about summary refs log tree commit diff
path: root/src/libsyntax_expand/mbe/macro_parser.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/libsyntax_expand/mbe/macro_parser.rs')
-rw-r--r--src/libsyntax_expand/mbe/macro_parser.rs944
1 files changed, 944 insertions, 0 deletions
diff --git a/src/libsyntax_expand/mbe/macro_parser.rs b/src/libsyntax_expand/mbe/macro_parser.rs
new file mode 100644
index 00000000000..2edb4925512
--- /dev/null
+++ b/src/libsyntax_expand/mbe/macro_parser.rs
@@ -0,0 +1,944 @@
+//! This is an NFA-based parser, which calls out to the main rust parser for named non-terminals
+//! (which it commits to fully when it hits one in a grammar). There's a set of current NFA threads
+//! and a set of next ones. Instead of NTs, we have a special case for Kleene star. The big-O, in
+//! pathological cases, is worse than traditional use of NFA or Earley parsing, but it's an easier
+//! fit for Macro-by-Example-style rules.
+//!
+//! (In order to prevent the pathological case, we'd need to lazily construct the resulting
+//! `NamedMatch`es at the very end. It'd be a pain, and require more memory to keep around old
+//! items, but it would also save overhead)
+//!
+//! We don't say this parser uses the Earley algorithm, because it's unnecessarily inaccurate.
+//! The macro parser restricts itself to the features of finite state automata. Earley parsers
+//! can be described as an extension of NFAs with completion rules, prediction rules, and recursion.
+//!
+//! Quick intro to how the parser works:
+//!
+//! A 'position' is a dot in the middle of a matcher, usually represented as a
+//! dot. For example `· a $( a )* a b` is a position, as is `a $( · a )* a b`.
+//!
+//! The parser walks through the input a character at a time, maintaining a list
+//! of threads consistent with the current position in the input string: `cur_items`.
+//!
+//! As it processes them, it fills up `eof_items` with threads that would be valid if
+//! the macro invocation is now over, `bb_items` with threads that are waiting on
+//! a Rust non-terminal like `$e:expr`, and `next_items` with threads that are waiting
+//! on a particular token. Most of the logic concerns moving the · through the
+//! repetitions indicated by Kleene stars. The rules for moving the · without
+//! consuming any input are called epsilon transitions. It only advances or calls
+//! out to the real Rust parser when no `cur_items` threads remain.
+//!
+//! Example:
+//!
+//! ```text, ignore
+//! Start parsing a a a a b against [· a $( a )* a b].
+//!
+//! Remaining input: a a a a b
+//! next: [· a $( a )* a b]
+//!
+//! - - - Advance over an a. - - -
+//!
+//! Remaining input: a a a b
+//! cur: [a · $( a )* a b]
+//! Descend/Skip (first item).
+//! next: [a $( · a )* a b]  [a $( a )* · a b].
+//!
+//! - - - Advance over an a. - - -
+//!
+//! Remaining input: a a b
+//! cur: [a $( a · )* a b]  [a $( a )* a · b]
+//! Follow epsilon transition: Finish/Repeat (first item)
+//! next: [a $( a )* · a b]  [a $( · a )* a b]  [a $( a )* a · b]
+//!
+//! - - - Advance over an a. - - - (this looks exactly like the last step)
+//!
+//! Remaining input: a b
+//! cur: [a $( a · )* a b]  [a $( a )* a · b]
+//! Follow epsilon transition: Finish/Repeat (first item)
+//! next: [a $( a )* · a b]  [a $( · a )* a b]  [a $( a )* a · b]
+//!
+//! - - - Advance over an a. - - - (this looks exactly like the last step)
+//!
+//! Remaining input: b
+//! cur: [a $( a · )* a b]  [a $( a )* a · b]
+//! Follow epsilon transition: Finish/Repeat (first item)
+//! next: [a $( a )* · a b]  [a $( · a )* a b]  [a $( a )* a · b]
+//!
+//! - - - Advance over a b. - - -
+//!
+//! Remaining input: ''
+//! eof: [a $( a )* a b ·]
+//! ```
+
+crate use NamedMatch::*;
+crate use ParseResult::*;
+use TokenTreeOrTokenTreeSlice::*;
+
+use crate::mbe::{self, TokenTree};
+
+use syntax::ast::{Ident, Name};
+use syntax::parse::{Directory, PResult};
+use syntax::parse::parser::{Parser, PathStyle};
+use syntax::parse::token::{self, DocComment, Nonterminal, Token};
+use syntax::print::pprust;
+use syntax::sess::ParseSess;
+use syntax::symbol::{kw, sym, Symbol};
+use syntax::tokenstream::{DelimSpan, TokenStream};
+
+use errors::FatalError;
+use smallvec::{smallvec, SmallVec};
+use syntax_pos::Span;
+
+use rustc_data_structures::fx::FxHashMap;
+use rustc_data_structures::sync::Lrc;
+use std::collections::hash_map::Entry::{Occupied, Vacant};
+use std::mem;
+use std::ops::{Deref, DerefMut};
+
+// To avoid costly uniqueness checks, we require that `MatchSeq` always has a nonempty body.
+
+/// Either a sequence of token trees or a single one. This is used as the representation of the
+/// sequence of tokens that make up a matcher.
+#[derive(Clone)]
+enum TokenTreeOrTokenTreeSlice<'tt> {
+    Tt(TokenTree),
+    TtSeq(&'tt [TokenTree]),
+}
+
+impl<'tt> TokenTreeOrTokenTreeSlice<'tt> {
+    /// Returns the number of constituent top-level token trees of `self` (top-level in that it
+    /// will not recursively descend into subtrees).
+    fn len(&self) -> usize {
+        match *self {
+            TtSeq(ref v) => v.len(),
+            Tt(ref tt) => tt.len(),
+        }
+    }
+
+    /// The `index`-th token tree of `self`.
+    fn get_tt(&self, index: usize) -> TokenTree {
+        match *self {
+            TtSeq(ref v) => v[index].clone(),
+            Tt(ref tt) => tt.get_tt(index),
+        }
+    }
+}
+
+/// An unzipping of `TokenTree`s... see the `stack` field of `MatcherPos`.
+///
+/// This is used by `inner_parse_loop` to keep track of delimited submatchers that we have
+/// descended into.
+#[derive(Clone)]
+struct MatcherTtFrame<'tt> {
+    /// The "parent" matcher that we are descending into.
+    elts: TokenTreeOrTokenTreeSlice<'tt>,
+    /// The position of the "dot" in `elts` at the time we descended.
+    idx: usize,
+}
+
+type NamedMatchVec = SmallVec<[NamedMatch; 4]>;
+
+/// Represents a single "position" (aka "matcher position", aka "item"), as
+/// described in the module documentation.
+///
+/// Here:
+///
+/// - `'root` represents the lifetime of the stack slot that holds the root
+///   `MatcherPos`. As described in `MatcherPosHandle`, the root `MatcherPos`
+///   structure is stored on the stack, but subsequent instances are put into
+///   the heap.
+/// - `'tt` represents the lifetime of the token trees that this matcher
+///   position refers to.
+///
+/// It is important to distinguish these two lifetimes because we have a
+/// `SmallVec<TokenTreeOrTokenTreeSlice<'tt>>` below, and the destructor of
+/// that is considered to possibly access the data from its elements (it lacks
+/// a `#[may_dangle]` attribute). As a result, the compiler needs to know that
+/// all the elements in that `SmallVec` strictly outlive the root stack slot
+/// lifetime. By separating `'tt` from `'root`, we can show that.
+#[derive(Clone)]
+struct MatcherPos<'root, 'tt> {
+    /// The token or sequence of tokens that make up the matcher
+    top_elts: TokenTreeOrTokenTreeSlice<'tt>,
+
+    /// The position of the "dot" in this matcher
+    idx: usize,
+
+    /// The first span of source that the beginning of this matcher corresponds to. In other
+    /// words, the token in the source whose span is `sp_open` is matched against the first token of
+    /// the matcher.
+    sp_open: Span,
+
+    /// For each named metavar in the matcher, we keep track of token trees matched against the
+    /// metavar by the black box parser. In particular, there may be more than one match per
+    /// metavar if we are in a repetition (each repetition matches each of the variables).
+    /// Moreover, matchers and repetitions can be nested; the `matches` field is shared (hence the
+    /// `Rc`) among all "nested" matchers. `match_lo`, `match_cur`, and `match_hi` keep track of
+    /// the current position of the `self` matcher position in the shared `matches` list.
+    ///
+    /// Also, note that while we are descending into a sequence, matchers are given their own
+    /// `matches` vector. Only once we reach the end of a full repetition of the sequence do we add
+    /// all bound matches from the submatcher into the shared top-level `matches` vector. If `sep`
+    /// and `up` are `Some`, then `matches` is _not_ the shared top-level list. Instead, if one
+    /// wants the shared `matches`, one should use `up.matches`.
+    matches: Box<[Lrc<NamedMatchVec>]>,
+    /// The position in `matches` corresponding to the first metavar in this matcher's sequence of
+    /// token trees. In other words, the first metavar in the first token of `top_elts` corresponds
+    /// to `matches[match_lo]`.
+    match_lo: usize,
+    /// The position in `matches` corresponding to the metavar we are currently trying to match
+    /// against the source token stream. `match_lo <= match_cur <= match_hi`.
+    match_cur: usize,
+    /// Similar to `match_lo` except `match_hi` is the position in `matches` of the _last_ metavar
+    /// in this matcher.
+    match_hi: usize,
+
+    // The following fields are used if we are matching a repetition. If we aren't, they should be
+    // `None`.
+
+    /// The KleeneOp of this sequence if we are in a repetition.
+    seq_op: Option<mbe::KleeneOp>,
+
+    /// The separator if we are in a repetition.
+    sep: Option<Token>,
+
+    /// The "parent" matcher position if we are in a repetition. That is, the matcher position just
+    /// before we enter the sequence.
+    up: Option<MatcherPosHandle<'root, 'tt>>,
+
+    /// Specifically used to "unzip" token trees. By "unzip", we mean to unwrap the delimiters from
+    /// a delimited token tree (e.g., something wrapped in `(` `)`) or to get the contents of a doc
+    /// comment...
+    ///
+    /// When matching against matchers with nested delimited submatchers (e.g., `pat ( pat ( .. )
+    /// pat ) pat`), we need to keep track of the matchers we are descending into. This stack does
+    /// that where the bottom of the stack is the outermost matcher.
+    /// Also, throughout the comments, this "descent" is often referred to as "unzipping"...
+    stack: SmallVec<[MatcherTtFrame<'tt>; 1]>,
+}
+
+impl<'root, 'tt> MatcherPos<'root, 'tt> {
+    /// Adds `m` as a named match for the `idx`-th metavar.
+    fn push_match(&mut self, idx: usize, m: NamedMatch) {
+        let matches = Lrc::make_mut(&mut self.matches[idx]);
+        matches.push(m);
+    }
+}
+
+// Lots of MatcherPos instances are created at runtime. Allocating them on the
+// heap is slow. Furthermore, using SmallVec<MatcherPos> to allocate them all
+// on the stack is also slow, because MatcherPos is quite a large type and
+// instances get moved around a lot between vectors, which requires lots of
+// slow memcpy calls.
+//
+// Therefore, the initial MatcherPos is always allocated on the stack,
+// subsequent ones (of which there aren't that many) are allocated on the heap,
+// and this type is used to encapsulate both cases.
+enum MatcherPosHandle<'root, 'tt> {
+    Ref(&'root mut MatcherPos<'root, 'tt>),
+    Box(Box<MatcherPos<'root, 'tt>>),
+}
+
+impl<'root, 'tt> Clone for MatcherPosHandle<'root, 'tt> {
+    // This always produces a new Box.
+    fn clone(&self) -> Self {
+        MatcherPosHandle::Box(match *self {
+            MatcherPosHandle::Ref(ref r) => Box::new((**r).clone()),
+            MatcherPosHandle::Box(ref b) => b.clone(),
+        })
+    }
+}
+
+impl<'root, 'tt> Deref for MatcherPosHandle<'root, 'tt> {
+    type Target = MatcherPos<'root, 'tt>;
+    fn deref(&self) -> &Self::Target {
+        match *self {
+            MatcherPosHandle::Ref(ref r) => r,
+            MatcherPosHandle::Box(ref b) => b,
+        }
+    }
+}
+
+impl<'root, 'tt> DerefMut for MatcherPosHandle<'root, 'tt> {
+    fn deref_mut(&mut self) -> &mut MatcherPos<'root, 'tt> {
+        match *self {
+            MatcherPosHandle::Ref(ref mut r) => r,
+            MatcherPosHandle::Box(ref mut b) => b,
+        }
+    }
+}
+
+/// Represents the possible results of an attempted parse.
+crate enum ParseResult<T> {
+    /// Parsed successfully.
+    Success(T),
+    /// Arm failed to match. If the second parameter is `token::Eof`, it indicates an unexpected
+    /// end of macro invocation. Otherwise, it indicates that no rules expected the given token.
+    Failure(Token, &'static str),
+    /// Fatal error (malformed macro?). Abort compilation.
+    Error(syntax_pos::Span, String),
+}
+
+/// A `ParseResult` where the `Success` variant contains a mapping of `Ident`s to `NamedMatch`es.
+/// This represents the mapping of metavars to the token trees they bind to.
+crate type NamedParseResult = ParseResult<FxHashMap<Ident, NamedMatch>>;
+
+/// Count how many metavars are named in the given matcher `ms`.
+pub(super) fn count_names(ms: &[TokenTree]) -> usize {
+    ms.iter().fold(0, |count, elt| {
+        count + match *elt {
+            TokenTree::Sequence(_, ref seq) => seq.num_captures,
+            TokenTree::Delimited(_, ref delim) => count_names(&delim.tts),
+            TokenTree::MetaVar(..) => 0,
+            TokenTree::MetaVarDecl(..) => 1,
+            TokenTree::Token(..) => 0,
+        }
+    })
+}
+
+/// `len` `Vec`s (initially shared and empty) that will store matches of metavars.
+fn create_matches(len: usize) -> Box<[Lrc<NamedMatchVec>]> {
+    if len == 0 {
+        vec![]
+    } else {
+        let empty_matches = Lrc::new(SmallVec::new());
+        vec![empty_matches; len]
+    }.into_boxed_slice()
+}
+
+/// Generates the top-level matcher position in which the "dot" is before the first token of the
+/// matcher `ms` and we are going to start matching at the span `open` in the source.
+fn initial_matcher_pos<'root, 'tt>(ms: &'tt [TokenTree], open: Span) -> MatcherPos<'root, 'tt> {
+    let match_idx_hi = count_names(ms);
+    let matches = create_matches(match_idx_hi);
+    MatcherPos {
+        // Start with the top level matcher given to us
+        top_elts: TtSeq(ms), // "elts" is an abbr. for "elements"
+        // The "dot" is before the first token of the matcher
+        idx: 0,
+        // We start matching at the span `open` in the source code
+        sp_open: open,
+
+        // Initialize `matches` to a bunch of empty `Vec`s -- one for each metavar in `top_elts`.
+        // `match_lo` for `top_elts` is 0 and `match_hi` is `matches.len()`. `match_cur` is 0 since
+        // we haven't actually matched anything yet.
+        matches,
+        match_lo: 0,
+        match_cur: 0,
+        match_hi: match_idx_hi,
+
+        // Haven't descended into any delimiters, so empty stack
+        stack: smallvec![],
+
+        // Haven't descended into any sequences, so both of these are `None`.
+        seq_op: None,
+        sep: None,
+        up: None,
+    }
+}
+
+/// `NamedMatch` is a pattern-match result for a single `token::MATCH_NONTERMINAL`:
+/// so it is associated with a single ident in a parse, and all
+/// `MatchedNonterminal`s in the `NamedMatch` have the same non-terminal type
+/// (expr, item, etc). Each leaf in a single `NamedMatch` corresponds to a
+/// single `token::MATCH_NONTERMINAL` in the `TokenTree` that produced it.
+///
+/// The in-memory structure of a particular `NamedMatch` represents the match
+/// that occurred when a particular subset of a matcher was applied to a
+/// particular token tree.
+///
+/// The width of each `MatchedSeq` in the `NamedMatch`, and the identity of
+/// the `MatchedNonterminal`s, will depend on the token tree it was applied
+/// to: each `MatchedSeq` corresponds to a single `TTSeq` in the originating
+/// token tree. The depth of the `NamedMatch` structure will therefore depend
+/// only on the nesting depth of `ast::TTSeq`s in the originating
+/// token tree it was derived from.
+#[derive(Debug, Clone)]
+crate enum NamedMatch {
+    MatchedSeq(Lrc<NamedMatchVec>, DelimSpan),
+    MatchedNonterminal(Lrc<Nonterminal>),
+}
+
+/// Takes a sequence of token trees `ms` representing a matcher which successfully matched input
+/// and an iterator of items that matched input and produces a `NamedParseResult`.
+fn nameize<I: Iterator<Item = NamedMatch>>(
+    sess: &ParseSess,
+    ms: &[TokenTree],
+    mut res: I,
+) -> NamedParseResult {
+    // Recursively descend into each type of matcher (e.g., sequences, delimited, metavars) and make
+    // sure that each metavar has _exactly one_ binding. If a metavar does not have exactly one
+    // binding, then there is an error. If it does, then we insert the binding into the
+    // `NamedParseResult`.
+    fn n_rec<I: Iterator<Item = NamedMatch>>(
+        sess: &ParseSess,
+        m: &TokenTree,
+        res: &mut I,
+        ret_val: &mut FxHashMap<Ident, NamedMatch>,
+    ) -> Result<(), (syntax_pos::Span, String)> {
+        match *m {
+            TokenTree::Sequence(_, ref seq) => for next_m in &seq.tts {
+                n_rec(sess, next_m, res.by_ref(), ret_val)?
+            },
+            TokenTree::Delimited(_, ref delim) => for next_m in &delim.tts {
+                n_rec(sess, next_m, res.by_ref(), ret_val)?;
+            },
+            TokenTree::MetaVarDecl(span, _, id) if id.name == kw::Invalid => {
+                if sess.missing_fragment_specifiers.borrow_mut().remove(&span) {
+                    return Err((span, "missing fragment specifier".to_string()));
+                }
+            }
+            TokenTree::MetaVarDecl(sp, bind_name, _) => {
+                match ret_val.entry(bind_name) {
+                    Vacant(spot) => {
+                        spot.insert(res.next().unwrap());
+                    }
+                    Occupied(..) => {
+                        return Err((sp, format!("duplicated bind name: {}", bind_name)))
+                    }
+                }
+            }
+            TokenTree::MetaVar(..) | TokenTree::Token(..) => (),
+        }
+
+        Ok(())
+    }
+
+    let mut ret_val = FxHashMap::default();
+    for m in ms {
+        match n_rec(sess, m, res.by_ref(), &mut ret_val) {
+            Ok(_) => {}
+            Err((sp, msg)) => return Error(sp, msg),
+        }
+    }
+
+    Success(ret_val)
+}
+
+/// Performs a token equality check, ignoring syntax context (that is, an unhygienic comparison)
+fn token_name_eq(t1: &Token, t2: &Token) -> bool {
+    if let (Some((ident1, is_raw1)), Some((ident2, is_raw2))) = (t1.ident(), t2.ident()) {
+        ident1.name == ident2.name && is_raw1 == is_raw2
+    } else if let (Some(ident1), Some(ident2)) = (t1.lifetime(), t2.lifetime()) {
+        ident1.name == ident2.name
+    } else {
+        t1.kind == t2.kind
+    }
+}
+
+/// Process the matcher positions of `cur_items` until it is empty. In the process, this will
+/// produce more items in `next_items`, `eof_items`, and `bb_items`.
+///
+/// For more info about the how this happens, see the module-level doc comments and the inline
+/// comments of this function.
+///
+/// # Parameters
+///
+/// - `sess`: the parsing session into which errors are emitted.
+/// - `cur_items`: the set of current items to be processed. This should be empty by the end of a
+///   successful execution of this function.
+/// - `next_items`: the set of newly generated items. These are used to replenish `cur_items` in
+///   the function `parse`.
+/// - `eof_items`: the set of items that would be valid if this was the EOF.
+/// - `bb_items`: the set of items that are waiting for the black-box parser.
+/// - `token`: the current token of the parser.
+/// - `span`: the `Span` in the source code corresponding to the token trees we are trying to match
+///   against the matcher positions in `cur_items`.
+///
+/// # Returns
+///
+/// A `ParseResult`. Note that matches are kept track of through the items generated.
+fn inner_parse_loop<'root, 'tt>(
+    sess: &ParseSess,
+    cur_items: &mut SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>,
+    next_items: &mut Vec<MatcherPosHandle<'root, 'tt>>,
+    eof_items: &mut SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>,
+    bb_items: &mut SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>,
+    token: &Token,
+) -> ParseResult<()> {
+    // Pop items from `cur_items` until it is empty.
+    while let Some(mut item) = cur_items.pop() {
+        // When unzipped trees end, remove them. This corresponds to backtracking out of a
+        // delimited submatcher into which we already descended. In backtracking out again, we need
+        // to advance the "dot" past the delimiters in the outer matcher.
+        while item.idx >= item.top_elts.len() {
+            match item.stack.pop() {
+                Some(MatcherTtFrame { elts, idx }) => {
+                    item.top_elts = elts;
+                    item.idx = idx + 1;
+                }
+                None => break,
+            }
+        }
+
+        // Get the current position of the "dot" (`idx`) in `item` and the number of token trees in
+        // the matcher (`len`).
+        let idx = item.idx;
+        let len = item.top_elts.len();
+
+        // If `idx >= len`, then we are at or past the end of the matcher of `item`.
+        if idx >= len {
+            // We are repeating iff there is a parent. If the matcher is inside of a repetition,
+            // then we could be at the end of a sequence or at the beginning of the next
+            // repetition.
+            if item.up.is_some() {
+                // At this point, regardless of whether there is a separator, we should add all
+                // matches from the complete repetition of the sequence to the shared, top-level
+                // `matches` list (actually, `up.matches`, which could itself not be the top-level,
+                // but anyway...). Moreover, we add another item to `cur_items` in which the "dot"
+                // is at the end of the `up` matcher. This ensures that the "dot" in the `up`
+                // matcher is also advanced sufficiently.
+                //
+                // NOTE: removing the condition `idx == len` allows trailing separators.
+                if idx == len {
+                    // Get the `up` matcher
+                    let mut new_pos = item.up.clone().unwrap();
+
+                    // Add matches from this repetition to the `matches` of `up`
+                    for idx in item.match_lo..item.match_hi {
+                        let sub = item.matches[idx].clone();
+                        let span = DelimSpan::from_pair(item.sp_open, token.span);
+                        new_pos.push_match(idx, MatchedSeq(sub, span));
+                    }
+
+                    // Move the "dot" past the repetition in `up`
+                    new_pos.match_cur = item.match_hi;
+                    new_pos.idx += 1;
+                    cur_items.push(new_pos);
+                }
+
+                // Check if we need a separator.
+                if idx == len && item.sep.is_some() {
+                    // We have a separator, and it is the current token. We can advance past the
+                    // separator token.
+                    if item.sep
+                        .as_ref()
+                        .map(|sep| token_name_eq(token, sep))
+                        .unwrap_or(false)
+                    {
+                        item.idx += 1;
+                        next_items.push(item);
+                    }
+                }
+                // We don't need a separator. Move the "dot" back to the beginning of the matcher
+                // and try to match again UNLESS we are only allowed to have _one_ repetition.
+                else if item.seq_op != Some(mbe::KleeneOp::ZeroOrOne) {
+                    item.match_cur = item.match_lo;
+                    item.idx = 0;
+                    cur_items.push(item);
+                }
+            }
+            // If we are not in a repetition, then being at the end of a matcher means that we have
+            // reached the potential end of the input.
+            else {
+                eof_items.push(item);
+            }
+        }
+        // We are in the middle of a matcher.
+        else {
+            // Look at what token in the matcher we are trying to match the current token (`token`)
+            // against. Depending on that, we may generate new items.
+            match item.top_elts.get_tt(idx) {
+                // Need to descend into a sequence
+                TokenTree::Sequence(sp, seq) => {
+                    // Examine the case where there are 0 matches of this sequence. We are
+                    // implicitly disallowing OneOrMore from having 0 matches here. Thus, that will
+                    // result in a "no rules expected token" error by virtue of this matcher not
+                    // working.
+                    if seq.kleene.op == mbe::KleeneOp::ZeroOrMore
+                        || seq.kleene.op == mbe::KleeneOp::ZeroOrOne
+                    {
+                        let mut new_item = item.clone();
+                        new_item.match_cur += seq.num_captures;
+                        new_item.idx += 1;
+                        for idx in item.match_cur..item.match_cur + seq.num_captures {
+                            new_item.push_match(idx, MatchedSeq(Lrc::new(smallvec![]), sp));
+                        }
+                        cur_items.push(new_item);
+                    }
+
+                    let matches = create_matches(item.matches.len());
+                    cur_items.push(MatcherPosHandle::Box(Box::new(MatcherPos {
+                        stack: smallvec![],
+                        sep: seq.separator.clone(),
+                        seq_op: Some(seq.kleene.op),
+                        idx: 0,
+                        matches,
+                        match_lo: item.match_cur,
+                        match_cur: item.match_cur,
+                        match_hi: item.match_cur + seq.num_captures,
+                        up: Some(item),
+                        sp_open: sp.open,
+                        top_elts: Tt(TokenTree::Sequence(sp, seq)),
+                    })));
+                }
+
+                // We need to match a metavar (but the identifier is invalid)... this is an error
+                TokenTree::MetaVarDecl(span, _, id) if id.name == kw::Invalid => {
+                    if sess.missing_fragment_specifiers.borrow_mut().remove(&span) {
+                        return Error(span, "missing fragment specifier".to_string());
+                    }
+                }
+
+                // We need to match a metavar with a valid ident... call out to the black-box
+                // parser by adding an item to `bb_items`.
+                TokenTree::MetaVarDecl(_, _, id) => {
+                    // Built-in nonterminals never start with these tokens,
+                    // so we can eliminate them from consideration.
+                    if may_begin_with(token, id.name) {
+                        bb_items.push(item);
+                    }
+                }
+
+                // We need to descend into a delimited submatcher or a doc comment. To do this, we
+                // push the current matcher onto a stack and push a new item containing the
+                // submatcher onto `cur_items`.
+                //
+                // At the beginning of the loop, if we reach the end of the delimited submatcher,
+                // we pop the stack to backtrack out of the descent.
+                seq @ TokenTree::Delimited(..) |
+                seq @ TokenTree::Token(Token { kind: DocComment(..), .. }) => {
+                    let lower_elts = mem::replace(&mut item.top_elts, Tt(seq));
+                    let idx = item.idx;
+                    item.stack.push(MatcherTtFrame {
+                        elts: lower_elts,
+                        idx,
+                    });
+                    item.idx = 0;
+                    cur_items.push(item);
+                }
+
+                // We just matched a normal token. We can just advance the parser.
+                TokenTree::Token(t) if token_name_eq(&t, token) => {
+                    item.idx += 1;
+                    next_items.push(item);
+                }
+
+                // There was another token that was not `token`... This means we can't add any
+                // rules. NOTE that this is not necessarily an error unless _all_ items in
+                // `cur_items` end up doing this. There may still be some other matchers that do
+                // end up working out.
+                TokenTree::Token(..) | TokenTree::MetaVar(..) => {}
+            }
+        }
+    }
+
+    // Yay a successful parse (so far)!
+    Success(())
+}
+
+/// Use the given sequence of token trees (`ms`) as a matcher. Match the given token stream `tts`
+/// against it and return the match.
+///
+/// # Parameters
+///
+/// - `sess`: The session into which errors are emitted
+/// - `tts`: The tokenstream we are matching against the pattern `ms`
+/// - `ms`: A sequence of token trees representing a pattern against which we are matching
+/// - `directory`: Information about the file locations (needed for the black-box parser)
+/// - `recurse_into_modules`: Whether or not to recurse into modules (needed for the black-box
+///   parser)
+pub(super) fn parse(
+    sess: &ParseSess,
+    tts: TokenStream,
+    ms: &[TokenTree],
+    directory: Option<Directory<'_>>,
+    recurse_into_modules: bool,
+) -> NamedParseResult {
+    // Create a parser that can be used for the "black box" parts.
+    let mut parser = Parser::new(
+        sess,
+        tts,
+        directory,
+        recurse_into_modules,
+        true,
+        syntax::MACRO_ARGUMENTS,
+    );
+
+    // A queue of possible matcher positions. We initialize it with the matcher position in which
+    // the "dot" is before the first token of the first token tree in `ms`. `inner_parse_loop` then
+    // processes all of these possible matcher positions and produces possible next positions into
+    // `next_items`. After some post-processing, the contents of `next_items` replenish `cur_items`
+    // and we start over again.
+    //
+    // This MatcherPos instance is allocated on the stack. All others -- and
+    // there are frequently *no* others! -- are allocated on the heap.
+    let mut initial = initial_matcher_pos(ms, parser.token.span);
+    let mut cur_items = smallvec![MatcherPosHandle::Ref(&mut initial)];
+    let mut next_items = Vec::new();
+
+    loop {
+        // Matcher positions black-box parsed by parser.rs (`parser`)
+        let mut bb_items = SmallVec::new();
+
+        // Matcher positions that would be valid if the macro invocation was over now
+        let mut eof_items = SmallVec::new();
+        assert!(next_items.is_empty());
+
+        // Process `cur_items` until either we have finished the input or we need to get some
+        // parsing from the black-box parser done. The result is that `next_items` will contain a
+        // bunch of possible next matcher positions in `next_items`.
+        match inner_parse_loop(
+            sess,
+            &mut cur_items,
+            &mut next_items,
+            &mut eof_items,
+            &mut bb_items,
+            &parser.token,
+        ) {
+            Success(_) => {}
+            Failure(token, msg) => return Failure(token, msg),
+            Error(sp, msg) => return Error(sp, msg),
+        }
+
+        // inner parse loop handled all cur_items, so it's empty
+        assert!(cur_items.is_empty());
+
+        // We need to do some post processing after the `inner_parser_loop`.
+        //
+        // Error messages here could be improved with links to original rules.
+
+        // If we reached the EOF, check that there is EXACTLY ONE possible matcher. Otherwise,
+        // either the parse is ambiguous (which should never happen) or there is a syntax error.
+        if parser.token == token::Eof {
+            if eof_items.len() == 1 {
+                let matches = eof_items[0]
+                    .matches
+                    .iter_mut()
+                    .map(|dv| Lrc::make_mut(dv).pop().unwrap());
+                return nameize(sess, ms, matches);
+            } else if eof_items.len() > 1 {
+                return Error(
+                    parser.token.span,
+                    "ambiguity: multiple successful parses".to_string(),
+                );
+            } else {
+                return Failure(
+                    Token::new(token::Eof, if parser.token.span.is_dummy() {
+                        parser.token.span
+                    } else {
+                        sess.source_map().next_point(parser.token.span)
+                    }),
+                    "missing tokens in macro arguments",
+                );
+            }
+        }
+        // Performance hack: eof_items may share matchers via Rc with other things that we want
+        // to modify. Dropping eof_items now may drop these refcounts to 1, preventing an
+        // unnecessary implicit clone later in Rc::make_mut.
+        drop(eof_items);
+
+        // Another possibility is that we need to call out to parse some rust nonterminal
+        // (black-box) parser. However, if there is not EXACTLY ONE of these, something is wrong.
+        if (!bb_items.is_empty() && !next_items.is_empty()) || bb_items.len() > 1 {
+            let nts = bb_items
+                .iter()
+                .map(|item| match item.top_elts.get_tt(item.idx) {
+                    TokenTree::MetaVarDecl(_, bind, name) => format!("{} ('{}')", name, bind),
+                    _ => panic!(),
+                })
+                .collect::<Vec<String>>()
+                .join(" or ");
+
+            return Error(
+                parser.token.span,
+                format!(
+                    "local ambiguity: multiple parsing options: {}",
+                    match next_items.len() {
+                        0 => format!("built-in NTs {}.", nts),
+                        1 => format!("built-in NTs {} or 1 other option.", nts),
+                        n => format!("built-in NTs {} or {} other options.", nts, n),
+                    }
+                ),
+            );
+        }
+        // If there are no possible next positions AND we aren't waiting for the black-box parser,
+        // then there is a syntax error.
+        else if bb_items.is_empty() && next_items.is_empty() {
+            return Failure(
+                parser.token.take(),
+                "no rules expected this token in macro call",
+            );
+        }
+        // Dump all possible `next_items` into `cur_items` for the next iteration.
+        else if !next_items.is_empty() {
+            // Now process the next token
+            cur_items.extend(next_items.drain(..));
+            parser.bump();
+        }
+        // Finally, we have the case where we need to call the black-box parser to get some
+        // nonterminal.
+        else {
+            assert_eq!(bb_items.len(), 1);
+
+            let mut item = bb_items.pop().unwrap();
+            if let TokenTree::MetaVarDecl(span, _, ident) = item.top_elts.get_tt(item.idx) {
+                let match_cur = item.match_cur;
+                item.push_match(
+                    match_cur,
+                    MatchedNonterminal(Lrc::new(parse_nt(&mut parser, span, ident.name))),
+                );
+                item.idx += 1;
+                item.match_cur += 1;
+            } else {
+                unreachable!()
+            }
+            cur_items.push(item);
+        }
+
+        assert!(!cur_items.is_empty());
+    }
+}
+
+/// The token is an identifier, but not `_`.
+/// We prohibit passing `_` to macros expecting `ident` for now.
+fn get_macro_name(token: &Token) -> Option<(Name, bool)> {
+    match token.kind {
+        token::Ident(name, is_raw) if name != kw::Underscore => Some((name, is_raw)),
+        _ => None,
+    }
+}
+
+/// Checks whether a non-terminal may begin with a particular token.
+///
+/// Returning `false` is a *stability guarantee* that such a matcher will *never* begin with that
+/// token. Be conservative (return true) if not sure.
+fn may_begin_with(token: &Token, name: Name) -> bool {
+    /// Checks whether the non-terminal may contain a single (non-keyword) identifier.
+    fn may_be_ident(nt: &token::Nonterminal) -> bool {
+        match *nt {
+            token::NtItem(_) | token::NtBlock(_) | token::NtVis(_) => false,
+            _ => true,
+        }
+    }
+
+    match name {
+        sym::expr => token.can_begin_expr()
+            // This exception is here for backwards compatibility.
+            && !token.is_keyword(kw::Let),
+        sym::ty => token.can_begin_type(),
+        sym::ident => get_macro_name(token).is_some(),
+        sym::literal => token.can_begin_literal_or_bool(),
+        sym::vis => match token.kind {
+            // The follow-set of :vis + "priv" keyword + interpolated
+            token::Comma | token::Ident(..) | token::Interpolated(_) => true,
+            _ => token.can_begin_type(),
+        },
+        sym::block => match token.kind {
+            token::OpenDelim(token::Brace) => true,
+            token::Interpolated(ref nt) => match **nt {
+                token::NtItem(_)
+                | token::NtPat(_)
+                | token::NtTy(_)
+                | token::NtIdent(..)
+                | token::NtMeta(_)
+                | token::NtPath(_)
+                | token::NtVis(_) => false, // none of these may start with '{'.
+                _ => true,
+            },
+            _ => false,
+        },
+        sym::path | sym::meta => match token.kind {
+            token::ModSep | token::Ident(..) => true,
+            token::Interpolated(ref nt) => match **nt {
+                token::NtPath(_) | token::NtMeta(_) => true,
+                _ => may_be_ident(&nt),
+            },
+            _ => false,
+        },
+        sym::pat => match token.kind {
+            token::Ident(..) |               // box, ref, mut, and other identifiers (can stricten)
+            token::OpenDelim(token::Paren) |    // tuple pattern
+            token::OpenDelim(token::Bracket) |  // slice pattern
+            token::BinOp(token::And) |          // reference
+            token::BinOp(token::Minus) |        // negative literal
+            token::AndAnd |                     // double reference
+            token::Literal(..) |                // literal
+            token::DotDot |                     // range pattern (future compat)
+            token::DotDotDot |                  // range pattern (future compat)
+            token::ModSep |                     // path
+            token::Lt |                         // path (UFCS constant)
+            token::BinOp(token::Shl) => true,   // path (double UFCS)
+            token::Interpolated(ref nt) => may_be_ident(nt),
+            _ => false,
+        },
+        sym::lifetime => match token.kind {
+            token::Lifetime(_) => true,
+            token::Interpolated(ref nt) => match **nt {
+                token::NtLifetime(_) | token::NtTT(_) => true,
+                _ => false,
+            },
+            _ => false,
+        },
+        _ => match token.kind {
+            token::CloseDelim(_) => false,
+            _ => true,
+        },
+    }
+}
+
+/// A call to the "black-box" parser to parse some Rust non-terminal.
+///
+/// # Parameters
+///
+/// - `p`: the "black-box" parser to use
+/// - `sp`: the `Span` we want to parse
+/// - `name`: the name of the metavar _matcher_ we want to match (e.g., `tt`, `ident`, `block`,
+///   etc...)
+///
+/// # Returns
+///
+/// The parsed non-terminal.
+fn parse_nt(p: &mut Parser<'_>, sp: Span, name: Symbol) -> Nonterminal {
+    if name == sym::tt {
+        return token::NtTT(p.parse_token_tree());
+    }
+    // check at the beginning and the parser checks after each bump
+    p.process_potential_macro_variable();
+    match parse_nt_inner(p, sp, name) {
+        Ok(nt) => nt,
+        Err(mut err) => {
+            err.emit();
+            FatalError.raise();
+        }
+    }
+}
+
+fn parse_nt_inner<'a>(p: &mut Parser<'a>, sp: Span, name: Symbol) -> PResult<'a, Nonterminal> {
+    Ok(match name {
+        sym::item => match p.parse_item()? {
+            Some(i) => token::NtItem(i),
+            None => return Err(p.fatal("expected an item keyword")),
+        },
+        sym::block => token::NtBlock(p.parse_block()?),
+        sym::stmt => match p.parse_stmt()? {
+            Some(s) => token::NtStmt(s),
+            None => return Err(p.fatal("expected a statement")),
+        },
+        sym::pat => token::NtPat(p.parse_pat(None)?),
+        sym::expr => token::NtExpr(p.parse_expr()?),
+        sym::literal => token::NtLiteral(p.parse_literal_maybe_minus()?),
+        sym::ty => token::NtTy(p.parse_ty()?),
+        // this could be handled like a token, since it is one
+        sym::ident => if let Some((name, is_raw)) = get_macro_name(&p.token) {
+            let span = p.token.span;
+            p.bump();
+            token::NtIdent(Ident::new(name, span), is_raw)
+        } else {
+            let token_str = pprust::token_to_string(&p.token);
+            return Err(p.fatal(&format!("expected ident, found {}", &token_str)));
+        }
+        sym::path => token::NtPath(p.parse_path(PathStyle::Type)?),
+        sym::meta => token::NtMeta(p.parse_attr_item()?),
+        sym::vis => token::NtVis(p.parse_visibility(true)?),
+        sym::lifetime => if p.check_lifetime() {
+            token::NtLifetime(p.expect_lifetime().ident)
+        } else {
+            let token_str = pprust::token_to_string(&p.token);
+            return Err(p.fatal(&format!("expected a lifetime, found `{}`", &token_str)));
+        }
+        // this is not supposed to happen, since it has been checked
+        // when compiling the macro.
+        _ => p.span_bug(sp, "invalid fragment specifier"),
+    })
+}