about summary refs log tree commit diff
path: root/library/compiler-builtins/libm/src/math/pow.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/compiler-builtins/libm/src/math/pow.rs')
-rw-r--r--library/compiler-builtins/libm/src/math/pow.rs607
1 files changed, 607 insertions, 0 deletions
diff --git a/library/compiler-builtins/libm/src/math/pow.rs b/library/compiler-builtins/libm/src/math/pow.rs
new file mode 100644
index 00000000000..80b2a24999c
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/pow.rs
@@ -0,0 +1,607 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */
+/*
+ * ====================================================
+ * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+// pow(x,y) return x**y
+//
+//                    n
+// Method:  Let x =  2   * (1+f)
+//      1. Compute and return log2(x) in two pieces:
+//              log2(x) = w1 + w2,
+//         where w1 has 53-24 = 29 bit trailing zeros.
+//      2. Perform y*log2(x) = n+y' by simulating multi-precision
+//         arithmetic, where |y'|<=0.5.
+//      3. Return x**y = 2**n*exp(y'*log2)
+//
+// Special cases:
+//      1.  (anything) ** 0  is 1
+//      2.  1 ** (anything)  is 1
+//      3.  (anything except 1) ** NAN is NAN
+//      4.  NAN ** (anything except 0) is NAN
+//      5.  +-(|x| > 1) **  +INF is +INF
+//      6.  +-(|x| > 1) **  -INF is +0
+//      7.  +-(|x| < 1) **  +INF is +0
+//      8.  +-(|x| < 1) **  -INF is +INF
+//      9.  -1          ** +-INF is 1
+//      10. +0 ** (+anything except 0, NAN)               is +0
+//      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
+//      12. +0 ** (-anything except 0, NAN)               is +INF, raise divbyzero
+//      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF, raise divbyzero
+//      14. -0 ** (+odd integer) is -0
+//      15. -0 ** (-odd integer) is -INF, raise divbyzero
+//      16. +INF ** (+anything except 0,NAN) is +INF
+//      17. +INF ** (-anything except 0,NAN) is +0
+//      18. -INF ** (+odd integer) is -INF
+//      19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer)
+//      20. (anything) ** 1 is (anything)
+//      21. (anything) ** -1 is 1/(anything)
+//      22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
+//      23. (-anything except 0 and inf) ** (non-integer) is NAN
+//
+// Accuracy:
+//      pow(x,y) returns x**y nearly rounded. In particular
+//                      pow(integer,integer)
+//      always returns the correct integer provided it is
+//      representable.
+//
+// Constants :
+// The hexadecimal values are the intended ones for the following
+// constants. The decimal values may be used, provided that the
+// compiler will convert from decimal to binary accurately enough
+// to produce the hexadecimal values shown.
+//
+use super::{fabs, get_high_word, scalbn, sqrt, with_set_high_word, with_set_low_word};
+
+const BP: [f64; 2] = [1.0, 1.5];
+const DP_H: [f64; 2] = [0.0, 5.84962487220764160156e-01]; /* 0x3fe2b803_40000000 */
+const DP_L: [f64; 2] = [0.0, 1.35003920212974897128e-08]; /* 0x3E4CFDEB, 0x43CFD006 */
+const TWO53: f64 = 9007199254740992.0; /* 0x43400000_00000000 */
+const HUGE: f64 = 1.0e300;
+const TINY: f64 = 1.0e-300;
+
+// poly coefs for (3/2)*(log(x)-2s-2/3*s**3:
+const L1: f64 = 5.99999999999994648725e-01; /* 0x3fe33333_33333303 */
+const L2: f64 = 4.28571428578550184252e-01; /* 0x3fdb6db6_db6fabff */
+const L3: f64 = 3.33333329818377432918e-01; /* 0x3fd55555_518f264d */
+const L4: f64 = 2.72728123808534006489e-01; /* 0x3fd17460_a91d4101 */
+const L5: f64 = 2.30660745775561754067e-01; /* 0x3fcd864a_93c9db65 */
+const L6: f64 = 2.06975017800338417784e-01; /* 0x3fca7e28_4a454eef */
+const P1: f64 = 1.66666666666666019037e-01; /* 0x3fc55555_5555553e */
+const P2: f64 = -2.77777777770155933842e-03; /* 0xbf66c16c_16bebd93 */
+const P3: f64 = 6.61375632143793436117e-05; /* 0x3f11566a_af25de2c */
+const P4: f64 = -1.65339022054652515390e-06; /* 0xbebbbd41_c5d26bf1 */
+const P5: f64 = 4.13813679705723846039e-08; /* 0x3e663769_72bea4d0 */
+const LG2: f64 = 6.93147180559945286227e-01; /* 0x3fe62e42_fefa39ef */
+const LG2_H: f64 = 6.93147182464599609375e-01; /* 0x3fe62e43_00000000 */
+const LG2_L: f64 = -1.90465429995776804525e-09; /* 0xbe205c61_0ca86c39 */
+const OVT: f64 = 8.0085662595372944372e-017; /* -(1024-log2(ovfl+.5ulp)) */
+const CP: f64 = 9.61796693925975554329e-01; /* 0x3feec709_dc3a03fd =2/(3ln2) */
+const CP_H: f64 = 9.61796700954437255859e-01; /* 0x3feec709_e0000000 =(float)cp */
+const CP_L: f64 = -7.02846165095275826516e-09; /* 0xbe3e2fe0_145b01f5 =tail of cp_h*/
+const IVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547_652b82fe =1/ln2 */
+const IVLN2_H: f64 = 1.44269502162933349609e+00; /* 0x3ff71547_60000000 =24b 1/ln2*/
+const IVLN2_L: f64 = 1.92596299112661746887e-08; /* 0x3e54ae0b_f85ddf44 =1/ln2 tail*/
+
+/// Returns `x` to the power of `y` (f64).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn pow(x: f64, y: f64) -> f64 {
+    let t1: f64;
+    let t2: f64;
+
+    let (hx, lx): (i32, u32) = ((x.to_bits() >> 32) as i32, x.to_bits() as u32);
+    let (hy, ly): (i32, u32) = ((y.to_bits() >> 32) as i32, y.to_bits() as u32);
+
+    let mut ix: i32 = hx & 0x7fffffff_i32;
+    let iy: i32 = hy & 0x7fffffff_i32;
+
+    /* x**0 = 1, even if x is NaN */
+    if ((iy as u32) | ly) == 0 {
+        return 1.0;
+    }
+
+    /* 1**y = 1, even if y is NaN */
+    if hx == 0x3ff00000 && lx == 0 {
+        return 1.0;
+    }
+
+    /* NaN if either arg is NaN */
+    if ix > 0x7ff00000
+        || (ix == 0x7ff00000 && lx != 0)
+        || iy > 0x7ff00000
+        || (iy == 0x7ff00000 && ly != 0)
+    {
+        return x + y;
+    }
+
+    /* determine if y is an odd int when x < 0
+     * yisint = 0       ... y is not an integer
+     * yisint = 1       ... y is an odd int
+     * yisint = 2       ... y is an even int
+     */
+    let mut yisint: i32 = 0;
+    let mut k: i32;
+    let mut j: i32;
+    if hx < 0 {
+        if iy >= 0x43400000 {
+            yisint = 2; /* even integer y */
+        } else if iy >= 0x3ff00000 {
+            k = (iy >> 20) - 0x3ff; /* exponent */
+
+            if k > 20 {
+                j = (ly >> (52 - k)) as i32;
+
+                if (j << (52 - k)) == (ly as i32) {
+                    yisint = 2 - (j & 1);
+                }
+            } else if ly == 0 {
+                j = iy >> (20 - k);
+
+                if (j << (20 - k)) == iy {
+                    yisint = 2 - (j & 1);
+                }
+            }
+        }
+    }
+
+    if ly == 0 {
+        /* special value of y */
+        if iy == 0x7ff00000 {
+            /* y is +-inf */
+
+            return if ((ix - 0x3ff00000) | (lx as i32)) == 0 {
+                /* (-1)**+-inf is 1 */
+                1.0
+            } else if ix >= 0x3ff00000 {
+                /* (|x|>1)**+-inf = inf,0 */
+                if hy >= 0 { y } else { 0.0 }
+            } else {
+                /* (|x|<1)**+-inf = 0,inf */
+                if hy >= 0 { 0.0 } else { -y }
+            };
+        }
+
+        if iy == 0x3ff00000 {
+            /* y is +-1 */
+            return if hy >= 0 { x } else { 1.0 / x };
+        }
+
+        if hy == 0x40000000 {
+            /* y is 2 */
+            return x * x;
+        }
+
+        if hy == 0x3fe00000 {
+            /* y is 0.5 */
+            if hx >= 0 {
+                /* x >= +0 */
+                return sqrt(x);
+            }
+        }
+    }
+
+    let mut ax: f64 = fabs(x);
+    if lx == 0 {
+        /* special value of x */
+        if ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000 {
+            /* x is +-0,+-inf,+-1 */
+            let mut z: f64 = ax;
+
+            if hy < 0 {
+                /* z = (1/|x|) */
+                z = 1.0 / z;
+            }
+
+            if hx < 0 {
+                if ((ix - 0x3ff00000) | yisint) == 0 {
+                    z = (z - z) / (z - z); /* (-1)**non-int is NaN */
+                } else if yisint == 1 {
+                    z = -z; /* (x<0)**odd = -(|x|**odd) */
+                }
+            }
+
+            return z;
+        }
+    }
+
+    let mut s: f64 = 1.0; /* sign of result */
+    if hx < 0 {
+        if yisint == 0 {
+            /* (x<0)**(non-int) is NaN */
+            return (x - x) / (x - x);
+        }
+
+        if yisint == 1 {
+            /* (x<0)**(odd int) */
+            s = -1.0;
+        }
+    }
+
+    /* |y| is HUGE */
+    if iy > 0x41e00000 {
+        /* if |y| > 2**31 */
+        if iy > 0x43f00000 {
+            /* if |y| > 2**64, must o/uflow */
+            if ix <= 0x3fefffff {
+                return if hy < 0 { HUGE * HUGE } else { TINY * TINY };
+            }
+
+            if ix >= 0x3ff00000 {
+                return if hy > 0 { HUGE * HUGE } else { TINY * TINY };
+            }
+        }
+
+        /* over/underflow if x is not close to one */
+        if ix < 0x3fefffff {
+            return if hy < 0 { s * HUGE * HUGE } else { s * TINY * TINY };
+        }
+        if ix > 0x3ff00000 {
+            return if hy > 0 { s * HUGE * HUGE } else { s * TINY * TINY };
+        }
+
+        /* now |1-x| is TINY <= 2**-20, suffice to compute
+        log(x) by x-x^2/2+x^3/3-x^4/4 */
+        let t: f64 = ax - 1.0; /* t has 20 trailing zeros */
+        let w: f64 = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
+        let u: f64 = IVLN2_H * t; /* ivln2_h has 21 sig. bits */
+        let v: f64 = t * IVLN2_L - w * IVLN2;
+        t1 = with_set_low_word(u + v, 0);
+        t2 = v - (t1 - u);
+    } else {
+        // double ss,s2,s_h,s_l,t_h,t_l;
+        let mut n: i32 = 0;
+
+        if ix < 0x00100000 {
+            /* take care subnormal number */
+            ax *= TWO53;
+            n -= 53;
+            ix = get_high_word(ax) as i32;
+        }
+
+        n += (ix >> 20) - 0x3ff;
+        j = ix & 0x000fffff;
+
+        /* determine interval */
+        let k: i32;
+        ix = j | 0x3ff00000; /* normalize ix */
+        if j <= 0x3988E {
+            /* |x|<sqrt(3/2) */
+            k = 0;
+        } else if j < 0xBB67A {
+            /* |x|<sqrt(3)   */
+            k = 1;
+        } else {
+            k = 0;
+            n += 1;
+            ix -= 0x00100000;
+        }
+        ax = with_set_high_word(ax, ix as u32);
+
+        /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
+        let u: f64 = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */
+        let v: f64 = 1.0 / (ax + i!(BP, k as usize));
+        let ss: f64 = u * v;
+        let s_h = with_set_low_word(ss, 0);
+
+        /* t_h=ax+bp[k] High */
+        let t_h: f64 = with_set_high_word(
+            0.0,
+            ((ix as u32 >> 1) | 0x20000000) + 0x00080000 + ((k as u32) << 18),
+        );
+        let t_l: f64 = ax - (t_h - i!(BP, k as usize));
+        let s_l: f64 = v * ((u - s_h * t_h) - s_h * t_l);
+
+        /* compute log(ax) */
+        let s2: f64 = ss * ss;
+        let mut r: f64 = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
+        r += s_l * (s_h + ss);
+        let s2: f64 = s_h * s_h;
+        let t_h: f64 = with_set_low_word(3.0 + s2 + r, 0);
+        let t_l: f64 = r - ((t_h - 3.0) - s2);
+
+        /* u+v = ss*(1+...) */
+        let u: f64 = s_h * t_h;
+        let v: f64 = s_l * t_h + t_l * ss;
+
+        /* 2/(3log2)*(ss+...) */
+        let p_h: f64 = with_set_low_word(u + v, 0);
+        let p_l = v - (p_h - u);
+        let z_h: f64 = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */
+        let z_l: f64 = CP_L * p_h + p_l * CP + i!(DP_L, k as usize);
+
+        /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
+        let t: f64 = n as f64;
+        t1 = with_set_low_word(((z_h + z_l) + i!(DP_H, k as usize)) + t, 0);
+        t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h);
+    }
+
+    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
+    let y1: f64 = with_set_low_word(y, 0);
+    let p_l: f64 = (y - y1) * t1 + y * t2;
+    let mut p_h: f64 = y1 * t1;
+    let z: f64 = p_l + p_h;
+    let mut j: i32 = (z.to_bits() >> 32) as i32;
+    let i: i32 = z.to_bits() as i32;
+    // let (j, i): (i32, i32) = ((z.to_bits() >> 32) as i32, z.to_bits() as i32);
+
+    if j >= 0x40900000 {
+        /* z >= 1024 */
+        if (j - 0x40900000) | i != 0 {
+            /* if z > 1024 */
+            return s * HUGE * HUGE; /* overflow */
+        }
+
+        if p_l + OVT > z - p_h {
+            return s * HUGE * HUGE; /* overflow */
+        }
+    } else if (j & 0x7fffffff) >= 0x4090cc00 {
+        /* z <= -1075 */
+        // FIXME: instead of abs(j) use unsigned j
+
+        if (((j as u32) - 0xc090cc00) | (i as u32)) != 0 {
+            /* z < -1075 */
+            return s * TINY * TINY; /* underflow */
+        }
+
+        if p_l <= z - p_h {
+            return s * TINY * TINY; /* underflow */
+        }
+    }
+
+    /* compute 2**(p_h+p_l) */
+    let i: i32 = j & 0x7fffffff_i32;
+    k = (i >> 20) - 0x3ff;
+    let mut n: i32 = 0;
+
+    if i > 0x3fe00000 {
+        /* if |z| > 0.5, set n = [z+0.5] */
+        n = j + (0x00100000 >> (k + 1));
+        k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */
+        let t: f64 = with_set_high_word(0.0, (n & !(0x000fffff >> k)) as u32);
+        n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
+        if j < 0 {
+            n = -n;
+        }
+        p_h -= t;
+    }
+
+    let t: f64 = with_set_low_word(p_l + p_h, 0);
+    let u: f64 = t * LG2_H;
+    let v: f64 = (p_l - (t - p_h)) * LG2 + t * LG2_L;
+    let mut z: f64 = u + v;
+    let w: f64 = v - (z - u);
+    let t: f64 = z * z;
+    let t1: f64 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
+    let r: f64 = (z * t1) / (t1 - 2.0) - (w + z * w);
+    z = 1.0 - (r - z);
+    j = get_high_word(z) as i32;
+    j += n << 20;
+
+    if (j >> 20) <= 0 {
+        /* subnormal output */
+        z = scalbn(z, n);
+    } else {
+        z = with_set_high_word(z, j as u32);
+    }
+
+    s * z
+}
+
+#[cfg(test)]
+mod tests {
+    extern crate core;
+
+    use self::core::f64::consts::{E, PI};
+    use super::pow;
+
+    const POS_ZERO: &[f64] = &[0.0];
+    const NEG_ZERO: &[f64] = &[-0.0];
+    const POS_ONE: &[f64] = &[1.0];
+    const NEG_ONE: &[f64] = &[-1.0];
+    const POS_FLOATS: &[f64] = &[99.0 / 70.0, E, PI];
+    const NEG_FLOATS: &[f64] = &[-99.0 / 70.0, -E, -PI];
+    const POS_SMALL_FLOATS: &[f64] = &[(1.0 / 2.0), f64::MIN_POSITIVE, f64::EPSILON];
+    const NEG_SMALL_FLOATS: &[f64] = &[-(1.0 / 2.0), -f64::MIN_POSITIVE, -f64::EPSILON];
+    const POS_EVENS: &[f64] = &[2.0, 6.0, 8.0, 10.0, 22.0, 100.0, f64::MAX];
+    const NEG_EVENS: &[f64] = &[f64::MIN, -100.0, -22.0, -10.0, -8.0, -6.0, -2.0];
+    const POS_ODDS: &[f64] = &[3.0, 7.0];
+    const NEG_ODDS: &[f64] = &[-7.0, -3.0];
+    const NANS: &[f64] = &[f64::NAN];
+    const POS_INF: &[f64] = &[f64::INFINITY];
+    const NEG_INF: &[f64] = &[f64::NEG_INFINITY];
+
+    const ALL: &[&[f64]] = &[
+        POS_ZERO,
+        NEG_ZERO,
+        NANS,
+        NEG_SMALL_FLOATS,
+        POS_SMALL_FLOATS,
+        NEG_FLOATS,
+        POS_FLOATS,
+        NEG_EVENS,
+        POS_EVENS,
+        NEG_ODDS,
+        POS_ODDS,
+        NEG_INF,
+        POS_INF,
+        NEG_ONE,
+        POS_ONE,
+    ];
+    const POS: &[&[f64]] = &[POS_ZERO, POS_ODDS, POS_ONE, POS_FLOATS, POS_EVENS, POS_INF];
+    const NEG: &[&[f64]] = &[NEG_ZERO, NEG_ODDS, NEG_ONE, NEG_FLOATS, NEG_EVENS, NEG_INF];
+
+    fn pow_test(base: f64, exponent: f64, expected: f64) {
+        let res = pow(base, exponent);
+        assert!(
+            if expected.is_nan() { res.is_nan() } else { pow(base, exponent) == expected },
+            "{} ** {} was {} instead of {}",
+            base,
+            exponent,
+            res,
+            expected
+        );
+    }
+
+    fn test_sets_as_base(sets: &[&[f64]], exponent: f64, expected: f64) {
+        sets.iter().for_each(|s| s.iter().for_each(|val| pow_test(*val, exponent, expected)));
+    }
+
+    fn test_sets_as_exponent(base: f64, sets: &[&[f64]], expected: f64) {
+        sets.iter().for_each(|s| s.iter().for_each(|val| pow_test(base, *val, expected)));
+    }
+
+    fn test_sets(sets: &[&[f64]], computed: &dyn Fn(f64) -> f64, expected: &dyn Fn(f64) -> f64) {
+        sets.iter().for_each(|s| {
+            s.iter().for_each(|val| {
+                let exp = expected(*val);
+                let res = computed(*val);
+
+                #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
+                let exp = force_eval!(exp);
+                #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
+                let res = force_eval!(res);
+                assert!(
+                    if exp.is_nan() { res.is_nan() } else { exp == res },
+                    "test for {} was {} instead of {}",
+                    val,
+                    res,
+                    exp
+                );
+            })
+        });
+    }
+
+    #[test]
+    fn zero_as_exponent() {
+        test_sets_as_base(ALL, 0.0, 1.0);
+        test_sets_as_base(ALL, -0.0, 1.0);
+    }
+
+    #[test]
+    fn one_as_base() {
+        test_sets_as_exponent(1.0, ALL, 1.0);
+    }
+
+    #[test]
+    fn nan_inputs() {
+        // NAN as the base:
+        // (f64::NAN ^ anything *but 0* should be f64::NAN)
+        test_sets_as_exponent(f64::NAN, &ALL[2..], f64::NAN);
+
+        // f64::NAN as the exponent:
+        // (anything *but 1* ^ f64::NAN should be f64::NAN)
+        test_sets_as_base(&ALL[..(ALL.len() - 2)], f64::NAN, f64::NAN);
+    }
+
+    #[test]
+    fn infinity_as_base() {
+        // Positive Infinity as the base:
+        // (+Infinity ^ positive anything but 0 and f64::NAN should be +Infinity)
+        test_sets_as_exponent(f64::INFINITY, &POS[1..], f64::INFINITY);
+
+        // (+Infinity ^ negative anything except 0 and f64::NAN should be 0.0)
+        test_sets_as_exponent(f64::INFINITY, &NEG[1..], 0.0);
+
+        // Negative Infinity as the base:
+        // (-Infinity ^ positive odd ints should be -Infinity)
+        test_sets_as_exponent(f64::NEG_INFINITY, &[POS_ODDS], f64::NEG_INFINITY);
+
+        // (-Infinity ^ anything but odd ints should be == -0 ^ (-anything))
+        // We can lump in pos/neg odd ints here because they don't seem to
+        // cause panics (div by zero) in release mode (I think).
+        test_sets(ALL, &|v: f64| pow(f64::NEG_INFINITY, v), &|v: f64| pow(-0.0, -v));
+    }
+
+    #[test]
+    fn infinity_as_exponent() {
+        // Positive/Negative base greater than 1:
+        // (pos/neg > 1 ^ Infinity should be Infinity - note this excludes f64::NAN as the base)
+        test_sets_as_base(&ALL[5..(ALL.len() - 2)], f64::INFINITY, f64::INFINITY);
+
+        // (pos/neg > 1 ^ -Infinity should be 0.0)
+        test_sets_as_base(&ALL[5..ALL.len() - 2], f64::NEG_INFINITY, 0.0);
+
+        // Positive/Negative base less than 1:
+        let base_below_one = &[POS_ZERO, NEG_ZERO, NEG_SMALL_FLOATS, POS_SMALL_FLOATS];
+
+        // (pos/neg < 1 ^ Infinity should be 0.0 - this also excludes f64::NAN as the base)
+        test_sets_as_base(base_below_one, f64::INFINITY, 0.0);
+
+        // (pos/neg < 1 ^ -Infinity should be Infinity)
+        test_sets_as_base(base_below_one, f64::NEG_INFINITY, f64::INFINITY);
+
+        // Positive/Negative 1 as the base:
+        // (pos/neg 1 ^ Infinity should be 1)
+        test_sets_as_base(&[NEG_ONE, POS_ONE], f64::INFINITY, 1.0);
+
+        // (pos/neg 1 ^ -Infinity should be 1)
+        test_sets_as_base(&[NEG_ONE, POS_ONE], f64::NEG_INFINITY, 1.0);
+    }
+
+    #[test]
+    fn zero_as_base() {
+        // Positive Zero as the base:
+        // (+0 ^ anything positive but 0 and f64::NAN should be +0)
+        test_sets_as_exponent(0.0, &POS[1..], 0.0);
+
+        // (+0 ^ anything negative but 0 and f64::NAN should be Infinity)
+        // (this should panic because we're dividing by zero)
+        test_sets_as_exponent(0.0, &NEG[1..], f64::INFINITY);
+
+        // Negative Zero as the base:
+        // (-0 ^ anything positive but 0, f64::NAN, and odd ints should be +0)
+        test_sets_as_exponent(-0.0, &POS[3..], 0.0);
+
+        // (-0 ^ anything negative but 0, f64::NAN, and odd ints should be Infinity)
+        // (should panic because of divide by zero)
+        test_sets_as_exponent(-0.0, &NEG[3..], f64::INFINITY);
+
+        // (-0 ^ positive odd ints should be -0)
+        test_sets_as_exponent(-0.0, &[POS_ODDS], -0.0);
+
+        // (-0 ^ negative odd ints should be -Infinity)
+        // (should panic because of divide by zero)
+        test_sets_as_exponent(-0.0, &[NEG_ODDS], f64::NEG_INFINITY);
+    }
+
+    #[test]
+    fn special_cases() {
+        // One as the exponent:
+        // (anything ^ 1 should be anything - i.e. the base)
+        test_sets(ALL, &|v: f64| pow(v, 1.0), &|v: f64| v);
+
+        // Negative One as the exponent:
+        // (anything ^ -1 should be 1/anything)
+        test_sets(ALL, &|v: f64| pow(v, -1.0), &|v: f64| 1.0 / v);
+
+        // Factoring -1 out:
+        // (negative anything ^ integer should be (-1 ^ integer) * (positive anything ^ integer))
+        [POS_ZERO, NEG_ZERO, POS_ONE, NEG_ONE, POS_EVENS, NEG_EVENS].iter().for_each(|int_set| {
+            int_set.iter().for_each(|int| {
+                test_sets(ALL, &|v: f64| pow(-v, *int), &|v: f64| pow(-1.0, *int) * pow(v, *int));
+            })
+        });
+
+        // Negative base (imaginary results):
+        // (-anything except 0 and Infinity ^ non-integer should be NAN)
+        NEG[1..(NEG.len() - 1)].iter().for_each(|set| {
+            set.iter().for_each(|val| {
+                test_sets(&ALL[3..7], &|v: f64| pow(*val, v), &|_| f64::NAN);
+            })
+        });
+    }
+
+    #[test]
+    fn normal_cases() {
+        assert_eq!(pow(2.0, 20.0), (1 << 20) as f64);
+        assert_eq!(pow(-1.0, 9.0), -1.0);
+        assert!(pow(-1.0, 2.2).is_nan());
+        assert!(pow(-1.0, -1.14).is_nan());
+    }
+}