closest integral value (f64).
+///
+/// This effectively removes the decimal part of the number, leaving the integral part.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn trunc(x: f64) -> f64 {
+    select_implementation! {
+        name: trunc,
+        use_arch: all(target_arch = "wasm32", intrinsics_enabled),
+        args: x,
+    }
+
+    super::generic::trunc(x)
+}
+
+/// Rounds the number toward 0 to the closest integral value (f128).
+///
+/// This effectively removes the decimal part of the number, leaving the integral part.
+#[cfg(f128_enabled)]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn truncf128(x: f128) -> f128 {
+    super::generic::trunc(x)
+}
+
+#[cfg(test)]
+mod tests {
+    #[test]
+    fn sanity_check() {
+        assert_eq!(super::truncf(1.1), 1.0);
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/truncf.rs b/library/compiler-builtins/libm/src/math/truncf.rs
new file mode 100644
index 00000000000..14533a26706
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/truncf.rs
@@ -0,0 +1,23 @@
+/// Rounds the number toward 0 to the closest integral value (f32).
+///
+/// This effectively removes the decimal part of the number, leaving the integral part.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn truncf(x: f32) -> f32 {
+    select_implementation! {
+        name: truncf,
+        use_arch: all(target_arch = "wasm32", intrinsics_enabled),
+        args: x,
+    }
+
+    super::generic::trunc(x)
+}
+
+// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520
+#[cfg(not(target_arch = "powerpc64"))]
+#[cfg(test)]
+mod tests {
+    #[test]
+    fn sanity_check() {
+        assert_eq!(super::truncf(1.1), 1.0);
+    }
+}
diff --git a/library/compiler-builtins/libm/src/math/truncf128.rs b/library/compiler-builtins/libm/src/math/truncf128.rs
new file mode 100644
index 00000000000..9dccc0d0e9d
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/truncf128.rs
@@ -0,0 +1,7 @@
+/// Rounds the number toward 0 to the closest integral value (f128).
+///
+/// This effectively removes the decimal part of the number, leaving the integral part.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn truncf128(x: f128) -> f128 {
+    super::generic::trunc(x)
+}
diff --git a/library/compiler-builtins/libm/src/math/truncf16.rs b/library/compiler-builtins/libm/src/math/truncf16.rs
new file mode 100644
index 00000000000..d7c3d225cf9
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/truncf16.rs
@@ -0,0 +1,7 @@
+/// Rounds the number toward 0 to the closest integral value (f16).
+///
+/// This effectively removes the decimal part of the number, leaving the integral part.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn truncf16(x: f16) -> f16 {
+    super::generic::trunc(x)
+}