about summary refs log tree commit diff
path: root/src/libsyntax_expand
diff options
context:
space:
mode:
Diffstat (limited to 'src/libsyntax_expand')
-rw-r--r--src/libsyntax_expand/Cargo.toml26
-rw-r--r--src/libsyntax_expand/allocator.rs75
-rw-r--r--src/libsyntax_expand/base.rs1189
-rw-r--r--src/libsyntax_expand/build.rs640
-rw-r--r--src/libsyntax_expand/expand.rs1551
-rw-r--r--src/libsyntax_expand/lib.rs38
-rw-r--r--src/libsyntax_expand/mbe.rs166
-rw-r--r--src/libsyntax_expand/mbe/macro_check.rs626
-rw-r--r--src/libsyntax_expand/mbe/macro_parser.rs944
-rw-r--r--src/libsyntax_expand/mbe/macro_rules.rs1192
-rw-r--r--src/libsyntax_expand/mbe/quoted.rs264
-rw-r--r--src/libsyntax_expand/mbe/transcribe.rs399
-rw-r--r--src/libsyntax_expand/placeholders.rs350
-rw-r--r--src/libsyntax_expand/proc_macro.rs215
-rw-r--r--src/libsyntax_expand/proc_macro_server.rs713
15 files changed, 8388 insertions, 0 deletions
diff --git a/src/libsyntax_expand/Cargo.toml b/src/libsyntax_expand/Cargo.toml
new file mode 100644
index 00000000000..f063753f599
--- /dev/null
+++ b/src/libsyntax_expand/Cargo.toml
@@ -0,0 +1,26 @@
+[package]
+authors = ["The Rust Project Developers"]
+name = "syntax_expand"
+version = "0.0.0"
+edition = "2018"
+build = false
+
+[lib]
+name = "syntax_expand"
+path = "lib.rs"
+doctest = false
+
+[dependencies]
+bitflags = "1.0"
+rustc_serialize = { path = "../libserialize", package = "serialize" }
+log = "0.4"
+scoped-tls = "1.0"
+lazy_static = "1.0.0"
+syntax_pos = { path = "../libsyntax_pos" }
+errors = { path = "../librustc_errors", package = "rustc_errors" }
+rustc_data_structures = { path = "../librustc_data_structures" }
+rustc_index = { path = "../librustc_index" }
+rustc_lexer = { path = "../librustc_lexer" }
+rustc_target = { path = "../librustc_target" }
+smallvec = { version = "0.6.7", features = ["union", "may_dangle"] }
+syntax = { path = "../libsyntax" }
diff --git a/src/libsyntax_expand/allocator.rs b/src/libsyntax_expand/allocator.rs
new file mode 100644
index 00000000000..3526be17721
--- /dev/null
+++ b/src/libsyntax_expand/allocator.rs
@@ -0,0 +1,75 @@
+use syntax::{ast, attr, visit};
+use syntax::symbol::{sym, Symbol};
+use syntax_pos::Span;
+
+#[derive(Clone, Copy)]
+pub enum AllocatorKind {
+    Global,
+    DefaultLib,
+    DefaultExe,
+}
+
+impl AllocatorKind {
+    pub fn fn_name(&self, base: &str) -> String {
+        match *self {
+            AllocatorKind::Global => format!("__rg_{}", base),
+            AllocatorKind::DefaultLib => format!("__rdl_{}", base),
+            AllocatorKind::DefaultExe => format!("__rde_{}", base),
+        }
+    }
+}
+
+pub enum AllocatorTy {
+    Layout,
+    Ptr,
+    ResultPtr,
+    Unit,
+    Usize,
+}
+
+pub struct AllocatorMethod {
+    pub name: &'static str,
+    pub inputs: &'static [AllocatorTy],
+    pub output: AllocatorTy,
+}
+
+pub static ALLOCATOR_METHODS: &[AllocatorMethod] = &[
+    AllocatorMethod {
+        name: "alloc",
+        inputs: &[AllocatorTy::Layout],
+        output: AllocatorTy::ResultPtr,
+    },
+    AllocatorMethod {
+        name: "dealloc",
+        inputs: &[AllocatorTy::Ptr, AllocatorTy::Layout],
+        output: AllocatorTy::Unit,
+    },
+    AllocatorMethod {
+        name: "realloc",
+        inputs: &[AllocatorTy::Ptr, AllocatorTy::Layout, AllocatorTy::Usize],
+        output: AllocatorTy::ResultPtr,
+    },
+    AllocatorMethod {
+        name: "alloc_zeroed",
+        inputs: &[AllocatorTy::Layout],
+        output: AllocatorTy::ResultPtr,
+    },
+];
+
+pub fn global_allocator_spans(krate: &ast::Crate) -> Vec<Span> {
+    struct Finder { name: Symbol, spans: Vec<Span> }
+    impl<'ast> visit::Visitor<'ast> for Finder {
+        fn visit_item(&mut self, item: &'ast ast::Item) {
+            if item.ident.name == self.name &&
+               attr::contains_name(&item.attrs, sym::rustc_std_internal_symbol) {
+                self.spans.push(item.span);
+            }
+            visit::walk_item(self, item)
+        }
+    }
+
+    let name = Symbol::intern(&AllocatorKind::Global.fn_name("alloc"));
+    let mut f = Finder { name, spans: Vec::new() };
+    visit::walk_crate(&mut f, krate);
+    f.spans
+}
diff --git a/src/libsyntax_expand/base.rs b/src/libsyntax_expand/base.rs
new file mode 100644
index 00000000000..593e06f29b9
--- /dev/null
+++ b/src/libsyntax_expand/base.rs
@@ -0,0 +1,1189 @@
+use crate::expand::{self, AstFragment, Invocation};
+use crate::hygiene::ExpnId;
+
+use syntax::ast::{self, NodeId, Attribute, Name, PatKind};
+use syntax::attr::{self, HasAttrs, Stability, Deprecation};
+use syntax::source_map::SourceMap;
+use syntax::edition::Edition;
+use syntax::mut_visit::{self, MutVisitor};
+use syntax::parse::{self, parser, DirectoryOwnership};
+use syntax::parse::token;
+use syntax::ptr::P;
+use syntax::sess::ParseSess;
+use syntax::symbol::{kw, sym, Ident, Symbol};
+use syntax::{ThinVec, MACRO_ARGUMENTS};
+use syntax::tokenstream::{self, TokenStream};
+use syntax::visit::Visitor;
+
+use errors::{DiagnosticBuilder, DiagnosticId};
+use smallvec::{smallvec, SmallVec};
+use syntax_pos::{FileName, Span, MultiSpan, DUMMY_SP};
+use syntax_pos::hygiene::{AstPass, ExpnData, ExpnKind};
+
+use rustc_data_structures::fx::FxHashMap;
+use rustc_data_structures::sync::{self, Lrc};
+use std::iter;
+use std::path::PathBuf;
+use std::rc::Rc;
+use std::default::Default;
+
+pub use syntax_pos::hygiene::MacroKind;
+
+#[derive(Debug,Clone)]
+pub enum Annotatable {
+    Item(P<ast::Item>),
+    TraitItem(P<ast::TraitItem>),
+    ImplItem(P<ast::ImplItem>),
+    ForeignItem(P<ast::ForeignItem>),
+    Stmt(P<ast::Stmt>),
+    Expr(P<ast::Expr>),
+    Arm(ast::Arm),
+    Field(ast::Field),
+    FieldPat(ast::FieldPat),
+    GenericParam(ast::GenericParam),
+    Param(ast::Param),
+    StructField(ast::StructField),
+    Variant(ast::Variant),
+}
+
+impl HasAttrs for Annotatable {
+    fn attrs(&self) -> &[Attribute] {
+        match *self {
+            Annotatable::Item(ref item) => &item.attrs,
+            Annotatable::TraitItem(ref trait_item) => &trait_item.attrs,
+            Annotatable::ImplItem(ref impl_item) => &impl_item.attrs,
+            Annotatable::ForeignItem(ref foreign_item) => &foreign_item.attrs,
+            Annotatable::Stmt(ref stmt) => stmt.attrs(),
+            Annotatable::Expr(ref expr) => &expr.attrs,
+            Annotatable::Arm(ref arm) => &arm.attrs,
+            Annotatable::Field(ref field) => &field.attrs,
+            Annotatable::FieldPat(ref fp) => &fp.attrs,
+            Annotatable::GenericParam(ref gp) => &gp.attrs,
+            Annotatable::Param(ref p) => &p.attrs,
+            Annotatable::StructField(ref sf) => &sf.attrs,
+            Annotatable::Variant(ref v) => &v.attrs(),
+        }
+    }
+
+    fn visit_attrs<F: FnOnce(&mut Vec<Attribute>)>(&mut self, f: F) {
+        match self {
+            Annotatable::Item(item) => item.visit_attrs(f),
+            Annotatable::TraitItem(trait_item) => trait_item.visit_attrs(f),
+            Annotatable::ImplItem(impl_item) => impl_item.visit_attrs(f),
+            Annotatable::ForeignItem(foreign_item) => foreign_item.visit_attrs(f),
+            Annotatable::Stmt(stmt) => stmt.visit_attrs(f),
+            Annotatable::Expr(expr) => expr.visit_attrs(f),
+            Annotatable::Arm(arm) => arm.visit_attrs(f),
+            Annotatable::Field(field) => field.visit_attrs(f),
+            Annotatable::FieldPat(fp) => fp.visit_attrs(f),
+            Annotatable::GenericParam(gp) => gp.visit_attrs(f),
+            Annotatable::Param(p) => p.visit_attrs(f),
+            Annotatable::StructField(sf) => sf.visit_attrs(f),
+            Annotatable::Variant(v) => v.visit_attrs(f),
+        }
+    }
+}
+
+impl Annotatable {
+    pub fn span(&self) -> Span {
+        match *self {
+            Annotatable::Item(ref item) => item.span,
+            Annotatable::TraitItem(ref trait_item) => trait_item.span,
+            Annotatable::ImplItem(ref impl_item) => impl_item.span,
+            Annotatable::ForeignItem(ref foreign_item) => foreign_item.span,
+            Annotatable::Stmt(ref stmt) => stmt.span,
+            Annotatable::Expr(ref expr) => expr.span,
+            Annotatable::Arm(ref arm) => arm.span,
+            Annotatable::Field(ref field) => field.span,
+            Annotatable::FieldPat(ref fp) => fp.pat.span,
+            Annotatable::GenericParam(ref gp) => gp.ident.span,
+            Annotatable::Param(ref p) => p.span,
+            Annotatable::StructField(ref sf) => sf.span,
+            Annotatable::Variant(ref v) => v.span,
+        }
+    }
+
+    pub fn visit_with<'a, V: Visitor<'a>>(&'a self, visitor: &mut V) {
+        match self {
+            Annotatable::Item(item) => visitor.visit_item(item),
+            Annotatable::TraitItem(trait_item) => visitor.visit_trait_item(trait_item),
+            Annotatable::ImplItem(impl_item) => visitor.visit_impl_item(impl_item),
+            Annotatable::ForeignItem(foreign_item) => visitor.visit_foreign_item(foreign_item),
+            Annotatable::Stmt(stmt) => visitor.visit_stmt(stmt),
+            Annotatable::Expr(expr) => visitor.visit_expr(expr),
+            Annotatable::Arm(arm) => visitor.visit_arm(arm),
+            Annotatable::Field(field) => visitor.visit_field(field),
+            Annotatable::FieldPat(fp) => visitor.visit_field_pattern(fp),
+            Annotatable::GenericParam(gp) => visitor.visit_generic_param(gp),
+            Annotatable::Param(p) => visitor.visit_param(p),
+            Annotatable::StructField(sf) =>visitor.visit_struct_field(sf),
+            Annotatable::Variant(v) => visitor.visit_variant(v),
+        }
+    }
+
+    pub fn expect_item(self) -> P<ast::Item> {
+        match self {
+            Annotatable::Item(i) => i,
+            _ => panic!("expected Item")
+        }
+    }
+
+    pub fn map_item_or<F, G>(self, mut f: F, mut or: G) -> Annotatable
+        where F: FnMut(P<ast::Item>) -> P<ast::Item>,
+              G: FnMut(Annotatable) -> Annotatable
+    {
+        match self {
+            Annotatable::Item(i) => Annotatable::Item(f(i)),
+            _ => or(self)
+        }
+    }
+
+    pub fn expect_trait_item(self) -> ast::TraitItem {
+        match self {
+            Annotatable::TraitItem(i) => i.into_inner(),
+            _ => panic!("expected Item")
+        }
+    }
+
+    pub fn expect_impl_item(self) -> ast::ImplItem {
+        match self {
+            Annotatable::ImplItem(i) => i.into_inner(),
+            _ => panic!("expected Item")
+        }
+    }
+
+    pub fn expect_foreign_item(self) -> ast::ForeignItem {
+        match self {
+            Annotatable::ForeignItem(i) => i.into_inner(),
+            _ => panic!("expected foreign item")
+        }
+    }
+
+    pub fn expect_stmt(self) -> ast::Stmt {
+        match self {
+            Annotatable::Stmt(stmt) => stmt.into_inner(),
+            _ => panic!("expected statement"),
+        }
+    }
+
+    pub fn expect_expr(self) -> P<ast::Expr> {
+        match self {
+            Annotatable::Expr(expr) => expr,
+            _ => panic!("expected expression"),
+        }
+    }
+
+    pub fn expect_arm(self) -> ast::Arm {
+        match self {
+            Annotatable::Arm(arm) => arm,
+            _ => panic!("expected match arm")
+        }
+    }
+
+    pub fn expect_field(self) -> ast::Field {
+        match self {
+            Annotatable::Field(field) => field,
+            _ => panic!("expected field")
+        }
+    }
+
+    pub fn expect_field_pattern(self) -> ast::FieldPat {
+        match self {
+            Annotatable::FieldPat(fp) => fp,
+            _ => panic!("expected field pattern")
+        }
+    }
+
+    pub fn expect_generic_param(self) -> ast::GenericParam {
+        match self {
+            Annotatable::GenericParam(gp) => gp,
+            _ => panic!("expected generic parameter")
+        }
+    }
+
+    pub fn expect_param(self) -> ast::Param {
+        match self {
+            Annotatable::Param(param) => param,
+            _ => panic!("expected parameter")
+        }
+    }
+
+    pub fn expect_struct_field(self) -> ast::StructField {
+        match self {
+            Annotatable::StructField(sf) => sf,
+            _ => panic!("expected struct field")
+        }
+    }
+
+    pub fn expect_variant(self) -> ast::Variant {
+        match self {
+            Annotatable::Variant(v) => v,
+            _ => panic!("expected variant")
+        }
+    }
+
+    pub fn derive_allowed(&self) -> bool {
+        match *self {
+            Annotatable::Item(ref item) => match item.kind {
+                ast::ItemKind::Struct(..) |
+                ast::ItemKind::Enum(..) |
+                ast::ItemKind::Union(..) => true,
+                _ => false,
+            },
+            _ => false,
+        }
+    }
+}
+
+// `meta_item` is the annotation, and `item` is the item being modified.
+// FIXME Decorators should follow the same pattern too.
+pub trait MultiItemModifier {
+    fn expand(&self,
+              ecx: &mut ExtCtxt<'_>,
+              span: Span,
+              meta_item: &ast::MetaItem,
+              item: Annotatable)
+              -> Vec<Annotatable>;
+}
+
+impl<F, T> MultiItemModifier for F
+    where F: Fn(&mut ExtCtxt<'_>, Span, &ast::MetaItem, Annotatable) -> T,
+          T: Into<Vec<Annotatable>>,
+{
+    fn expand(&self,
+              ecx: &mut ExtCtxt<'_>,
+              span: Span,
+              meta_item: &ast::MetaItem,
+              item: Annotatable)
+              -> Vec<Annotatable> {
+        (*self)(ecx, span, meta_item, item).into()
+    }
+}
+
+impl Into<Vec<Annotatable>> for Annotatable {
+    fn into(self) -> Vec<Annotatable> {
+        vec![self]
+    }
+}
+
+pub trait ProcMacro {
+    fn expand<'cx>(&self,
+                   ecx: &'cx mut ExtCtxt<'_>,
+                   span: Span,
+                   ts: TokenStream)
+                   -> TokenStream;
+}
+
+impl<F> ProcMacro for F
+    where F: Fn(TokenStream) -> TokenStream
+{
+    fn expand<'cx>(&self,
+                   _ecx: &'cx mut ExtCtxt<'_>,
+                   _span: Span,
+                   ts: TokenStream)
+                   -> TokenStream {
+        // FIXME setup implicit context in TLS before calling self.
+        (*self)(ts)
+    }
+}
+
+pub trait AttrProcMacro {
+    fn expand<'cx>(&self,
+                   ecx: &'cx mut ExtCtxt<'_>,
+                   span: Span,
+                   annotation: TokenStream,
+                   annotated: TokenStream)
+                   -> TokenStream;
+}
+
+impl<F> AttrProcMacro for F
+    where F: Fn(TokenStream, TokenStream) -> TokenStream
+{
+    fn expand<'cx>(&self,
+                   _ecx: &'cx mut ExtCtxt<'_>,
+                   _span: Span,
+                   annotation: TokenStream,
+                   annotated: TokenStream)
+                   -> TokenStream {
+        // FIXME setup implicit context in TLS before calling self.
+        (*self)(annotation, annotated)
+    }
+}
+
+/// Represents a thing that maps token trees to Macro Results
+pub trait TTMacroExpander {
+    fn expand<'cx>(
+        &self,
+        ecx: &'cx mut ExtCtxt<'_>,
+        span: Span,
+        input: TokenStream,
+    ) -> Box<dyn MacResult+'cx>;
+}
+
+pub type MacroExpanderFn =
+    for<'cx> fn(&'cx mut ExtCtxt<'_>, Span, TokenStream)
+                -> Box<dyn MacResult+'cx>;
+
+impl<F> TTMacroExpander for F
+    where F: for<'cx> Fn(&'cx mut ExtCtxt<'_>, Span, TokenStream)
+    -> Box<dyn MacResult+'cx>
+{
+    fn expand<'cx>(
+        &self,
+        ecx: &'cx mut ExtCtxt<'_>,
+        span: Span,
+        mut input: TokenStream,
+    ) -> Box<dyn MacResult+'cx> {
+        struct AvoidInterpolatedIdents;
+
+        impl MutVisitor for AvoidInterpolatedIdents {
+            fn visit_tt(&mut self, tt: &mut tokenstream::TokenTree) {
+                if let tokenstream::TokenTree::Token(token) = tt {
+                    if let token::Interpolated(nt) = &token.kind {
+                        if let token::NtIdent(ident, is_raw) = **nt {
+                            *tt = tokenstream::TokenTree::token(
+                                token::Ident(ident.name, is_raw), ident.span
+                            );
+                        }
+                    }
+                }
+                mut_visit::noop_visit_tt(tt, self)
+            }
+
+            fn visit_mac(&mut self, mac: &mut ast::Mac) {
+                mut_visit::noop_visit_mac(mac, self)
+            }
+        }
+        AvoidInterpolatedIdents.visit_tts(&mut input);
+        (*self)(ecx, span, input)
+    }
+}
+
+// Use a macro because forwarding to a simple function has type system issues
+macro_rules! make_stmts_default {
+    ($me:expr) => {
+        $me.make_expr().map(|e| smallvec![ast::Stmt {
+            id: ast::DUMMY_NODE_ID,
+            span: e.span,
+            kind: ast::StmtKind::Expr(e),
+        }])
+    }
+}
+
+/// The result of a macro expansion. The return values of the various
+/// methods are spliced into the AST at the callsite of the macro.
+pub trait MacResult {
+    /// Creates an expression.
+    fn make_expr(self: Box<Self>) -> Option<P<ast::Expr>> {
+        None
+    }
+    /// Creates zero or more items.
+    fn make_items(self: Box<Self>) -> Option<SmallVec<[P<ast::Item>; 1]>> {
+        None
+    }
+
+    /// Creates zero or more impl items.
+    fn make_impl_items(self: Box<Self>) -> Option<SmallVec<[ast::ImplItem; 1]>> {
+        None
+    }
+
+    /// Creates zero or more trait items.
+    fn make_trait_items(self: Box<Self>) -> Option<SmallVec<[ast::TraitItem; 1]>> {
+        None
+    }
+
+    /// Creates zero or more items in an `extern {}` block
+    fn make_foreign_items(self: Box<Self>) -> Option<SmallVec<[ast::ForeignItem; 1]>> { None }
+
+    /// Creates a pattern.
+    fn make_pat(self: Box<Self>) -> Option<P<ast::Pat>> {
+        None
+    }
+
+    /// Creates zero or more statements.
+    ///
+    /// By default this attempts to create an expression statement,
+    /// returning None if that fails.
+    fn make_stmts(self: Box<Self>) -> Option<SmallVec<[ast::Stmt; 1]>> {
+        make_stmts_default!(self)
+    }
+
+    fn make_ty(self: Box<Self>) -> Option<P<ast::Ty>> {
+        None
+    }
+
+    fn make_arms(self: Box<Self>) -> Option<SmallVec<[ast::Arm; 1]>> {
+        None
+    }
+
+    fn make_fields(self: Box<Self>) -> Option<SmallVec<[ast::Field; 1]>> {
+        None
+    }
+
+    fn make_field_patterns(self: Box<Self>) -> Option<SmallVec<[ast::FieldPat; 1]>> {
+        None
+    }
+
+    fn make_generic_params(self: Box<Self>) -> Option<SmallVec<[ast::GenericParam; 1]>> {
+        None
+    }
+
+    fn make_params(self: Box<Self>) -> Option<SmallVec<[ast::Param; 1]>> {
+        None
+    }
+
+    fn make_struct_fields(self: Box<Self>) -> Option<SmallVec<[ast::StructField; 1]>> {
+        None
+    }
+
+    fn make_variants(self: Box<Self>) -> Option<SmallVec<[ast::Variant; 1]>> {
+        None
+    }
+}
+
+macro_rules! make_MacEager {
+    ( $( $fld:ident: $t:ty, )* ) => {
+        /// `MacResult` implementation for the common case where you've already
+        /// built each form of AST that you might return.
+        #[derive(Default)]
+        pub struct MacEager {
+            $(
+                pub $fld: Option<$t>,
+            )*
+        }
+
+        impl MacEager {
+            $(
+                pub fn $fld(v: $t) -> Box<dyn MacResult> {
+                    Box::new(MacEager {
+                        $fld: Some(v),
+                        ..Default::default()
+                    })
+                }
+            )*
+        }
+    }
+}
+
+make_MacEager! {
+    expr: P<ast::Expr>,
+    pat: P<ast::Pat>,
+    items: SmallVec<[P<ast::Item>; 1]>,
+    impl_items: SmallVec<[ast::ImplItem; 1]>,
+    trait_items: SmallVec<[ast::TraitItem; 1]>,
+    foreign_items: SmallVec<[ast::ForeignItem; 1]>,
+    stmts: SmallVec<[ast::Stmt; 1]>,
+    ty: P<ast::Ty>,
+}
+
+impl MacResult for MacEager {
+    fn make_expr(self: Box<Self>) -> Option<P<ast::Expr>> {
+        self.expr
+    }
+
+    fn make_items(self: Box<Self>) -> Option<SmallVec<[P<ast::Item>; 1]>> {
+        self.items
+    }
+
+    fn make_impl_items(self: Box<Self>) -> Option<SmallVec<[ast::ImplItem; 1]>> {
+        self.impl_items
+    }
+
+    fn make_trait_items(self: Box<Self>) -> Option<SmallVec<[ast::TraitItem; 1]>> {
+        self.trait_items
+    }
+
+    fn make_foreign_items(self: Box<Self>) -> Option<SmallVec<[ast::ForeignItem; 1]>> {
+        self.foreign_items
+    }
+
+    fn make_stmts(self: Box<Self>) -> Option<SmallVec<[ast::Stmt; 1]>> {
+        match self.stmts.as_ref().map_or(0, |s| s.len()) {
+            0 => make_stmts_default!(self),
+            _ => self.stmts,
+        }
+    }
+
+    fn make_pat(self: Box<Self>) -> Option<P<ast::Pat>> {
+        if let Some(p) = self.pat {
+            return Some(p);
+        }
+        if let Some(e) = self.expr {
+            if let ast::ExprKind::Lit(_) = e.kind {
+                return Some(P(ast::Pat {
+                    id: ast::DUMMY_NODE_ID,
+                    span: e.span,
+                    kind: PatKind::Lit(e),
+                }));
+            }
+        }
+        None
+    }
+
+    fn make_ty(self: Box<Self>) -> Option<P<ast::Ty>> {
+        self.ty
+    }
+}
+
+/// Fill-in macro expansion result, to allow compilation to continue
+/// after hitting errors.
+#[derive(Copy, Clone)]
+pub struct DummyResult {
+    is_error: bool,
+    span: Span,
+}
+
+impl DummyResult {
+    /// Creates a default MacResult that can be anything.
+    ///
+    /// Use this as a return value after hitting any errors and
+    /// calling `span_err`.
+    pub fn any(span: Span) -> Box<dyn MacResult+'static> {
+        Box::new(DummyResult { is_error: true, span })
+    }
+
+    /// Same as `any`, but must be a valid fragment, not error.
+    pub fn any_valid(span: Span) -> Box<dyn MacResult+'static> {
+        Box::new(DummyResult { is_error: false, span })
+    }
+
+    /// A plain dummy expression.
+    pub fn raw_expr(sp: Span, is_error: bool) -> P<ast::Expr> {
+        P(ast::Expr {
+            id: ast::DUMMY_NODE_ID,
+            kind: if is_error { ast::ExprKind::Err } else { ast::ExprKind::Tup(Vec::new()) },
+            span: sp,
+            attrs: ThinVec::new(),
+        })
+    }
+
+    /// A plain dummy pattern.
+    pub fn raw_pat(sp: Span) -> ast::Pat {
+        ast::Pat {
+            id: ast::DUMMY_NODE_ID,
+            kind: PatKind::Wild,
+            span: sp,
+        }
+    }
+
+    /// A plain dummy type.
+    pub fn raw_ty(sp: Span, is_error: bool) -> P<ast::Ty> {
+        P(ast::Ty {
+            id: ast::DUMMY_NODE_ID,
+            kind: if is_error { ast::TyKind::Err } else { ast::TyKind::Tup(Vec::new()) },
+            span: sp
+        })
+    }
+}
+
+impl MacResult for DummyResult {
+    fn make_expr(self: Box<DummyResult>) -> Option<P<ast::Expr>> {
+        Some(DummyResult::raw_expr(self.span, self.is_error))
+    }
+
+    fn make_pat(self: Box<DummyResult>) -> Option<P<ast::Pat>> {
+        Some(P(DummyResult::raw_pat(self.span)))
+    }
+
+    fn make_items(self: Box<DummyResult>) -> Option<SmallVec<[P<ast::Item>; 1]>> {
+        Some(SmallVec::new())
+    }
+
+    fn make_impl_items(self: Box<DummyResult>) -> Option<SmallVec<[ast::ImplItem; 1]>> {
+        Some(SmallVec::new())
+    }
+
+    fn make_trait_items(self: Box<DummyResult>) -> Option<SmallVec<[ast::TraitItem; 1]>> {
+        Some(SmallVec::new())
+    }
+
+    fn make_foreign_items(self: Box<Self>) -> Option<SmallVec<[ast::ForeignItem; 1]>> {
+        Some(SmallVec::new())
+    }
+
+    fn make_stmts(self: Box<DummyResult>) -> Option<SmallVec<[ast::Stmt; 1]>> {
+        Some(smallvec![ast::Stmt {
+            id: ast::DUMMY_NODE_ID,
+            kind: ast::StmtKind::Expr(DummyResult::raw_expr(self.span, self.is_error)),
+            span: self.span,
+        }])
+    }
+
+    fn make_ty(self: Box<DummyResult>) -> Option<P<ast::Ty>> {
+        Some(DummyResult::raw_ty(self.span, self.is_error))
+    }
+
+    fn make_arms(self: Box<DummyResult>) -> Option<SmallVec<[ast::Arm; 1]>> {
+       Some(SmallVec::new())
+    }
+
+    fn make_fields(self: Box<DummyResult>) -> Option<SmallVec<[ast::Field; 1]>> {
+        Some(SmallVec::new())
+    }
+
+    fn make_field_patterns(self: Box<DummyResult>) -> Option<SmallVec<[ast::FieldPat; 1]>> {
+        Some(SmallVec::new())
+    }
+
+    fn make_generic_params(self: Box<DummyResult>) -> Option<SmallVec<[ast::GenericParam; 1]>> {
+        Some(SmallVec::new())
+    }
+
+    fn make_params(self: Box<DummyResult>) -> Option<SmallVec<[ast::Param; 1]>> {
+        Some(SmallVec::new())
+    }
+
+    fn make_struct_fields(self: Box<DummyResult>) -> Option<SmallVec<[ast::StructField; 1]>> {
+        Some(SmallVec::new())
+    }
+
+    fn make_variants(self: Box<DummyResult>) -> Option<SmallVec<[ast::Variant; 1]>> {
+        Some(SmallVec::new())
+    }
+}
+
+/// A syntax extension kind.
+pub enum SyntaxExtensionKind {
+    /// A token-based function-like macro.
+    Bang(
+        /// An expander with signature TokenStream -> TokenStream.
+        Box<dyn ProcMacro + sync::Sync + sync::Send>,
+    ),
+
+    /// An AST-based function-like macro.
+    LegacyBang(
+        /// An expander with signature TokenStream -> AST.
+        Box<dyn TTMacroExpander + sync::Sync + sync::Send>,
+    ),
+
+    /// A token-based attribute macro.
+    Attr(
+        /// An expander with signature (TokenStream, TokenStream) -> TokenStream.
+        /// The first TokenSteam is the attribute itself, the second is the annotated item.
+        /// The produced TokenSteam replaces the input TokenSteam.
+        Box<dyn AttrProcMacro + sync::Sync + sync::Send>,
+    ),
+
+    /// An AST-based attribute macro.
+    LegacyAttr(
+        /// An expander with signature (AST, AST) -> AST.
+        /// The first AST fragment is the attribute itself, the second is the annotated item.
+        /// The produced AST fragment replaces the input AST fragment.
+        Box<dyn MultiItemModifier + sync::Sync + sync::Send>,
+    ),
+
+    /// A trivial attribute "macro" that does nothing,
+    /// only keeps the attribute and marks it as inert,
+    /// thus making it ineligible for further expansion.
+    NonMacroAttr {
+        /// Suppresses the `unused_attributes` lint for this attribute.
+        mark_used: bool,
+    },
+
+    /// A token-based derive macro.
+    Derive(
+        /// An expander with signature TokenStream -> TokenStream (not yet).
+        /// The produced TokenSteam is appended to the input TokenSteam.
+        Box<dyn MultiItemModifier + sync::Sync + sync::Send>,
+    ),
+
+    /// An AST-based derive macro.
+    LegacyDerive(
+        /// An expander with signature AST -> AST.
+        /// The produced AST fragment is appended to the input AST fragment.
+        Box<dyn MultiItemModifier + sync::Sync + sync::Send>,
+    ),
+}
+
+/// A struct representing a macro definition in "lowered" form ready for expansion.
+pub struct SyntaxExtension {
+    /// A syntax extension kind.
+    pub kind: SyntaxExtensionKind,
+    /// Span of the macro definition.
+    pub span: Span,
+    /// Whitelist of unstable features that are treated as stable inside this macro.
+    pub allow_internal_unstable: Option<Lrc<[Symbol]>>,
+    /// Suppresses the `unsafe_code` lint for code produced by this macro.
+    pub allow_internal_unsafe: bool,
+    /// Enables the macro helper hack (`ident!(...)` -> `$crate::ident!(...)`) for this macro.
+    pub local_inner_macros: bool,
+    /// The macro's stability info.
+    pub stability: Option<Stability>,
+    /// The macro's deprecation info.
+    pub deprecation: Option<Deprecation>,
+    /// Names of helper attributes registered by this macro.
+    pub helper_attrs: Vec<Symbol>,
+    /// Edition of the crate in which this macro is defined.
+    pub edition: Edition,
+    /// Built-in macros have a couple of special properties like availability
+    /// in `#[no_implicit_prelude]` modules, so we have to keep this flag.
+    pub is_builtin: bool,
+    /// We have to identify macros providing a `Copy` impl early for compatibility reasons.
+    pub is_derive_copy: bool,
+}
+
+impl SyntaxExtension {
+    /// Returns which kind of macro calls this syntax extension.
+    pub fn macro_kind(&self) -> MacroKind {
+        match self.kind {
+            SyntaxExtensionKind::Bang(..) |
+            SyntaxExtensionKind::LegacyBang(..) => MacroKind::Bang,
+            SyntaxExtensionKind::Attr(..) |
+            SyntaxExtensionKind::LegacyAttr(..) |
+            SyntaxExtensionKind::NonMacroAttr { .. } => MacroKind::Attr,
+            SyntaxExtensionKind::Derive(..) |
+            SyntaxExtensionKind::LegacyDerive(..) => MacroKind::Derive,
+        }
+    }
+
+    /// Constructs a syntax extension with default properties.
+    pub fn default(kind: SyntaxExtensionKind, edition: Edition) -> SyntaxExtension {
+        SyntaxExtension {
+            span: DUMMY_SP,
+            allow_internal_unstable: None,
+            allow_internal_unsafe: false,
+            local_inner_macros: false,
+            stability: None,
+            deprecation: None,
+            helper_attrs: Vec::new(),
+            edition,
+            is_builtin: false,
+            is_derive_copy: false,
+            kind,
+        }
+    }
+
+    /// Constructs a syntax extension with the given properties
+    /// and other properties converted from attributes.
+    pub fn new(
+        sess: &ParseSess,
+        kind: SyntaxExtensionKind,
+        span: Span,
+        helper_attrs: Vec<Symbol>,
+        edition: Edition,
+        name: Name,
+        attrs: &[ast::Attribute],
+    ) -> SyntaxExtension {
+        let allow_internal_unstable = attr::allow_internal_unstable(
+            &attrs, &sess.span_diagnostic,
+        ).map(|features| features.collect::<Vec<Symbol>>().into());
+
+        let mut local_inner_macros = false;
+        if let Some(macro_export) = attr::find_by_name(attrs, sym::macro_export) {
+            if let Some(l) = macro_export.meta_item_list() {
+                local_inner_macros = attr::list_contains_name(&l, sym::local_inner_macros);
+            }
+        }
+
+        let is_builtin = attr::contains_name(attrs, sym::rustc_builtin_macro);
+
+        SyntaxExtension {
+            kind,
+            span,
+            allow_internal_unstable,
+            allow_internal_unsafe: attr::contains_name(attrs, sym::allow_internal_unsafe),
+            local_inner_macros,
+            stability: attr::find_stability(&sess, attrs, span),
+            deprecation: attr::find_deprecation(&sess, attrs, span),
+            helper_attrs,
+            edition,
+            is_builtin,
+            is_derive_copy: is_builtin && name == sym::Copy,
+        }
+    }
+
+    pub fn dummy_bang(edition: Edition) -> SyntaxExtension {
+        fn expander<'cx>(_: &'cx mut ExtCtxt<'_>, span: Span, _: TokenStream)
+                         -> Box<dyn MacResult + 'cx> {
+            DummyResult::any(span)
+        }
+        SyntaxExtension::default(SyntaxExtensionKind::LegacyBang(Box::new(expander)), edition)
+    }
+
+    pub fn dummy_derive(edition: Edition) -> SyntaxExtension {
+        fn expander(_: &mut ExtCtxt<'_>, _: Span, _: &ast::MetaItem, _: Annotatable)
+                    -> Vec<Annotatable> {
+            Vec::new()
+        }
+        SyntaxExtension::default(SyntaxExtensionKind::Derive(Box::new(expander)), edition)
+    }
+
+    pub fn non_macro_attr(mark_used: bool, edition: Edition) -> SyntaxExtension {
+        SyntaxExtension::default(SyntaxExtensionKind::NonMacroAttr { mark_used }, edition)
+    }
+
+    pub fn expn_data(&self, parent: ExpnId, call_site: Span, descr: Symbol) -> ExpnData {
+        ExpnData {
+            kind: ExpnKind::Macro(self.macro_kind(), descr),
+            parent,
+            call_site,
+            def_site: self.span,
+            allow_internal_unstable: self.allow_internal_unstable.clone(),
+            allow_internal_unsafe: self.allow_internal_unsafe,
+            local_inner_macros: self.local_inner_macros,
+            edition: self.edition,
+        }
+    }
+}
+
+pub type NamedSyntaxExtension = (Name, SyntaxExtension);
+
+/// Result of resolving a macro invocation.
+pub enum InvocationRes {
+    Single(Lrc<SyntaxExtension>),
+    DeriveContainer(Vec<Lrc<SyntaxExtension>>),
+}
+
+/// Error type that denotes indeterminacy.
+pub struct Indeterminate;
+
+bitflags::bitflags! {
+    /// Built-in derives that need some extra tracking beyond the usual macro functionality.
+    #[derive(Default)]
+    pub struct SpecialDerives: u8 {
+        const PARTIAL_EQ = 1 << 0;
+        const EQ         = 1 << 1;
+        const COPY       = 1 << 2;
+    }
+}
+
+pub trait Resolver {
+    fn next_node_id(&mut self) -> NodeId;
+
+    fn resolve_dollar_crates(&mut self);
+    fn visit_ast_fragment_with_placeholders(&mut self, expn_id: ExpnId, fragment: &AstFragment,
+                                            extra_placeholders: &[NodeId]);
+    fn register_builtin_macro(&mut self, ident: ast::Ident, ext: SyntaxExtension);
+
+    fn expansion_for_ast_pass(
+        &mut self,
+        call_site: Span,
+        pass: AstPass,
+        features: &[Symbol],
+        parent_module_id: Option<NodeId>,
+    ) -> ExpnId;
+
+    fn resolve_imports(&mut self);
+
+    fn resolve_macro_invocation(
+        &mut self, invoc: &Invocation, eager_expansion_root: ExpnId, force: bool
+    ) -> Result<InvocationRes, Indeterminate>;
+
+    fn check_unused_macros(&self);
+
+    fn has_derives(&self, expn_id: ExpnId, derives: SpecialDerives) -> bool;
+    fn add_derives(&mut self, expn_id: ExpnId, derives: SpecialDerives);
+}
+
+#[derive(Clone)]
+pub struct ModuleData {
+    pub mod_path: Vec<ast::Ident>,
+    pub directory: PathBuf,
+}
+
+#[derive(Clone)]
+pub struct ExpansionData {
+    pub id: ExpnId,
+    pub depth: usize,
+    pub module: Rc<ModuleData>,
+    pub directory_ownership: DirectoryOwnership,
+    pub prior_type_ascription: Option<(Span, bool)>,
+}
+
+/// One of these is made during expansion and incrementally updated as we go;
+/// when a macro expansion occurs, the resulting nodes have the `backtrace()
+/// -> expn_data` of their expansion context stored into their span.
+pub struct ExtCtxt<'a> {
+    pub parse_sess: &'a ParseSess,
+    pub ecfg: expand::ExpansionConfig<'a>,
+    pub root_path: PathBuf,
+    pub resolver: &'a mut dyn Resolver,
+    pub current_expansion: ExpansionData,
+    pub expansions: FxHashMap<Span, Vec<String>>,
+}
+
+impl<'a> ExtCtxt<'a> {
+    pub fn new(parse_sess: &'a ParseSess,
+               ecfg: expand::ExpansionConfig<'a>,
+               resolver: &'a mut dyn Resolver)
+               -> ExtCtxt<'a> {
+        ExtCtxt {
+            parse_sess,
+            ecfg,
+            root_path: PathBuf::new(),
+            resolver,
+            current_expansion: ExpansionData {
+                id: ExpnId::root(),
+                depth: 0,
+                module: Rc::new(ModuleData { mod_path: Vec::new(), directory: PathBuf::new() }),
+                directory_ownership: DirectoryOwnership::Owned { relative: None },
+                prior_type_ascription: None,
+            },
+            expansions: FxHashMap::default(),
+        }
+    }
+
+    /// Returns a `Folder` for deeply expanding all macros in an AST node.
+    pub fn expander<'b>(&'b mut self) -> expand::MacroExpander<'b, 'a> {
+        expand::MacroExpander::new(self, false)
+    }
+
+    /// Returns a `Folder` that deeply expands all macros and assigns all `NodeId`s in an AST node.
+    /// Once `NodeId`s are assigned, the node may not be expanded, removed, or otherwise modified.
+    pub fn monotonic_expander<'b>(&'b mut self) -> expand::MacroExpander<'b, 'a> {
+        expand::MacroExpander::new(self, true)
+    }
+    pub fn new_parser_from_tts(&self, stream: TokenStream) -> parser::Parser<'a> {
+        parse::stream_to_parser(self.parse_sess, stream, MACRO_ARGUMENTS)
+    }
+    pub fn source_map(&self) -> &'a SourceMap { self.parse_sess.source_map() }
+    pub fn parse_sess(&self) -> &'a ParseSess { self.parse_sess }
+    pub fn cfg(&self) -> &ast::CrateConfig { &self.parse_sess.config }
+    pub fn call_site(&self) -> Span {
+        self.current_expansion.id.expn_data().call_site
+    }
+
+    /// Equivalent of `Span::def_site` from the proc macro API,
+    /// except that the location is taken from the span passed as an argument.
+    pub fn with_def_site_ctxt(&self, span: Span) -> Span {
+        span.with_def_site_ctxt(self.current_expansion.id)
+    }
+
+    /// Equivalent of `Span::call_site` from the proc macro API,
+    /// except that the location is taken from the span passed as an argument.
+    pub fn with_call_site_ctxt(&self, span: Span) -> Span {
+        span.with_call_site_ctxt(self.current_expansion.id)
+    }
+
+    /// Equivalent of `Span::mixed_site` from the proc macro API,
+    /// except that the location is taken from the span passed as an argument.
+    pub fn with_mixed_site_ctxt(&self, span: Span) -> Span {
+        span.with_mixed_site_ctxt(self.current_expansion.id)
+    }
+
+    /// Returns span for the macro which originally caused the current expansion to happen.
+    ///
+    /// Stops backtracing at include! boundary.
+    pub fn expansion_cause(&self) -> Option<Span> {
+        let mut expn_id = self.current_expansion.id;
+        let mut last_macro = None;
+        loop {
+            let expn_data = expn_id.expn_data();
+            // Stop going up the backtrace once include! is encountered
+            if expn_data.is_root() || expn_data.kind.descr() == sym::include {
+                break;
+            }
+            expn_id = expn_data.call_site.ctxt().outer_expn();
+            last_macro = Some(expn_data.call_site);
+        }
+        last_macro
+    }
+
+    pub fn struct_span_warn<S: Into<MultiSpan>>(&self,
+                                                sp: S,
+                                                msg: &str)
+                                                -> DiagnosticBuilder<'a> {
+        self.parse_sess.span_diagnostic.struct_span_warn(sp, msg)
+    }
+    pub fn struct_span_err<S: Into<MultiSpan>>(&self,
+                                               sp: S,
+                                               msg: &str)
+                                               -> DiagnosticBuilder<'a> {
+        self.parse_sess.span_diagnostic.struct_span_err(sp, msg)
+    }
+    pub fn struct_span_fatal<S: Into<MultiSpan>>(&self,
+                                                 sp: S,
+                                                 msg: &str)
+                                                 -> DiagnosticBuilder<'a> {
+        self.parse_sess.span_diagnostic.struct_span_fatal(sp, msg)
+    }
+
+    /// Emit `msg` attached to `sp`, and stop compilation immediately.
+    ///
+    /// `span_err` should be strongly preferred where-ever possible:
+    /// this should *only* be used when:
+    ///
+    /// - continuing has a high risk of flow-on errors (e.g., errors in
+    ///   declaring a macro would cause all uses of that macro to
+    ///   complain about "undefined macro"), or
+    /// - there is literally nothing else that can be done (however,
+    ///   in most cases one can construct a dummy expression/item to
+    ///   substitute; we never hit resolve/type-checking so the dummy
+    ///   value doesn't have to match anything)
+    pub fn span_fatal<S: Into<MultiSpan>>(&self, sp: S, msg: &str) -> ! {
+        self.parse_sess.span_diagnostic.span_fatal(sp, msg).raise();
+    }
+
+    /// Emit `msg` attached to `sp`, without immediately stopping
+    /// compilation.
+    ///
+    /// Compilation will be stopped in the near future (at the end of
+    /// the macro expansion phase).
+    pub fn span_err<S: Into<MultiSpan>>(&self, sp: S, msg: &str) {
+        self.parse_sess.span_diagnostic.span_err(sp, msg);
+    }
+    pub fn span_err_with_code<S: Into<MultiSpan>>(&self, sp: S, msg: &str, code: DiagnosticId) {
+        self.parse_sess.span_diagnostic.span_err_with_code(sp, msg, code);
+    }
+    pub fn span_warn<S: Into<MultiSpan>>(&self, sp: S, msg: &str) {
+        self.parse_sess.span_diagnostic.span_warn(sp, msg);
+    }
+    pub fn span_bug<S: Into<MultiSpan>>(&self, sp: S, msg: &str) -> ! {
+        self.parse_sess.span_diagnostic.span_bug(sp, msg);
+    }
+    pub fn trace_macros_diag(&mut self) {
+        for (sp, notes) in self.expansions.iter() {
+            let mut db = self.parse_sess.span_diagnostic.span_note_diag(*sp, "trace_macro");
+            for note in notes {
+                db.note(note);
+            }
+            db.emit();
+        }
+        // Fixme: does this result in errors?
+        self.expansions.clear();
+    }
+    pub fn bug(&self, msg: &str) -> ! {
+        self.parse_sess.span_diagnostic.bug(msg);
+    }
+    pub fn trace_macros(&self) -> bool {
+        self.ecfg.trace_mac
+    }
+    pub fn set_trace_macros(&mut self, x: bool) {
+        self.ecfg.trace_mac = x
+    }
+    pub fn ident_of(&self, st: &str, sp: Span) -> ast::Ident {
+        ast::Ident::from_str_and_span(st, sp)
+    }
+    pub fn std_path(&self, components: &[Symbol]) -> Vec<ast::Ident> {
+        let def_site = self.with_def_site_ctxt(DUMMY_SP);
+        iter::once(Ident::new(kw::DollarCrate, def_site))
+            .chain(components.iter().map(|&s| Ident::with_dummy_span(s)))
+            .collect()
+    }
+    pub fn name_of(&self, st: &str) -> ast::Name {
+        Symbol::intern(st)
+    }
+
+    pub fn check_unused_macros(&self) {
+        self.resolver.check_unused_macros();
+    }
+
+    /// Resolves a path mentioned inside Rust code.
+    ///
+    /// This unifies the logic used for resolving `include_X!`, and `#[doc(include)]` file paths.
+    ///
+    /// Returns an absolute path to the file that `path` refers to.
+    pub fn resolve_path(&self, path: impl Into<PathBuf>, span: Span) -> PathBuf {
+        let path = path.into();
+
+        // Relative paths are resolved relative to the file in which they are found
+        // after macro expansion (that is, they are unhygienic).
+        if !path.is_absolute() {
+            let callsite = span.source_callsite();
+            let mut result = match self.source_map().span_to_unmapped_path(callsite) {
+                FileName::Real(path) => path,
+                FileName::DocTest(path, _) => path,
+                other => panic!("cannot resolve relative path in non-file source `{}`", other),
+            };
+            result.pop();
+            result.push(path);
+            result
+        } else {
+            path
+        }
+    }
+}
+
+/// Extracts a string literal from the macro expanded version of `expr`,
+/// emitting `err_msg` if `expr` is not a string literal. This does not stop
+/// compilation on error, merely emits a non-fatal error and returns `None`.
+pub fn expr_to_spanned_string<'a>(
+    cx: &'a mut ExtCtxt<'_>,
+    expr: P<ast::Expr>,
+    err_msg: &str,
+) -> Result<(Symbol, ast::StrStyle, Span), Option<DiagnosticBuilder<'a>>> {
+    // Perform eager expansion on the expression.
+    // We want to be able to handle e.g., `concat!("foo", "bar")`.
+    let expr = cx.expander().fully_expand_fragment(AstFragment::Expr(expr)).make_expr();
+
+    Err(match expr.kind {
+        ast::ExprKind::Lit(ref l) => match l.kind {
+            ast::LitKind::Str(s, style) => return Ok((s, style, expr.span)),
+            ast::LitKind::Err(_) => None,
+            _ => Some(cx.struct_span_err(l.span, err_msg))
+        },
+        ast::ExprKind::Err => None,
+        _ => Some(cx.struct_span_err(expr.span, err_msg))
+    })
+}
+
+pub fn expr_to_string(cx: &mut ExtCtxt<'_>, expr: P<ast::Expr>, err_msg: &str)
+                      -> Option<(Symbol, ast::StrStyle)> {
+    expr_to_spanned_string(cx, expr, err_msg)
+        .map_err(|err| err.map(|mut err| err.emit()))
+        .ok()
+        .map(|(symbol, style, _)| (symbol, style))
+}
+
+/// Non-fatally assert that `tts` is empty. Note that this function
+/// returns even when `tts` is non-empty, macros that *need* to stop
+/// compilation should call
+/// `cx.parse_sess.span_diagnostic.abort_if_errors()` (this should be
+/// done as rarely as possible).
+pub fn check_zero_tts(cx: &ExtCtxt<'_>,
+                      sp: Span,
+                      tts: TokenStream,
+                      name: &str) {
+    if !tts.is_empty() {
+        cx.span_err(sp, &format!("{} takes no arguments", name));
+    }
+}
+
+/// Interpreting `tts` as a comma-separated sequence of expressions,
+/// expect exactly one string literal, or emit an error and return `None`.
+pub fn get_single_str_from_tts(cx: &mut ExtCtxt<'_>,
+                               sp: Span,
+                               tts: TokenStream,
+                               name: &str)
+                               -> Option<String> {
+    let mut p = cx.new_parser_from_tts(tts);
+    if p.token == token::Eof {
+        cx.span_err(sp, &format!("{} takes 1 argument", name));
+        return None
+    }
+    let ret = panictry!(p.parse_expr());
+    let _ = p.eat(&token::Comma);
+
+    if p.token != token::Eof {
+        cx.span_err(sp, &format!("{} takes 1 argument", name));
+    }
+    expr_to_string(cx, ret, "argument must be a string literal").map(|(s, _)| {
+        s.to_string()
+    })
+}
+
+/// Extracts comma-separated expressions from `tts`. If there is a
+/// parsing error, emit a non-fatal error and return `None`.
+pub fn get_exprs_from_tts(cx: &mut ExtCtxt<'_>,
+                          sp: Span,
+                          tts: TokenStream) -> Option<Vec<P<ast::Expr>>> {
+    let mut p = cx.new_parser_from_tts(tts);
+    let mut es = Vec::new();
+    while p.token != token::Eof {
+        let expr = panictry!(p.parse_expr());
+
+        // Perform eager expansion on the expression.
+        // We want to be able to handle e.g., `concat!("foo", "bar")`.
+        let expr = cx.expander().fully_expand_fragment(AstFragment::Expr(expr)).make_expr();
+
+        es.push(expr);
+        if p.eat(&token::Comma) {
+            continue;
+        }
+        if p.token != token::Eof {
+            cx.span_err(sp, "expected token: `,`");
+            return None;
+        }
+    }
+    Some(es)
+}
diff --git a/src/libsyntax_expand/build.rs b/src/libsyntax_expand/build.rs
new file mode 100644
index 00000000000..105ffe3ee8a
--- /dev/null
+++ b/src/libsyntax_expand/build.rs
@@ -0,0 +1,640 @@
+use crate::base::ExtCtxt;
+
+use syntax::ast::{self, Ident, Expr, BlockCheckMode, UnOp, PatKind};
+use syntax::attr;
+use syntax::source_map::{respan, Spanned};
+use syntax::ptr::P;
+use syntax::symbol::{kw, sym, Symbol};
+use syntax::ThinVec;
+
+use syntax_pos::{Pos, Span};
+
+impl<'a> ExtCtxt<'a> {
+    pub fn path(&self, span: Span, strs: Vec<ast::Ident> ) -> ast::Path {
+        self.path_all(span, false, strs, vec![])
+    }
+    pub fn path_ident(&self, span: Span, id: ast::Ident) -> ast::Path {
+        self.path(span, vec![id])
+    }
+    pub fn path_global(&self, span: Span, strs: Vec<ast::Ident> ) -> ast::Path {
+        self.path_all(span, true, strs, vec![])
+    }
+    pub fn path_all(&self,
+                span: Span,
+                global: bool,
+                mut idents: Vec<ast::Ident> ,
+                args: Vec<ast::GenericArg>)
+                -> ast::Path {
+        assert!(!idents.is_empty());
+        let add_root = global && !idents[0].is_path_segment_keyword();
+        let mut segments = Vec::with_capacity(idents.len() + add_root as usize);
+        if add_root {
+            segments.push(ast::PathSegment::path_root(span));
+        }
+        let last_ident = idents.pop().unwrap();
+        segments.extend(idents.into_iter().map(|ident| {
+            ast::PathSegment::from_ident(ident.with_span_pos(span))
+        }));
+        let args = if !args.is_empty() {
+            ast::AngleBracketedArgs { args, constraints: Vec::new(), span }.into()
+        } else {
+            None
+        };
+        segments.push(ast::PathSegment {
+            ident: last_ident.with_span_pos(span),
+            id: ast::DUMMY_NODE_ID,
+            args,
+        });
+        ast::Path { span, segments }
+    }
+
+    pub fn ty_mt(&self, ty: P<ast::Ty>, mutbl: ast::Mutability) -> ast::MutTy {
+        ast::MutTy {
+            ty,
+            mutbl,
+        }
+    }
+
+    pub fn ty(&self, span: Span, kind: ast::TyKind) -> P<ast::Ty> {
+        P(ast::Ty {
+            id: ast::DUMMY_NODE_ID,
+            span,
+            kind,
+        })
+    }
+
+    pub fn ty_path(&self, path: ast::Path) -> P<ast::Ty> {
+        self.ty(path.span, ast::TyKind::Path(None, path))
+    }
+
+    // Might need to take bounds as an argument in the future, if you ever want
+    // to generate a bounded existential trait type.
+    pub fn ty_ident(&self, span: Span, ident: ast::Ident)
+        -> P<ast::Ty> {
+        self.ty_path(self.path_ident(span, ident))
+    }
+
+    pub fn anon_const(&self, span: Span, kind: ast::ExprKind) -> ast::AnonConst {
+        ast::AnonConst {
+            id: ast::DUMMY_NODE_ID,
+            value: P(ast::Expr {
+                id: ast::DUMMY_NODE_ID,
+                kind,
+                span,
+                attrs: ThinVec::new(),
+            })
+        }
+    }
+
+    pub fn const_ident(&self, span: Span, ident: ast::Ident) -> ast::AnonConst {
+        self.anon_const(span, ast::ExprKind::Path(None, self.path_ident(span, ident)))
+    }
+
+    pub fn ty_rptr(&self,
+               span: Span,
+               ty: P<ast::Ty>,
+               lifetime: Option<ast::Lifetime>,
+               mutbl: ast::Mutability)
+        -> P<ast::Ty> {
+        self.ty(span,
+                ast::TyKind::Rptr(lifetime, self.ty_mt(ty, mutbl)))
+    }
+
+    pub fn ty_ptr(&self,
+              span: Span,
+              ty: P<ast::Ty>,
+              mutbl: ast::Mutability)
+        -> P<ast::Ty> {
+        self.ty(span,
+                ast::TyKind::Ptr(self.ty_mt(ty, mutbl)))
+    }
+
+    pub fn typaram(&self,
+               span: Span,
+               ident: ast::Ident,
+               attrs: Vec<ast::Attribute>,
+               bounds: ast::GenericBounds,
+               default: Option<P<ast::Ty>>) -> ast::GenericParam {
+        ast::GenericParam {
+            ident: ident.with_span_pos(span),
+            id: ast::DUMMY_NODE_ID,
+            attrs: attrs.into(),
+            bounds,
+            kind: ast::GenericParamKind::Type {
+                default,
+            },
+            is_placeholder: false
+        }
+    }
+
+    pub fn trait_ref(&self, path: ast::Path) -> ast::TraitRef {
+        ast::TraitRef {
+            path,
+            ref_id: ast::DUMMY_NODE_ID,
+        }
+    }
+
+    pub fn poly_trait_ref(&self, span: Span, path: ast::Path) -> ast::PolyTraitRef {
+        ast::PolyTraitRef {
+            bound_generic_params: Vec::new(),
+            trait_ref: self.trait_ref(path),
+            span,
+        }
+    }
+
+    pub fn trait_bound(&self, path: ast::Path) -> ast::GenericBound {
+        ast::GenericBound::Trait(self.poly_trait_ref(path.span, path),
+                                 ast::TraitBoundModifier::None)
+    }
+
+    pub fn lifetime(&self, span: Span, ident: ast::Ident) -> ast::Lifetime {
+        ast::Lifetime { id: ast::DUMMY_NODE_ID, ident: ident.with_span_pos(span) }
+    }
+
+    pub fn lifetime_def(&self,
+                    span: Span,
+                    ident: ast::Ident,
+                    attrs: Vec<ast::Attribute>,
+                    bounds: ast::GenericBounds)
+                    -> ast::GenericParam {
+        let lifetime = self.lifetime(span, ident);
+        ast::GenericParam {
+            ident: lifetime.ident,
+            id: lifetime.id,
+            attrs: attrs.into(),
+            bounds,
+            kind: ast::GenericParamKind::Lifetime,
+            is_placeholder: false
+        }
+    }
+
+    pub fn stmt_expr(&self, expr: P<ast::Expr>) -> ast::Stmt {
+        ast::Stmt {
+            id: ast::DUMMY_NODE_ID,
+            span: expr.span,
+            kind: ast::StmtKind::Expr(expr),
+        }
+    }
+
+    pub fn stmt_let(&self, sp: Span, mutbl: bool, ident: ast::Ident,
+                ex: P<ast::Expr>) -> ast::Stmt {
+        let pat = if mutbl {
+            let binding_mode = ast::BindingMode::ByValue(ast::Mutability::Mutable);
+            self.pat_ident_binding_mode(sp, ident, binding_mode)
+        } else {
+            self.pat_ident(sp, ident)
+        };
+        let local = P(ast::Local {
+            pat,
+            ty: None,
+            init: Some(ex),
+            id: ast::DUMMY_NODE_ID,
+            span: sp,
+            attrs: ThinVec::new(),
+        });
+        ast::Stmt {
+            id: ast::DUMMY_NODE_ID,
+            kind: ast::StmtKind::Local(local),
+            span: sp,
+        }
+    }
+
+    // Generates `let _: Type;`, which is usually used for type assertions.
+    pub fn stmt_let_type_only(&self, span: Span, ty: P<ast::Ty>) -> ast::Stmt {
+        let local = P(ast::Local {
+            pat: self.pat_wild(span),
+            ty: Some(ty),
+            init: None,
+            id: ast::DUMMY_NODE_ID,
+            span,
+            attrs: ThinVec::new(),
+        });
+        ast::Stmt {
+            id: ast::DUMMY_NODE_ID,
+            kind: ast::StmtKind::Local(local),
+            span,
+        }
+    }
+
+    pub fn stmt_item(&self, sp: Span, item: P<ast::Item>) -> ast::Stmt {
+        ast::Stmt {
+            id: ast::DUMMY_NODE_ID,
+            kind: ast::StmtKind::Item(item),
+            span: sp,
+        }
+    }
+
+    pub fn block_expr(&self, expr: P<ast::Expr>) -> P<ast::Block> {
+        self.block(expr.span, vec![ast::Stmt {
+            id: ast::DUMMY_NODE_ID,
+            span: expr.span,
+            kind: ast::StmtKind::Expr(expr),
+        }])
+    }
+    pub fn block(&self, span: Span, stmts: Vec<ast::Stmt>) -> P<ast::Block> {
+        P(ast::Block {
+           stmts,
+           id: ast::DUMMY_NODE_ID,
+           rules: BlockCheckMode::Default,
+           span,
+        })
+    }
+
+    pub fn expr(&self, span: Span, kind: ast::ExprKind) -> P<ast::Expr> {
+        P(ast::Expr {
+            id: ast::DUMMY_NODE_ID,
+            kind,
+            span,
+            attrs: ThinVec::new(),
+        })
+    }
+
+    pub fn expr_path(&self, path: ast::Path) -> P<ast::Expr> {
+        self.expr(path.span, ast::ExprKind::Path(None, path))
+    }
+
+    pub fn expr_ident(&self, span: Span, id: ast::Ident) -> P<ast::Expr> {
+        self.expr_path(self.path_ident(span, id))
+    }
+    pub fn expr_self(&self, span: Span) -> P<ast::Expr> {
+        self.expr_ident(span, Ident::with_dummy_span(kw::SelfLower))
+    }
+
+    pub fn expr_binary(&self, sp: Span, op: ast::BinOpKind,
+                   lhs: P<ast::Expr>, rhs: P<ast::Expr>) -> P<ast::Expr> {
+        self.expr(sp, ast::ExprKind::Binary(Spanned { node: op, span: sp }, lhs, rhs))
+    }
+
+    pub fn expr_deref(&self, sp: Span, e: P<ast::Expr>) -> P<ast::Expr> {
+        self.expr(sp, ast::ExprKind::Unary(UnOp::Deref, e))
+    }
+
+    pub fn expr_addr_of(&self, sp: Span, e: P<ast::Expr>) -> P<ast::Expr> {
+        self.expr(sp, ast::ExprKind::AddrOf(ast::Mutability::Immutable, e))
+    }
+
+    pub fn expr_call(
+        &self, span: Span, expr: P<ast::Expr>, args: Vec<P<ast::Expr>>,
+    ) -> P<ast::Expr> {
+        self.expr(span, ast::ExprKind::Call(expr, args))
+    }
+    pub fn expr_call_ident(&self, span: Span, id: ast::Ident,
+                       args: Vec<P<ast::Expr>>) -> P<ast::Expr> {
+        self.expr(span, ast::ExprKind::Call(self.expr_ident(span, id), args))
+    }
+    pub fn expr_call_global(&self, sp: Span, fn_path: Vec<ast::Ident> ,
+                      args: Vec<P<ast::Expr>> ) -> P<ast::Expr> {
+        let pathexpr = self.expr_path(self.path_global(sp, fn_path));
+        self.expr_call(sp, pathexpr, args)
+    }
+    pub fn expr_method_call(&self, span: Span,
+                        expr: P<ast::Expr>,
+                        ident: ast::Ident,
+                        mut args: Vec<P<ast::Expr>> ) -> P<ast::Expr> {
+        args.insert(0, expr);
+        let segment = ast::PathSegment::from_ident(ident.with_span_pos(span));
+        self.expr(span, ast::ExprKind::MethodCall(segment, args))
+    }
+    pub fn expr_block(&self, b: P<ast::Block>) -> P<ast::Expr> {
+        self.expr(b.span, ast::ExprKind::Block(b, None))
+    }
+    pub fn field_imm(&self, span: Span, ident: Ident, e: P<ast::Expr>) -> ast::Field {
+        ast::Field {
+            ident: ident.with_span_pos(span),
+            expr: e,
+            span,
+            is_shorthand: false,
+            attrs: ThinVec::new(),
+            id: ast::DUMMY_NODE_ID,
+            is_placeholder: false,
+        }
+    }
+    pub fn expr_struct(
+        &self, span: Span, path: ast::Path, fields: Vec<ast::Field>
+    ) -> P<ast::Expr> {
+        self.expr(span, ast::ExprKind::Struct(path, fields, None))
+    }
+    pub fn expr_struct_ident(&self, span: Span,
+                         id: ast::Ident, fields: Vec<ast::Field>) -> P<ast::Expr> {
+        self.expr_struct(span, self.path_ident(span, id), fields)
+    }
+
+    pub fn expr_lit(&self, span: Span, lit_kind: ast::LitKind) -> P<ast::Expr> {
+        let lit = ast::Lit::from_lit_kind(lit_kind, span);
+        self.expr(span, ast::ExprKind::Lit(lit))
+    }
+    pub fn expr_usize(&self, span: Span, i: usize) -> P<ast::Expr> {
+        self.expr_lit(span, ast::LitKind::Int(i as u128,
+                                              ast::LitIntType::Unsigned(ast::UintTy::Usize)))
+    }
+    pub fn expr_u32(&self, sp: Span, u: u32) -> P<ast::Expr> {
+        self.expr_lit(sp, ast::LitKind::Int(u as u128,
+                                            ast::LitIntType::Unsigned(ast::UintTy::U32)))
+    }
+    pub fn expr_bool(&self, sp: Span, value: bool) -> P<ast::Expr> {
+        self.expr_lit(sp, ast::LitKind::Bool(value))
+    }
+
+    pub fn expr_vec(&self, sp: Span, exprs: Vec<P<ast::Expr>>) -> P<ast::Expr> {
+        self.expr(sp, ast::ExprKind::Array(exprs))
+    }
+    pub fn expr_vec_slice(&self, sp: Span, exprs: Vec<P<ast::Expr>>) -> P<ast::Expr> {
+        self.expr_addr_of(sp, self.expr_vec(sp, exprs))
+    }
+    pub fn expr_str(&self, sp: Span, s: Symbol) -> P<ast::Expr> {
+        self.expr_lit(sp, ast::LitKind::Str(s, ast::StrStyle::Cooked))
+    }
+
+    pub fn expr_cast(&self, sp: Span, expr: P<ast::Expr>, ty: P<ast::Ty>) -> P<ast::Expr> {
+        self.expr(sp, ast::ExprKind::Cast(expr, ty))
+    }
+
+    pub fn expr_some(&self, sp: Span, expr: P<ast::Expr>) -> P<ast::Expr> {
+        let some = self.std_path(&[sym::option, sym::Option, sym::Some]);
+        self.expr_call_global(sp, some, vec![expr])
+    }
+
+    pub fn expr_tuple(&self, sp: Span, exprs: Vec<P<ast::Expr>>) -> P<ast::Expr> {
+        self.expr(sp, ast::ExprKind::Tup(exprs))
+    }
+
+    pub fn expr_fail(&self, span: Span, msg: Symbol) -> P<ast::Expr> {
+        let loc = self.source_map().lookup_char_pos(span.lo());
+        let expr_file = self.expr_str(span, Symbol::intern(&loc.file.name.to_string()));
+        let expr_line = self.expr_u32(span, loc.line as u32);
+        let expr_col = self.expr_u32(span, loc.col.to_usize() as u32 + 1);
+        let expr_loc_tuple = self.expr_tuple(span, vec![expr_file, expr_line, expr_col]);
+        let expr_loc_ptr = self.expr_addr_of(span, expr_loc_tuple);
+        self.expr_call_global(
+            span,
+            [sym::std, sym::rt, sym::begin_panic].iter().map(|s| Ident::new(*s, span)).collect(),
+            vec![
+                self.expr_str(span, msg),
+                expr_loc_ptr])
+    }
+
+    pub fn expr_unreachable(&self, span: Span) -> P<ast::Expr> {
+        self.expr_fail(span, Symbol::intern("internal error: entered unreachable code"))
+    }
+
+    pub fn expr_ok(&self, sp: Span, expr: P<ast::Expr>) -> P<ast::Expr> {
+        let ok = self.std_path(&[sym::result, sym::Result, sym::Ok]);
+        self.expr_call_global(sp, ok, vec![expr])
+    }
+
+    pub fn expr_try(&self, sp: Span, head: P<ast::Expr>) -> P<ast::Expr> {
+        let ok = self.std_path(&[sym::result, sym::Result, sym::Ok]);
+        let ok_path = self.path_global(sp, ok);
+        let err = self.std_path(&[sym::result, sym::Result, sym::Err]);
+        let err_path = self.path_global(sp, err);
+
+        let binding_variable = self.ident_of("__try_var", sp);
+        let binding_pat = self.pat_ident(sp, binding_variable);
+        let binding_expr = self.expr_ident(sp, binding_variable);
+
+        // `Ok(__try_var)` pattern
+        let ok_pat = self.pat_tuple_struct(sp, ok_path, vec![binding_pat.clone()]);
+
+        // `Err(__try_var)` (pattern and expression respectively)
+        let err_pat = self.pat_tuple_struct(sp, err_path.clone(), vec![binding_pat]);
+        let err_inner_expr = self.expr_call(sp, self.expr_path(err_path),
+                                            vec![binding_expr.clone()]);
+        // `return Err(__try_var)`
+        let err_expr = self.expr(sp, ast::ExprKind::Ret(Some(err_inner_expr)));
+
+        // `Ok(__try_var) => __try_var`
+        let ok_arm = self.arm(sp, ok_pat, binding_expr);
+        // `Err(__try_var) => return Err(__try_var)`
+        let err_arm = self.arm(sp, err_pat, err_expr);
+
+        // `match head { Ok() => ..., Err() => ... }`
+        self.expr_match(sp, head, vec![ok_arm, err_arm])
+    }
+
+
+    pub fn pat(&self, span: Span, kind: PatKind) -> P<ast::Pat> {
+        P(ast::Pat { id: ast::DUMMY_NODE_ID, kind, span })
+    }
+    pub fn pat_wild(&self, span: Span) -> P<ast::Pat> {
+        self.pat(span, PatKind::Wild)
+    }
+    pub fn pat_lit(&self, span: Span, expr: P<ast::Expr>) -> P<ast::Pat> {
+        self.pat(span, PatKind::Lit(expr))
+    }
+    pub fn pat_ident(&self, span: Span, ident: ast::Ident) -> P<ast::Pat> {
+        let binding_mode = ast::BindingMode::ByValue(ast::Mutability::Immutable);
+        self.pat_ident_binding_mode(span, ident, binding_mode)
+    }
+
+    pub fn pat_ident_binding_mode(&self,
+                              span: Span,
+                              ident: ast::Ident,
+                              bm: ast::BindingMode) -> P<ast::Pat> {
+        let pat = PatKind::Ident(bm, ident.with_span_pos(span), None);
+        self.pat(span, pat)
+    }
+    pub fn pat_path(&self, span: Span, path: ast::Path) -> P<ast::Pat> {
+        self.pat(span, PatKind::Path(None, path))
+    }
+    pub fn pat_tuple_struct(&self, span: Span, path: ast::Path,
+                        subpats: Vec<P<ast::Pat>>) -> P<ast::Pat> {
+        self.pat(span, PatKind::TupleStruct(path, subpats))
+    }
+    pub fn pat_struct(&self, span: Span, path: ast::Path,
+                      field_pats: Vec<ast::FieldPat>) -> P<ast::Pat> {
+        self.pat(span, PatKind::Struct(path, field_pats, false))
+    }
+    pub fn pat_tuple(&self, span: Span, pats: Vec<P<ast::Pat>>) -> P<ast::Pat> {
+        self.pat(span, PatKind::Tuple(pats))
+    }
+
+    pub fn pat_some(&self, span: Span, pat: P<ast::Pat>) -> P<ast::Pat> {
+        let some = self.std_path(&[sym::option, sym::Option, sym::Some]);
+        let path = self.path_global(span, some);
+        self.pat_tuple_struct(span, path, vec![pat])
+    }
+
+    pub fn pat_none(&self, span: Span) -> P<ast::Pat> {
+        let some = self.std_path(&[sym::option, sym::Option, sym::None]);
+        let path = self.path_global(span, some);
+        self.pat_path(span, path)
+    }
+
+    pub fn pat_ok(&self, span: Span, pat: P<ast::Pat>) -> P<ast::Pat> {
+        let some = self.std_path(&[sym::result, sym::Result, sym::Ok]);
+        let path = self.path_global(span, some);
+        self.pat_tuple_struct(span, path, vec![pat])
+    }
+
+    pub fn pat_err(&self, span: Span, pat: P<ast::Pat>) -> P<ast::Pat> {
+        let some = self.std_path(&[sym::result, sym::Result, sym::Err]);
+        let path = self.path_global(span, some);
+        self.pat_tuple_struct(span, path, vec![pat])
+    }
+
+    pub fn arm(&self, span: Span, pat: P<ast::Pat>, expr: P<ast::Expr>) -> ast::Arm {
+        ast::Arm {
+            attrs: vec![],
+            pat,
+            guard: None,
+            body: expr,
+            span,
+            id: ast::DUMMY_NODE_ID,
+            is_placeholder: false,
+        }
+    }
+
+    pub fn arm_unreachable(&self, span: Span) -> ast::Arm {
+        self.arm(span, self.pat_wild(span), self.expr_unreachable(span))
+    }
+
+    pub fn expr_match(&self, span: Span, arg: P<ast::Expr>, arms: Vec<ast::Arm>) -> P<Expr> {
+        self.expr(span, ast::ExprKind::Match(arg, arms))
+    }
+
+    pub fn expr_if(&self, span: Span, cond: P<ast::Expr>,
+               then: P<ast::Expr>, els: Option<P<ast::Expr>>) -> P<ast::Expr> {
+        let els = els.map(|x| self.expr_block(self.block_expr(x)));
+        self.expr(span, ast::ExprKind::If(cond, self.block_expr(then), els))
+    }
+
+    pub fn lambda_fn_decl(&self,
+                      span: Span,
+                      fn_decl: P<ast::FnDecl>,
+                      body: P<ast::Expr>,
+                      fn_decl_span: Span) // span of the `|...|` part
+                      -> P<ast::Expr> {
+        self.expr(span, ast::ExprKind::Closure(ast::CaptureBy::Ref,
+                                               ast::IsAsync::NotAsync,
+                                               ast::Movability::Movable,
+                                               fn_decl,
+                                               body,
+                                               fn_decl_span))
+    }
+
+    pub fn lambda(&self,
+              span: Span,
+              ids: Vec<ast::Ident>,
+              body: P<ast::Expr>)
+              -> P<ast::Expr> {
+        let fn_decl = self.fn_decl(
+            ids.iter().map(|id| self.param(span, *id, self.ty(span, ast::TyKind::Infer))).collect(),
+            ast::FunctionRetTy::Default(span));
+
+        // FIXME -- We are using `span` as the span of the `|...|`
+        // part of the lambda, but it probably (maybe?) corresponds to
+        // the entire lambda body. Probably we should extend the API
+        // here, but that's not entirely clear.
+        self.expr(span, ast::ExprKind::Closure(ast::CaptureBy::Ref,
+                                               ast::IsAsync::NotAsync,
+                                               ast::Movability::Movable,
+                                               fn_decl,
+                                               body,
+                                               span))
+    }
+
+    pub fn lambda0(&self, span: Span, body: P<ast::Expr>) -> P<ast::Expr> {
+        self.lambda(span, Vec::new(), body)
+    }
+
+    pub fn lambda1(&self, span: Span, body: P<ast::Expr>, ident: ast::Ident) -> P<ast::Expr> {
+        self.lambda(span, vec![ident], body)
+    }
+
+    pub fn lambda_stmts_1(&self, span: Span, stmts: Vec<ast::Stmt>,
+                      ident: ast::Ident) -> P<ast::Expr> {
+        self.lambda1(span, self.expr_block(self.block(span, stmts)), ident)
+    }
+
+    pub fn param(&self, span: Span, ident: ast::Ident, ty: P<ast::Ty>) -> ast::Param {
+        let arg_pat = self.pat_ident(span, ident);
+        ast::Param {
+            attrs: ThinVec::default(),
+            id: ast::DUMMY_NODE_ID,
+            pat: arg_pat,
+            span,
+            ty,
+            is_placeholder: false,
+        }
+    }
+
+    // FIXME: unused `self`
+    pub fn fn_decl(&self, inputs: Vec<ast::Param>, output: ast::FunctionRetTy) -> P<ast::FnDecl> {
+        P(ast::FnDecl {
+            inputs,
+            output,
+        })
+    }
+
+    pub fn item(&self, span: Span, name: Ident,
+            attrs: Vec<ast::Attribute>, kind: ast::ItemKind) -> P<ast::Item> {
+        // FIXME: Would be nice if our generated code didn't violate
+        // Rust coding conventions
+        P(ast::Item {
+            ident: name,
+            attrs,
+            id: ast::DUMMY_NODE_ID,
+            kind,
+            vis: respan(span.shrink_to_lo(), ast::VisibilityKind::Inherited),
+            span,
+            tokens: None,
+        })
+    }
+
+    pub fn variant(&self, span: Span, ident: Ident, tys: Vec<P<ast::Ty>> ) -> ast::Variant {
+        let fields: Vec<_> = tys.into_iter().map(|ty| {
+            ast::StructField {
+                span: ty.span,
+                ty,
+                ident: None,
+                vis: respan(span.shrink_to_lo(), ast::VisibilityKind::Inherited),
+                attrs: Vec::new(),
+                id: ast::DUMMY_NODE_ID,
+                is_placeholder: false,
+            }
+        }).collect();
+
+        let vdata = if fields.is_empty() {
+            ast::VariantData::Unit(ast::DUMMY_NODE_ID)
+        } else {
+            ast::VariantData::Tuple(fields, ast::DUMMY_NODE_ID)
+        };
+
+        ast::Variant {
+            attrs: Vec::new(),
+            data: vdata,
+            disr_expr: None,
+            id: ast::DUMMY_NODE_ID,
+            ident,
+            span,
+            is_placeholder: false,
+        }
+    }
+
+    pub fn item_static(&self,
+                   span: Span,
+                   name: Ident,
+                   ty: P<ast::Ty>,
+                   mutbl: ast::Mutability,
+                   expr: P<ast::Expr>)
+                   -> P<ast::Item> {
+        self.item(span, name, Vec::new(), ast::ItemKind::Static(ty, mutbl, expr))
+    }
+
+    pub fn item_const(&self,
+                  span: Span,
+                  name: Ident,
+                  ty: P<ast::Ty>,
+                  expr: P<ast::Expr>)
+                  -> P<ast::Item> {
+        self.item(span, name, Vec::new(), ast::ItemKind::Const(ty, expr))
+    }
+
+    pub fn attribute(&self, mi: ast::MetaItem) -> ast::Attribute {
+        attr::mk_attr_outer(mi)
+    }
+
+    pub fn meta_word(&self, sp: Span, w: ast::Name) -> ast::MetaItem {
+        attr::mk_word_item(Ident::new(w, sp))
+    }
+}
diff --git a/src/libsyntax_expand/expand.rs b/src/libsyntax_expand/expand.rs
new file mode 100644
index 00000000000..47b4bca314a
--- /dev/null
+++ b/src/libsyntax_expand/expand.rs
@@ -0,0 +1,1551 @@
+use crate::base::*;
+use crate::proc_macro::{collect_derives, MarkAttrs};
+use crate::hygiene::{ExpnId, SyntaxContext, ExpnData, ExpnKind};
+use crate::mbe::macro_rules::annotate_err_with_kind;
+use crate::placeholders::{placeholder, PlaceholderExpander};
+
+use syntax::ast::{self, AttrItem, Block, Ident, LitKind, NodeId, PatKind, Path};
+use syntax::ast::{MacStmtStyle, StmtKind, ItemKind};
+use syntax::attr::{self, HasAttrs};
+use syntax::source_map::respan;
+use syntax::configure;
+use syntax::config::StripUnconfigured;
+use syntax::feature_gate::{self, Features, GateIssue, is_builtin_attr, emit_feature_err};
+use syntax::mut_visit::*;
+use syntax::parse::{DirectoryOwnership, PResult};
+use syntax::parse::token;
+use syntax::parse::parser::Parser;
+use syntax::print::pprust;
+use syntax::ptr::P;
+use syntax::symbol::{sym, Symbol};
+use syntax::tokenstream::{TokenStream, TokenTree};
+use syntax::visit::Visitor;
+use syntax::util::map_in_place::MapInPlace;
+
+use errors::{Applicability, FatalError};
+use smallvec::{smallvec, SmallVec};
+use syntax_pos::{Span, DUMMY_SP, FileName};
+
+use rustc_data_structures::fx::FxHashMap;
+use rustc_data_structures::sync::Lrc;
+use std::io::ErrorKind;
+use std::{iter, mem, slice};
+use std::ops::DerefMut;
+use std::rc::Rc;
+use std::path::PathBuf;
+
+macro_rules! ast_fragments {
+    (
+        $($Kind:ident($AstTy:ty) {
+            $kind_name:expr;
+            $(one fn $mut_visit_ast:ident; fn $visit_ast:ident;)?
+            $(many fn $flat_map_ast_elt:ident; fn $visit_ast_elt:ident;)?
+            fn $make_ast:ident;
+        })*
+    ) => {
+        /// A fragment of AST that can be produced by a single macro expansion.
+        /// Can also serve as an input and intermediate result for macro expansion operations.
+        pub enum AstFragment {
+            OptExpr(Option<P<ast::Expr>>),
+            $($Kind($AstTy),)*
+        }
+
+        /// "Discriminant" of an AST fragment.
+        #[derive(Copy, Clone, PartialEq, Eq)]
+        pub enum AstFragmentKind {
+            OptExpr,
+            $($Kind,)*
+        }
+
+        impl AstFragmentKind {
+            pub fn name(self) -> &'static str {
+                match self {
+                    AstFragmentKind::OptExpr => "expression",
+                    $(AstFragmentKind::$Kind => $kind_name,)*
+                }
+            }
+
+            fn make_from<'a>(self, result: Box<dyn MacResult + 'a>) -> Option<AstFragment> {
+                match self {
+                    AstFragmentKind::OptExpr =>
+                        result.make_expr().map(Some).map(AstFragment::OptExpr),
+                    $(AstFragmentKind::$Kind => result.$make_ast().map(AstFragment::$Kind),)*
+                }
+            }
+        }
+
+        impl AstFragment {
+            pub fn make_opt_expr(self) -> Option<P<ast::Expr>> {
+                match self {
+                    AstFragment::OptExpr(expr) => expr,
+                    _ => panic!("AstFragment::make_* called on the wrong kind of fragment"),
+                }
+            }
+
+            $(pub fn $make_ast(self) -> $AstTy {
+                match self {
+                    AstFragment::$Kind(ast) => ast,
+                    _ => panic!("AstFragment::make_* called on the wrong kind of fragment"),
+                }
+            })*
+
+            pub fn mut_visit_with<F: MutVisitor>(&mut self, vis: &mut F) {
+                match self {
+                    AstFragment::OptExpr(opt_expr) => {
+                        visit_clobber(opt_expr, |opt_expr| {
+                            if let Some(expr) = opt_expr {
+                                vis.filter_map_expr(expr)
+                            } else {
+                                None
+                            }
+                        });
+                    }
+                    $($(AstFragment::$Kind(ast) => vis.$mut_visit_ast(ast),)?)*
+                    $($(AstFragment::$Kind(ast) =>
+                        ast.flat_map_in_place(|ast| vis.$flat_map_ast_elt(ast)),)?)*
+                }
+            }
+
+            pub fn visit_with<'a, V: Visitor<'a>>(&'a self, visitor: &mut V) {
+                match *self {
+                    AstFragment::OptExpr(Some(ref expr)) => visitor.visit_expr(expr),
+                    AstFragment::OptExpr(None) => {}
+                    $($(AstFragment::$Kind(ref ast) => visitor.$visit_ast(ast),)?)*
+                    $($(AstFragment::$Kind(ref ast) => for ast_elt in &ast[..] {
+                        visitor.$visit_ast_elt(ast_elt);
+                    })?)*
+                }
+            }
+        }
+
+        impl<'a> MacResult for crate::mbe::macro_rules::ParserAnyMacro<'a> {
+            $(fn $make_ast(self: Box<crate::mbe::macro_rules::ParserAnyMacro<'a>>)
+                           -> Option<$AstTy> {
+                Some(self.make(AstFragmentKind::$Kind).$make_ast())
+            })*
+        }
+    }
+}
+
+ast_fragments! {
+    Expr(P<ast::Expr>) { "expression"; one fn visit_expr; fn visit_expr; fn make_expr; }
+    Pat(P<ast::Pat>) { "pattern"; one fn visit_pat; fn visit_pat; fn make_pat; }
+    Ty(P<ast::Ty>) { "type"; one fn visit_ty; fn visit_ty; fn make_ty; }
+    Stmts(SmallVec<[ast::Stmt; 1]>) {
+        "statement"; many fn flat_map_stmt; fn visit_stmt; fn make_stmts;
+    }
+    Items(SmallVec<[P<ast::Item>; 1]>) {
+        "item"; many fn flat_map_item; fn visit_item; fn make_items;
+    }
+    TraitItems(SmallVec<[ast::TraitItem; 1]>) {
+        "trait item"; many fn flat_map_trait_item; fn visit_trait_item; fn make_trait_items;
+    }
+    ImplItems(SmallVec<[ast::ImplItem; 1]>) {
+        "impl item"; many fn flat_map_impl_item; fn visit_impl_item; fn make_impl_items;
+    }
+    ForeignItems(SmallVec<[ast::ForeignItem; 1]>) {
+        "foreign item";
+        many fn flat_map_foreign_item;
+        fn visit_foreign_item;
+        fn make_foreign_items;
+    }
+    Arms(SmallVec<[ast::Arm; 1]>) {
+        "match arm"; many fn flat_map_arm; fn visit_arm; fn make_arms;
+    }
+    Fields(SmallVec<[ast::Field; 1]>) {
+        "field expression"; many fn flat_map_field; fn visit_field; fn make_fields;
+    }
+    FieldPats(SmallVec<[ast::FieldPat; 1]>) {
+        "field pattern";
+        many fn flat_map_field_pattern;
+        fn visit_field_pattern;
+        fn make_field_patterns;
+    }
+    GenericParams(SmallVec<[ast::GenericParam; 1]>) {
+        "generic parameter";
+        many fn flat_map_generic_param;
+        fn visit_generic_param;
+        fn make_generic_params;
+    }
+    Params(SmallVec<[ast::Param; 1]>) {
+        "function parameter"; many fn flat_map_param; fn visit_param; fn make_params;
+    }
+    StructFields(SmallVec<[ast::StructField; 1]>) {
+        "field";
+        many fn flat_map_struct_field;
+        fn visit_struct_field;
+        fn make_struct_fields;
+    }
+    Variants(SmallVec<[ast::Variant; 1]>) {
+        "variant"; many fn flat_map_variant; fn visit_variant; fn make_variants;
+    }
+}
+
+impl AstFragmentKind {
+    fn dummy(self, span: Span) -> AstFragment {
+        self.make_from(DummyResult::any(span)).expect("couldn't create a dummy AST fragment")
+    }
+
+    fn expect_from_annotatables<I: IntoIterator<Item = Annotatable>>(self, items: I)
+                                                                     -> AstFragment {
+        let mut items = items.into_iter();
+        match self {
+            AstFragmentKind::Arms =>
+                AstFragment::Arms(items.map(Annotatable::expect_arm).collect()),
+            AstFragmentKind::Fields =>
+                AstFragment::Fields(items.map(Annotatable::expect_field).collect()),
+            AstFragmentKind::FieldPats =>
+                AstFragment::FieldPats(items.map(Annotatable::expect_field_pattern).collect()),
+            AstFragmentKind::GenericParams =>
+                AstFragment::GenericParams(items.map(Annotatable::expect_generic_param).collect()),
+            AstFragmentKind::Params =>
+                AstFragment::Params(items.map(Annotatable::expect_param).collect()),
+            AstFragmentKind::StructFields => AstFragment::StructFields(
+                items.map(Annotatable::expect_struct_field).collect()
+            ),
+            AstFragmentKind::Variants =>
+                AstFragment::Variants(items.map(Annotatable::expect_variant).collect()),
+            AstFragmentKind::Items =>
+                AstFragment::Items(items.map(Annotatable::expect_item).collect()),
+            AstFragmentKind::ImplItems =>
+                AstFragment::ImplItems(items.map(Annotatable::expect_impl_item).collect()),
+            AstFragmentKind::TraitItems =>
+                AstFragment::TraitItems(items.map(Annotatable::expect_trait_item).collect()),
+            AstFragmentKind::ForeignItems =>
+                AstFragment::ForeignItems(items.map(Annotatable::expect_foreign_item).collect()),
+            AstFragmentKind::Stmts =>
+                AstFragment::Stmts(items.map(Annotatable::expect_stmt).collect()),
+            AstFragmentKind::Expr => AstFragment::Expr(
+                items.next().expect("expected exactly one expression").expect_expr()
+            ),
+            AstFragmentKind::OptExpr =>
+                AstFragment::OptExpr(items.next().map(Annotatable::expect_expr)),
+            AstFragmentKind::Pat | AstFragmentKind::Ty =>
+                panic!("patterns and types aren't annotatable"),
+        }
+    }
+}
+
+pub struct Invocation {
+    pub kind: InvocationKind,
+    pub fragment_kind: AstFragmentKind,
+    pub expansion_data: ExpansionData,
+}
+
+pub enum InvocationKind {
+    Bang {
+        mac: ast::Mac,
+        span: Span,
+    },
+    Attr {
+        attr: ast::Attribute,
+        item: Annotatable,
+        // Required for resolving derive helper attributes.
+        derives: Vec<Path>,
+        // We temporarily report errors for attribute macros placed after derives
+        after_derive: bool,
+    },
+    Derive {
+        path: Path,
+        item: Annotatable,
+    },
+    /// "Invocation" that contains all derives from an item,
+    /// broken into multiple `Derive` invocations when expanded.
+    /// FIXME: Find a way to remove it.
+    DeriveContainer {
+        derives: Vec<Path>,
+        item: Annotatable,
+    },
+}
+
+impl Invocation {
+    pub fn span(&self) -> Span {
+        match &self.kind {
+            InvocationKind::Bang { span, .. } => *span,
+            InvocationKind::Attr { attr, .. } => attr.span,
+            InvocationKind::Derive { path, .. } => path.span,
+            InvocationKind::DeriveContainer { item, .. } => item.span(),
+        }
+    }
+}
+
+pub struct MacroExpander<'a, 'b> {
+    pub cx: &'a mut ExtCtxt<'b>,
+    monotonic: bool, // cf. `cx.monotonic_expander()`
+}
+
+impl<'a, 'b> MacroExpander<'a, 'b> {
+    pub fn new(cx: &'a mut ExtCtxt<'b>, monotonic: bool) -> Self {
+        MacroExpander { cx, monotonic }
+    }
+
+    pub fn expand_crate(&mut self, mut krate: ast::Crate) -> ast::Crate {
+        let mut module = ModuleData {
+            mod_path: vec![Ident::from_str(&self.cx.ecfg.crate_name)],
+            directory: match self.cx.source_map().span_to_unmapped_path(krate.span) {
+                FileName::Real(path) => path,
+                other => PathBuf::from(other.to_string()),
+            },
+        };
+        module.directory.pop();
+        self.cx.root_path = module.directory.clone();
+        self.cx.current_expansion.module = Rc::new(module);
+
+        let orig_mod_span = krate.module.inner;
+
+        let krate_item = AstFragment::Items(smallvec![P(ast::Item {
+            attrs: krate.attrs,
+            span: krate.span,
+            kind: ast::ItemKind::Mod(krate.module),
+            ident: Ident::invalid(),
+            id: ast::DUMMY_NODE_ID,
+            vis: respan(krate.span.shrink_to_lo(), ast::VisibilityKind::Public),
+            tokens: None,
+        })]);
+
+        match self.fully_expand_fragment(krate_item).make_items().pop().map(P::into_inner) {
+            Some(ast::Item { attrs, kind: ast::ItemKind::Mod(module), .. }) => {
+                krate.attrs = attrs;
+                krate.module = module;
+            },
+            None => {
+                // Resolution failed so we return an empty expansion
+                krate.attrs = vec![];
+                krate.module = ast::Mod {
+                    inner: orig_mod_span,
+                    items: vec![],
+                    inline: true,
+                };
+            },
+            _ => unreachable!(),
+        };
+        self.cx.trace_macros_diag();
+        krate
+    }
+
+    // Recursively expand all macro invocations in this AST fragment.
+    pub fn fully_expand_fragment(&mut self, input_fragment: AstFragment) -> AstFragment {
+        let orig_expansion_data = self.cx.current_expansion.clone();
+        self.cx.current_expansion.depth = 0;
+
+        // Collect all macro invocations and replace them with placeholders.
+        let (mut fragment_with_placeholders, mut invocations)
+            = self.collect_invocations(input_fragment, &[]);
+
+        // Optimization: if we resolve all imports now,
+        // we'll be able to immediately resolve most of imported macros.
+        self.resolve_imports();
+
+        // Resolve paths in all invocations and produce output expanded fragments for them, but
+        // do not insert them into our input AST fragment yet, only store in `expanded_fragments`.
+        // The output fragments also go through expansion recursively until no invocations are left.
+        // Unresolved macros produce dummy outputs as a recovery measure.
+        invocations.reverse();
+        let mut expanded_fragments = Vec::new();
+        let mut all_derive_placeholders: FxHashMap<ExpnId, Vec<_>> = FxHashMap::default();
+        let mut undetermined_invocations = Vec::new();
+        let (mut progress, mut force) = (false, !self.monotonic);
+        loop {
+            let invoc = if let Some(invoc) = invocations.pop() {
+                invoc
+            } else {
+                self.resolve_imports();
+                if undetermined_invocations.is_empty() { break }
+                invocations = mem::take(&mut undetermined_invocations);
+                force = !mem::replace(&mut progress, false);
+                continue
+            };
+
+            let eager_expansion_root =
+                if self.monotonic { invoc.expansion_data.id } else { orig_expansion_data.id };
+            let res = match self.cx.resolver.resolve_macro_invocation(
+                &invoc, eager_expansion_root, force
+            ) {
+                Ok(res) => res,
+                Err(Indeterminate) => {
+                    undetermined_invocations.push(invoc);
+                    continue
+                }
+            };
+
+            progress = true;
+            let ExpansionData { depth, id: expn_id, .. } = invoc.expansion_data;
+            self.cx.current_expansion = invoc.expansion_data.clone();
+
+            // FIXME(jseyfried): Refactor out the following logic
+            let (expanded_fragment, new_invocations) = match res {
+                InvocationRes::Single(ext) => {
+                    let fragment = self.expand_invoc(invoc, &ext.kind);
+                    self.collect_invocations(fragment, &[])
+                }
+                InvocationRes::DeriveContainer(exts) => {
+                    let (derives, item) = match invoc.kind {
+                        InvocationKind::DeriveContainer { derives, item } => (derives, item),
+                        _ => unreachable!(),
+                    };
+                    if !item.derive_allowed() {
+                        let attr = attr::find_by_name(item.attrs(), sym::derive)
+                            .expect("`derive` attribute should exist");
+                        let span = attr.span;
+                        let mut err = self.cx.struct_span_err(span,
+                            "`derive` may only be applied to structs, enums and unions");
+                        if let ast::AttrStyle::Inner = attr.style {
+                            let trait_list = derives.iter()
+                                .map(|t| pprust::path_to_string(t))
+                                .collect::<Vec<_>>();
+                            let suggestion = format!("#[derive({})]", trait_list.join(", "));
+                            err.span_suggestion(
+                                span, "try an outer attribute", suggestion,
+                                // We don't 𝑘𝑛𝑜𝑤 that the following item is an ADT
+                                Applicability::MaybeIncorrect
+                            );
+                        }
+                        err.emit();
+                    }
+
+                    let mut item = self.fully_configure(item);
+                    item.visit_attrs(|attrs| attrs.retain(|a| a.path != sym::derive));
+                    let mut helper_attrs = Vec::new();
+                    let mut has_copy = false;
+                    for ext in exts {
+                        helper_attrs.extend(&ext.helper_attrs);
+                        has_copy |= ext.is_derive_copy;
+                    }
+                    // Mark derive helpers inside this item as known and used.
+                    // FIXME: This is a hack, derive helpers should be integrated with regular name
+                    // resolution instead. For example, helpers introduced by a derive container
+                    // can be in scope for all code produced by that container's expansion.
+                    item.visit_with(&mut MarkAttrs(&helper_attrs));
+                    if has_copy {
+                        self.cx.resolver.add_derives(invoc.expansion_data.id, SpecialDerives::COPY);
+                    }
+
+                    let derive_placeholders =
+                        all_derive_placeholders.entry(invoc.expansion_data.id).or_default();
+                    derive_placeholders.reserve(derives.len());
+                    invocations.reserve(derives.len());
+                    for path in derives {
+                        let expn_id = ExpnId::fresh(None);
+                        derive_placeholders.push(NodeId::placeholder_from_expn_id(expn_id));
+                        invocations.push(Invocation {
+                            kind: InvocationKind::Derive { path, item: item.clone() },
+                            fragment_kind: invoc.fragment_kind,
+                            expansion_data: ExpansionData {
+                                id: expn_id,
+                                ..invoc.expansion_data.clone()
+                            },
+                        });
+                    }
+                    let fragment = invoc.fragment_kind
+                        .expect_from_annotatables(::std::iter::once(item));
+                    self.collect_invocations(fragment, derive_placeholders)
+                }
+            };
+
+            if expanded_fragments.len() < depth {
+                expanded_fragments.push(Vec::new());
+            }
+            expanded_fragments[depth - 1].push((expn_id, expanded_fragment));
+            if !self.cx.ecfg.single_step {
+                invocations.extend(new_invocations.into_iter().rev());
+            }
+        }
+
+        self.cx.current_expansion = orig_expansion_data;
+
+        // Finally incorporate all the expanded macros into the input AST fragment.
+        let mut placeholder_expander = PlaceholderExpander::new(self.cx, self.monotonic);
+        while let Some(expanded_fragments) = expanded_fragments.pop() {
+            for (expn_id, expanded_fragment) in expanded_fragments.into_iter().rev() {
+                let derive_placeholders =
+                    all_derive_placeholders.remove(&expn_id).unwrap_or_else(Vec::new);
+                placeholder_expander.add(NodeId::placeholder_from_expn_id(expn_id),
+                                         expanded_fragment, derive_placeholders);
+            }
+        }
+        fragment_with_placeholders.mut_visit_with(&mut placeholder_expander);
+        fragment_with_placeholders
+    }
+
+    fn resolve_imports(&mut self) {
+        if self.monotonic {
+            self.cx.resolver.resolve_imports();
+        }
+    }
+
+    /// Collects all macro invocations reachable at this time in this AST fragment, and replace
+    /// them with "placeholders" - dummy macro invocations with specially crafted `NodeId`s.
+    /// Then call into resolver that builds a skeleton ("reduced graph") of the fragment and
+    /// prepares data for resolving paths of macro invocations.
+    fn collect_invocations(&mut self, mut fragment: AstFragment, extra_placeholders: &[NodeId])
+                           -> (AstFragment, Vec<Invocation>) {
+        // Resolve `$crate`s in the fragment for pretty-printing.
+        self.cx.resolver.resolve_dollar_crates();
+
+        let invocations = {
+            let mut collector = InvocationCollector {
+                cfg: StripUnconfigured {
+                    sess: self.cx.parse_sess,
+                    features: self.cx.ecfg.features,
+                },
+                cx: self.cx,
+                invocations: Vec::new(),
+                monotonic: self.monotonic,
+            };
+            fragment.mut_visit_with(&mut collector);
+            collector.invocations
+        };
+
+        // FIXME: Merge `extra_placeholders` into the `fragment` as regular placeholders.
+        if self.monotonic {
+            self.cx.resolver.visit_ast_fragment_with_placeholders(
+                self.cx.current_expansion.id, &fragment, extra_placeholders);
+        }
+
+        (fragment, invocations)
+    }
+
+    fn fully_configure(&mut self, item: Annotatable) -> Annotatable {
+        let mut cfg = StripUnconfigured {
+            sess: self.cx.parse_sess,
+            features: self.cx.ecfg.features,
+        };
+        // Since the item itself has already been configured by the InvocationCollector,
+        // we know that fold result vector will contain exactly one element
+        match item {
+            Annotatable::Item(item) => {
+                Annotatable::Item(cfg.flat_map_item(item).pop().unwrap())
+            }
+            Annotatable::TraitItem(item) => {
+                Annotatable::TraitItem(
+                    item.map(|item| cfg.flat_map_trait_item(item).pop().unwrap()))
+            }
+            Annotatable::ImplItem(item) => {
+                Annotatable::ImplItem(item.map(|item| cfg.flat_map_impl_item(item).pop().unwrap()))
+            }
+            Annotatable::ForeignItem(item) => {
+                Annotatable::ForeignItem(
+                    item.map(|item| cfg.flat_map_foreign_item(item).pop().unwrap())
+                )
+            }
+            Annotatable::Stmt(stmt) => {
+                Annotatable::Stmt(stmt.map(|stmt| cfg.flat_map_stmt(stmt).pop().unwrap()))
+            }
+            Annotatable::Expr(mut expr) => {
+                Annotatable::Expr({ cfg.visit_expr(&mut expr); expr })
+            }
+            Annotatable::Arm(arm) => {
+                Annotatable::Arm(cfg.flat_map_arm(arm).pop().unwrap())
+            }
+            Annotatable::Field(field) => {
+                Annotatable::Field(cfg.flat_map_field(field).pop().unwrap())
+            }
+            Annotatable::FieldPat(fp) => {
+                Annotatable::FieldPat(cfg.flat_map_field_pattern(fp).pop().unwrap())
+            }
+            Annotatable::GenericParam(param) => {
+                Annotatable::GenericParam(cfg.flat_map_generic_param(param).pop().unwrap())
+            }
+            Annotatable::Param(param) => {
+                Annotatable::Param(cfg.flat_map_param(param).pop().unwrap())
+            }
+            Annotatable::StructField(sf) => {
+                Annotatable::StructField(cfg.flat_map_struct_field(sf).pop().unwrap())
+            }
+            Annotatable::Variant(v) => {
+                Annotatable::Variant(cfg.flat_map_variant(v).pop().unwrap())
+            }
+        }
+    }
+
+    fn expand_invoc(&mut self, invoc: Invocation, ext: &SyntaxExtensionKind) -> AstFragment {
+        if self.cx.current_expansion.depth > self.cx.ecfg.recursion_limit {
+            let expn_data = self.cx.current_expansion.id.expn_data();
+            let suggested_limit = self.cx.ecfg.recursion_limit * 2;
+            let mut err = self.cx.struct_span_err(expn_data.call_site,
+                &format!("recursion limit reached while expanding the macro `{}`",
+                         expn_data.kind.descr()));
+            err.help(&format!(
+                "consider adding a `#![recursion_limit=\"{}\"]` attribute to your crate",
+                suggested_limit));
+            err.emit();
+            self.cx.trace_macros_diag();
+            FatalError.raise();
+        }
+
+        let (fragment_kind, span) = (invoc.fragment_kind, invoc.span());
+        match invoc.kind {
+            InvocationKind::Bang { mac, .. } => match ext {
+                SyntaxExtensionKind::Bang(expander) => {
+                    self.gate_proc_macro_expansion_kind(span, fragment_kind);
+                    let tok_result = expander.expand(self.cx, span, mac.stream());
+                    self.parse_ast_fragment(tok_result, fragment_kind, &mac.path, span)
+                }
+                SyntaxExtensionKind::LegacyBang(expander) => {
+                    let prev = self.cx.current_expansion.prior_type_ascription;
+                    self.cx.current_expansion.prior_type_ascription = mac.prior_type_ascription;
+                    let tok_result = expander.expand(self.cx, span, mac.stream());
+                    let result = if let Some(result) = fragment_kind.make_from(tok_result) {
+                        result
+                    } else {
+                        let msg = format!(
+                            "non-{kind} macro in {kind} position: {path}",
+                            kind = fragment_kind.name(),
+                            path = pprust::path_to_string(&mac.path),
+                        );
+                        self.cx.span_err(span, &msg);
+                        self.cx.trace_macros_diag();
+                        fragment_kind.dummy(span)
+                    };
+                    self.cx.current_expansion.prior_type_ascription = prev;
+                    result
+                }
+                _ => unreachable!()
+            }
+            InvocationKind::Attr { attr, mut item, .. } => match ext {
+                SyntaxExtensionKind::Attr(expander) => {
+                    self.gate_proc_macro_attr_item(span, &item);
+                    let item_tok = TokenTree::token(token::Interpolated(Lrc::new(match item {
+                        Annotatable::Item(item) => token::NtItem(item),
+                        Annotatable::TraitItem(item) => token::NtTraitItem(item.into_inner()),
+                        Annotatable::ImplItem(item) => token::NtImplItem(item.into_inner()),
+                        Annotatable::ForeignItem(item) => token::NtForeignItem(item.into_inner()),
+                        Annotatable::Stmt(stmt) => token::NtStmt(stmt.into_inner()),
+                        Annotatable::Expr(expr) => token::NtExpr(expr),
+                        Annotatable::Arm(..)
+                        | Annotatable::Field(..)
+                        | Annotatable::FieldPat(..)
+                        | Annotatable::GenericParam(..)
+                        | Annotatable::Param(..)
+                        | Annotatable::StructField(..)
+                        | Annotatable::Variant(..)
+                            => panic!("unexpected annotatable"),
+                    })), DUMMY_SP).into();
+                    let input = self.extract_proc_macro_attr_input(attr.item.tokens, span);
+                    let tok_result = expander.expand(self.cx, span, input, item_tok);
+                    self.parse_ast_fragment(tok_result, fragment_kind, &attr.item.path, span)
+                }
+                SyntaxExtensionKind::LegacyAttr(expander) => {
+                    match attr.parse_meta(self.cx.parse_sess) {
+                        Ok(meta) => {
+                            let item = expander.expand(self.cx, span, &meta, item);
+                            fragment_kind.expect_from_annotatables(item)
+                        }
+                        Err(mut err) => {
+                            err.emit();
+                            fragment_kind.dummy(span)
+                        }
+                    }
+                }
+                SyntaxExtensionKind::NonMacroAttr { mark_used } => {
+                    attr::mark_known(&attr);
+                    if *mark_used {
+                        attr::mark_used(&attr);
+                    }
+                    item.visit_attrs(|attrs| attrs.push(attr));
+                    fragment_kind.expect_from_annotatables(iter::once(item))
+                }
+                _ => unreachable!()
+            }
+            InvocationKind::Derive { path, item } => match ext {
+                SyntaxExtensionKind::Derive(expander) |
+                SyntaxExtensionKind::LegacyDerive(expander) => {
+                    if !item.derive_allowed() {
+                        return fragment_kind.dummy(span);
+                    }
+                    let meta = ast::MetaItem { kind: ast::MetaItemKind::Word, span, path };
+                    let items = expander.expand(self.cx, span, &meta, item);
+                    fragment_kind.expect_from_annotatables(items)
+                }
+                _ => unreachable!()
+            }
+            InvocationKind::DeriveContainer { .. } => unreachable!()
+        }
+    }
+
+    fn extract_proc_macro_attr_input(&self, tokens: TokenStream, span: Span) -> TokenStream {
+        let mut trees = tokens.trees();
+        match trees.next() {
+            Some(TokenTree::Delimited(_, _, tts)) => {
+                if trees.next().is_none() {
+                    return tts.into()
+                }
+            }
+            Some(TokenTree::Token(..)) => {}
+            None => return TokenStream::default(),
+        }
+        self.cx.span_err(span, "custom attribute invocations must be \
+            of the form `#[foo]` or `#[foo(..)]`, the macro name must only be \
+            followed by a delimiter token");
+        TokenStream::default()
+    }
+
+    fn gate_proc_macro_attr_item(&self, span: Span, item: &Annotatable) {
+        let (kind, gate) = match *item {
+            Annotatable::Item(ref item) => {
+                match item.kind {
+                    ItemKind::Mod(_) if self.cx.ecfg.proc_macro_hygiene() => return,
+                    ItemKind::Mod(_) => ("modules", sym::proc_macro_hygiene),
+                    _ => return,
+                }
+            }
+            Annotatable::TraitItem(_) => return,
+            Annotatable::ImplItem(_) => return,
+            Annotatable::ForeignItem(_) => return,
+            Annotatable::Stmt(_) |
+            Annotatable::Expr(_) if self.cx.ecfg.proc_macro_hygiene() => return,
+            Annotatable::Stmt(_) => ("statements", sym::proc_macro_hygiene),
+            Annotatable::Expr(_) => ("expressions", sym::proc_macro_hygiene),
+            Annotatable::Arm(..)
+            | Annotatable::Field(..)
+            | Annotatable::FieldPat(..)
+            | Annotatable::GenericParam(..)
+            | Annotatable::Param(..)
+            | Annotatable::StructField(..)
+            | Annotatable::Variant(..)
+            => panic!("unexpected annotatable"),
+        };
+        emit_feature_err(
+            self.cx.parse_sess,
+            gate,
+            span,
+            GateIssue::Language,
+            &format!("custom attributes cannot be applied to {}", kind),
+        );
+    }
+
+    fn gate_proc_macro_expansion_kind(&self, span: Span, kind: AstFragmentKind) {
+        let kind = match kind {
+            AstFragmentKind::Expr |
+            AstFragmentKind::OptExpr => "expressions",
+            AstFragmentKind::Pat => "patterns",
+            AstFragmentKind::Stmts => "statements",
+            AstFragmentKind::Ty |
+            AstFragmentKind::Items |
+            AstFragmentKind::TraitItems |
+            AstFragmentKind::ImplItems |
+            AstFragmentKind::ForeignItems => return,
+            AstFragmentKind::Arms
+            | AstFragmentKind::Fields
+            | AstFragmentKind::FieldPats
+            | AstFragmentKind::GenericParams
+            | AstFragmentKind::Params
+            | AstFragmentKind::StructFields
+            | AstFragmentKind::Variants
+                => panic!("unexpected AST fragment kind"),
+        };
+        if self.cx.ecfg.proc_macro_hygiene() {
+            return
+        }
+        emit_feature_err(
+            self.cx.parse_sess,
+            sym::proc_macro_hygiene,
+            span,
+            GateIssue::Language,
+            &format!("procedural macros cannot be expanded to {}", kind),
+        );
+    }
+
+    fn parse_ast_fragment(
+        &mut self,
+        toks: TokenStream,
+        kind: AstFragmentKind,
+        path: &Path,
+        span: Span,
+    ) -> AstFragment {
+        let mut parser = self.cx.new_parser_from_tts(toks);
+        match parse_ast_fragment(&mut parser, kind, false) {
+            Ok(fragment) => {
+                ensure_complete_parse(&mut parser, path, kind.name(), span);
+                fragment
+            }
+            Err(mut err) => {
+                err.set_span(span);
+                annotate_err_with_kind(&mut err, kind, span);
+                err.emit();
+                self.cx.trace_macros_diag();
+                kind.dummy(span)
+            }
+        }
+    }
+}
+
+pub fn parse_ast_fragment<'a>(
+    this: &mut Parser<'a>,
+    kind: AstFragmentKind,
+    macro_legacy_warnings: bool,
+) -> PResult<'a, AstFragment> {
+    Ok(match kind {
+        AstFragmentKind::Items => {
+            let mut items = SmallVec::new();
+            while let Some(item) = this.parse_item()? {
+                items.push(item);
+            }
+            AstFragment::Items(items)
+        }
+        AstFragmentKind::TraitItems => {
+            let mut items = SmallVec::new();
+            while this.token != token::Eof {
+                items.push(this.parse_trait_item(&mut false)?);
+            }
+            AstFragment::TraitItems(items)
+        }
+        AstFragmentKind::ImplItems => {
+            let mut items = SmallVec::new();
+            while this.token != token::Eof {
+                items.push(this.parse_impl_item(&mut false)?);
+            }
+            AstFragment::ImplItems(items)
+        }
+        AstFragmentKind::ForeignItems => {
+            let mut items = SmallVec::new();
+            while this.token != token::Eof {
+                items.push(this.parse_foreign_item(DUMMY_SP)?);
+            }
+            AstFragment::ForeignItems(items)
+        }
+        AstFragmentKind::Stmts => {
+            let mut stmts = SmallVec::new();
+            while this.token != token::Eof &&
+                    // won't make progress on a `}`
+                    this.token != token::CloseDelim(token::Brace) {
+                if let Some(stmt) = this.parse_full_stmt(macro_legacy_warnings)? {
+                    stmts.push(stmt);
+                }
+            }
+            AstFragment::Stmts(stmts)
+        }
+        AstFragmentKind::Expr => AstFragment::Expr(this.parse_expr()?),
+        AstFragmentKind::OptExpr => {
+            if this.token != token::Eof {
+                AstFragment::OptExpr(Some(this.parse_expr()?))
+            } else {
+                AstFragment::OptExpr(None)
+            }
+        },
+        AstFragmentKind::Ty => AstFragment::Ty(this.parse_ty()?),
+        AstFragmentKind::Pat => AstFragment::Pat(this.parse_pat(None)?),
+        AstFragmentKind::Arms
+        | AstFragmentKind::Fields
+        | AstFragmentKind::FieldPats
+        | AstFragmentKind::GenericParams
+        | AstFragmentKind::Params
+        | AstFragmentKind::StructFields
+        | AstFragmentKind::Variants
+            => panic!("unexpected AST fragment kind"),
+    })
+}
+
+pub fn ensure_complete_parse<'a>(
+    this: &mut Parser<'a>,
+    macro_path: &Path,
+    kind_name: &str,
+    span: Span,
+) {
+    if this.token != token::Eof {
+        let msg = format!("macro expansion ignores token `{}` and any following",
+                            this.this_token_to_string());
+        // Avoid emitting backtrace info twice.
+        let def_site_span = this.token.span.with_ctxt(SyntaxContext::root());
+        let mut err = this.struct_span_err(def_site_span, &msg);
+        err.span_label(span, "caused by the macro expansion here");
+        let msg = format!(
+            "the usage of `{}!` is likely invalid in {} context",
+            pprust::path_to_string(macro_path),
+            kind_name,
+        );
+        err.note(&msg);
+        let semi_span = this.sess.source_map().next_point(span);
+
+        let semi_full_span = semi_span.to(this.sess.source_map().next_point(semi_span));
+        match this.sess.source_map().span_to_snippet(semi_full_span) {
+            Ok(ref snippet) if &snippet[..] != ";" && kind_name == "expression" => {
+                err.span_suggestion(
+                    semi_span,
+                    "you might be missing a semicolon here",
+                    ";".to_owned(),
+                    Applicability::MaybeIncorrect,
+                );
+            }
+            _ => {}
+        }
+        err.emit();
+    }
+}
+
+struct InvocationCollector<'a, 'b> {
+    cx: &'a mut ExtCtxt<'b>,
+    cfg: StripUnconfigured<'a>,
+    invocations: Vec<Invocation>,
+    monotonic: bool,
+}
+
+impl<'a, 'b> InvocationCollector<'a, 'b> {
+    fn collect(&mut self, fragment_kind: AstFragmentKind, kind: InvocationKind) -> AstFragment {
+        // Expansion data for all the collected invocations is set upon their resolution,
+        // with exception of the derive container case which is not resolved and can get
+        // its expansion data immediately.
+        let expn_data = match &kind {
+            InvocationKind::DeriveContainer { item, .. } => Some(ExpnData {
+                parent: self.cx.current_expansion.id,
+                ..ExpnData::default(
+                    ExpnKind::Macro(MacroKind::Attr, sym::derive),
+                    item.span(), self.cx.parse_sess.edition,
+                )
+            }),
+            _ => None,
+        };
+        let expn_id = ExpnId::fresh(expn_data);
+        self.invocations.push(Invocation {
+            kind,
+            fragment_kind,
+            expansion_data: ExpansionData {
+                id: expn_id,
+                depth: self.cx.current_expansion.depth + 1,
+                ..self.cx.current_expansion.clone()
+            },
+        });
+        placeholder(fragment_kind, NodeId::placeholder_from_expn_id(expn_id))
+    }
+
+    fn collect_bang(&mut self, mac: ast::Mac, span: Span, kind: AstFragmentKind) -> AstFragment {
+        self.collect(kind, InvocationKind::Bang { mac, span })
+    }
+
+    fn collect_attr(&mut self,
+                    attr: Option<ast::Attribute>,
+                    derives: Vec<Path>,
+                    item: Annotatable,
+                    kind: AstFragmentKind,
+                    after_derive: bool)
+                    -> AstFragment {
+        self.collect(kind, match attr {
+            Some(attr) => InvocationKind::Attr { attr, item, derives, after_derive },
+            None => InvocationKind::DeriveContainer { derives, item },
+        })
+    }
+
+    fn find_attr_invoc(&self, attrs: &mut Vec<ast::Attribute>, after_derive: &mut bool)
+                       -> Option<ast::Attribute> {
+        let attr = attrs.iter()
+                        .position(|a| {
+                            if a.path == sym::derive {
+                                *after_derive = true;
+                            }
+                            !attr::is_known(a) && !is_builtin_attr(a)
+                        })
+                        .map(|i| attrs.remove(i));
+        if let Some(attr) = &attr {
+            if !self.cx.ecfg.custom_inner_attributes() &&
+               attr.style == ast::AttrStyle::Inner && attr.path != sym::test {
+                emit_feature_err(&self.cx.parse_sess, sym::custom_inner_attributes,
+                                 attr.span, GateIssue::Language,
+                                 "non-builtin inner attributes are unstable");
+            }
+        }
+        attr
+    }
+
+    /// If `item` is an attr invocation, remove and return the macro attribute and derive traits.
+    fn classify_item<T>(&mut self, item: &mut T)
+                        -> (Option<ast::Attribute>, Vec<Path>, /* after_derive */ bool)
+        where T: HasAttrs,
+    {
+        let (mut attr, mut traits, mut after_derive) = (None, Vec::new(), false);
+
+        item.visit_attrs(|mut attrs| {
+            attr = self.find_attr_invoc(&mut attrs, &mut after_derive);
+            traits = collect_derives(&mut self.cx, &mut attrs);
+        });
+
+        (attr, traits, after_derive)
+    }
+
+    /// Alternative to `classify_item()` that ignores `#[derive]` so invocations fallthrough
+    /// to the unused-attributes lint (making it an error on statements and expressions
+    /// is a breaking change)
+    fn classify_nonitem<T: HasAttrs>(&mut self, nonitem: &mut T)
+                                     -> (Option<ast::Attribute>, /* after_derive */ bool) {
+        let (mut attr, mut after_derive) = (None, false);
+
+        nonitem.visit_attrs(|mut attrs| {
+            attr = self.find_attr_invoc(&mut attrs, &mut after_derive);
+        });
+
+        (attr, after_derive)
+    }
+
+    fn configure<T: HasAttrs>(&mut self, node: T) -> Option<T> {
+        self.cfg.configure(node)
+    }
+
+    // Detect use of feature-gated or invalid attributes on macro invocations
+    // since they will not be detected after macro expansion.
+    fn check_attributes(&mut self, attrs: &[ast::Attribute]) {
+        let features = self.cx.ecfg.features.unwrap();
+        for attr in attrs.iter() {
+            feature_gate::check_attribute(attr, self.cx.parse_sess, features);
+
+            // macros are expanded before any lint passes so this warning has to be hardcoded
+            if attr.path == sym::derive {
+                self.cx.struct_span_warn(attr.span, "`#[derive]` does nothing on macro invocations")
+                    .note("this may become a hard error in a future release")
+                    .emit();
+            }
+        }
+    }
+}
+
+impl<'a, 'b> MutVisitor for InvocationCollector<'a, 'b> {
+    fn visit_expr(&mut self, expr: &mut P<ast::Expr>) {
+        self.cfg.configure_expr(expr);
+        visit_clobber(expr.deref_mut(), |mut expr| {
+            self.cfg.configure_expr_kind(&mut expr.kind);
+
+            // ignore derives so they remain unused
+            let (attr, after_derive) = self.classify_nonitem(&mut expr);
+
+            if attr.is_some() {
+                // Collect the invoc regardless of whether or not attributes are permitted here
+                // expansion will eat the attribute so it won't error later.
+                attr.as_ref().map(|a| self.cfg.maybe_emit_expr_attr_err(a));
+
+                // AstFragmentKind::Expr requires the macro to emit an expression.
+                return self.collect_attr(attr, vec![], Annotatable::Expr(P(expr)),
+                                          AstFragmentKind::Expr, after_derive)
+                    .make_expr()
+                    .into_inner()
+            }
+
+            if let ast::ExprKind::Mac(mac) = expr.kind {
+                self.check_attributes(&expr.attrs);
+                self.collect_bang(mac, expr.span, AstFragmentKind::Expr)
+                    .make_expr()
+                    .into_inner()
+            } else {
+                noop_visit_expr(&mut expr, self);
+                expr
+            }
+        });
+    }
+
+    fn flat_map_arm(&mut self, arm: ast::Arm) -> SmallVec<[ast::Arm; 1]> {
+        let mut arm = configure!(self, arm);
+
+        let (attr, traits, after_derive) = self.classify_item(&mut arm);
+        if attr.is_some() || !traits.is_empty() {
+            return self.collect_attr(attr, traits, Annotatable::Arm(arm),
+                                     AstFragmentKind::Arms, after_derive)
+                                     .make_arms();
+        }
+
+        noop_flat_map_arm(arm, self)
+    }
+
+    fn flat_map_field(&mut self, field: ast::Field) -> SmallVec<[ast::Field; 1]> {
+        let mut field = configure!(self, field);
+
+        let (attr, traits, after_derive) = self.classify_item(&mut field);
+        if attr.is_some() || !traits.is_empty() {
+            return self.collect_attr(attr, traits, Annotatable::Field(field),
+                                     AstFragmentKind::Fields, after_derive)
+                                     .make_fields();
+        }
+
+        noop_flat_map_field(field, self)
+    }
+
+    fn flat_map_field_pattern(&mut self, fp: ast::FieldPat) -> SmallVec<[ast::FieldPat; 1]> {
+        let mut fp = configure!(self, fp);
+
+        let (attr, traits, after_derive) = self.classify_item(&mut fp);
+        if attr.is_some() || !traits.is_empty() {
+            return self.collect_attr(attr, traits, Annotatable::FieldPat(fp),
+                                     AstFragmentKind::FieldPats, after_derive)
+                                     .make_field_patterns();
+        }
+
+        noop_flat_map_field_pattern(fp, self)
+    }
+
+    fn flat_map_param(&mut self, p: ast::Param) -> SmallVec<[ast::Param; 1]> {
+        let mut p = configure!(self, p);
+
+        let (attr, traits, after_derive) = self.classify_item(&mut p);
+        if attr.is_some() || !traits.is_empty() {
+            return self.collect_attr(attr, traits, Annotatable::Param(p),
+                                     AstFragmentKind::Params, after_derive)
+                                     .make_params();
+        }
+
+        noop_flat_map_param(p, self)
+    }
+
+    fn flat_map_struct_field(&mut self, sf: ast::StructField) -> SmallVec<[ast::StructField; 1]> {
+        let mut sf = configure!(self, sf);
+
+        let (attr, traits, after_derive) = self.classify_item(&mut sf);
+        if attr.is_some() || !traits.is_empty() {
+            return self.collect_attr(attr, traits, Annotatable::StructField(sf),
+                                     AstFragmentKind::StructFields, after_derive)
+                                     .make_struct_fields();
+        }
+
+        noop_flat_map_struct_field(sf, self)
+    }
+
+    fn flat_map_variant(&mut self, variant: ast::Variant) -> SmallVec<[ast::Variant; 1]> {
+        let mut variant = configure!(self, variant);
+
+        let (attr, traits, after_derive) = self.classify_item(&mut variant);
+        if attr.is_some() || !traits.is_empty() {
+            return self.collect_attr(attr, traits, Annotatable::Variant(variant),
+                                     AstFragmentKind::Variants, after_derive)
+                                     .make_variants();
+        }
+
+        noop_flat_map_variant(variant, self)
+    }
+
+    fn filter_map_expr(&mut self, expr: P<ast::Expr>) -> Option<P<ast::Expr>> {
+        let expr = configure!(self, expr);
+        expr.filter_map(|mut expr| {
+            self.cfg.configure_expr_kind(&mut expr.kind);
+
+            // Ignore derives so they remain unused.
+            let (attr, after_derive) = self.classify_nonitem(&mut expr);
+
+            if attr.is_some() {
+                attr.as_ref().map(|a| self.cfg.maybe_emit_expr_attr_err(a));
+
+                return self.collect_attr(attr, vec![], Annotatable::Expr(P(expr)),
+                                         AstFragmentKind::OptExpr, after_derive)
+                    .make_opt_expr()
+                    .map(|expr| expr.into_inner())
+            }
+
+            if let ast::ExprKind::Mac(mac) = expr.kind {
+                self.check_attributes(&expr.attrs);
+                self.collect_bang(mac, expr.span, AstFragmentKind::OptExpr)
+                    .make_opt_expr()
+                    .map(|expr| expr.into_inner())
+            } else {
+                Some({ noop_visit_expr(&mut expr, self); expr })
+            }
+        })
+    }
+
+    fn visit_pat(&mut self, pat: &mut P<ast::Pat>) {
+        self.cfg.configure_pat(pat);
+        match pat.kind {
+            PatKind::Mac(_) => {}
+            _ => return noop_visit_pat(pat, self),
+        }
+
+        visit_clobber(pat, |mut pat| {
+            match mem::replace(&mut pat.kind, PatKind::Wild) {
+                PatKind::Mac(mac) =>
+                    self.collect_bang(mac, pat.span, AstFragmentKind::Pat).make_pat(),
+                _ => unreachable!(),
+            }
+        });
+    }
+
+    fn flat_map_stmt(&mut self, stmt: ast::Stmt) -> SmallVec<[ast::Stmt; 1]> {
+        let mut stmt = configure!(self, stmt);
+
+        // we'll expand attributes on expressions separately
+        if !stmt.is_expr() {
+            let (attr, derives, after_derive) = if stmt.is_item() {
+                self.classify_item(&mut stmt)
+            } else {
+                // ignore derives on non-item statements so it falls through
+                // to the unused-attributes lint
+                let (attr, after_derive) = self.classify_nonitem(&mut stmt);
+                (attr, vec![], after_derive)
+            };
+
+            if attr.is_some() || !derives.is_empty() {
+                return self.collect_attr(attr, derives, Annotatable::Stmt(P(stmt)),
+                                         AstFragmentKind::Stmts, after_derive).make_stmts();
+            }
+        }
+
+        if let StmtKind::Mac(mac) = stmt.kind {
+            let (mac, style, attrs) = mac.into_inner();
+            self.check_attributes(&attrs);
+            let mut placeholder = self.collect_bang(mac, stmt.span, AstFragmentKind::Stmts)
+                                        .make_stmts();
+
+            // If this is a macro invocation with a semicolon, then apply that
+            // semicolon to the final statement produced by expansion.
+            if style == MacStmtStyle::Semicolon {
+                if let Some(stmt) = placeholder.pop() {
+                    placeholder.push(stmt.add_trailing_semicolon());
+                }
+            }
+
+            return placeholder;
+        }
+
+        // The placeholder expander gives ids to statements, so we avoid folding the id here.
+        let ast::Stmt { id, kind, span } = stmt;
+        noop_flat_map_stmt_kind(kind, self).into_iter().map(|kind| {
+            ast::Stmt { id, kind, span }
+        }).collect()
+
+    }
+
+    fn visit_block(&mut self, block: &mut P<Block>) {
+        let old_directory_ownership = self.cx.current_expansion.directory_ownership;
+        self.cx.current_expansion.directory_ownership = DirectoryOwnership::UnownedViaBlock;
+        noop_visit_block(block, self);
+        self.cx.current_expansion.directory_ownership = old_directory_ownership;
+    }
+
+    fn flat_map_item(&mut self, item: P<ast::Item>) -> SmallVec<[P<ast::Item>; 1]> {
+        let mut item = configure!(self, item);
+
+        let (attr, traits, after_derive) = self.classify_item(&mut item);
+        if attr.is_some() || !traits.is_empty() {
+            return self.collect_attr(attr, traits, Annotatable::Item(item),
+                                     AstFragmentKind::Items, after_derive).make_items();
+        }
+
+        match item.kind {
+            ast::ItemKind::Mac(..) => {
+                self.check_attributes(&item.attrs);
+                item.and_then(|item| match item.kind {
+                    ItemKind::Mac(mac) => self.collect(
+                        AstFragmentKind::Items, InvocationKind::Bang { mac, span: item.span }
+                    ).make_items(),
+                    _ => unreachable!(),
+                })
+            }
+            ast::ItemKind::Mod(ast::Mod { inner, .. }) => {
+                if item.ident == Ident::invalid() {
+                    return noop_flat_map_item(item, self);
+                }
+
+                let orig_directory_ownership = self.cx.current_expansion.directory_ownership;
+                let mut module = (*self.cx.current_expansion.module).clone();
+                module.mod_path.push(item.ident);
+
+                // Detect if this is an inline module (`mod m { ... }` as opposed to `mod m;`).
+                // In the non-inline case, `inner` is never the dummy span (cf. `parse_item_mod`).
+                // Thus, if `inner` is the dummy span, we know the module is inline.
+                let inline_module = item.span.contains(inner) || inner.is_dummy();
+
+                if inline_module {
+                    if let Some(path) = attr::first_attr_value_str_by_name(&item.attrs, sym::path) {
+                        self.cx.current_expansion.directory_ownership =
+                            DirectoryOwnership::Owned { relative: None };
+                        module.directory.push(&*path.as_str());
+                    } else {
+                        module.directory.push(&*item.ident.as_str());
+                    }
+                } else {
+                    let path = self.cx.parse_sess.source_map().span_to_unmapped_path(inner);
+                    let mut path = match path {
+                        FileName::Real(path) => path,
+                        other => PathBuf::from(other.to_string()),
+                    };
+                    let directory_ownership = match path.file_name().unwrap().to_str() {
+                        Some("mod.rs") => DirectoryOwnership::Owned { relative: None },
+                        Some(_) => DirectoryOwnership::Owned {
+                            relative: Some(item.ident),
+                        },
+                        None => DirectoryOwnership::UnownedViaMod(false),
+                    };
+                    path.pop();
+                    module.directory = path;
+                    self.cx.current_expansion.directory_ownership = directory_ownership;
+                }
+
+                let orig_module =
+                    mem::replace(&mut self.cx.current_expansion.module, Rc::new(module));
+                let result = noop_flat_map_item(item, self);
+                self.cx.current_expansion.module = orig_module;
+                self.cx.current_expansion.directory_ownership = orig_directory_ownership;
+                result
+            }
+
+            _ => noop_flat_map_item(item, self),
+        }
+    }
+
+    fn flat_map_trait_item(&mut self, item: ast::TraitItem) -> SmallVec<[ast::TraitItem; 1]> {
+        let mut item = configure!(self, item);
+
+        let (attr, traits, after_derive) = self.classify_item(&mut item);
+        if attr.is_some() || !traits.is_empty() {
+            return self.collect_attr(attr, traits, Annotatable::TraitItem(P(item)),
+                                     AstFragmentKind::TraitItems, after_derive).make_trait_items()
+        }
+
+        match item.kind {
+            ast::TraitItemKind::Macro(mac) => {
+                let ast::TraitItem { attrs, span, .. } = item;
+                self.check_attributes(&attrs);
+                self.collect_bang(mac, span, AstFragmentKind::TraitItems).make_trait_items()
+            }
+            _ => noop_flat_map_trait_item(item, self),
+        }
+    }
+
+    fn flat_map_impl_item(&mut self, item: ast::ImplItem) -> SmallVec<[ast::ImplItem; 1]> {
+        let mut item = configure!(self, item);
+
+        let (attr, traits, after_derive) = self.classify_item(&mut item);
+        if attr.is_some() || !traits.is_empty() {
+            return self.collect_attr(attr, traits, Annotatable::ImplItem(P(item)),
+                                     AstFragmentKind::ImplItems, after_derive).make_impl_items();
+        }
+
+        match item.kind {
+            ast::ImplItemKind::Macro(mac) => {
+                let ast::ImplItem { attrs, span, .. } = item;
+                self.check_attributes(&attrs);
+                self.collect_bang(mac, span, AstFragmentKind::ImplItems).make_impl_items()
+            }
+            _ => noop_flat_map_impl_item(item, self),
+        }
+    }
+
+    fn visit_ty(&mut self, ty: &mut P<ast::Ty>) {
+        match ty.kind {
+            ast::TyKind::Mac(_) => {}
+            _ => return noop_visit_ty(ty, self),
+        };
+
+        visit_clobber(ty, |mut ty| {
+            match mem::replace(&mut ty.kind, ast::TyKind::Err) {
+                ast::TyKind::Mac(mac) =>
+                    self.collect_bang(mac, ty.span, AstFragmentKind::Ty).make_ty(),
+                _ => unreachable!(),
+            }
+        });
+    }
+
+    fn visit_foreign_mod(&mut self, foreign_mod: &mut ast::ForeignMod) {
+        self.cfg.configure_foreign_mod(foreign_mod);
+        noop_visit_foreign_mod(foreign_mod, self);
+    }
+
+    fn flat_map_foreign_item(&mut self, mut foreign_item: ast::ForeignItem)
+        -> SmallVec<[ast::ForeignItem; 1]>
+    {
+        let (attr, traits, after_derive) = self.classify_item(&mut foreign_item);
+
+        if attr.is_some() || !traits.is_empty() {
+            return self.collect_attr(attr, traits, Annotatable::ForeignItem(P(foreign_item)),
+                                     AstFragmentKind::ForeignItems, after_derive)
+                                     .make_foreign_items();
+        }
+
+        if let ast::ForeignItemKind::Macro(mac) = foreign_item.kind {
+            self.check_attributes(&foreign_item.attrs);
+            return self.collect_bang(mac, foreign_item.span, AstFragmentKind::ForeignItems)
+                .make_foreign_items();
+        }
+
+        noop_flat_map_foreign_item(foreign_item, self)
+    }
+
+    fn visit_item_kind(&mut self, item: &mut ast::ItemKind) {
+        match item {
+            ast::ItemKind::MacroDef(..) => {}
+            _ => {
+                self.cfg.configure_item_kind(item);
+                noop_visit_item_kind(item, self);
+            }
+        }
+    }
+
+    fn flat_map_generic_param(
+        &mut self,
+        param: ast::GenericParam
+    ) -> SmallVec<[ast::GenericParam; 1]>
+    {
+        let mut param = configure!(self, param);
+
+        let (attr, traits, after_derive) = self.classify_item(&mut param);
+        if attr.is_some() || !traits.is_empty() {
+            return self.collect_attr(attr, traits, Annotatable::GenericParam(param),
+                                     AstFragmentKind::GenericParams, after_derive)
+                                     .make_generic_params();
+        }
+
+        noop_flat_map_generic_param(param, self)
+    }
+
+    fn visit_attribute(&mut self, at: &mut ast::Attribute) {
+        // turn `#[doc(include="filename")]` attributes into `#[doc(include(file="filename",
+        // contents="file contents")]` attributes
+        if !at.check_name(sym::doc) {
+            return noop_visit_attribute(at, self);
+        }
+
+        if let Some(list) = at.meta_item_list() {
+            if !list.iter().any(|it| it.check_name(sym::include)) {
+                return noop_visit_attribute(at, self);
+            }
+
+            let mut items = vec![];
+
+            for mut it in list {
+                if !it.check_name(sym::include) {
+                    items.push({ noop_visit_meta_list_item(&mut it, self); it });
+                    continue;
+                }
+
+                if let Some(file) = it.value_str() {
+                    let err_count = self.cx.parse_sess.span_diagnostic.err_count();
+                    self.check_attributes(slice::from_ref(at));
+                    if self.cx.parse_sess.span_diagnostic.err_count() > err_count {
+                        // avoid loading the file if they haven't enabled the feature
+                        return noop_visit_attribute(at, self);
+                    }
+
+                    let filename = self.cx.resolve_path(&*file.as_str(), it.span());
+                    match self.cx.source_map().load_file(&filename) {
+                        Ok(source_file) => {
+                            let src = source_file.src.as_ref()
+                                .expect("freshly loaded file should have a source");
+                            let src_interned = Symbol::intern(src.as_str());
+
+                            let include_info = vec![
+                                ast::NestedMetaItem::MetaItem(
+                                    attr::mk_name_value_item_str(
+                                        Ident::with_dummy_span(sym::file),
+                                        file,
+                                        DUMMY_SP,
+                                    ),
+                                ),
+                                ast::NestedMetaItem::MetaItem(
+                                    attr::mk_name_value_item_str(
+                                        Ident::with_dummy_span(sym::contents),
+                                        src_interned,
+                                        DUMMY_SP,
+                                    ),
+                                ),
+                            ];
+
+                            let include_ident = Ident::with_dummy_span(sym::include);
+                            let item = attr::mk_list_item(include_ident, include_info);
+                            items.push(ast::NestedMetaItem::MetaItem(item));
+                        }
+                        Err(e) => {
+                            let lit = it
+                                .meta_item()
+                                .and_then(|item| item.name_value_literal())
+                                .unwrap();
+
+                            if e.kind() == ErrorKind::InvalidData {
+                                self.cx
+                                    .struct_span_err(
+                                        lit.span,
+                                        &format!("{} wasn't a utf-8 file", filename.display()),
+                                    )
+                                    .span_label(lit.span, "contains invalid utf-8")
+                                    .emit();
+                            } else {
+                                let mut err = self.cx.struct_span_err(
+                                    lit.span,
+                                    &format!("couldn't read {}: {}", filename.display(), e),
+                                );
+                                err.span_label(lit.span, "couldn't read file");
+
+                                err.emit();
+                            }
+                        }
+                    }
+                } else {
+                    let mut err = self.cx.struct_span_err(
+                        it.span(),
+                        &format!("expected path to external documentation"),
+                    );
+
+                    // Check if the user erroneously used `doc(include(...))` syntax.
+                    let literal = it.meta_item_list().and_then(|list| {
+                        if list.len() == 1 {
+                            list[0].literal().map(|literal| &literal.kind)
+                        } else {
+                            None
+                        }
+                    });
+
+                    let (path, applicability) = match &literal {
+                        Some(LitKind::Str(path, ..)) => {
+                            (path.to_string(), Applicability::MachineApplicable)
+                        }
+                        _ => (String::from("<path>"), Applicability::HasPlaceholders),
+                    };
+
+                    err.span_suggestion(
+                        it.span(),
+                        "provide a file path with `=`",
+                        format!("include = \"{}\"", path),
+                        applicability,
+                    );
+
+                    err.emit();
+                }
+            }
+
+            let meta = attr::mk_list_item(Ident::with_dummy_span(sym::doc), items);
+            *at = attr::Attribute {
+                item: AttrItem { path: meta.path, tokens: meta.kind.tokens(meta.span) },
+                span: at.span,
+                id: at.id,
+                style: at.style,
+                is_sugared_doc: false,
+            };
+        } else {
+            noop_visit_attribute(at, self)
+        }
+    }
+
+    fn visit_id(&mut self, id: &mut ast::NodeId) {
+        if self.monotonic {
+            debug_assert_eq!(*id, ast::DUMMY_NODE_ID);
+            *id = self.cx.resolver.next_node_id()
+        }
+    }
+
+    fn visit_fn_decl(&mut self, mut fn_decl: &mut P<ast::FnDecl>) {
+        self.cfg.configure_fn_decl(&mut fn_decl);
+        noop_visit_fn_decl(fn_decl, self);
+    }
+}
+
+pub struct ExpansionConfig<'feat> {
+    pub crate_name: String,
+    pub features: Option<&'feat Features>,
+    pub recursion_limit: usize,
+    pub trace_mac: bool,
+    pub should_test: bool, // If false, strip `#[test]` nodes
+    pub single_step: bool,
+    pub keep_macs: bool,
+}
+
+impl<'feat> ExpansionConfig<'feat> {
+    pub fn default(crate_name: String) -> ExpansionConfig<'static> {
+        ExpansionConfig {
+            crate_name,
+            features: None,
+            recursion_limit: 1024,
+            trace_mac: false,
+            should_test: false,
+            single_step: false,
+            keep_macs: false,
+        }
+    }
+
+    fn proc_macro_hygiene(&self) -> bool {
+        self.features.map_or(false, |features| features.proc_macro_hygiene)
+    }
+    fn custom_inner_attributes(&self) -> bool {
+        self.features.map_or(false, |features| features.custom_inner_attributes)
+    }
+}
diff --git a/src/libsyntax_expand/lib.rs b/src/libsyntax_expand/lib.rs
new file mode 100644
index 00000000000..88e69d79397
--- /dev/null
+++ b/src/libsyntax_expand/lib.rs
@@ -0,0 +1,38 @@
+#![feature(crate_visibility_modifier)]
+#![feature(proc_macro_diagnostic)]
+#![feature(proc_macro_internals)]
+#![feature(proc_macro_span)]
+
+extern crate proc_macro as pm;
+
+// A variant of 'try!' that panics on an Err. This is used as a crutch on the
+// way towards a non-panic!-prone parser. It should be used for fatal parsing
+// errors; eventually we plan to convert all code using panictry to just use
+// normal try.
+#[macro_export]
+macro_rules! panictry {
+    ($e:expr) => ({
+        use std::result::Result::{Ok, Err};
+        use errors::FatalError;
+        match $e {
+            Ok(e) => e,
+            Err(mut e) => {
+                e.emit();
+                FatalError.raise()
+            }
+        }
+    })
+}
+
+mod placeholders;
+mod proc_macro_server;
+
+pub use syntax_pos::hygiene;
+pub use mbe::macro_rules::compile_declarative_macro;
+pub mod allocator;
+pub mod base;
+pub mod build;
+pub mod expand;
+pub mod proc_macro;
+
+crate mod mbe;
diff --git a/src/libsyntax_expand/mbe.rs b/src/libsyntax_expand/mbe.rs
new file mode 100644
index 00000000000..453fe94f1de
--- /dev/null
+++ b/src/libsyntax_expand/mbe.rs
@@ -0,0 +1,166 @@
+//! This module implements declarative macros: old `macro_rules` and the newer
+//! `macro`. Declarative macros are also known as "macro by example", and that's
+//! why we call this module `mbe`. For external documentation, prefer the
+//! official terminology: "declarative macros".
+
+crate mod transcribe;
+crate mod macro_check;
+crate mod macro_parser;
+crate mod macro_rules;
+crate mod quoted;
+
+use syntax::ast;
+use syntax::parse::token::{self, Token, TokenKind};
+use syntax::tokenstream::{DelimSpan};
+
+use syntax_pos::{BytePos, Span};
+
+use rustc_data_structures::sync::Lrc;
+
+/// Contains the sub-token-trees of a "delimited" token tree, such as the contents of `(`. Note
+/// that the delimiter itself might be `NoDelim`.
+#[derive(Clone, PartialEq, RustcEncodable, RustcDecodable, Debug)]
+struct Delimited {
+    delim: token::DelimToken,
+    tts: Vec<TokenTree>,
+}
+
+impl Delimited {
+    /// Returns a `self::TokenTree` with a `Span` corresponding to the opening delimiter.
+    fn open_tt(&self, span: Span) -> TokenTree {
+        let open_span = if span.is_dummy() {
+            span
+        } else {
+            span.with_hi(span.lo() + BytePos(self.delim.len() as u32))
+        };
+        TokenTree::token(token::OpenDelim(self.delim), open_span)
+    }
+
+    /// Returns a `self::TokenTree` with a `Span` corresponding to the closing delimiter.
+    fn close_tt(&self, span: Span) -> TokenTree {
+        let close_span = if span.is_dummy() {
+            span
+        } else {
+            span.with_lo(span.hi() - BytePos(self.delim.len() as u32))
+        };
+        TokenTree::token(token::CloseDelim(self.delim), close_span)
+    }
+}
+
+#[derive(Clone, PartialEq, RustcEncodable, RustcDecodable, Debug)]
+struct SequenceRepetition {
+    /// The sequence of token trees
+    tts: Vec<TokenTree>,
+    /// The optional separator
+    separator: Option<Token>,
+    /// Whether the sequence can be repeated zero (*), or one or more times (+)
+    kleene: KleeneToken,
+    /// The number of `Match`s that appear in the sequence (and subsequences)
+    num_captures: usize,
+}
+
+#[derive(Clone, PartialEq, RustcEncodable, RustcDecodable, Debug, Copy)]
+struct KleeneToken {
+    span: Span,
+    op: KleeneOp,
+}
+
+impl KleeneToken {
+    fn new(op: KleeneOp, span: Span) -> KleeneToken {
+        KleeneToken { span, op }
+    }
+}
+
+/// A Kleene-style [repetition operator](http://en.wikipedia.org/wiki/Kleene_star)
+/// for token sequences.
+#[derive(Clone, PartialEq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
+enum KleeneOp {
+    /// Kleene star (`*`) for zero or more repetitions
+    ZeroOrMore,
+    /// Kleene plus (`+`) for one or more repetitions
+    OneOrMore,
+    /// Kleene optional (`?`) for zero or one reptitions
+    ZeroOrOne,
+}
+
+/// Similar to `tokenstream::TokenTree`, except that `$i`, `$i:ident`, and `$(...)`
+/// are "first-class" token trees. Useful for parsing macros.
+#[derive(Debug, Clone, PartialEq, RustcEncodable, RustcDecodable)]
+enum TokenTree {
+    Token(Token),
+    Delimited(DelimSpan, Lrc<Delimited>),
+    /// A kleene-style repetition sequence
+    Sequence(DelimSpan, Lrc<SequenceRepetition>),
+    /// e.g., `$var`
+    MetaVar(Span, ast::Ident),
+    /// e.g., `$var:expr`. This is only used in the left hand side of MBE macros.
+    MetaVarDecl(
+        Span,
+        ast::Ident, /* name to bind */
+        ast::Ident, /* kind of nonterminal */
+    ),
+}
+
+impl TokenTree {
+    /// Return the number of tokens in the tree.
+    fn len(&self) -> usize {
+        match *self {
+            TokenTree::Delimited(_, ref delimed) => match delimed.delim {
+                token::NoDelim => delimed.tts.len(),
+                _ => delimed.tts.len() + 2,
+            },
+            TokenTree::Sequence(_, ref seq) => seq.tts.len(),
+            _ => 0,
+        }
+    }
+
+    /// Returns `true` if the given token tree is delimited.
+    fn is_delimited(&self) -> bool {
+        match *self {
+            TokenTree::Delimited(..) => true,
+            _ => false,
+        }
+    }
+
+    /// Returns `true` if the given token tree is a token of the given kind.
+    fn is_token(&self, expected_kind: &TokenKind) -> bool {
+        match self {
+            TokenTree::Token(Token { kind: actual_kind, .. }) => actual_kind == expected_kind,
+            _ => false,
+        }
+    }
+
+    /// Gets the `index`-th sub-token-tree. This only makes sense for delimited trees and sequences.
+    fn get_tt(&self, index: usize) -> TokenTree {
+        match (self, index) {
+            (&TokenTree::Delimited(_, ref delimed), _) if delimed.delim == token::NoDelim => {
+                delimed.tts[index].clone()
+            }
+            (&TokenTree::Delimited(span, ref delimed), _) => {
+                if index == 0 {
+                    return delimed.open_tt(span.open);
+                }
+                if index == delimed.tts.len() + 1 {
+                    return delimed.close_tt(span.close);
+                }
+                delimed.tts[index - 1].clone()
+            }
+            (&TokenTree::Sequence(_, ref seq), _) => seq.tts[index].clone(),
+            _ => panic!("Cannot expand a token tree"),
+        }
+    }
+
+    /// Retrieves the `TokenTree`'s span.
+    fn span(&self) -> Span {
+        match *self {
+            TokenTree::Token(Token { span, .. })
+            | TokenTree::MetaVar(span, _)
+            | TokenTree::MetaVarDecl(span, _, _) => span,
+            TokenTree::Delimited(span, _) | TokenTree::Sequence(span, _) => span.entire(),
+        }
+    }
+
+    fn token(kind: TokenKind, span: Span) -> TokenTree {
+        TokenTree::Token(Token::new(kind, span))
+    }
+}
diff --git a/src/libsyntax_expand/mbe/macro_check.rs b/src/libsyntax_expand/mbe/macro_check.rs
new file mode 100644
index 00000000000..50abda8d45e
--- /dev/null
+++ b/src/libsyntax_expand/mbe/macro_check.rs
@@ -0,0 +1,626 @@
+//! Checks that meta-variables in macro definition are correctly declared and used.
+//!
+//! # What is checked
+//!
+//! ## Meta-variables must not be bound twice
+//!
+//! ```
+//! macro_rules! foo { ($x:tt $x:tt) => { $x }; }
+//! ```
+//!
+//! This check is sound (no false-negative) and complete (no false-positive).
+//!
+//! ## Meta-variables must not be free
+//!
+//! ```
+//! macro_rules! foo { () => { $x }; }
+//! ```
+//!
+//! This check is also done at macro instantiation but only if the branch is taken.
+//!
+//! ## Meta-variables must repeat at least as many times as their binder
+//!
+//! ```
+//! macro_rules! foo { ($($x:tt)*) => { $x }; }
+//! ```
+//!
+//! This check is also done at macro instantiation but only if the branch is taken.
+//!
+//! ## Meta-variables must repeat with the same Kleene operators as their binder
+//!
+//! ```
+//! macro_rules! foo { ($($x:tt)+) => { $($x)* }; }
+//! ```
+//!
+//! This check is not done at macro instantiation.
+//!
+//! # Disclaimer
+//!
+//! In the presence of nested macros (a macro defined in a macro), those checks may have false
+//! positives and false negatives. We try to detect those cases by recognizing potential macro
+//! definitions in RHSes, but nested macros may be hidden through the use of particular values of
+//! meta-variables.
+//!
+//! ## Examples of false positive
+//!
+//! False positives can come from cases where we don't recognize a nested macro, because it depends
+//! on particular values of meta-variables. In the following example, we think both instances of
+//! `$x` are free, which is a correct statement if `$name` is anything but `macro_rules`. But when
+//! `$name` is `macro_rules`, like in the instantiation below, then `$x:tt` is actually a binder of
+//! the nested macro and `$x` is bound to it.
+//!
+//! ```
+//! macro_rules! foo { ($name:ident) => { $name! bar { ($x:tt) => { $x }; } }; }
+//! foo!(macro_rules);
+//! ```
+//!
+//! False positives can also come from cases where we think there is a nested macro while there
+//! isn't. In the following example, we think `$x` is free, which is incorrect because `bar` is not
+//! a nested macro since it is not evaluated as code by `stringify!`.
+//!
+//! ```
+//! macro_rules! foo { () => { stringify!(macro_rules! bar { () => { $x }; }) }; }
+//! ```
+//!
+//! ## Examples of false negative
+//!
+//! False negatives can come from cases where we don't recognize a meta-variable, because it depends
+//! on particular values of meta-variables. In the following examples, we don't see that if `$d` is
+//! instantiated with `$` then `$d z` becomes `$z` in the nested macro definition and is thus a free
+//! meta-variable. Note however, that if `foo` is instantiated, then we would check the definition
+//! of `bar` and would see the issue.
+//!
+//! ```
+//! macro_rules! foo { ($d:tt) => { macro_rules! bar { ($y:tt) => { $d z }; } }; }
+//! ```
+//!
+//! # How it is checked
+//!
+//! There are 3 main functions: `check_binders`, `check_occurrences`, and `check_nested_macro`. They
+//! all need some kind of environment.
+//!
+//! ## Environments
+//!
+//! Environments are used to pass information.
+//!
+//! ### From LHS to RHS
+//!
+//! When checking a LHS with `check_binders`, we produce (and use) an environment for binders,
+//! namely `Binders`. This is a mapping from binder name to information about that binder: the span
+//! of the binder for error messages and the stack of Kleene operators under which it was bound in
+//! the LHS.
+//!
+//! This environment is used by both the LHS and RHS. The LHS uses it to detect duplicate binders.
+//! The RHS uses it to detect the other errors.
+//!
+//! ### From outer macro to inner macro
+//!
+//! When checking the RHS of an outer macro and we detect a nested macro definition, we push the
+//! current state, namely `MacroState`, to an environment of nested macro definitions. Each state
+//! stores the LHS binders when entering the macro definition as well as the stack of Kleene
+//! operators under which the inner macro is defined in the RHS.
+//!
+//! This environment is a stack representing the nesting of macro definitions. As such, the stack of
+//! Kleene operators under which a meta-variable is repeating is the concatenation of the stacks
+//! stored when entering a macro definition starting from the state in which the meta-variable is
+//! bound.
+use crate::mbe::{KleeneToken, TokenTree};
+
+use syntax::ast::NodeId;
+use syntax::early_buffered_lints::BufferedEarlyLintId;
+use syntax::parse::token::{DelimToken, Token, TokenKind};
+use syntax::sess::ParseSess;
+use syntax::symbol::{kw, sym};
+
+use rustc_data_structures::fx::FxHashMap;
+use smallvec::SmallVec;
+use syntax_pos::{symbol::Ident, MultiSpan, Span};
+
+/// Stack represented as linked list.
+///
+/// Those are used for environments because they grow incrementally and are not mutable.
+enum Stack<'a, T> {
+    /// Empty stack.
+    Empty,
+    /// A non-empty stack.
+    Push {
+        /// The top element.
+        top: T,
+        /// The previous elements.
+        prev: &'a Stack<'a, T>,
+    },
+}
+
+impl<'a, T> Stack<'a, T> {
+    /// Returns whether a stack is empty.
+    fn is_empty(&self) -> bool {
+        match *self {
+            Stack::Empty => true,
+            _ => false,
+        }
+    }
+
+    /// Returns a new stack with an element of top.
+    fn push(&'a self, top: T) -> Stack<'a, T> {
+        Stack::Push { top, prev: self }
+    }
+}
+
+impl<'a, T> Iterator for &'a Stack<'a, T> {
+    type Item = &'a T;
+
+    // Iterates from top to bottom of the stack.
+    fn next(&mut self) -> Option<&'a T> {
+        match *self {
+            Stack::Empty => None,
+            Stack::Push { ref top, ref prev } => {
+                *self = prev;
+                Some(top)
+            }
+        }
+    }
+}
+
+impl From<&Stack<'_, KleeneToken>> for SmallVec<[KleeneToken; 1]> {
+    fn from(ops: &Stack<'_, KleeneToken>) -> SmallVec<[KleeneToken; 1]> {
+        let mut ops: SmallVec<[KleeneToken; 1]> = ops.cloned().collect();
+        // The stack is innermost on top. We want outermost first.
+        ops.reverse();
+        ops
+    }
+}
+
+/// Information attached to a meta-variable binder in LHS.
+struct BinderInfo {
+    /// The span of the meta-variable in LHS.
+    span: Span,
+    /// The stack of Kleene operators (outermost first).
+    ops: SmallVec<[KleeneToken; 1]>,
+}
+
+/// An environment of meta-variables to their binder information.
+type Binders = FxHashMap<Ident, BinderInfo>;
+
+/// The state at which we entered a macro definition in the RHS of another macro definition.
+struct MacroState<'a> {
+    /// The binders of the branch where we entered the macro definition.
+    binders: &'a Binders,
+    /// The stack of Kleene operators (outermost first) where we entered the macro definition.
+    ops: SmallVec<[KleeneToken; 1]>,
+}
+
+/// Checks that meta-variables are used correctly in a macro definition.
+///
+/// Arguments:
+/// - `sess` is used to emit diagnostics and lints
+/// - `node_id` is used to emit lints
+/// - `span` is used when no spans are available
+/// - `lhses` and `rhses` should have the same length and represent the macro definition
+pub(super) fn check_meta_variables(
+    sess: &ParseSess,
+    node_id: NodeId,
+    span: Span,
+    lhses: &[TokenTree],
+    rhses: &[TokenTree],
+) -> bool {
+    if lhses.len() != rhses.len() {
+        sess.span_diagnostic.span_bug(span, "length mismatch between LHSes and RHSes")
+    }
+    let mut valid = true;
+    for (lhs, rhs) in lhses.iter().zip(rhses.iter()) {
+        let mut binders = Binders::default();
+        check_binders(sess, node_id, lhs, &Stack::Empty, &mut binders, &Stack::Empty, &mut valid);
+        check_occurrences(sess, node_id, rhs, &Stack::Empty, &binders, &Stack::Empty, &mut valid);
+    }
+    valid
+}
+
+/// Checks `lhs` as part of the LHS of a macro definition, extends `binders` with new binders, and
+/// sets `valid` to false in case of errors.
+///
+/// Arguments:
+/// - `sess` is used to emit diagnostics and lints
+/// - `node_id` is used to emit lints
+/// - `lhs` is checked as part of a LHS
+/// - `macros` is the stack of possible outer macros
+/// - `binders` contains the binders of the LHS
+/// - `ops` is the stack of Kleene operators from the LHS
+/// - `valid` is set in case of errors
+fn check_binders(
+    sess: &ParseSess,
+    node_id: NodeId,
+    lhs: &TokenTree,
+    macros: &Stack<'_, MacroState<'_>>,
+    binders: &mut Binders,
+    ops: &Stack<'_, KleeneToken>,
+    valid: &mut bool,
+) {
+    match *lhs {
+        TokenTree::Token(..) => {}
+        // This can only happen when checking a nested macro because this LHS is then in the RHS of
+        // the outer macro. See ui/macros/macro-of-higher-order.rs where $y:$fragment in the
+        // LHS of the nested macro (and RHS of the outer macro) is parsed as MetaVar(y) Colon
+        // MetaVar(fragment) and not as MetaVarDecl(y, fragment).
+        TokenTree::MetaVar(span, name) => {
+            if macros.is_empty() {
+                sess.span_diagnostic.span_bug(span, "unexpected MetaVar in lhs");
+            }
+            // There are 3 possibilities:
+            if let Some(prev_info) = binders.get(&name) {
+                // 1. The meta-variable is already bound in the current LHS: This is an error.
+                let mut span = MultiSpan::from_span(span);
+                span.push_span_label(prev_info.span, "previous declaration".into());
+                buffer_lint(sess, span, node_id, "duplicate matcher binding");
+            } else if get_binder_info(macros, binders, name).is_none() {
+                // 2. The meta-variable is free: This is a binder.
+                binders.insert(name, BinderInfo { span, ops: ops.into() });
+            } else {
+                // 3. The meta-variable is bound: This is an occurrence.
+                check_occurrences(sess, node_id, lhs, macros, binders, ops, valid);
+            }
+        }
+        // Similarly, this can only happen when checking a toplevel macro.
+        TokenTree::MetaVarDecl(span, name, _kind) => {
+            if !macros.is_empty() {
+                sess.span_diagnostic.span_bug(span, "unexpected MetaVarDecl in nested lhs");
+            }
+            if let Some(prev_info) = get_binder_info(macros, binders, name) {
+                // Duplicate binders at the top-level macro definition are errors. The lint is only
+                // for nested macro definitions.
+                sess.span_diagnostic
+                    .struct_span_err(span, "duplicate matcher binding")
+                    .span_note(prev_info.span, "previous declaration was here")
+                    .emit();
+                *valid = false;
+            } else {
+                binders.insert(name, BinderInfo { span, ops: ops.into() });
+            }
+        }
+        TokenTree::Delimited(_, ref del) => {
+            for tt in &del.tts {
+                check_binders(sess, node_id, tt, macros, binders, ops, valid);
+            }
+        }
+        TokenTree::Sequence(_, ref seq) => {
+            let ops = ops.push(seq.kleene);
+            for tt in &seq.tts {
+                check_binders(sess, node_id, tt, macros, binders, &ops, valid);
+            }
+        }
+    }
+}
+
+/// Returns the binder information of a meta-variable.
+///
+/// Arguments:
+/// - `macros` is the stack of possible outer macros
+/// - `binders` contains the current binders
+/// - `name` is the name of the meta-variable we are looking for
+fn get_binder_info<'a>(
+    mut macros: &'a Stack<'a, MacroState<'a>>,
+    binders: &'a Binders,
+    name: Ident,
+) -> Option<&'a BinderInfo> {
+    binders.get(&name).or_else(|| macros.find_map(|state| state.binders.get(&name)))
+}
+
+/// Checks `rhs` as part of the RHS of a macro definition and sets `valid` to false in case of
+/// errors.
+///
+/// Arguments:
+/// - `sess` is used to emit diagnostics and lints
+/// - `node_id` is used to emit lints
+/// - `rhs` is checked as part of a RHS
+/// - `macros` is the stack of possible outer macros
+/// - `binders` contains the binders of the associated LHS
+/// - `ops` is the stack of Kleene operators from the RHS
+/// - `valid` is set in case of errors
+fn check_occurrences(
+    sess: &ParseSess,
+    node_id: NodeId,
+    rhs: &TokenTree,
+    macros: &Stack<'_, MacroState<'_>>,
+    binders: &Binders,
+    ops: &Stack<'_, KleeneToken>,
+    valid: &mut bool,
+) {
+    match *rhs {
+        TokenTree::Token(..) => {}
+        TokenTree::MetaVarDecl(span, _name, _kind) => {
+            sess.span_diagnostic.span_bug(span, "unexpected MetaVarDecl in rhs")
+        }
+        TokenTree::MetaVar(span, name) => {
+            check_ops_is_prefix(sess, node_id, macros, binders, ops, span, name);
+        }
+        TokenTree::Delimited(_, ref del) => {
+            check_nested_occurrences(sess, node_id, &del.tts, macros, binders, ops, valid);
+        }
+        TokenTree::Sequence(_, ref seq) => {
+            let ops = ops.push(seq.kleene);
+            check_nested_occurrences(sess, node_id, &seq.tts, macros, binders, &ops, valid);
+        }
+    }
+}
+
+/// Represents the processed prefix of a nested macro.
+#[derive(Clone, Copy, PartialEq, Eq)]
+enum NestedMacroState {
+    /// Nothing that matches a nested macro definition was processed yet.
+    Empty,
+    /// The token `macro_rules` was processed.
+    MacroRules,
+    /// The tokens `macro_rules!` were processed.
+    MacroRulesNot,
+    /// The tokens `macro_rules!` followed by a name were processed. The name may be either directly
+    /// an identifier or a meta-variable (that hopefully would be instantiated by an identifier).
+    MacroRulesNotName,
+    /// The keyword `macro` was processed.
+    Macro,
+    /// The keyword `macro` followed by a name was processed.
+    MacroName,
+    /// The keyword `macro` followed by a name and a token delimited by parentheses was processed.
+    MacroNameParen,
+}
+
+/// Checks `tts` as part of the RHS of a macro definition, tries to recognize nested macro
+/// definitions, and sets `valid` to false in case of errors.
+///
+/// Arguments:
+/// - `sess` is used to emit diagnostics and lints
+/// - `node_id` is used to emit lints
+/// - `tts` is checked as part of a RHS and may contain macro definitions
+/// - `macros` is the stack of possible outer macros
+/// - `binders` contains the binders of the associated LHS
+/// - `ops` is the stack of Kleene operators from the RHS
+/// - `valid` is set in case of errors
+fn check_nested_occurrences(
+    sess: &ParseSess,
+    node_id: NodeId,
+    tts: &[TokenTree],
+    macros: &Stack<'_, MacroState<'_>>,
+    binders: &Binders,
+    ops: &Stack<'_, KleeneToken>,
+    valid: &mut bool,
+) {
+    let mut state = NestedMacroState::Empty;
+    let nested_macros = macros.push(MacroState { binders, ops: ops.into() });
+    let mut nested_binders = Binders::default();
+    for tt in tts {
+        match (state, tt) {
+            (
+                NestedMacroState::Empty,
+                &TokenTree::Token(Token { kind: TokenKind::Ident(name, false), .. }),
+            ) => {
+                if name == sym::macro_rules {
+                    state = NestedMacroState::MacroRules;
+                } else if name == kw::Macro {
+                    state = NestedMacroState::Macro;
+                }
+            }
+            (
+                NestedMacroState::MacroRules,
+                &TokenTree::Token(Token { kind: TokenKind::Not, .. }),
+            ) => {
+                state = NestedMacroState::MacroRulesNot;
+            }
+            (
+                NestedMacroState::MacroRulesNot,
+                &TokenTree::Token(Token { kind: TokenKind::Ident(..), .. }),
+            ) => {
+                state = NestedMacroState::MacroRulesNotName;
+            }
+            (NestedMacroState::MacroRulesNot, &TokenTree::MetaVar(..)) => {
+                state = NestedMacroState::MacroRulesNotName;
+                // We check that the meta-variable is correctly used.
+                check_occurrences(sess, node_id, tt, macros, binders, ops, valid);
+            }
+            (NestedMacroState::MacroRulesNotName, &TokenTree::Delimited(_, ref del))
+            | (NestedMacroState::MacroName, &TokenTree::Delimited(_, ref del))
+                if del.delim == DelimToken::Brace =>
+            {
+                let legacy = state == NestedMacroState::MacroRulesNotName;
+                state = NestedMacroState::Empty;
+                let rest =
+                    check_nested_macro(sess, node_id, legacy, &del.tts, &nested_macros, valid);
+                // If we did not check the whole macro definition, then check the rest as if outside
+                // the macro definition.
+                check_nested_occurrences(
+                    sess,
+                    node_id,
+                    &del.tts[rest..],
+                    macros,
+                    binders,
+                    ops,
+                    valid,
+                );
+            }
+            (
+                NestedMacroState::Macro,
+                &TokenTree::Token(Token { kind: TokenKind::Ident(..), .. }),
+            ) => {
+                state = NestedMacroState::MacroName;
+            }
+            (NestedMacroState::Macro, &TokenTree::MetaVar(..)) => {
+                state = NestedMacroState::MacroName;
+                // We check that the meta-variable is correctly used.
+                check_occurrences(sess, node_id, tt, macros, binders, ops, valid);
+            }
+            (NestedMacroState::MacroName, &TokenTree::Delimited(_, ref del))
+                if del.delim == DelimToken::Paren =>
+            {
+                state = NestedMacroState::MacroNameParen;
+                nested_binders = Binders::default();
+                check_binders(
+                    sess,
+                    node_id,
+                    tt,
+                    &nested_macros,
+                    &mut nested_binders,
+                    &Stack::Empty,
+                    valid,
+                );
+            }
+            (NestedMacroState::MacroNameParen, &TokenTree::Delimited(_, ref del))
+                if del.delim == DelimToken::Brace =>
+            {
+                state = NestedMacroState::Empty;
+                check_occurrences(
+                    sess,
+                    node_id,
+                    tt,
+                    &nested_macros,
+                    &nested_binders,
+                    &Stack::Empty,
+                    valid,
+                );
+            }
+            (_, ref tt) => {
+                state = NestedMacroState::Empty;
+                check_occurrences(sess, node_id, tt, macros, binders, ops, valid);
+            }
+        }
+    }
+}
+
+/// Checks the body of nested macro, returns where the check stopped, and sets `valid` to false in
+/// case of errors.
+///
+/// The token trees are checked as long as they look like a list of (LHS) => {RHS} token trees. This
+/// check is a best-effort to detect a macro definition. It returns the position in `tts` where we
+/// stopped checking because we detected we were not in a macro definition anymore.
+///
+/// Arguments:
+/// - `sess` is used to emit diagnostics and lints
+/// - `node_id` is used to emit lints
+/// - `legacy` specifies whether the macro is legacy
+/// - `tts` is checked as a list of (LHS) => {RHS}
+/// - `macros` is the stack of outer macros
+/// - `valid` is set in case of errors
+fn check_nested_macro(
+    sess: &ParseSess,
+    node_id: NodeId,
+    legacy: bool,
+    tts: &[TokenTree],
+    macros: &Stack<'_, MacroState<'_>>,
+    valid: &mut bool,
+) -> usize {
+    let n = tts.len();
+    let mut i = 0;
+    let separator = if legacy { TokenKind::Semi } else { TokenKind::Comma };
+    loop {
+        // We expect 3 token trees: `(LHS) => {RHS}`. The separator is checked after.
+        if i + 2 >= n
+            || !tts[i].is_delimited()
+            || !tts[i + 1].is_token(&TokenKind::FatArrow)
+            || !tts[i + 2].is_delimited()
+        {
+            break;
+        }
+        let lhs = &tts[i];
+        let rhs = &tts[i + 2];
+        let mut binders = Binders::default();
+        check_binders(sess, node_id, lhs, macros, &mut binders, &Stack::Empty, valid);
+        check_occurrences(sess, node_id, rhs, macros, &binders, &Stack::Empty, valid);
+        // Since the last semicolon is optional for legacy macros and decl_macro are not terminated,
+        // we increment our checked position by how many token trees we already checked (the 3
+        // above) before checking for the separator.
+        i += 3;
+        if i == n || !tts[i].is_token(&separator) {
+            break;
+        }
+        // We increment our checked position for the semicolon.
+        i += 1;
+    }
+    i
+}
+
+/// Checks that a meta-variable occurrence is valid.
+///
+/// Arguments:
+/// - `sess` is used to emit diagnostics and lints
+/// - `node_id` is used to emit lints
+/// - `macros` is the stack of possible outer macros
+/// - `binders` contains the binders of the associated LHS
+/// - `ops` is the stack of Kleene operators from the RHS
+/// - `span` is the span of the meta-variable to check
+/// - `name` is the name of the meta-variable to check
+fn check_ops_is_prefix(
+    sess: &ParseSess,
+    node_id: NodeId,
+    macros: &Stack<'_, MacroState<'_>>,
+    binders: &Binders,
+    ops: &Stack<'_, KleeneToken>,
+    span: Span,
+    name: Ident,
+) {
+    let macros = macros.push(MacroState { binders, ops: ops.into() });
+    // Accumulates the stacks the operators of each state until (and including when) the
+    // meta-variable is found. The innermost stack is first.
+    let mut acc: SmallVec<[&SmallVec<[KleeneToken; 1]>; 1]> = SmallVec::new();
+    for state in &macros {
+        acc.push(&state.ops);
+        if let Some(binder) = state.binders.get(&name) {
+            // This variable concatenates the stack of operators from the RHS of the LHS where the
+            // meta-variable was defined to where it is used (in possibly nested macros). The
+            // outermost operator is first.
+            let mut occurrence_ops: SmallVec<[KleeneToken; 2]> = SmallVec::new();
+            // We need to iterate from the end to start with outermost stack.
+            for ops in acc.iter().rev() {
+                occurrence_ops.extend_from_slice(ops);
+            }
+            ops_is_prefix(sess, node_id, span, name, &binder.ops, &occurrence_ops);
+            return;
+        }
+    }
+    buffer_lint(sess, span.into(), node_id, &format!("unknown macro variable `{}`", name));
+}
+
+/// Returns whether `binder_ops` is a prefix of `occurrence_ops`.
+///
+/// The stack of Kleene operators of a meta-variable occurrence just needs to have the stack of
+/// Kleene operators of its binder as a prefix.
+///
+/// Consider $i in the following example:
+///
+///     ( $( $i:ident = $($j:ident),+ );* ) => { $($( $i += $j; )+)* }
+///
+/// It occurs under the Kleene stack ["*", "+"] and is bound under ["*"] only.
+///
+/// Arguments:
+/// - `sess` is used to emit diagnostics and lints
+/// - `node_id` is used to emit lints
+/// - `span` is the span of the meta-variable being check
+/// - `name` is the name of the meta-variable being check
+/// - `binder_ops` is the stack of Kleene operators for the binder
+/// - `occurrence_ops` is the stack of Kleene operators for the occurrence
+fn ops_is_prefix(
+    sess: &ParseSess,
+    node_id: NodeId,
+    span: Span,
+    name: Ident,
+    binder_ops: &[KleeneToken],
+    occurrence_ops: &[KleeneToken],
+) {
+    for (i, binder) in binder_ops.iter().enumerate() {
+        if i >= occurrence_ops.len() {
+            let mut span = MultiSpan::from_span(span);
+            span.push_span_label(binder.span, "expected repetition".into());
+            let message = &format!("variable '{}' is still repeating at this depth", name);
+            buffer_lint(sess, span, node_id, message);
+            return;
+        }
+        let occurrence = &occurrence_ops[i];
+        if occurrence.op != binder.op {
+            let mut span = MultiSpan::from_span(span);
+            span.push_span_label(binder.span, "expected repetition".into());
+            span.push_span_label(occurrence.span, "conflicting repetition".into());
+            let message = "meta-variable repeats with different Kleene operator";
+            buffer_lint(sess, span, node_id, message);
+            return;
+        }
+    }
+}
+
+fn buffer_lint(sess: &ParseSess, span: MultiSpan, node_id: NodeId, message: &str) {
+    sess.buffer_lint(BufferedEarlyLintId::MetaVariableMisuse, span, node_id, message);
+}
diff --git a/src/libsyntax_expand/mbe/macro_parser.rs b/src/libsyntax_expand/mbe/macro_parser.rs
new file mode 100644
index 00000000000..2edb4925512
--- /dev/null
+++ b/src/libsyntax_expand/mbe/macro_parser.rs
@@ -0,0 +1,944 @@
+//! This is an NFA-based parser, which calls out to the main rust parser for named non-terminals
+//! (which it commits to fully when it hits one in a grammar). There's a set of current NFA threads
+//! and a set of next ones. Instead of NTs, we have a special case for Kleene star. The big-O, in
+//! pathological cases, is worse than traditional use of NFA or Earley parsing, but it's an easier
+//! fit for Macro-by-Example-style rules.
+//!
+//! (In order to prevent the pathological case, we'd need to lazily construct the resulting
+//! `NamedMatch`es at the very end. It'd be a pain, and require more memory to keep around old
+//! items, but it would also save overhead)
+//!
+//! We don't say this parser uses the Earley algorithm, because it's unnecessarily inaccurate.
+//! The macro parser restricts itself to the features of finite state automata. Earley parsers
+//! can be described as an extension of NFAs with completion rules, prediction rules, and recursion.
+//!
+//! Quick intro to how the parser works:
+//!
+//! A 'position' is a dot in the middle of a matcher, usually represented as a
+//! dot. For example `· a $( a )* a b` is a position, as is `a $( · a )* a b`.
+//!
+//! The parser walks through the input a character at a time, maintaining a list
+//! of threads consistent with the current position in the input string: `cur_items`.
+//!
+//! As it processes them, it fills up `eof_items` with threads that would be valid if
+//! the macro invocation is now over, `bb_items` with threads that are waiting on
+//! a Rust non-terminal like `$e:expr`, and `next_items` with threads that are waiting
+//! on a particular token. Most of the logic concerns moving the · through the
+//! repetitions indicated by Kleene stars. The rules for moving the · without
+//! consuming any input are called epsilon transitions. It only advances or calls
+//! out to the real Rust parser when no `cur_items` threads remain.
+//!
+//! Example:
+//!
+//! ```text, ignore
+//! Start parsing a a a a b against [· a $( a )* a b].
+//!
+//! Remaining input: a a a a b
+//! next: [· a $( a )* a b]
+//!
+//! - - - Advance over an a. - - -
+//!
+//! Remaining input: a a a b
+//! cur: [a · $( a )* a b]
+//! Descend/Skip (first item).
+//! next: [a $( · a )* a b]  [a $( a )* · a b].
+//!
+//! - - - Advance over an a. - - -
+//!
+//! Remaining input: a a b
+//! cur: [a $( a · )* a b]  [a $( a )* a · b]
+//! Follow epsilon transition: Finish/Repeat (first item)
+//! next: [a $( a )* · a b]  [a $( · a )* a b]  [a $( a )* a · b]
+//!
+//! - - - Advance over an a. - - - (this looks exactly like the last step)
+//!
+//! Remaining input: a b
+//! cur: [a $( a · )* a b]  [a $( a )* a · b]
+//! Follow epsilon transition: Finish/Repeat (first item)
+//! next: [a $( a )* · a b]  [a $( · a )* a b]  [a $( a )* a · b]
+//!
+//! - - - Advance over an a. - - - (this looks exactly like the last step)
+//!
+//! Remaining input: b
+//! cur: [a $( a · )* a b]  [a $( a )* a · b]
+//! Follow epsilon transition: Finish/Repeat (first item)
+//! next: [a $( a )* · a b]  [a $( · a )* a b]  [a $( a )* a · b]
+//!
+//! - - - Advance over a b. - - -
+//!
+//! Remaining input: ''
+//! eof: [a $( a )* a b ·]
+//! ```
+
+crate use NamedMatch::*;
+crate use ParseResult::*;
+use TokenTreeOrTokenTreeSlice::*;
+
+use crate::mbe::{self, TokenTree};
+
+use syntax::ast::{Ident, Name};
+use syntax::parse::{Directory, PResult};
+use syntax::parse::parser::{Parser, PathStyle};
+use syntax::parse::token::{self, DocComment, Nonterminal, Token};
+use syntax::print::pprust;
+use syntax::sess::ParseSess;
+use syntax::symbol::{kw, sym, Symbol};
+use syntax::tokenstream::{DelimSpan, TokenStream};
+
+use errors::FatalError;
+use smallvec::{smallvec, SmallVec};
+use syntax_pos::Span;
+
+use rustc_data_structures::fx::FxHashMap;
+use rustc_data_structures::sync::Lrc;
+use std::collections::hash_map::Entry::{Occupied, Vacant};
+use std::mem;
+use std::ops::{Deref, DerefMut};
+
+// To avoid costly uniqueness checks, we require that `MatchSeq` always has a nonempty body.
+
+/// Either a sequence of token trees or a single one. This is used as the representation of the
+/// sequence of tokens that make up a matcher.
+#[derive(Clone)]
+enum TokenTreeOrTokenTreeSlice<'tt> {
+    Tt(TokenTree),
+    TtSeq(&'tt [TokenTree]),
+}
+
+impl<'tt> TokenTreeOrTokenTreeSlice<'tt> {
+    /// Returns the number of constituent top-level token trees of `self` (top-level in that it
+    /// will not recursively descend into subtrees).
+    fn len(&self) -> usize {
+        match *self {
+            TtSeq(ref v) => v.len(),
+            Tt(ref tt) => tt.len(),
+        }
+    }
+
+    /// The `index`-th token tree of `self`.
+    fn get_tt(&self, index: usize) -> TokenTree {
+        match *self {
+            TtSeq(ref v) => v[index].clone(),
+            Tt(ref tt) => tt.get_tt(index),
+        }
+    }
+}
+
+/// An unzipping of `TokenTree`s... see the `stack` field of `MatcherPos`.
+///
+/// This is used by `inner_parse_loop` to keep track of delimited submatchers that we have
+/// descended into.
+#[derive(Clone)]
+struct MatcherTtFrame<'tt> {
+    /// The "parent" matcher that we are descending into.
+    elts: TokenTreeOrTokenTreeSlice<'tt>,
+    /// The position of the "dot" in `elts` at the time we descended.
+    idx: usize,
+}
+
+type NamedMatchVec = SmallVec<[NamedMatch; 4]>;
+
+/// Represents a single "position" (aka "matcher position", aka "item"), as
+/// described in the module documentation.
+///
+/// Here:
+///
+/// - `'root` represents the lifetime of the stack slot that holds the root
+///   `MatcherPos`. As described in `MatcherPosHandle`, the root `MatcherPos`
+///   structure is stored on the stack, but subsequent instances are put into
+///   the heap.
+/// - `'tt` represents the lifetime of the token trees that this matcher
+///   position refers to.
+///
+/// It is important to distinguish these two lifetimes because we have a
+/// `SmallVec<TokenTreeOrTokenTreeSlice<'tt>>` below, and the destructor of
+/// that is considered to possibly access the data from its elements (it lacks
+/// a `#[may_dangle]` attribute). As a result, the compiler needs to know that
+/// all the elements in that `SmallVec` strictly outlive the root stack slot
+/// lifetime. By separating `'tt` from `'root`, we can show that.
+#[derive(Clone)]
+struct MatcherPos<'root, 'tt> {
+    /// The token or sequence of tokens that make up the matcher
+    top_elts: TokenTreeOrTokenTreeSlice<'tt>,
+
+    /// The position of the "dot" in this matcher
+    idx: usize,
+
+    /// The first span of source that the beginning of this matcher corresponds to. In other
+    /// words, the token in the source whose span is `sp_open` is matched against the first token of
+    /// the matcher.
+    sp_open: Span,
+
+    /// For each named metavar in the matcher, we keep track of token trees matched against the
+    /// metavar by the black box parser. In particular, there may be more than one match per
+    /// metavar if we are in a repetition (each repetition matches each of the variables).
+    /// Moreover, matchers and repetitions can be nested; the `matches` field is shared (hence the
+    /// `Rc`) among all "nested" matchers. `match_lo`, `match_cur`, and `match_hi` keep track of
+    /// the current position of the `self` matcher position in the shared `matches` list.
+    ///
+    /// Also, note that while we are descending into a sequence, matchers are given their own
+    /// `matches` vector. Only once we reach the end of a full repetition of the sequence do we add
+    /// all bound matches from the submatcher into the shared top-level `matches` vector. If `sep`
+    /// and `up` are `Some`, then `matches` is _not_ the shared top-level list. Instead, if one
+    /// wants the shared `matches`, one should use `up.matches`.
+    matches: Box<[Lrc<NamedMatchVec>]>,
+    /// The position in `matches` corresponding to the first metavar in this matcher's sequence of
+    /// token trees. In other words, the first metavar in the first token of `top_elts` corresponds
+    /// to `matches[match_lo]`.
+    match_lo: usize,
+    /// The position in `matches` corresponding to the metavar we are currently trying to match
+    /// against the source token stream. `match_lo <= match_cur <= match_hi`.
+    match_cur: usize,
+    /// Similar to `match_lo` except `match_hi` is the position in `matches` of the _last_ metavar
+    /// in this matcher.
+    match_hi: usize,
+
+    // The following fields are used if we are matching a repetition. If we aren't, they should be
+    // `None`.
+
+    /// The KleeneOp of this sequence if we are in a repetition.
+    seq_op: Option<mbe::KleeneOp>,
+
+    /// The separator if we are in a repetition.
+    sep: Option<Token>,
+
+    /// The "parent" matcher position if we are in a repetition. That is, the matcher position just
+    /// before we enter the sequence.
+    up: Option<MatcherPosHandle<'root, 'tt>>,
+
+    /// Specifically used to "unzip" token trees. By "unzip", we mean to unwrap the delimiters from
+    /// a delimited token tree (e.g., something wrapped in `(` `)`) or to get the contents of a doc
+    /// comment...
+    ///
+    /// When matching against matchers with nested delimited submatchers (e.g., `pat ( pat ( .. )
+    /// pat ) pat`), we need to keep track of the matchers we are descending into. This stack does
+    /// that where the bottom of the stack is the outermost matcher.
+    /// Also, throughout the comments, this "descent" is often referred to as "unzipping"...
+    stack: SmallVec<[MatcherTtFrame<'tt>; 1]>,
+}
+
+impl<'root, 'tt> MatcherPos<'root, 'tt> {
+    /// Adds `m` as a named match for the `idx`-th metavar.
+    fn push_match(&mut self, idx: usize, m: NamedMatch) {
+        let matches = Lrc::make_mut(&mut self.matches[idx]);
+        matches.push(m);
+    }
+}
+
+// Lots of MatcherPos instances are created at runtime. Allocating them on the
+// heap is slow. Furthermore, using SmallVec<MatcherPos> to allocate them all
+// on the stack is also slow, because MatcherPos is quite a large type and
+// instances get moved around a lot between vectors, which requires lots of
+// slow memcpy calls.
+//
+// Therefore, the initial MatcherPos is always allocated on the stack,
+// subsequent ones (of which there aren't that many) are allocated on the heap,
+// and this type is used to encapsulate both cases.
+enum MatcherPosHandle<'root, 'tt> {
+    Ref(&'root mut MatcherPos<'root, 'tt>),
+    Box(Box<MatcherPos<'root, 'tt>>),
+}
+
+impl<'root, 'tt> Clone for MatcherPosHandle<'root, 'tt> {
+    // This always produces a new Box.
+    fn clone(&self) -> Self {
+        MatcherPosHandle::Box(match *self {
+            MatcherPosHandle::Ref(ref r) => Box::new((**r).clone()),
+            MatcherPosHandle::Box(ref b) => b.clone(),
+        })
+    }
+}
+
+impl<'root, 'tt> Deref for MatcherPosHandle<'root, 'tt> {
+    type Target = MatcherPos<'root, 'tt>;
+    fn deref(&self) -> &Self::Target {
+        match *self {
+            MatcherPosHandle::Ref(ref r) => r,
+            MatcherPosHandle::Box(ref b) => b,
+        }
+    }
+}
+
+impl<'root, 'tt> DerefMut for MatcherPosHandle<'root, 'tt> {
+    fn deref_mut(&mut self) -> &mut MatcherPos<'root, 'tt> {
+        match *self {
+            MatcherPosHandle::Ref(ref mut r) => r,
+            MatcherPosHandle::Box(ref mut b) => b,
+        }
+    }
+}
+
+/// Represents the possible results of an attempted parse.
+crate enum ParseResult<T> {
+    /// Parsed successfully.
+    Success(T),
+    /// Arm failed to match. If the second parameter is `token::Eof`, it indicates an unexpected
+    /// end of macro invocation. Otherwise, it indicates that no rules expected the given token.
+    Failure(Token, &'static str),
+    /// Fatal error (malformed macro?). Abort compilation.
+    Error(syntax_pos::Span, String),
+}
+
+/// A `ParseResult` where the `Success` variant contains a mapping of `Ident`s to `NamedMatch`es.
+/// This represents the mapping of metavars to the token trees they bind to.
+crate type NamedParseResult = ParseResult<FxHashMap<Ident, NamedMatch>>;
+
+/// Count how many metavars are named in the given matcher `ms`.
+pub(super) fn count_names(ms: &[TokenTree]) -> usize {
+    ms.iter().fold(0, |count, elt| {
+        count + match *elt {
+            TokenTree::Sequence(_, ref seq) => seq.num_captures,
+            TokenTree::Delimited(_, ref delim) => count_names(&delim.tts),
+            TokenTree::MetaVar(..) => 0,
+            TokenTree::MetaVarDecl(..) => 1,
+            TokenTree::Token(..) => 0,
+        }
+    })
+}
+
+/// `len` `Vec`s (initially shared and empty) that will store matches of metavars.
+fn create_matches(len: usize) -> Box<[Lrc<NamedMatchVec>]> {
+    if len == 0 {
+        vec![]
+    } else {
+        let empty_matches = Lrc::new(SmallVec::new());
+        vec![empty_matches; len]
+    }.into_boxed_slice()
+}
+
+/// Generates the top-level matcher position in which the "dot" is before the first token of the
+/// matcher `ms` and we are going to start matching at the span `open` in the source.
+fn initial_matcher_pos<'root, 'tt>(ms: &'tt [TokenTree], open: Span) -> MatcherPos<'root, 'tt> {
+    let match_idx_hi = count_names(ms);
+    let matches = create_matches(match_idx_hi);
+    MatcherPos {
+        // Start with the top level matcher given to us
+        top_elts: TtSeq(ms), // "elts" is an abbr. for "elements"
+        // The "dot" is before the first token of the matcher
+        idx: 0,
+        // We start matching at the span `open` in the source code
+        sp_open: open,
+
+        // Initialize `matches` to a bunch of empty `Vec`s -- one for each metavar in `top_elts`.
+        // `match_lo` for `top_elts` is 0 and `match_hi` is `matches.len()`. `match_cur` is 0 since
+        // we haven't actually matched anything yet.
+        matches,
+        match_lo: 0,
+        match_cur: 0,
+        match_hi: match_idx_hi,
+
+        // Haven't descended into any delimiters, so empty stack
+        stack: smallvec![],
+
+        // Haven't descended into any sequences, so both of these are `None`.
+        seq_op: None,
+        sep: None,
+        up: None,
+    }
+}
+
+/// `NamedMatch` is a pattern-match result for a single `token::MATCH_NONTERMINAL`:
+/// so it is associated with a single ident in a parse, and all
+/// `MatchedNonterminal`s in the `NamedMatch` have the same non-terminal type
+/// (expr, item, etc). Each leaf in a single `NamedMatch` corresponds to a
+/// single `token::MATCH_NONTERMINAL` in the `TokenTree` that produced it.
+///
+/// The in-memory structure of a particular `NamedMatch` represents the match
+/// that occurred when a particular subset of a matcher was applied to a
+/// particular token tree.
+///
+/// The width of each `MatchedSeq` in the `NamedMatch`, and the identity of
+/// the `MatchedNonterminal`s, will depend on the token tree it was applied
+/// to: each `MatchedSeq` corresponds to a single `TTSeq` in the originating
+/// token tree. The depth of the `NamedMatch` structure will therefore depend
+/// only on the nesting depth of `ast::TTSeq`s in the originating
+/// token tree it was derived from.
+#[derive(Debug, Clone)]
+crate enum NamedMatch {
+    MatchedSeq(Lrc<NamedMatchVec>, DelimSpan),
+    MatchedNonterminal(Lrc<Nonterminal>),
+}
+
+/// Takes a sequence of token trees `ms` representing a matcher which successfully matched input
+/// and an iterator of items that matched input and produces a `NamedParseResult`.
+fn nameize<I: Iterator<Item = NamedMatch>>(
+    sess: &ParseSess,
+    ms: &[TokenTree],
+    mut res: I,
+) -> NamedParseResult {
+    // Recursively descend into each type of matcher (e.g., sequences, delimited, metavars) and make
+    // sure that each metavar has _exactly one_ binding. If a metavar does not have exactly one
+    // binding, then there is an error. If it does, then we insert the binding into the
+    // `NamedParseResult`.
+    fn n_rec<I: Iterator<Item = NamedMatch>>(
+        sess: &ParseSess,
+        m: &TokenTree,
+        res: &mut I,
+        ret_val: &mut FxHashMap<Ident, NamedMatch>,
+    ) -> Result<(), (syntax_pos::Span, String)> {
+        match *m {
+            TokenTree::Sequence(_, ref seq) => for next_m in &seq.tts {
+                n_rec(sess, next_m, res.by_ref(), ret_val)?
+            },
+            TokenTree::Delimited(_, ref delim) => for next_m in &delim.tts {
+                n_rec(sess, next_m, res.by_ref(), ret_val)?;
+            },
+            TokenTree::MetaVarDecl(span, _, id) if id.name == kw::Invalid => {
+                if sess.missing_fragment_specifiers.borrow_mut().remove(&span) {
+                    return Err((span, "missing fragment specifier".to_string()));
+                }
+            }
+            TokenTree::MetaVarDecl(sp, bind_name, _) => {
+                match ret_val.entry(bind_name) {
+                    Vacant(spot) => {
+                        spot.insert(res.next().unwrap());
+                    }
+                    Occupied(..) => {
+                        return Err((sp, format!("duplicated bind name: {}", bind_name)))
+                    }
+                }
+            }
+            TokenTree::MetaVar(..) | TokenTree::Token(..) => (),
+        }
+
+        Ok(())
+    }
+
+    let mut ret_val = FxHashMap::default();
+    for m in ms {
+        match n_rec(sess, m, res.by_ref(), &mut ret_val) {
+            Ok(_) => {}
+            Err((sp, msg)) => return Error(sp, msg),
+        }
+    }
+
+    Success(ret_val)
+}
+
+/// Performs a token equality check, ignoring syntax context (that is, an unhygienic comparison)
+fn token_name_eq(t1: &Token, t2: &Token) -> bool {
+    if let (Some((ident1, is_raw1)), Some((ident2, is_raw2))) = (t1.ident(), t2.ident()) {
+        ident1.name == ident2.name && is_raw1 == is_raw2
+    } else if let (Some(ident1), Some(ident2)) = (t1.lifetime(), t2.lifetime()) {
+        ident1.name == ident2.name
+    } else {
+        t1.kind == t2.kind
+    }
+}
+
+/// Process the matcher positions of `cur_items` until it is empty. In the process, this will
+/// produce more items in `next_items`, `eof_items`, and `bb_items`.
+///
+/// For more info about the how this happens, see the module-level doc comments and the inline
+/// comments of this function.
+///
+/// # Parameters
+///
+/// - `sess`: the parsing session into which errors are emitted.
+/// - `cur_items`: the set of current items to be processed. This should be empty by the end of a
+///   successful execution of this function.
+/// - `next_items`: the set of newly generated items. These are used to replenish `cur_items` in
+///   the function `parse`.
+/// - `eof_items`: the set of items that would be valid if this was the EOF.
+/// - `bb_items`: the set of items that are waiting for the black-box parser.
+/// - `token`: the current token of the parser.
+/// - `span`: the `Span` in the source code corresponding to the token trees we are trying to match
+///   against the matcher positions in `cur_items`.
+///
+/// # Returns
+///
+/// A `ParseResult`. Note that matches are kept track of through the items generated.
+fn inner_parse_loop<'root, 'tt>(
+    sess: &ParseSess,
+    cur_items: &mut SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>,
+    next_items: &mut Vec<MatcherPosHandle<'root, 'tt>>,
+    eof_items: &mut SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>,
+    bb_items: &mut SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>,
+    token: &Token,
+) -> ParseResult<()> {
+    // Pop items from `cur_items` until it is empty.
+    while let Some(mut item) = cur_items.pop() {
+        // When unzipped trees end, remove them. This corresponds to backtracking out of a
+        // delimited submatcher into which we already descended. In backtracking out again, we need
+        // to advance the "dot" past the delimiters in the outer matcher.
+        while item.idx >= item.top_elts.len() {
+            match item.stack.pop() {
+                Some(MatcherTtFrame { elts, idx }) => {
+                    item.top_elts = elts;
+                    item.idx = idx + 1;
+                }
+                None => break,
+            }
+        }
+
+        // Get the current position of the "dot" (`idx`) in `item` and the number of token trees in
+        // the matcher (`len`).
+        let idx = item.idx;
+        let len = item.top_elts.len();
+
+        // If `idx >= len`, then we are at or past the end of the matcher of `item`.
+        if idx >= len {
+            // We are repeating iff there is a parent. If the matcher is inside of a repetition,
+            // then we could be at the end of a sequence or at the beginning of the next
+            // repetition.
+            if item.up.is_some() {
+                // At this point, regardless of whether there is a separator, we should add all
+                // matches from the complete repetition of the sequence to the shared, top-level
+                // `matches` list (actually, `up.matches`, which could itself not be the top-level,
+                // but anyway...). Moreover, we add another item to `cur_items` in which the "dot"
+                // is at the end of the `up` matcher. This ensures that the "dot" in the `up`
+                // matcher is also advanced sufficiently.
+                //
+                // NOTE: removing the condition `idx == len` allows trailing separators.
+                if idx == len {
+                    // Get the `up` matcher
+                    let mut new_pos = item.up.clone().unwrap();
+
+                    // Add matches from this repetition to the `matches` of `up`
+                    for idx in item.match_lo..item.match_hi {
+                        let sub = item.matches[idx].clone();
+                        let span = DelimSpan::from_pair(item.sp_open, token.span);
+                        new_pos.push_match(idx, MatchedSeq(sub, span));
+                    }
+
+                    // Move the "dot" past the repetition in `up`
+                    new_pos.match_cur = item.match_hi;
+                    new_pos.idx += 1;
+                    cur_items.push(new_pos);
+                }
+
+                // Check if we need a separator.
+                if idx == len && item.sep.is_some() {
+                    // We have a separator, and it is the current token. We can advance past the
+                    // separator token.
+                    if item.sep
+                        .as_ref()
+                        .map(|sep| token_name_eq(token, sep))
+                        .unwrap_or(false)
+                    {
+                        item.idx += 1;
+                        next_items.push(item);
+                    }
+                }
+                // We don't need a separator. Move the "dot" back to the beginning of the matcher
+                // and try to match again UNLESS we are only allowed to have _one_ repetition.
+                else if item.seq_op != Some(mbe::KleeneOp::ZeroOrOne) {
+                    item.match_cur = item.match_lo;
+                    item.idx = 0;
+                    cur_items.push(item);
+                }
+            }
+            // If we are not in a repetition, then being at the end of a matcher means that we have
+            // reached the potential end of the input.
+            else {
+                eof_items.push(item);
+            }
+        }
+        // We are in the middle of a matcher.
+        else {
+            // Look at what token in the matcher we are trying to match the current token (`token`)
+            // against. Depending on that, we may generate new items.
+            match item.top_elts.get_tt(idx) {
+                // Need to descend into a sequence
+                TokenTree::Sequence(sp, seq) => {
+                    // Examine the case where there are 0 matches of this sequence. We are
+                    // implicitly disallowing OneOrMore from having 0 matches here. Thus, that will
+                    // result in a "no rules expected token" error by virtue of this matcher not
+                    // working.
+                    if seq.kleene.op == mbe::KleeneOp::ZeroOrMore
+                        || seq.kleene.op == mbe::KleeneOp::ZeroOrOne
+                    {
+                        let mut new_item = item.clone();
+                        new_item.match_cur += seq.num_captures;
+                        new_item.idx += 1;
+                        for idx in item.match_cur..item.match_cur + seq.num_captures {
+                            new_item.push_match(idx, MatchedSeq(Lrc::new(smallvec![]), sp));
+                        }
+                        cur_items.push(new_item);
+                    }
+
+                    let matches = create_matches(item.matches.len());
+                    cur_items.push(MatcherPosHandle::Box(Box::new(MatcherPos {
+                        stack: smallvec![],
+                        sep: seq.separator.clone(),
+                        seq_op: Some(seq.kleene.op),
+                        idx: 0,
+                        matches,
+                        match_lo: item.match_cur,
+                        match_cur: item.match_cur,
+                        match_hi: item.match_cur + seq.num_captures,
+                        up: Some(item),
+                        sp_open: sp.open,
+                        top_elts: Tt(TokenTree::Sequence(sp, seq)),
+                    })));
+                }
+
+                // We need to match a metavar (but the identifier is invalid)... this is an error
+                TokenTree::MetaVarDecl(span, _, id) if id.name == kw::Invalid => {
+                    if sess.missing_fragment_specifiers.borrow_mut().remove(&span) {
+                        return Error(span, "missing fragment specifier".to_string());
+                    }
+                }
+
+                // We need to match a metavar with a valid ident... call out to the black-box
+                // parser by adding an item to `bb_items`.
+                TokenTree::MetaVarDecl(_, _, id) => {
+                    // Built-in nonterminals never start with these tokens,
+                    // so we can eliminate them from consideration.
+                    if may_begin_with(token, id.name) {
+                        bb_items.push(item);
+                    }
+                }
+
+                // We need to descend into a delimited submatcher or a doc comment. To do this, we
+                // push the current matcher onto a stack and push a new item containing the
+                // submatcher onto `cur_items`.
+                //
+                // At the beginning of the loop, if we reach the end of the delimited submatcher,
+                // we pop the stack to backtrack out of the descent.
+                seq @ TokenTree::Delimited(..) |
+                seq @ TokenTree::Token(Token { kind: DocComment(..), .. }) => {
+                    let lower_elts = mem::replace(&mut item.top_elts, Tt(seq));
+                    let idx = item.idx;
+                    item.stack.push(MatcherTtFrame {
+                        elts: lower_elts,
+                        idx,
+                    });
+                    item.idx = 0;
+                    cur_items.push(item);
+                }
+
+                // We just matched a normal token. We can just advance the parser.
+                TokenTree::Token(t) if token_name_eq(&t, token) => {
+                    item.idx += 1;
+                    next_items.push(item);
+                }
+
+                // There was another token that was not `token`... This means we can't add any
+                // rules. NOTE that this is not necessarily an error unless _all_ items in
+                // `cur_items` end up doing this. There may still be some other matchers that do
+                // end up working out.
+                TokenTree::Token(..) | TokenTree::MetaVar(..) => {}
+            }
+        }
+    }
+
+    // Yay a successful parse (so far)!
+    Success(())
+}
+
+/// Use the given sequence of token trees (`ms`) as a matcher. Match the given token stream `tts`
+/// against it and return the match.
+///
+/// # Parameters
+///
+/// - `sess`: The session into which errors are emitted
+/// - `tts`: The tokenstream we are matching against the pattern `ms`
+/// - `ms`: A sequence of token trees representing a pattern against which we are matching
+/// - `directory`: Information about the file locations (needed for the black-box parser)
+/// - `recurse_into_modules`: Whether or not to recurse into modules (needed for the black-box
+///   parser)
+pub(super) fn parse(
+    sess: &ParseSess,
+    tts: TokenStream,
+    ms: &[TokenTree],
+    directory: Option<Directory<'_>>,
+    recurse_into_modules: bool,
+) -> NamedParseResult {
+    // Create a parser that can be used for the "black box" parts.
+    let mut parser = Parser::new(
+        sess,
+        tts,
+        directory,
+        recurse_into_modules,
+        true,
+        syntax::MACRO_ARGUMENTS,
+    );
+
+    // A queue of possible matcher positions. We initialize it with the matcher position in which
+    // the "dot" is before the first token of the first token tree in `ms`. `inner_parse_loop` then
+    // processes all of these possible matcher positions and produces possible next positions into
+    // `next_items`. After some post-processing, the contents of `next_items` replenish `cur_items`
+    // and we start over again.
+    //
+    // This MatcherPos instance is allocated on the stack. All others -- and
+    // there are frequently *no* others! -- are allocated on the heap.
+    let mut initial = initial_matcher_pos(ms, parser.token.span);
+    let mut cur_items = smallvec![MatcherPosHandle::Ref(&mut initial)];
+    let mut next_items = Vec::new();
+
+    loop {
+        // Matcher positions black-box parsed by parser.rs (`parser`)
+        let mut bb_items = SmallVec::new();
+
+        // Matcher positions that would be valid if the macro invocation was over now
+        let mut eof_items = SmallVec::new();
+        assert!(next_items.is_empty());
+
+        // Process `cur_items` until either we have finished the input or we need to get some
+        // parsing from the black-box parser done. The result is that `next_items` will contain a
+        // bunch of possible next matcher positions in `next_items`.
+        match inner_parse_loop(
+            sess,
+            &mut cur_items,
+            &mut next_items,
+            &mut eof_items,
+            &mut bb_items,
+            &parser.token,
+        ) {
+            Success(_) => {}
+            Failure(token, msg) => return Failure(token, msg),
+            Error(sp, msg) => return Error(sp, msg),
+        }
+
+        // inner parse loop handled all cur_items, so it's empty
+        assert!(cur_items.is_empty());
+
+        // We need to do some post processing after the `inner_parser_loop`.
+        //
+        // Error messages here could be improved with links to original rules.
+
+        // If we reached the EOF, check that there is EXACTLY ONE possible matcher. Otherwise,
+        // either the parse is ambiguous (which should never happen) or there is a syntax error.
+        if parser.token == token::Eof {
+            if eof_items.len() == 1 {
+                let matches = eof_items[0]
+                    .matches
+                    .iter_mut()
+                    .map(|dv| Lrc::make_mut(dv).pop().unwrap());
+                return nameize(sess, ms, matches);
+            } else if eof_items.len() > 1 {
+                return Error(
+                    parser.token.span,
+                    "ambiguity: multiple successful parses".to_string(),
+                );
+            } else {
+                return Failure(
+                    Token::new(token::Eof, if parser.token.span.is_dummy() {
+                        parser.token.span
+                    } else {
+                        sess.source_map().next_point(parser.token.span)
+                    }),
+                    "missing tokens in macro arguments",
+                );
+            }
+        }
+        // Performance hack: eof_items may share matchers via Rc with other things that we want
+        // to modify. Dropping eof_items now may drop these refcounts to 1, preventing an
+        // unnecessary implicit clone later in Rc::make_mut.
+        drop(eof_items);
+
+        // Another possibility is that we need to call out to parse some rust nonterminal
+        // (black-box) parser. However, if there is not EXACTLY ONE of these, something is wrong.
+        if (!bb_items.is_empty() && !next_items.is_empty()) || bb_items.len() > 1 {
+            let nts = bb_items
+                .iter()
+                .map(|item| match item.top_elts.get_tt(item.idx) {
+                    TokenTree::MetaVarDecl(_, bind, name) => format!("{} ('{}')", name, bind),
+                    _ => panic!(),
+                })
+                .collect::<Vec<String>>()
+                .join(" or ");
+
+            return Error(
+                parser.token.span,
+                format!(
+                    "local ambiguity: multiple parsing options: {}",
+                    match next_items.len() {
+                        0 => format!("built-in NTs {}.", nts),
+                        1 => format!("built-in NTs {} or 1 other option.", nts),
+                        n => format!("built-in NTs {} or {} other options.", nts, n),
+                    }
+                ),
+            );
+        }
+        // If there are no possible next positions AND we aren't waiting for the black-box parser,
+        // then there is a syntax error.
+        else if bb_items.is_empty() && next_items.is_empty() {
+            return Failure(
+                parser.token.take(),
+                "no rules expected this token in macro call",
+            );
+        }
+        // Dump all possible `next_items` into `cur_items` for the next iteration.
+        else if !next_items.is_empty() {
+            // Now process the next token
+            cur_items.extend(next_items.drain(..));
+            parser.bump();
+        }
+        // Finally, we have the case where we need to call the black-box parser to get some
+        // nonterminal.
+        else {
+            assert_eq!(bb_items.len(), 1);
+
+            let mut item = bb_items.pop().unwrap();
+            if let TokenTree::MetaVarDecl(span, _, ident) = item.top_elts.get_tt(item.idx) {
+                let match_cur = item.match_cur;
+                item.push_match(
+                    match_cur,
+                    MatchedNonterminal(Lrc::new(parse_nt(&mut parser, span, ident.name))),
+                );
+                item.idx += 1;
+                item.match_cur += 1;
+            } else {
+                unreachable!()
+            }
+            cur_items.push(item);
+        }
+
+        assert!(!cur_items.is_empty());
+    }
+}
+
+/// The token is an identifier, but not `_`.
+/// We prohibit passing `_` to macros expecting `ident` for now.
+fn get_macro_name(token: &Token) -> Option<(Name, bool)> {
+    match token.kind {
+        token::Ident(name, is_raw) if name != kw::Underscore => Some((name, is_raw)),
+        _ => None,
+    }
+}
+
+/// Checks whether a non-terminal may begin with a particular token.
+///
+/// Returning `false` is a *stability guarantee* that such a matcher will *never* begin with that
+/// token. Be conservative (return true) if not sure.
+fn may_begin_with(token: &Token, name: Name) -> bool {
+    /// Checks whether the non-terminal may contain a single (non-keyword) identifier.
+    fn may_be_ident(nt: &token::Nonterminal) -> bool {
+        match *nt {
+            token::NtItem(_) | token::NtBlock(_) | token::NtVis(_) => false,
+            _ => true,
+        }
+    }
+
+    match name {
+        sym::expr => token.can_begin_expr()
+            // This exception is here for backwards compatibility.
+            && !token.is_keyword(kw::Let),
+        sym::ty => token.can_begin_type(),
+        sym::ident => get_macro_name(token).is_some(),
+        sym::literal => token.can_begin_literal_or_bool(),
+        sym::vis => match token.kind {
+            // The follow-set of :vis + "priv" keyword + interpolated
+            token::Comma | token::Ident(..) | token::Interpolated(_) => true,
+            _ => token.can_begin_type(),
+        },
+        sym::block => match token.kind {
+            token::OpenDelim(token::Brace) => true,
+            token::Interpolated(ref nt) => match **nt {
+                token::NtItem(_)
+                | token::NtPat(_)
+                | token::NtTy(_)
+                | token::NtIdent(..)
+                | token::NtMeta(_)
+                | token::NtPath(_)
+                | token::NtVis(_) => false, // none of these may start with '{'.
+                _ => true,
+            },
+            _ => false,
+        },
+        sym::path | sym::meta => match token.kind {
+            token::ModSep | token::Ident(..) => true,
+            token::Interpolated(ref nt) => match **nt {
+                token::NtPath(_) | token::NtMeta(_) => true,
+                _ => may_be_ident(&nt),
+            },
+            _ => false,
+        },
+        sym::pat => match token.kind {
+            token::Ident(..) |               // box, ref, mut, and other identifiers (can stricten)
+            token::OpenDelim(token::Paren) |    // tuple pattern
+            token::OpenDelim(token::Bracket) |  // slice pattern
+            token::BinOp(token::And) |          // reference
+            token::BinOp(token::Minus) |        // negative literal
+            token::AndAnd |                     // double reference
+            token::Literal(..) |                // literal
+            token::DotDot |                     // range pattern (future compat)
+            token::DotDotDot |                  // range pattern (future compat)
+            token::ModSep |                     // path
+            token::Lt |                         // path (UFCS constant)
+            token::BinOp(token::Shl) => true,   // path (double UFCS)
+            token::Interpolated(ref nt) => may_be_ident(nt),
+            _ => false,
+        },
+        sym::lifetime => match token.kind {
+            token::Lifetime(_) => true,
+            token::Interpolated(ref nt) => match **nt {
+                token::NtLifetime(_) | token::NtTT(_) => true,
+                _ => false,
+            },
+            _ => false,
+        },
+        _ => match token.kind {
+            token::CloseDelim(_) => false,
+            _ => true,
+        },
+    }
+}
+
+/// A call to the "black-box" parser to parse some Rust non-terminal.
+///
+/// # Parameters
+///
+/// - `p`: the "black-box" parser to use
+/// - `sp`: the `Span` we want to parse
+/// - `name`: the name of the metavar _matcher_ we want to match (e.g., `tt`, `ident`, `block`,
+///   etc...)
+///
+/// # Returns
+///
+/// The parsed non-terminal.
+fn parse_nt(p: &mut Parser<'_>, sp: Span, name: Symbol) -> Nonterminal {
+    if name == sym::tt {
+        return token::NtTT(p.parse_token_tree());
+    }
+    // check at the beginning and the parser checks after each bump
+    p.process_potential_macro_variable();
+    match parse_nt_inner(p, sp, name) {
+        Ok(nt) => nt,
+        Err(mut err) => {
+            err.emit();
+            FatalError.raise();
+        }
+    }
+}
+
+fn parse_nt_inner<'a>(p: &mut Parser<'a>, sp: Span, name: Symbol) -> PResult<'a, Nonterminal> {
+    Ok(match name {
+        sym::item => match p.parse_item()? {
+            Some(i) => token::NtItem(i),
+            None => return Err(p.fatal("expected an item keyword")),
+        },
+        sym::block => token::NtBlock(p.parse_block()?),
+        sym::stmt => match p.parse_stmt()? {
+            Some(s) => token::NtStmt(s),
+            None => return Err(p.fatal("expected a statement")),
+        },
+        sym::pat => token::NtPat(p.parse_pat(None)?),
+        sym::expr => token::NtExpr(p.parse_expr()?),
+        sym::literal => token::NtLiteral(p.parse_literal_maybe_minus()?),
+        sym::ty => token::NtTy(p.parse_ty()?),
+        // this could be handled like a token, since it is one
+        sym::ident => if let Some((name, is_raw)) = get_macro_name(&p.token) {
+            let span = p.token.span;
+            p.bump();
+            token::NtIdent(Ident::new(name, span), is_raw)
+        } else {
+            let token_str = pprust::token_to_string(&p.token);
+            return Err(p.fatal(&format!("expected ident, found {}", &token_str)));
+        }
+        sym::path => token::NtPath(p.parse_path(PathStyle::Type)?),
+        sym::meta => token::NtMeta(p.parse_attr_item()?),
+        sym::vis => token::NtVis(p.parse_visibility(true)?),
+        sym::lifetime => if p.check_lifetime() {
+            token::NtLifetime(p.expect_lifetime().ident)
+        } else {
+            let token_str = pprust::token_to_string(&p.token);
+            return Err(p.fatal(&format!("expected a lifetime, found `{}`", &token_str)));
+        }
+        // this is not supposed to happen, since it has been checked
+        // when compiling the macro.
+        _ => p.span_bug(sp, "invalid fragment specifier"),
+    })
+}
diff --git a/src/libsyntax_expand/mbe/macro_rules.rs b/src/libsyntax_expand/mbe/macro_rules.rs
new file mode 100644
index 00000000000..9a4130b2d8d
--- /dev/null
+++ b/src/libsyntax_expand/mbe/macro_rules.rs
@@ -0,0 +1,1192 @@
+use crate::base::{DummyResult, ExtCtxt, MacResult, TTMacroExpander};
+use crate::base::{SyntaxExtension, SyntaxExtensionKind};
+use crate::expand::{AstFragment, AstFragmentKind, ensure_complete_parse, parse_ast_fragment};
+use crate::mbe;
+use crate::mbe::macro_check;
+use crate::mbe::macro_parser::parse;
+use crate::mbe::macro_parser::{Error, Failure, Success};
+use crate::mbe::macro_parser::{MatchedNonterminal, MatchedSeq, NamedParseResult};
+use crate::mbe::transcribe::transcribe;
+
+use syntax::ast;
+use syntax::attr::{self, TransparencyError};
+use syntax::edition::Edition;
+use syntax::feature_gate::Features;
+use syntax::parse::parser::Parser;
+use syntax::parse::token::TokenKind::*;
+use syntax::parse::token::{self, NtTT, Token};
+use syntax::parse::Directory;
+use syntax::print::pprust;
+use syntax::sess::ParseSess;
+use syntax::symbol::{kw, sym, Symbol};
+use syntax::tokenstream::{DelimSpan, TokenStream};
+
+use errors::{DiagnosticBuilder, FatalError};
+use log::debug;
+use syntax_pos::hygiene::Transparency;
+use syntax_pos::Span;
+
+use rustc_data_structures::fx::FxHashMap;
+use std::borrow::Cow;
+use std::collections::hash_map::Entry;
+use std::slice;
+
+use errors::Applicability;
+use rustc_data_structures::sync::Lrc;
+
+const VALID_FRAGMENT_NAMES_MSG: &str = "valid fragment specifiers are \
+                                        `ident`, `block`, `stmt`, `expr`, `pat`, `ty`, `lifetime`, \
+                                        `literal`, `path`, `meta`, `tt`, `item` and `vis`";
+
+crate struct ParserAnyMacro<'a> {
+    parser: Parser<'a>,
+
+    /// Span of the expansion site of the macro this parser is for
+    site_span: Span,
+    /// The ident of the macro we're parsing
+    macro_ident: ast::Ident,
+    arm_span: Span,
+}
+
+crate fn annotate_err_with_kind(
+    err: &mut DiagnosticBuilder<'_>,
+    kind: AstFragmentKind,
+    span: Span,
+) {
+    match kind {
+        AstFragmentKind::Ty => {
+            err.span_label(span, "this macro call doesn't expand to a type");
+        }
+        AstFragmentKind::Pat => {
+            err.span_label(span, "this macro call doesn't expand to a pattern");
+        }
+        _ => {}
+    };
+}
+
+impl<'a> ParserAnyMacro<'a> {
+    crate fn make(mut self: Box<ParserAnyMacro<'a>>, kind: AstFragmentKind) -> AstFragment {
+        let ParserAnyMacro { site_span, macro_ident, ref mut parser, arm_span } = *self;
+        let fragment = panictry!(parse_ast_fragment(parser, kind, true).map_err(|mut e| {
+            if parser.token == token::Eof && e.message().ends_with(", found `<eof>`") {
+                if !e.span.is_dummy() {
+                    // early end of macro arm (#52866)
+                    e.replace_span_with(parser.sess.source_map().next_point(parser.token.span));
+                }
+                let msg = &e.message[0];
+                e.message[0] = (
+                    format!(
+                        "macro expansion ends with an incomplete expression: {}",
+                        msg.0.replace(", found `<eof>`", ""),
+                    ),
+                    msg.1,
+                );
+            }
+            if e.span.is_dummy() {
+                // Get around lack of span in error (#30128)
+                e.replace_span_with(site_span);
+                if parser.sess.source_map().span_to_filename(arm_span).is_real() {
+                    e.span_label(arm_span, "in this macro arm");
+                }
+            } else if !parser.sess.source_map().span_to_filename(parser.token.span).is_real() {
+                e.span_label(site_span, "in this macro invocation");
+            }
+            match kind {
+                AstFragmentKind::Pat if macro_ident.name == sym::vec => {
+                    let mut suggestion = None;
+                    if let Ok(code) = parser.sess.source_map().span_to_snippet(site_span) {
+                        if let Some(bang) = code.find('!') {
+                            suggestion = Some(code[bang + 1..].to_string());
+                        }
+                    }
+                    if let Some(suggestion) = suggestion {
+                        e.span_suggestion(
+                            site_span,
+                            "use a slice pattern here instead",
+                            suggestion,
+                            Applicability::MachineApplicable,
+                        );
+                    } else {
+                        e.span_label(
+                            site_span,
+                            "use a slice pattern here instead",
+                        );
+                    }
+                    e.help("for more information, see https://doc.rust-lang.org/edition-guide/\
+                            rust-2018/slice-patterns.html");
+                }
+                _ => annotate_err_with_kind(&mut e, kind, site_span),
+            };
+            e
+        }));
+
+        // We allow semicolons at the end of expressions -- e.g., the semicolon in
+        // `macro_rules! m { () => { panic!(); } }` isn't parsed by `.parse_expr()`,
+        // but `m!()` is allowed in expression positions (cf. issue #34706).
+        if kind == AstFragmentKind::Expr && parser.token == token::Semi {
+            parser.bump();
+        }
+
+        // Make sure we don't have any tokens left to parse so we don't silently drop anything.
+        let path = ast::Path::from_ident(macro_ident.with_span_pos(site_span));
+        ensure_complete_parse(parser, &path, kind.name(), site_span);
+        fragment
+    }
+}
+
+struct MacroRulesMacroExpander {
+    name: ast::Ident,
+    span: Span,
+    transparency: Transparency,
+    lhses: Vec<mbe::TokenTree>,
+    rhses: Vec<mbe::TokenTree>,
+    valid: bool,
+}
+
+impl TTMacroExpander for MacroRulesMacroExpander {
+    fn expand<'cx>(
+        &self,
+        cx: &'cx mut ExtCtxt<'_>,
+        sp: Span,
+        input: TokenStream,
+    ) -> Box<dyn MacResult + 'cx> {
+        if !self.valid {
+            return DummyResult::any(sp);
+        }
+        generic_extension(
+            cx, sp, self.span, self.name, self.transparency, input, &self.lhses, &self.rhses
+        )
+    }
+}
+
+fn trace_macros_note(cx: &mut ExtCtxt<'_>, sp: Span, message: String) {
+    let sp = sp.macro_backtrace().last().map(|trace| trace.call_site).unwrap_or(sp);
+    cx.expansions.entry(sp).or_default().push(message);
+}
+
+/// Given `lhses` and `rhses`, this is the new macro we create
+fn generic_extension<'cx>(
+    cx: &'cx mut ExtCtxt<'_>,
+    sp: Span,
+    def_span: Span,
+    name: ast::Ident,
+    transparency: Transparency,
+    arg: TokenStream,
+    lhses: &[mbe::TokenTree],
+    rhses: &[mbe::TokenTree],
+) -> Box<dyn MacResult + 'cx> {
+    if cx.trace_macros() {
+        let msg = format!("expanding `{}! {{ {} }}`", name, pprust::tts_to_string(arg.clone()));
+        trace_macros_note(cx, sp, msg);
+    }
+
+    // Which arm's failure should we report? (the one furthest along)
+    let mut best_failure: Option<(Token, &str)> = None;
+
+    for (i, lhs) in lhses.iter().enumerate() {
+        // try each arm's matchers
+        let lhs_tt = match *lhs {
+            mbe::TokenTree::Delimited(_, ref delim) => &delim.tts[..],
+            _ => cx.span_bug(sp, "malformed macro lhs"),
+        };
+
+        match parse_tt(cx, lhs_tt, arg.clone()) {
+            Success(named_matches) => {
+                let rhs = match rhses[i] {
+                    // ignore delimiters
+                    mbe::TokenTree::Delimited(_, ref delimed) => delimed.tts.clone(),
+                    _ => cx.span_bug(sp, "malformed macro rhs"),
+                };
+                let arm_span = rhses[i].span();
+
+                let rhs_spans = rhs.iter().map(|t| t.span()).collect::<Vec<_>>();
+                // rhs has holes ( `$id` and `$(...)` that need filled)
+                let mut tts = transcribe(cx, &named_matches, rhs, transparency);
+
+                // Replace all the tokens for the corresponding positions in the macro, to maintain
+                // proper positions in error reporting, while maintaining the macro_backtrace.
+                if rhs_spans.len() == tts.len() {
+                    tts = tts.map_enumerated(|i, mut tt| {
+                        let mut sp = rhs_spans[i];
+                        sp = sp.with_ctxt(tt.span().ctxt());
+                        tt.set_span(sp);
+                        tt
+                    });
+                }
+
+                if cx.trace_macros() {
+                    let msg = format!("to `{}`", pprust::tts_to_string(tts.clone()));
+                    trace_macros_note(cx, sp, msg);
+                }
+
+                let directory = Directory {
+                    path: Cow::from(cx.current_expansion.module.directory.as_path()),
+                    ownership: cx.current_expansion.directory_ownership,
+                };
+                let mut p = Parser::new(cx.parse_sess(), tts, Some(directory), true, false, None);
+                p.root_module_name =
+                    cx.current_expansion.module.mod_path.last().map(|id| id.as_str().to_string());
+                p.last_type_ascription = cx.current_expansion.prior_type_ascription;
+
+                p.process_potential_macro_variable();
+                // Let the context choose how to interpret the result.
+                // Weird, but useful for X-macros.
+                return Box::new(ParserAnyMacro {
+                    parser: p,
+
+                    // Pass along the original expansion site and the name of the macro
+                    // so we can print a useful error message if the parse of the expanded
+                    // macro leaves unparsed tokens.
+                    site_span: sp,
+                    macro_ident: name,
+                    arm_span,
+                });
+            }
+            Failure(token, msg) => match best_failure {
+                Some((ref best_token, _)) if best_token.span.lo() >= token.span.lo() => {}
+                _ => best_failure = Some((token, msg)),
+            },
+            Error(err_sp, ref msg) => cx.span_fatal(err_sp.substitute_dummy(sp), &msg[..]),
+        }
+    }
+
+    let (token, label) = best_failure.expect("ran no matchers");
+    let span = token.span.substitute_dummy(sp);
+    let mut err = cx.struct_span_err(span, &parse_failure_msg(&token));
+    err.span_label(span, label);
+    if !def_span.is_dummy() && cx.source_map().span_to_filename(def_span).is_real() {
+        err.span_label(cx.source_map().def_span(def_span), "when calling this macro");
+    }
+
+    // Check whether there's a missing comma in this macro call, like `println!("{}" a);`
+    if let Some((arg, comma_span)) = arg.add_comma() {
+        for lhs in lhses {
+            // try each arm's matchers
+            let lhs_tt = match *lhs {
+                mbe::TokenTree::Delimited(_, ref delim) => &delim.tts[..],
+                _ => continue,
+            };
+            match parse_tt(cx, lhs_tt, arg.clone()) {
+                Success(_) => {
+                    if comma_span.is_dummy() {
+                        err.note("you might be missing a comma");
+                    } else {
+                        err.span_suggestion_short(
+                            comma_span,
+                            "missing comma here",
+                            ", ".to_string(),
+                            Applicability::MachineApplicable,
+                        );
+                    }
+                }
+                _ => {}
+            }
+        }
+    }
+    err.emit();
+    cx.trace_macros_diag();
+    DummyResult::any(sp)
+}
+
+// Note that macro-by-example's input is also matched against a token tree:
+//                   $( $lhs:tt => $rhs:tt );+
+//
+// Holy self-referential!
+
+/// Converts a macro item into a syntax extension.
+pub fn compile_declarative_macro(
+    sess: &ParseSess,
+    features: &Features,
+    def: &ast::Item,
+    edition: Edition,
+) -> SyntaxExtension {
+    let diag = &sess.span_diagnostic;
+    let lhs_nm = ast::Ident::new(sym::lhs, def.span);
+    let rhs_nm = ast::Ident::new(sym::rhs, def.span);
+    let tt_spec = ast::Ident::new(sym::tt, def.span);
+
+    // Parse the macro_rules! invocation
+    let body = match def.kind {
+        ast::ItemKind::MacroDef(ref body) => body,
+        _ => unreachable!(),
+    };
+
+    // The pattern that macro_rules matches.
+    // The grammar for macro_rules! is:
+    // $( $lhs:tt => $rhs:tt );+
+    // ...quasiquoting this would be nice.
+    // These spans won't matter, anyways
+    let argument_gram = vec![
+        mbe::TokenTree::Sequence(
+            DelimSpan::dummy(),
+            Lrc::new(mbe::SequenceRepetition {
+                tts: vec![
+                    mbe::TokenTree::MetaVarDecl(def.span, lhs_nm, tt_spec),
+                    mbe::TokenTree::token(token::FatArrow, def.span),
+                    mbe::TokenTree::MetaVarDecl(def.span, rhs_nm, tt_spec),
+                ],
+                separator: Some(Token::new(
+                    if body.legacy { token::Semi } else { token::Comma },
+                    def.span,
+                )),
+                kleene: mbe::KleeneToken::new(mbe::KleeneOp::OneOrMore, def.span),
+                num_captures: 2,
+            }),
+        ),
+        // to phase into semicolon-termination instead of semicolon-separation
+        mbe::TokenTree::Sequence(
+            DelimSpan::dummy(),
+            Lrc::new(mbe::SequenceRepetition {
+                tts: vec![mbe::TokenTree::token(
+                    if body.legacy { token::Semi } else { token::Comma },
+                    def.span,
+                )],
+                separator: None,
+                kleene: mbe::KleeneToken::new(mbe::KleeneOp::ZeroOrMore, def.span),
+                num_captures: 0,
+            }),
+        ),
+    ];
+
+    let argument_map = match parse(sess, body.stream(), &argument_gram, None, true) {
+        Success(m) => m,
+        Failure(token, msg) => {
+            let s = parse_failure_msg(&token);
+            let sp = token.span.substitute_dummy(def.span);
+            let mut err = sess.span_diagnostic.struct_span_fatal(sp, &s);
+            err.span_label(sp, msg);
+            err.emit();
+            FatalError.raise();
+        }
+        Error(sp, s) => {
+            sess.span_diagnostic.span_fatal(sp.substitute_dummy(def.span), &s).raise();
+        }
+    };
+
+    let mut valid = true;
+
+    // Extract the arguments:
+    let lhses = match argument_map[&lhs_nm] {
+        MatchedSeq(ref s, _) => s
+            .iter()
+            .map(|m| {
+                if let MatchedNonterminal(ref nt) = *m {
+                    if let NtTT(ref tt) = **nt {
+                        let tt = mbe::quoted::parse(
+                            tt.clone().into(),
+                            true,
+                            sess,
+                        )
+                        .pop()
+                        .unwrap();
+                        valid &= check_lhs_nt_follows(sess, features, &def.attrs, &tt);
+                        return tt;
+                    }
+                }
+                sess.span_diagnostic.span_bug(def.span, "wrong-structured lhs")
+            })
+            .collect::<Vec<mbe::TokenTree>>(),
+        _ => sess.span_diagnostic.span_bug(def.span, "wrong-structured lhs"),
+    };
+
+    let rhses = match argument_map[&rhs_nm] {
+        MatchedSeq(ref s, _) => s
+            .iter()
+            .map(|m| {
+                if let MatchedNonterminal(ref nt) = *m {
+                    if let NtTT(ref tt) = **nt {
+                        return mbe::quoted::parse(
+                            tt.clone().into(),
+                            false,
+                            sess,
+                        )
+                        .pop()
+                        .unwrap();
+                    }
+                }
+                sess.span_diagnostic.span_bug(def.span, "wrong-structured lhs")
+            })
+            .collect::<Vec<mbe::TokenTree>>(),
+        _ => sess.span_diagnostic.span_bug(def.span, "wrong-structured rhs"),
+    };
+
+    for rhs in &rhses {
+        valid &= check_rhs(sess, rhs);
+    }
+
+    // don't abort iteration early, so that errors for multiple lhses can be reported
+    for lhs in &lhses {
+        valid &= check_lhs_no_empty_seq(sess, slice::from_ref(lhs));
+    }
+
+    // We use CRATE_NODE_ID instead of `def.id` otherwise we may emit buffered lints for a node id
+    // that is not lint-checked and trigger the "failed to process buffered lint here" bug.
+    valid &= macro_check::check_meta_variables(sess, ast::CRATE_NODE_ID, def.span, &lhses, &rhses);
+
+    let (transparency, transparency_error) = attr::find_transparency(&def.attrs, body.legacy);
+    match transparency_error {
+        Some(TransparencyError::UnknownTransparency(value, span)) =>
+            diag.span_err(span, &format!("unknown macro transparency: `{}`", value)),
+        Some(TransparencyError::MultipleTransparencyAttrs(old_span, new_span)) =>
+            diag.span_err(vec![old_span, new_span], "multiple macro transparency attributes"),
+        None => {}
+    }
+
+    let expander: Box<_> = Box::new(MacroRulesMacroExpander {
+        name: def.ident, span: def.span, transparency, lhses, rhses, valid
+    });
+
+    SyntaxExtension::new(
+        sess,
+        SyntaxExtensionKind::LegacyBang(expander),
+        def.span,
+        Vec::new(),
+        edition,
+        def.ident.name,
+        &def.attrs,
+    )
+}
+
+fn check_lhs_nt_follows(
+    sess: &ParseSess,
+    features: &Features,
+    attrs: &[ast::Attribute],
+    lhs: &mbe::TokenTree,
+) -> bool {
+    // lhs is going to be like TokenTree::Delimited(...), where the
+    // entire lhs is those tts. Or, it can be a "bare sequence", not wrapped in parens.
+    if let mbe::TokenTree::Delimited(_, ref tts) = *lhs {
+        check_matcher(sess, features, attrs, &tts.tts)
+    } else {
+        let msg = "invalid macro matcher; matchers must be contained in balanced delimiters";
+        sess.span_diagnostic.span_err(lhs.span(), msg);
+        false
+    }
+    // we don't abort on errors on rejection, the driver will do that for us
+    // after parsing/expansion. we can report every error in every macro this way.
+}
+
+/// Checks that the lhs contains no repetition which could match an empty token
+/// tree, because then the matcher would hang indefinitely.
+fn check_lhs_no_empty_seq(sess: &ParseSess, tts: &[mbe::TokenTree]) -> bool {
+    use mbe::TokenTree;
+    for tt in tts {
+        match *tt {
+            TokenTree::Token(..) | TokenTree::MetaVar(..) | TokenTree::MetaVarDecl(..) => (),
+            TokenTree::Delimited(_, ref del) => {
+                if !check_lhs_no_empty_seq(sess, &del.tts) {
+                    return false;
+                }
+            }
+            TokenTree::Sequence(span, ref seq) => {
+                if seq.separator.is_none()
+                    && seq.tts.iter().all(|seq_tt| match *seq_tt {
+                        TokenTree::MetaVarDecl(_, _, id) => id.name == sym::vis,
+                        TokenTree::Sequence(_, ref sub_seq) => {
+                            sub_seq.kleene.op == mbe::KleeneOp::ZeroOrMore
+                                || sub_seq.kleene.op == mbe::KleeneOp::ZeroOrOne
+                        }
+                        _ => false,
+                    })
+                {
+                    let sp = span.entire();
+                    sess.span_diagnostic.span_err(sp, "repetition matches empty token tree");
+                    return false;
+                }
+                if !check_lhs_no_empty_seq(sess, &seq.tts) {
+                    return false;
+                }
+            }
+        }
+    }
+
+    true
+}
+
+fn check_rhs(sess: &ParseSess, rhs: &mbe::TokenTree) -> bool {
+    match *rhs {
+        mbe::TokenTree::Delimited(..) => return true,
+        _ => sess.span_diagnostic.span_err(rhs.span(), "macro rhs must be delimited"),
+    }
+    false
+}
+
+fn check_matcher(
+    sess: &ParseSess,
+    features: &Features,
+    attrs: &[ast::Attribute],
+    matcher: &[mbe::TokenTree],
+) -> bool {
+    let first_sets = FirstSets::new(matcher);
+    let empty_suffix = TokenSet::empty();
+    let err = sess.span_diagnostic.err_count();
+    check_matcher_core(sess, features, attrs, &first_sets, matcher, &empty_suffix);
+    err == sess.span_diagnostic.err_count()
+}
+
+// `The FirstSets` for a matcher is a mapping from subsequences in the
+// matcher to the FIRST set for that subsequence.
+//
+// This mapping is partially precomputed via a backwards scan over the
+// token trees of the matcher, which provides a mapping from each
+// repetition sequence to its *first* set.
+//
+// (Hypothetically, sequences should be uniquely identifiable via their
+// spans, though perhaps that is false, e.g., for macro-generated macros
+// that do not try to inject artificial span information. My plan is
+// to try to catch such cases ahead of time and not include them in
+// the precomputed mapping.)
+struct FirstSets {
+    // this maps each TokenTree::Sequence `$(tt ...) SEP OP` that is uniquely identified by its
+    // span in the original matcher to the First set for the inner sequence `tt ...`.
+    //
+    // If two sequences have the same span in a matcher, then map that
+    // span to None (invalidating the mapping here and forcing the code to
+    // use a slow path).
+    first: FxHashMap<Span, Option<TokenSet>>,
+}
+
+impl FirstSets {
+    fn new(tts: &[mbe::TokenTree]) -> FirstSets {
+        use mbe::TokenTree;
+
+        let mut sets = FirstSets { first: FxHashMap::default() };
+        build_recur(&mut sets, tts);
+        return sets;
+
+        // walks backward over `tts`, returning the FIRST for `tts`
+        // and updating `sets` at the same time for all sequence
+        // substructure we find within `tts`.
+        fn build_recur(sets: &mut FirstSets, tts: &[TokenTree]) -> TokenSet {
+            let mut first = TokenSet::empty();
+            for tt in tts.iter().rev() {
+                match *tt {
+                    TokenTree::Token(..) | TokenTree::MetaVar(..) | TokenTree::MetaVarDecl(..) => {
+                        first.replace_with(tt.clone());
+                    }
+                    TokenTree::Delimited(span, ref delimited) => {
+                        build_recur(sets, &delimited.tts[..]);
+                        first.replace_with(delimited.open_tt(span.open));
+                    }
+                    TokenTree::Sequence(sp, ref seq_rep) => {
+                        let subfirst = build_recur(sets, &seq_rep.tts[..]);
+
+                        match sets.first.entry(sp.entire()) {
+                            Entry::Vacant(vac) => {
+                                vac.insert(Some(subfirst.clone()));
+                            }
+                            Entry::Occupied(mut occ) => {
+                                // if there is already an entry, then a span must have collided.
+                                // This should not happen with typical macro_rules macros,
+                                // but syntax extensions need not maintain distinct spans,
+                                // so distinct syntax trees can be assigned the same span.
+                                // In such a case, the map cannot be trusted; so mark this
+                                // entry as unusable.
+                                occ.insert(None);
+                            }
+                        }
+
+                        // If the sequence contents can be empty, then the first
+                        // token could be the separator token itself.
+
+                        if let (Some(sep), true) = (&seq_rep.separator, subfirst.maybe_empty) {
+                            first.add_one_maybe(TokenTree::Token(sep.clone()));
+                        }
+
+                        // Reverse scan: Sequence comes before `first`.
+                        if subfirst.maybe_empty
+                            || seq_rep.kleene.op == mbe::KleeneOp::ZeroOrMore
+                            || seq_rep.kleene.op == mbe::KleeneOp::ZeroOrOne
+                        {
+                            // If sequence is potentially empty, then
+                            // union them (preserving first emptiness).
+                            first.add_all(&TokenSet { maybe_empty: true, ..subfirst });
+                        } else {
+                            // Otherwise, sequence guaranteed
+                            // non-empty; replace first.
+                            first = subfirst;
+                        }
+                    }
+                }
+            }
+
+            first
+        }
+    }
+
+    // walks forward over `tts` until all potential FIRST tokens are
+    // identified.
+    fn first(&self, tts: &[mbe::TokenTree]) -> TokenSet {
+        use mbe::TokenTree;
+
+        let mut first = TokenSet::empty();
+        for tt in tts.iter() {
+            assert!(first.maybe_empty);
+            match *tt {
+                TokenTree::Token(..) | TokenTree::MetaVar(..) | TokenTree::MetaVarDecl(..) => {
+                    first.add_one(tt.clone());
+                    return first;
+                }
+                TokenTree::Delimited(span, ref delimited) => {
+                    first.add_one(delimited.open_tt(span.open));
+                    return first;
+                }
+                TokenTree::Sequence(sp, ref seq_rep) => {
+                    let subfirst_owned;
+                    let subfirst = match self.first.get(&sp.entire()) {
+                        Some(&Some(ref subfirst)) => subfirst,
+                        Some(&None) => {
+                            subfirst_owned = self.first(&seq_rep.tts[..]);
+                            &subfirst_owned
+                        }
+                        None => {
+                            panic!("We missed a sequence during FirstSets construction");
+                        }
+                    };
+
+                    // If the sequence contents can be empty, then the first
+                    // token could be the separator token itself.
+                    if let (Some(sep), true) = (&seq_rep.separator, subfirst.maybe_empty) {
+                        first.add_one_maybe(TokenTree::Token(sep.clone()));
+                    }
+
+                    assert!(first.maybe_empty);
+                    first.add_all(subfirst);
+                    if subfirst.maybe_empty
+                        || seq_rep.kleene.op == mbe::KleeneOp::ZeroOrMore
+                        || seq_rep.kleene.op == mbe::KleeneOp::ZeroOrOne
+                    {
+                        // Continue scanning for more first
+                        // tokens, but also make sure we
+                        // restore empty-tracking state.
+                        first.maybe_empty = true;
+                        continue;
+                    } else {
+                        return first;
+                    }
+                }
+            }
+        }
+
+        // we only exit the loop if `tts` was empty or if every
+        // element of `tts` matches the empty sequence.
+        assert!(first.maybe_empty);
+        first
+    }
+}
+
+// A set of `mbe::TokenTree`s, which may include `TokenTree::Match`s
+// (for macro-by-example syntactic variables). It also carries the
+// `maybe_empty` flag; that is true if and only if the matcher can
+// match an empty token sequence.
+//
+// The First set is computed on submatchers like `$($a:expr b),* $(c)* d`,
+// which has corresponding FIRST = {$a:expr, c, d}.
+// Likewise, `$($a:expr b),* $(c)+ d` has FIRST = {$a:expr, c}.
+//
+// (Notably, we must allow for *-op to occur zero times.)
+#[derive(Clone, Debug)]
+struct TokenSet {
+    tokens: Vec<mbe::TokenTree>,
+    maybe_empty: bool,
+}
+
+impl TokenSet {
+    // Returns a set for the empty sequence.
+    fn empty() -> Self {
+        TokenSet { tokens: Vec::new(), maybe_empty: true }
+    }
+
+    // Returns the set `{ tok }` for the single-token (and thus
+    // non-empty) sequence [tok].
+    fn singleton(tok: mbe::TokenTree) -> Self {
+        TokenSet { tokens: vec![tok], maybe_empty: false }
+    }
+
+    // Changes self to be the set `{ tok }`.
+    // Since `tok` is always present, marks self as non-empty.
+    fn replace_with(&mut self, tok: mbe::TokenTree) {
+        self.tokens.clear();
+        self.tokens.push(tok);
+        self.maybe_empty = false;
+    }
+
+    // Changes self to be the empty set `{}`; meant for use when
+    // the particular token does not matter, but we want to
+    // record that it occurs.
+    fn replace_with_irrelevant(&mut self) {
+        self.tokens.clear();
+        self.maybe_empty = false;
+    }
+
+    // Adds `tok` to the set for `self`, marking sequence as non-empy.
+    fn add_one(&mut self, tok: mbe::TokenTree) {
+        if !self.tokens.contains(&tok) {
+            self.tokens.push(tok);
+        }
+        self.maybe_empty = false;
+    }
+
+    // Adds `tok` to the set for `self`. (Leaves `maybe_empty` flag alone.)
+    fn add_one_maybe(&mut self, tok: mbe::TokenTree) {
+        if !self.tokens.contains(&tok) {
+            self.tokens.push(tok);
+        }
+    }
+
+    // Adds all elements of `other` to this.
+    //
+    // (Since this is a set, we filter out duplicates.)
+    //
+    // If `other` is potentially empty, then preserves the previous
+    // setting of the empty flag of `self`. If `other` is guaranteed
+    // non-empty, then `self` is marked non-empty.
+    fn add_all(&mut self, other: &Self) {
+        for tok in &other.tokens {
+            if !self.tokens.contains(tok) {
+                self.tokens.push(tok.clone());
+            }
+        }
+        if !other.maybe_empty {
+            self.maybe_empty = false;
+        }
+    }
+}
+
+// Checks that `matcher` is internally consistent and that it
+// can legally be followed by a token `N`, for all `N` in `follow`.
+// (If `follow` is empty, then it imposes no constraint on
+// the `matcher`.)
+//
+// Returns the set of NT tokens that could possibly come last in
+// `matcher`. (If `matcher` matches the empty sequence, then
+// `maybe_empty` will be set to true.)
+//
+// Requires that `first_sets` is pre-computed for `matcher`;
+// see `FirstSets::new`.
+fn check_matcher_core(
+    sess: &ParseSess,
+    features: &Features,
+    attrs: &[ast::Attribute],
+    first_sets: &FirstSets,
+    matcher: &[mbe::TokenTree],
+    follow: &TokenSet,
+) -> TokenSet {
+    use mbe::TokenTree;
+
+    let mut last = TokenSet::empty();
+
+    // 2. For each token and suffix  [T, SUFFIX] in M:
+    // ensure that T can be followed by SUFFIX, and if SUFFIX may be empty,
+    // then ensure T can also be followed by any element of FOLLOW.
+    'each_token: for i in 0..matcher.len() {
+        let token = &matcher[i];
+        let suffix = &matcher[i + 1..];
+
+        let build_suffix_first = || {
+            let mut s = first_sets.first(suffix);
+            if s.maybe_empty {
+                s.add_all(follow);
+            }
+            s
+        };
+
+        // (we build `suffix_first` on demand below; you can tell
+        // which cases are supposed to fall through by looking for the
+        // initialization of this variable.)
+        let suffix_first;
+
+        // First, update `last` so that it corresponds to the set
+        // of NT tokens that might end the sequence `... token`.
+        match *token {
+            TokenTree::Token(..) | TokenTree::MetaVar(..) | TokenTree::MetaVarDecl(..) => {
+                let can_be_followed_by_any;
+                if let Err(bad_frag) = has_legal_fragment_specifier(sess, features, attrs, token) {
+                    let msg = format!("invalid fragment specifier `{}`", bad_frag);
+                    sess.span_diagnostic
+                        .struct_span_err(token.span(), &msg)
+                        .help(VALID_FRAGMENT_NAMES_MSG)
+                        .emit();
+                    // (This eliminates false positives and duplicates
+                    // from error messages.)
+                    can_be_followed_by_any = true;
+                } else {
+                    can_be_followed_by_any = token_can_be_followed_by_any(token);
+                }
+
+                if can_be_followed_by_any {
+                    // don't need to track tokens that work with any,
+                    last.replace_with_irrelevant();
+                    // ... and don't need to check tokens that can be
+                    // followed by anything against SUFFIX.
+                    continue 'each_token;
+                } else {
+                    last.replace_with(token.clone());
+                    suffix_first = build_suffix_first();
+                }
+            }
+            TokenTree::Delimited(span, ref d) => {
+                let my_suffix = TokenSet::singleton(d.close_tt(span.close));
+                check_matcher_core(sess, features, attrs, first_sets, &d.tts, &my_suffix);
+                // don't track non NT tokens
+                last.replace_with_irrelevant();
+
+                // also, we don't need to check delimited sequences
+                // against SUFFIX
+                continue 'each_token;
+            }
+            TokenTree::Sequence(_, ref seq_rep) => {
+                suffix_first = build_suffix_first();
+                // The trick here: when we check the interior, we want
+                // to include the separator (if any) as a potential
+                // (but not guaranteed) element of FOLLOW. So in that
+                // case, we make a temp copy of suffix and stuff
+                // delimiter in there.
+                //
+                // FIXME: Should I first scan suffix_first to see if
+                // delimiter is already in it before I go through the
+                // work of cloning it? But then again, this way I may
+                // get a "tighter" span?
+                let mut new;
+                let my_suffix = if let Some(sep) = &seq_rep.separator {
+                    new = suffix_first.clone();
+                    new.add_one_maybe(TokenTree::Token(sep.clone()));
+                    &new
+                } else {
+                    &suffix_first
+                };
+
+                // At this point, `suffix_first` is built, and
+                // `my_suffix` is some TokenSet that we can use
+                // for checking the interior of `seq_rep`.
+                let next =
+                    check_matcher_core(sess, features, attrs, first_sets, &seq_rep.tts, my_suffix);
+                if next.maybe_empty {
+                    last.add_all(&next);
+                } else {
+                    last = next;
+                }
+
+                // the recursive call to check_matcher_core already ran the 'each_last
+                // check below, so we can just keep going forward here.
+                continue 'each_token;
+            }
+        }
+
+        // (`suffix_first` guaranteed initialized once reaching here.)
+
+        // Now `last` holds the complete set of NT tokens that could
+        // end the sequence before SUFFIX. Check that every one works with `suffix`.
+        'each_last: for token in &last.tokens {
+            if let TokenTree::MetaVarDecl(_, name, frag_spec) = *token {
+                for next_token in &suffix_first.tokens {
+                    match is_in_follow(next_token, frag_spec.name) {
+                        IsInFollow::Invalid(msg, help) => {
+                            sess.span_diagnostic
+                                .struct_span_err(next_token.span(), &msg)
+                                .help(help)
+                                .emit();
+                            // don't bother reporting every source of
+                            // conflict for a particular element of `last`.
+                            continue 'each_last;
+                        }
+                        IsInFollow::Yes => {}
+                        IsInFollow::No(possible) => {
+                            let may_be = if last.tokens.len() == 1 && suffix_first.tokens.len() == 1
+                            {
+                                "is"
+                            } else {
+                                "may be"
+                            };
+
+                            let sp = next_token.span();
+                            let mut err = sess.span_diagnostic.struct_span_err(
+                                sp,
+                                &format!(
+                                    "`${name}:{frag}` {may_be} followed by `{next}`, which \
+                                     is not allowed for `{frag}` fragments",
+                                    name = name,
+                                    frag = frag_spec,
+                                    next = quoted_tt_to_string(next_token),
+                                    may_be = may_be
+                                ),
+                            );
+                            err.span_label(
+                                sp,
+                                format!("not allowed after `{}` fragments", frag_spec),
+                            );
+                            let msg = "allowed there are: ";
+                            match possible {
+                                &[] => {}
+                                &[t] => {
+                                    err.note(&format!(
+                                        "only {} is allowed after `{}` fragments",
+                                        t, frag_spec,
+                                    ));
+                                }
+                                ts => {
+                                    err.note(&format!(
+                                        "{}{} or {}",
+                                        msg,
+                                        ts[..ts.len() - 1]
+                                            .iter()
+                                            .map(|s| *s)
+                                            .collect::<Vec<_>>()
+                                            .join(", "),
+                                        ts[ts.len() - 1],
+                                    ));
+                                }
+                            }
+                            err.emit();
+                        }
+                    }
+                }
+            }
+        }
+    }
+    last
+}
+
+fn token_can_be_followed_by_any(tok: &mbe::TokenTree) -> bool {
+    if let mbe::TokenTree::MetaVarDecl(_, _, frag_spec) = *tok {
+        frag_can_be_followed_by_any(frag_spec.name)
+    } else {
+        // (Non NT's can always be followed by anthing in matchers.)
+        true
+    }
+}
+
+/// Returns `true` if a fragment of type `frag` can be followed by any sort of
+/// token. We use this (among other things) as a useful approximation
+/// for when `frag` can be followed by a repetition like `$(...)*` or
+/// `$(...)+`. In general, these can be a bit tricky to reason about,
+/// so we adopt a conservative position that says that any fragment
+/// specifier which consumes at most one token tree can be followed by
+/// a fragment specifier (indeed, these fragments can be followed by
+/// ANYTHING without fear of future compatibility hazards).
+fn frag_can_be_followed_by_any(frag: Symbol) -> bool {
+    match frag {
+        sym::item     | // always terminated by `}` or `;`
+        sym::block    | // exactly one token tree
+        sym::ident    | // exactly one token tree
+        sym::literal  | // exactly one token tree
+        sym::meta     | // exactly one token tree
+        sym::lifetime | // exactly one token tree
+        sym::tt =>   // exactly one token tree
+            true,
+
+        _ =>
+            false,
+    }
+}
+
+enum IsInFollow {
+    Yes,
+    No(&'static [&'static str]),
+    Invalid(String, &'static str),
+}
+
+/// Returns `true` if `frag` can legally be followed by the token `tok`. For
+/// fragments that can consume an unbounded number of tokens, `tok`
+/// must be within a well-defined follow set. This is intended to
+/// guarantee future compatibility: for example, without this rule, if
+/// we expanded `expr` to include a new binary operator, we might
+/// break macros that were relying on that binary operator as a
+/// separator.
+// when changing this do not forget to update doc/book/macros.md!
+fn is_in_follow(tok: &mbe::TokenTree, frag: Symbol) -> IsInFollow {
+    use mbe::TokenTree;
+
+    if let TokenTree::Token(Token { kind: token::CloseDelim(_), .. }) = *tok {
+        // closing a token tree can never be matched by any fragment;
+        // iow, we always require that `(` and `)` match, etc.
+        IsInFollow::Yes
+    } else {
+        match frag {
+            sym::item => {
+                // since items *must* be followed by either a `;` or a `}`, we can
+                // accept anything after them
+                IsInFollow::Yes
+            }
+            sym::block => {
+                // anything can follow block, the braces provide an easy boundary to
+                // maintain
+                IsInFollow::Yes
+            }
+            sym::stmt | sym::expr => {
+                const TOKENS: &[&str] = &["`=>`", "`,`", "`;`"];
+                match tok {
+                    TokenTree::Token(token) => match token.kind {
+                        FatArrow | Comma | Semi => IsInFollow::Yes,
+                        _ => IsInFollow::No(TOKENS),
+                    },
+                    _ => IsInFollow::No(TOKENS),
+                }
+            }
+            sym::pat => {
+                const TOKENS: &[&str] = &["`=>`", "`,`", "`=`", "`|`", "`if`", "`in`"];
+                match tok {
+                    TokenTree::Token(token) => match token.kind {
+                        FatArrow | Comma | Eq | BinOp(token::Or) => IsInFollow::Yes,
+                        Ident(name, false) if name == kw::If || name == kw::In => IsInFollow::Yes,
+                        _ => IsInFollow::No(TOKENS),
+                    },
+                    _ => IsInFollow::No(TOKENS),
+                }
+            }
+            sym::path | sym::ty => {
+                const TOKENS: &[&str] = &[
+                    "`{`", "`[`", "`=>`", "`,`", "`>`", "`=`", "`:`", "`;`", "`|`", "`as`",
+                    "`where`",
+                ];
+                match tok {
+                    TokenTree::Token(token) => match token.kind {
+                        OpenDelim(token::DelimToken::Brace)
+                        | OpenDelim(token::DelimToken::Bracket)
+                        | Comma
+                        | FatArrow
+                        | Colon
+                        | Eq
+                        | Gt
+                        | BinOp(token::Shr)
+                        | Semi
+                        | BinOp(token::Or) => IsInFollow::Yes,
+                        Ident(name, false) if name == kw::As || name == kw::Where => {
+                            IsInFollow::Yes
+                        }
+                        _ => IsInFollow::No(TOKENS),
+                    },
+                    TokenTree::MetaVarDecl(_, _, frag) if frag.name == sym::block => {
+                        IsInFollow::Yes
+                    }
+                    _ => IsInFollow::No(TOKENS),
+                }
+            }
+            sym::ident | sym::lifetime => {
+                // being a single token, idents and lifetimes are harmless
+                IsInFollow::Yes
+            }
+            sym::literal => {
+                // literals may be of a single token, or two tokens (negative numbers)
+                IsInFollow::Yes
+            }
+            sym::meta | sym::tt => {
+                // being either a single token or a delimited sequence, tt is
+                // harmless
+                IsInFollow::Yes
+            }
+            sym::vis => {
+                // Explicitly disallow `priv`, on the off chance it comes back.
+                const TOKENS: &[&str] = &["`,`", "an ident", "a type"];
+                match tok {
+                    TokenTree::Token(token) => match token.kind {
+                        Comma => IsInFollow::Yes,
+                        Ident(name, is_raw) if is_raw || name != kw::Priv => IsInFollow::Yes,
+                        _ => {
+                            if token.can_begin_type() {
+                                IsInFollow::Yes
+                            } else {
+                                IsInFollow::No(TOKENS)
+                            }
+                        }
+                    },
+                    TokenTree::MetaVarDecl(_, _, frag)
+                        if frag.name == sym::ident
+                            || frag.name == sym::ty
+                            || frag.name == sym::path =>
+                    {
+                        IsInFollow::Yes
+                    }
+                    _ => IsInFollow::No(TOKENS),
+                }
+            }
+            kw::Invalid => IsInFollow::Yes,
+            _ => IsInFollow::Invalid(
+                format!("invalid fragment specifier `{}`", frag),
+                VALID_FRAGMENT_NAMES_MSG,
+            ),
+        }
+    }
+}
+
+fn has_legal_fragment_specifier(
+    sess: &ParseSess,
+    features: &Features,
+    attrs: &[ast::Attribute],
+    tok: &mbe::TokenTree,
+) -> Result<(), String> {
+    debug!("has_legal_fragment_specifier({:?})", tok);
+    if let mbe::TokenTree::MetaVarDecl(_, _, ref frag_spec) = *tok {
+        let frag_span = tok.span();
+        if !is_legal_fragment_specifier(sess, features, attrs, frag_spec.name, frag_span) {
+            return Err(frag_spec.to_string());
+        }
+    }
+    Ok(())
+}
+
+fn is_legal_fragment_specifier(
+    _sess: &ParseSess,
+    _features: &Features,
+    _attrs: &[ast::Attribute],
+    frag_name: Symbol,
+    _frag_span: Span,
+) -> bool {
+    /*
+     * If new fragment specifiers are invented in nightly, `_sess`,
+     * `_features`, `_attrs`, and `_frag_span` will be useful here
+     * for checking against feature gates. See past versions of
+     * this function.
+     */
+    match frag_name {
+        sym::item
+        | sym::block
+        | sym::stmt
+        | sym::expr
+        | sym::pat
+        | sym::lifetime
+        | sym::path
+        | sym::ty
+        | sym::ident
+        | sym::meta
+        | sym::tt
+        | sym::vis
+        | sym::literal
+        | kw::Invalid => true,
+        _ => false,
+    }
+}
+
+fn quoted_tt_to_string(tt: &mbe::TokenTree) -> String {
+    match *tt {
+        mbe::TokenTree::Token(ref token) => pprust::token_to_string(&token),
+        mbe::TokenTree::MetaVar(_, name) => format!("${}", name),
+        mbe::TokenTree::MetaVarDecl(_, name, kind) => format!("${}:{}", name, kind),
+        _ => panic!(
+            "unexpected mbe::TokenTree::{{Sequence or Delimited}} \
+             in follow set checker"
+        ),
+    }
+}
+
+/// Use this token tree as a matcher to parse given tts.
+fn parse_tt(cx: &ExtCtxt<'_>, mtch: &[mbe::TokenTree], tts: TokenStream) -> NamedParseResult {
+    // `None` is because we're not interpolating
+    let directory = Directory {
+        path: Cow::from(cx.current_expansion.module.directory.as_path()),
+        ownership: cx.current_expansion.directory_ownership,
+    };
+    parse(cx.parse_sess(), tts, mtch, Some(directory), true)
+}
+
+/// Generates an appropriate parsing failure message. For EOF, this is "unexpected end...". For
+/// other tokens, this is "unexpected token...".
+fn parse_failure_msg(tok: &Token) -> String {
+    match tok.kind {
+        token::Eof => "unexpected end of macro invocation".to_string(),
+        _ => format!(
+            "no rules expected the token `{}`",
+            pprust::token_to_string(tok),
+        ),
+    }
+}
diff --git a/src/libsyntax_expand/mbe/quoted.rs b/src/libsyntax_expand/mbe/quoted.rs
new file mode 100644
index 00000000000..cedd59233ad
--- /dev/null
+++ b/src/libsyntax_expand/mbe/quoted.rs
@@ -0,0 +1,264 @@
+use crate::mbe::macro_parser;
+use crate::mbe::{TokenTree, KleeneOp, KleeneToken, SequenceRepetition, Delimited};
+
+use syntax::ast;
+use syntax::parse::token::{self, Token};
+use syntax::print::pprust;
+use syntax::sess::ParseSess;
+use syntax::symbol::kw;
+use syntax::tokenstream;
+
+use syntax_pos::Span;
+
+use rustc_data_structures::sync::Lrc;
+
+/// Takes a `tokenstream::TokenStream` and returns a `Vec<self::TokenTree>`. Specifically, this
+/// takes a generic `TokenStream`, such as is used in the rest of the compiler, and returns a
+/// collection of `TokenTree` for use in parsing a macro.
+///
+/// # Parameters
+///
+/// - `input`: a token stream to read from, the contents of which we are parsing.
+/// - `expect_matchers`: `parse` can be used to parse either the "patterns" or the "body" of a
+///   macro. Both take roughly the same form _except_ that in a pattern, metavars are declared with
+///   their "matcher" type. For example `$var:expr` or `$id:ident`. In this example, `expr` and
+///   `ident` are "matchers". They are not present in the body of a macro rule -- just in the
+///   pattern, so we pass a parameter to indicate whether to expect them or not.
+/// - `sess`: the parsing session. Any errors will be emitted to this session.
+/// - `features`, `attrs`: language feature flags and attributes so that we know whether to use
+///   unstable features or not.
+/// - `edition`: which edition are we in.
+/// - `macro_node_id`: the NodeId of the macro we are parsing.
+///
+/// # Returns
+///
+/// A collection of `self::TokenTree`. There may also be some errors emitted to `sess`.
+pub(super) fn parse(
+    input: tokenstream::TokenStream,
+    expect_matchers: bool,
+    sess: &ParseSess,
+) -> Vec<TokenTree> {
+    // Will contain the final collection of `self::TokenTree`
+    let mut result = Vec::new();
+
+    // For each token tree in `input`, parse the token into a `self::TokenTree`, consuming
+    // additional trees if need be.
+    let mut trees = input.trees();
+    while let Some(tree) = trees.next() {
+        // Given the parsed tree, if there is a metavar and we are expecting matchers, actually
+        // parse out the matcher (i.e., in `$id:ident` this would parse the `:` and `ident`).
+        let tree = parse_tree(
+            tree,
+            &mut trees,
+            expect_matchers,
+            sess,
+        );
+        match tree {
+            TokenTree::MetaVar(start_sp, ident) if expect_matchers => {
+                let span = match trees.next() {
+                    Some(tokenstream::TokenTree::Token(Token { kind: token::Colon, span })) => {
+                        match trees.next() {
+                            Some(tokenstream::TokenTree::Token(token)) => match token.ident() {
+                                Some((kind, _)) => {
+                                    let span = token.span.with_lo(start_sp.lo());
+                                    result.push(TokenTree::MetaVarDecl(span, ident, kind));
+                                    continue;
+                                }
+                                _ => token.span,
+                            },
+                            tree => tree.as_ref().map(tokenstream::TokenTree::span).unwrap_or(span),
+                        }
+                    }
+                    tree => tree.as_ref().map(tokenstream::TokenTree::span).unwrap_or(start_sp),
+                };
+                sess.missing_fragment_specifiers.borrow_mut().insert(span);
+                result.push(TokenTree::MetaVarDecl(span, ident, ast::Ident::invalid()));
+            }
+
+            // Not a metavar or no matchers allowed, so just return the tree
+            _ => result.push(tree),
+        }
+    }
+    result
+}
+
+/// Takes a `tokenstream::TokenTree` and returns a `self::TokenTree`. Specifically, this takes a
+/// generic `TokenTree`, such as is used in the rest of the compiler, and returns a `TokenTree`
+/// for use in parsing a macro.
+///
+/// Converting the given tree may involve reading more tokens.
+///
+/// # Parameters
+///
+/// - `tree`: the tree we wish to convert.
+/// - `trees`: an iterator over trees. We may need to read more tokens from it in order to finish
+///   converting `tree`
+/// - `expect_matchers`: same as for `parse` (see above).
+/// - `sess`: the parsing session. Any errors will be emitted to this session.
+/// - `features`, `attrs`: language feature flags and attributes so that we know whether to use
+///   unstable features or not.
+fn parse_tree(
+    tree: tokenstream::TokenTree,
+    trees: &mut impl Iterator<Item = tokenstream::TokenTree>,
+    expect_matchers: bool,
+    sess: &ParseSess,
+) -> TokenTree {
+    // Depending on what `tree` is, we could be parsing different parts of a macro
+    match tree {
+        // `tree` is a `$` token. Look at the next token in `trees`
+        tokenstream::TokenTree::Token(Token { kind: token::Dollar, span }) => match trees.next() {
+            // `tree` is followed by a delimited set of token trees. This indicates the beginning
+            // of a repetition sequence in the macro (e.g. `$(pat)*`).
+            Some(tokenstream::TokenTree::Delimited(span, delim, tts)) => {
+                // Must have `(` not `{` or `[`
+                if delim != token::Paren {
+                    let tok = pprust::token_kind_to_string(&token::OpenDelim(delim));
+                    let msg = format!("expected `(`, found `{}`", tok);
+                    sess.span_diagnostic.span_err(span.entire(), &msg);
+                }
+                // Parse the contents of the sequence itself
+                let sequence = parse(
+                    tts.into(),
+                    expect_matchers,
+                    sess,
+                );
+                // Get the Kleene operator and optional separator
+                let (separator, kleene) = parse_sep_and_kleene_op(trees, span.entire(), sess);
+                // Count the number of captured "names" (i.e., named metavars)
+                let name_captures = macro_parser::count_names(&sequence);
+                TokenTree::Sequence(
+                    span,
+                    Lrc::new(SequenceRepetition {
+                        tts: sequence,
+                        separator,
+                        kleene,
+                        num_captures: name_captures,
+                    }),
+                )
+            }
+
+            // `tree` is followed by an `ident`. This could be `$meta_var` or the `$crate` special
+            // metavariable that names the crate of the invocation.
+            Some(tokenstream::TokenTree::Token(token)) if token.is_ident() => {
+                let (ident, is_raw) = token.ident().unwrap();
+                let span = ident.span.with_lo(span.lo());
+                if ident.name == kw::Crate && !is_raw {
+                    TokenTree::token(token::Ident(kw::DollarCrate, is_raw), span)
+                } else {
+                    TokenTree::MetaVar(span, ident)
+                }
+            }
+
+            // `tree` is followed by a random token. This is an error.
+            Some(tokenstream::TokenTree::Token(token)) => {
+                let msg =
+                    format!("expected identifier, found `{}`", pprust::token_to_string(&token),);
+                sess.span_diagnostic.span_err(token.span, &msg);
+                TokenTree::MetaVar(token.span, ast::Ident::invalid())
+            }
+
+            // There are no more tokens. Just return the `$` we already have.
+            None => TokenTree::token(token::Dollar, span),
+        },
+
+        // `tree` is an arbitrary token. Keep it.
+        tokenstream::TokenTree::Token(token) => TokenTree::Token(token),
+
+        // `tree` is the beginning of a delimited set of tokens (e.g., `(` or `{`). We need to
+        // descend into the delimited set and further parse it.
+        tokenstream::TokenTree::Delimited(span, delim, tts) => TokenTree::Delimited(
+            span,
+            Lrc::new(Delimited {
+                delim,
+                tts: parse(
+                    tts.into(),
+                    expect_matchers,
+                    sess,
+                ),
+            }),
+        ),
+    }
+}
+
+/// Takes a token and returns `Some(KleeneOp)` if the token is `+` `*` or `?`. Otherwise, return
+/// `None`.
+fn kleene_op(token: &Token) -> Option<KleeneOp> {
+    match token.kind {
+        token::BinOp(token::Star) => Some(KleeneOp::ZeroOrMore),
+        token::BinOp(token::Plus) => Some(KleeneOp::OneOrMore),
+        token::Question => Some(KleeneOp::ZeroOrOne),
+        _ => None,
+    }
+}
+
+/// Parse the next token tree of the input looking for a KleeneOp. Returns
+///
+/// - Ok(Ok((op, span))) if the next token tree is a KleeneOp
+/// - Ok(Err(tok, span)) if the next token tree is a token but not a KleeneOp
+/// - Err(span) if the next token tree is not a token
+fn parse_kleene_op(
+    input: &mut impl Iterator<Item = tokenstream::TokenTree>,
+    span: Span,
+) -> Result<Result<(KleeneOp, Span), Token>, Span> {
+    match input.next() {
+        Some(tokenstream::TokenTree::Token(token)) => match kleene_op(&token) {
+            Some(op) => Ok(Ok((op, token.span))),
+            None => Ok(Err(token)),
+        },
+        tree => Err(tree.as_ref().map(tokenstream::TokenTree::span).unwrap_or(span)),
+    }
+}
+
+/// Attempt to parse a single Kleene star, possibly with a separator.
+///
+/// For example, in a pattern such as `$(a),*`, `a` is the pattern to be repeated, `,` is the
+/// separator, and `*` is the Kleene operator. This function is specifically concerned with parsing
+/// the last two tokens of such a pattern: namely, the optional separator and the Kleene operator
+/// itself. Note that here we are parsing the _macro_ itself, rather than trying to match some
+/// stream of tokens in an invocation of a macro.
+///
+/// This function will take some input iterator `input` corresponding to `span` and a parsing
+/// session `sess`. If the next one (or possibly two) tokens in `input` correspond to a Kleene
+/// operator and separator, then a tuple with `(separator, KleeneOp)` is returned. Otherwise, an
+/// error with the appropriate span is emitted to `sess` and a dummy value is returned.
+fn parse_sep_and_kleene_op(
+    input: &mut impl Iterator<Item = tokenstream::TokenTree>,
+    span: Span,
+    sess: &ParseSess,
+) -> (Option<Token>, KleeneToken) {
+    // We basically look at two token trees here, denoted as #1 and #2 below
+    let span = match parse_kleene_op(input, span) {
+        // #1 is a `?`, `+`, or `*` KleeneOp
+        Ok(Ok((op, span))) => return (None, KleeneToken::new(op, span)),
+
+        // #1 is a separator followed by #2, a KleeneOp
+        Ok(Err(token)) => match parse_kleene_op(input, token.span) {
+            // #2 is the `?` Kleene op, which does not take a separator (error)
+            Ok(Ok((KleeneOp::ZeroOrOne, span))) => {
+                // Error!
+                sess.span_diagnostic.span_err(
+                    token.span,
+                    "the `?` macro repetition operator does not take a separator",
+                );
+
+                // Return a dummy
+                return (None, KleeneToken::new(KleeneOp::ZeroOrMore, span));
+            }
+
+            // #2 is a KleeneOp :D
+            Ok(Ok((op, span))) => return (Some(token), KleeneToken::new(op, span)),
+
+            // #2 is a random token or not a token at all :(
+            Ok(Err(Token { span, .. })) | Err(span) => span,
+        },
+
+        // #1 is not a token
+        Err(span) => span,
+    };
+
+    // If we ever get to this point, we have experienced an "unexpected token" error
+    sess.span_diagnostic.span_err(span, "expected one of: `*`, `+`, or `?`");
+
+    // Return a dummy
+    (None, KleeneToken::new(KleeneOp::ZeroOrMore, span))
+}
diff --git a/src/libsyntax_expand/mbe/transcribe.rs b/src/libsyntax_expand/mbe/transcribe.rs
new file mode 100644
index 00000000000..94523bbf91b
--- /dev/null
+++ b/src/libsyntax_expand/mbe/transcribe.rs
@@ -0,0 +1,399 @@
+use crate::base::ExtCtxt;
+use crate::mbe;
+use crate::mbe::macro_parser::{MatchedNonterminal, MatchedSeq, NamedMatch};
+
+use syntax::ast::{Ident, Mac};
+use syntax::mut_visit::{self, MutVisitor};
+use syntax::parse::token::{self, NtTT, Token};
+use syntax::tokenstream::{DelimSpan, TokenStream, TokenTree, TreeAndJoint};
+
+use smallvec::{smallvec, SmallVec};
+
+use errors::pluralise;
+use rustc_data_structures::fx::FxHashMap;
+use rustc_data_structures::sync::Lrc;
+use syntax_pos::hygiene::{ExpnId, Transparency};
+use syntax_pos::Span;
+
+use std::mem;
+
+// A Marker adds the given mark to the syntax context.
+struct Marker(ExpnId, Transparency);
+
+impl MutVisitor for Marker {
+    fn visit_span(&mut self, span: &mut Span) {
+        *span = span.apply_mark(self.0, self.1)
+    }
+
+    fn visit_mac(&mut self, mac: &mut Mac) {
+        mut_visit::noop_visit_mac(mac, self)
+    }
+}
+
+impl Marker {
+    fn visit_delim_span(&mut self, dspan: &mut DelimSpan) {
+        self.visit_span(&mut dspan.open);
+        self.visit_span(&mut dspan.close);
+    }
+}
+
+/// An iterator over the token trees in a delimited token tree (`{ ... }`) or a sequence (`$(...)`).
+enum Frame {
+    Delimited { forest: Lrc<mbe::Delimited>, idx: usize, span: DelimSpan },
+    Sequence { forest: Lrc<mbe::SequenceRepetition>, idx: usize, sep: Option<Token> },
+}
+
+impl Frame {
+    /// Construct a new frame around the delimited set of tokens.
+    fn new(tts: Vec<mbe::TokenTree>) -> Frame {
+        let forest = Lrc::new(mbe::Delimited { delim: token::NoDelim, tts });
+        Frame::Delimited { forest, idx: 0, span: DelimSpan::dummy() }
+    }
+}
+
+impl Iterator for Frame {
+    type Item = mbe::TokenTree;
+
+    fn next(&mut self) -> Option<mbe::TokenTree> {
+        match *self {
+            Frame::Delimited { ref forest, ref mut idx, .. } => {
+                *idx += 1;
+                forest.tts.get(*idx - 1).cloned()
+            }
+            Frame::Sequence { ref forest, ref mut idx, .. } => {
+                *idx += 1;
+                forest.tts.get(*idx - 1).cloned()
+            }
+        }
+    }
+}
+
+/// This can do Macro-By-Example transcription.
+/// - `interp` is a map of meta-variables to the tokens (non-terminals) they matched in the
+///   invocation. We are assuming we already know there is a match.
+/// - `src` is the RHS of the MBE, that is, the "example" we are filling in.
+///
+/// For example,
+///
+/// ```rust
+/// macro_rules! foo {
+///     ($id:ident) => { println!("{}", stringify!($id)); }
+/// }
+///
+/// foo!(bar);
+/// ```
+///
+/// `interp` would contain `$id => bar` and `src` would contain `println!("{}", stringify!($id));`.
+///
+/// `transcribe` would return a `TokenStream` containing `println!("{}", stringify!(bar));`.
+///
+/// Along the way, we do some additional error checking.
+pub(super) fn transcribe(
+    cx: &ExtCtxt<'_>,
+    interp: &FxHashMap<Ident, NamedMatch>,
+    src: Vec<mbe::TokenTree>,
+    transparency: Transparency,
+) -> TokenStream {
+    // Nothing for us to transcribe...
+    if src.is_empty() {
+        return TokenStream::default();
+    }
+
+    // We descend into the RHS (`src`), expanding things as we go. This stack contains the things
+    // we have yet to expand/are still expanding. We start the stack off with the whole RHS.
+    let mut stack: SmallVec<[Frame; 1]> = smallvec![Frame::new(src)];
+
+    // As we descend in the RHS, we will need to be able to match nested sequences of matchers.
+    // `repeats` keeps track of where we are in matching at each level, with the last element being
+    // the most deeply nested sequence. This is used as a stack.
+    let mut repeats = Vec::new();
+
+    // `result` contains resulting token stream from the TokenTree we just finished processing. At
+    // the end, this will contain the full result of transcription, but at arbitrary points during
+    // `transcribe`, `result` will contain subsets of the final result.
+    //
+    // Specifically, as we descend into each TokenTree, we will push the existing results onto the
+    // `result_stack` and clear `results`. We will then produce the results of transcribing the
+    // TokenTree into `results`. Then, as we unwind back out of the `TokenTree`, we will pop the
+    // `result_stack` and append `results` too it to produce the new `results` up to that point.
+    //
+    // Thus, if we try to pop the `result_stack` and it is empty, we have reached the top-level
+    // again, and we are done transcribing.
+    let mut result: Vec<TreeAndJoint> = Vec::new();
+    let mut result_stack = Vec::new();
+    let mut marker = Marker(cx.current_expansion.id, transparency);
+
+    loop {
+        // Look at the last frame on the stack.
+        let tree = if let Some(tree) = stack.last_mut().unwrap().next() {
+            // If it still has a TokenTree we have not looked at yet, use that tree.
+            tree
+        }
+        // The else-case never produces a value for `tree` (it `continue`s or `return`s).
+        else {
+            // Otherwise, if we have just reached the end of a sequence and we can keep repeating,
+            // go back to the beginning of the sequence.
+            if let Frame::Sequence { idx, sep, .. } = stack.last_mut().unwrap() {
+                let (repeat_idx, repeat_len) = repeats.last_mut().unwrap();
+                *repeat_idx += 1;
+                if repeat_idx < repeat_len {
+                    *idx = 0;
+                    if let Some(sep) = sep {
+                        result.push(TokenTree::Token(sep.clone()).into());
+                    }
+                    continue;
+                }
+            }
+
+            // We are done with the top of the stack. Pop it. Depending on what it was, we do
+            // different things. Note that the outermost item must be the delimited, wrapped RHS
+            // that was passed in originally to `transcribe`.
+            match stack.pop().unwrap() {
+                // Done with a sequence. Pop from repeats.
+                Frame::Sequence { .. } => {
+                    repeats.pop();
+                }
+
+                // We are done processing a Delimited. If this is the top-level delimited, we are
+                // done. Otherwise, we unwind the result_stack to append what we have produced to
+                // any previous results.
+                Frame::Delimited { forest, span, .. } => {
+                    if result_stack.is_empty() {
+                        // No results left to compute! We are back at the top-level.
+                        return TokenStream::new(result);
+                    }
+
+                    // Step back into the parent Delimited.
+                    let tree =
+                        TokenTree::Delimited(span, forest.delim, TokenStream::new(result).into());
+                    result = result_stack.pop().unwrap();
+                    result.push(tree.into());
+                }
+            }
+            continue;
+        };
+
+        // At this point, we know we are in the middle of a TokenTree (the last one on `stack`).
+        // `tree` contains the next `TokenTree` to be processed.
+        match tree {
+            // We are descending into a sequence. We first make sure that the matchers in the RHS
+            // and the matches in `interp` have the same shape. Otherwise, either the caller or the
+            // macro writer has made a mistake.
+            seq @ mbe::TokenTree::Sequence(..) => {
+                match lockstep_iter_size(&seq, interp, &repeats) {
+                    LockstepIterSize::Unconstrained => {
+                        cx.span_fatal(
+                            seq.span(), /* blame macro writer */
+                            "attempted to repeat an expression containing no syntax variables \
+                             matched as repeating at this depth",
+                        );
+                    }
+
+                    LockstepIterSize::Contradiction(ref msg) => {
+                        // FIXME: this really ought to be caught at macro definition time... It
+                        // happens when two meta-variables are used in the same repetition in a
+                        // sequence, but they come from different sequence matchers and repeat
+                        // different amounts.
+                        cx.span_fatal(seq.span(), &msg[..]);
+                    }
+
+                    LockstepIterSize::Constraint(len, _) => {
+                        // We do this to avoid an extra clone above. We know that this is a
+                        // sequence already.
+                        let (sp, seq) = if let mbe::TokenTree::Sequence(sp, seq) = seq {
+                            (sp, seq)
+                        } else {
+                            unreachable!()
+                        };
+
+                        // Is the repetition empty?
+                        if len == 0 {
+                            if seq.kleene.op == mbe::KleeneOp::OneOrMore {
+                                // FIXME: this really ought to be caught at macro definition
+                                // time... It happens when the Kleene operator in the matcher and
+                                // the body for the same meta-variable do not match.
+                                cx.span_fatal(sp.entire(), "this must repeat at least once");
+                            }
+                        } else {
+                            // 0 is the initial counter (we have done 0 repretitions so far). `len`
+                            // is the total number of reptitions we should generate.
+                            repeats.push((0, len));
+
+                            // The first time we encounter the sequence we push it to the stack. It
+                            // then gets reused (see the beginning of the loop) until we are done
+                            // repeating.
+                            stack.push(Frame::Sequence {
+                                idx: 0,
+                                sep: seq.separator.clone(),
+                                forest: seq,
+                            });
+                        }
+                    }
+                }
+            }
+
+            // Replace the meta-var with the matched token tree from the invocation.
+            mbe::TokenTree::MetaVar(mut sp, mut ident) => {
+                // Find the matched nonterminal from the macro invocation, and use it to replace
+                // the meta-var.
+                if let Some(cur_matched) = lookup_cur_matched(ident, interp, &repeats) {
+                    if let MatchedNonterminal(ref nt) = cur_matched {
+                        // FIXME #2887: why do we apply a mark when matching a token tree meta-var
+                        // (e.g. `$x:tt`), but not when we are matching any other type of token
+                        // tree?
+                        if let NtTT(ref tt) = **nt {
+                            result.push(tt.clone().into());
+                        } else {
+                            marker.visit_span(&mut sp);
+                            let token = TokenTree::token(token::Interpolated(nt.clone()), sp);
+                            result.push(token.into());
+                        }
+                    } else {
+                        // We were unable to descend far enough. This is an error.
+                        cx.span_fatal(
+                            sp, /* blame the macro writer */
+                            &format!("variable '{}' is still repeating at this depth", ident),
+                        );
+                    }
+                } else {
+                    // If we aren't able to match the meta-var, we push it back into the result but
+                    // with modified syntax context. (I believe this supports nested macros).
+                    marker.visit_span(&mut sp);
+                    marker.visit_ident(&mut ident);
+                    result.push(TokenTree::token(token::Dollar, sp).into());
+                    result.push(TokenTree::Token(Token::from_ast_ident(ident)).into());
+                }
+            }
+
+            // If we are entering a new delimiter, we push its contents to the `stack` to be
+            // processed, and we push all of the currently produced results to the `result_stack`.
+            // We will produce all of the results of the inside of the `Delimited` and then we will
+            // jump back out of the Delimited, pop the result_stack and add the new results back to
+            // the previous results (from outside the Delimited).
+            mbe::TokenTree::Delimited(mut span, delimited) => {
+                marker.visit_delim_span(&mut span);
+                stack.push(Frame::Delimited { forest: delimited, idx: 0, span });
+                result_stack.push(mem::take(&mut result));
+            }
+
+            // Nothing much to do here. Just push the token to the result, being careful to
+            // preserve syntax context.
+            mbe::TokenTree::Token(token) => {
+                let mut tt = TokenTree::Token(token);
+                marker.visit_tt(&mut tt);
+                result.push(tt.into());
+            }
+
+            // There should be no meta-var declarations in the invocation of a macro.
+            mbe::TokenTree::MetaVarDecl(..) => panic!("unexpected `TokenTree::MetaVarDecl"),
+        }
+    }
+}
+
+/// Lookup the meta-var named `ident` and return the matched token tree from the invocation using
+/// the set of matches `interpolations`.
+///
+/// See the definition of `repeats` in the `transcribe` function. `repeats` is used to descend
+/// into the right place in nested matchers. If we attempt to descend too far, the macro writer has
+/// made a mistake, and we return `None`.
+fn lookup_cur_matched<'a>(
+    ident: Ident,
+    interpolations: &'a FxHashMap<Ident, NamedMatch>,
+    repeats: &[(usize, usize)],
+) -> Option<&'a NamedMatch> {
+    interpolations.get(&ident).map(|matched| {
+        let mut matched = matched;
+        for &(idx, _) in repeats {
+            match matched {
+                MatchedNonterminal(_) => break,
+                MatchedSeq(ref ads, _) => matched = ads.get(idx).unwrap(),
+            }
+        }
+
+        matched
+    })
+}
+
+/// An accumulator over a TokenTree to be used with `fold`. During transcription, we need to make
+/// sure that the size of each sequence and all of its nested sequences are the same as the sizes
+/// of all the matched (nested) sequences in the macro invocation. If they don't match, somebody
+/// has made a mistake (either the macro writer or caller).
+#[derive(Clone)]
+enum LockstepIterSize {
+    /// No constraints on length of matcher. This is true for any TokenTree variants except a
+    /// `MetaVar` with an actual `MatchedSeq` (as opposed to a `MatchedNonterminal`).
+    Unconstrained,
+
+    /// A `MetaVar` with an actual `MatchedSeq`. The length of the match and the name of the
+    /// meta-var are returned.
+    Constraint(usize, Ident),
+
+    /// Two `Constraint`s on the same sequence had different lengths. This is an error.
+    Contradiction(String),
+}
+
+impl LockstepIterSize {
+    /// Find incompatibilities in matcher/invocation sizes.
+    /// - `Unconstrained` is compatible with everything.
+    /// - `Contradiction` is incompatible with everything.
+    /// - `Constraint(len)` is only compatible with other constraints of the same length.
+    fn with(self, other: LockstepIterSize) -> LockstepIterSize {
+        match self {
+            LockstepIterSize::Unconstrained => other,
+            LockstepIterSize::Contradiction(_) => self,
+            LockstepIterSize::Constraint(l_len, ref l_id) => match other {
+                LockstepIterSize::Unconstrained => self,
+                LockstepIterSize::Contradiction(_) => other,
+                LockstepIterSize::Constraint(r_len, _) if l_len == r_len => self,
+                LockstepIterSize::Constraint(r_len, r_id) => {
+                    let msg = format!(
+                        "meta-variable `{}` repeats {} time{}, but `{}` repeats {} time{}",
+                        l_id,
+                        l_len,
+                        pluralise!(l_len),
+                        r_id,
+                        r_len,
+                        pluralise!(r_len),
+                    );
+                    LockstepIterSize::Contradiction(msg)
+                }
+            },
+        }
+    }
+}
+
+/// Given a `tree`, make sure that all sequences have the same length as the matches for the
+/// appropriate meta-vars in `interpolations`.
+///
+/// Note that if `repeats` does not match the exact correct depth of a meta-var,
+/// `lookup_cur_matched` will return `None`, which is why this still works even in the presnece of
+/// multiple nested matcher sequences.
+fn lockstep_iter_size(
+    tree: &mbe::TokenTree,
+    interpolations: &FxHashMap<Ident, NamedMatch>,
+    repeats: &[(usize, usize)],
+) -> LockstepIterSize {
+    use mbe::TokenTree;
+    match *tree {
+        TokenTree::Delimited(_, ref delimed) => {
+            delimed.tts.iter().fold(LockstepIterSize::Unconstrained, |size, tt| {
+                size.with(lockstep_iter_size(tt, interpolations, repeats))
+            })
+        }
+        TokenTree::Sequence(_, ref seq) => {
+            seq.tts.iter().fold(LockstepIterSize::Unconstrained, |size, tt| {
+                size.with(lockstep_iter_size(tt, interpolations, repeats))
+            })
+        }
+        TokenTree::MetaVar(_, name) | TokenTree::MetaVarDecl(_, name, _) => {
+            match lookup_cur_matched(name, interpolations, repeats) {
+                Some(matched) => match matched {
+                    MatchedNonterminal(_) => LockstepIterSize::Unconstrained,
+                    MatchedSeq(ref ads, _) => LockstepIterSize::Constraint(ads.len(), name),
+                },
+                _ => LockstepIterSize::Unconstrained,
+            }
+        }
+        TokenTree::Token(..) => LockstepIterSize::Unconstrained,
+    }
+}
diff --git a/src/libsyntax_expand/placeholders.rs b/src/libsyntax_expand/placeholders.rs
new file mode 100644
index 00000000000..f2c89e14b53
--- /dev/null
+++ b/src/libsyntax_expand/placeholders.rs
@@ -0,0 +1,350 @@
+use crate::base::ExtCtxt;
+use crate::expand::{AstFragment, AstFragmentKind};
+
+use syntax::ast::{self, NodeId};
+use syntax::source_map::{DUMMY_SP, dummy_spanned};
+use syntax::tokenstream::TokenStream;
+use syntax::mut_visit::*;
+use syntax::ptr::P;
+use syntax::ThinVec;
+
+use smallvec::{smallvec, SmallVec};
+
+use rustc_data_structures::fx::FxHashMap;
+
+pub fn placeholder(kind: AstFragmentKind, id: ast::NodeId) -> AstFragment {
+    fn mac_placeholder() -> ast::Mac {
+        ast::Mac {
+            path: ast::Path { span: DUMMY_SP, segments: Vec::new() },
+            tts: TokenStream::default().into(),
+            delim: ast::MacDelimiter::Brace,
+            span: DUMMY_SP,
+            prior_type_ascription: None,
+        }
+    }
+
+    let ident = ast::Ident::invalid();
+    let attrs = Vec::new();
+    let generics = ast::Generics::default();
+    let vis = dummy_spanned(ast::VisibilityKind::Inherited);
+    let span = DUMMY_SP;
+    let expr_placeholder = || P(ast::Expr {
+        id, span,
+        attrs: ThinVec::new(),
+        kind: ast::ExprKind::Mac(mac_placeholder()),
+    });
+    let ty = || P(ast::Ty {
+        id,
+        kind: ast::TyKind::Mac(mac_placeholder()),
+        span,
+    });
+    let pat = || P(ast::Pat {
+        id,
+        kind: ast::PatKind::Mac(mac_placeholder()),
+        span,
+    });
+
+    match kind {
+        AstFragmentKind::Expr => AstFragment::Expr(expr_placeholder()),
+        AstFragmentKind::OptExpr => AstFragment::OptExpr(Some(expr_placeholder())),
+        AstFragmentKind::Items => AstFragment::Items(smallvec![P(ast::Item {
+            id, span, ident, vis, attrs,
+            kind: ast::ItemKind::Mac(mac_placeholder()),
+            tokens: None,
+        })]),
+        AstFragmentKind::TraitItems => AstFragment::TraitItems(smallvec![ast::TraitItem {
+            id, span, ident, attrs, generics,
+            kind: ast::TraitItemKind::Macro(mac_placeholder()),
+            tokens: None,
+        }]),
+        AstFragmentKind::ImplItems => AstFragment::ImplItems(smallvec![ast::ImplItem {
+            id, span, ident, vis, attrs, generics,
+            kind: ast::ImplItemKind::Macro(mac_placeholder()),
+            defaultness: ast::Defaultness::Final,
+            tokens: None,
+        }]),
+        AstFragmentKind::ForeignItems =>
+            AstFragment::ForeignItems(smallvec![ast::ForeignItem {
+                id, span, ident, vis, attrs,
+                kind: ast::ForeignItemKind::Macro(mac_placeholder()),
+            }]),
+        AstFragmentKind::Pat => AstFragment::Pat(P(ast::Pat {
+            id, span, kind: ast::PatKind::Mac(mac_placeholder()),
+        })),
+        AstFragmentKind::Ty => AstFragment::Ty(P(ast::Ty {
+            id, span, kind: ast::TyKind::Mac(mac_placeholder()),
+        })),
+        AstFragmentKind::Stmts => AstFragment::Stmts(smallvec![{
+            let mac = P((mac_placeholder(), ast::MacStmtStyle::Braces, ThinVec::new()));
+            ast::Stmt { id, span, kind: ast::StmtKind::Mac(mac) }
+        }]),
+        AstFragmentKind::Arms => AstFragment::Arms(smallvec![
+            ast::Arm {
+                attrs: Default::default(),
+                body: expr_placeholder(),
+                guard: None,
+                id,
+                pat: pat(),
+                span,
+                is_placeholder: true,
+            }
+        ]),
+        AstFragmentKind::Fields => AstFragment::Fields(smallvec![
+            ast::Field {
+                attrs: Default::default(),
+                expr: expr_placeholder(),
+                id,
+                ident,
+                is_shorthand: false,
+                span,
+                is_placeholder: true,
+            }
+        ]),
+        AstFragmentKind::FieldPats => AstFragment::FieldPats(smallvec![
+            ast::FieldPat {
+                attrs: Default::default(),
+                id,
+                ident,
+                is_shorthand: false,
+                pat: pat(),
+                span,
+                is_placeholder: true,
+            }
+        ]),
+        AstFragmentKind::GenericParams => AstFragment::GenericParams(smallvec![{
+            ast::GenericParam {
+                attrs: Default::default(),
+                bounds: Default::default(),
+                id,
+                ident,
+                is_placeholder: true,
+                kind: ast::GenericParamKind::Lifetime,
+            }
+        }]),
+        AstFragmentKind::Params => AstFragment::Params(smallvec![
+            ast::Param {
+                attrs: Default::default(),
+                id,
+                pat: pat(),
+                span,
+                ty: ty(),
+                is_placeholder: true,
+            }
+        ]),
+        AstFragmentKind::StructFields => AstFragment::StructFields(smallvec![
+            ast::StructField {
+                attrs: Default::default(),
+                id,
+                ident: None,
+                span,
+                ty: ty(),
+                vis,
+                is_placeholder: true,
+            }
+        ]),
+        AstFragmentKind::Variants => AstFragment::Variants(smallvec![
+            ast::Variant {
+                attrs: Default::default(),
+                data: ast::VariantData::Struct(Default::default(), false),
+                disr_expr: None,
+                id,
+                ident,
+                span,
+                is_placeholder: true,
+            }
+        ])
+    }
+}
+
+pub struct PlaceholderExpander<'a, 'b> {
+    expanded_fragments: FxHashMap<ast::NodeId, AstFragment>,
+    cx: &'a mut ExtCtxt<'b>,
+    monotonic: bool,
+}
+
+impl<'a, 'b> PlaceholderExpander<'a, 'b> {
+    pub fn new(cx: &'a mut ExtCtxt<'b>, monotonic: bool) -> Self {
+        PlaceholderExpander {
+            cx,
+            expanded_fragments: FxHashMap::default(),
+            monotonic,
+        }
+    }
+
+    pub fn add(&mut self, id: ast::NodeId, mut fragment: AstFragment, placeholders: Vec<NodeId>) {
+        fragment.mut_visit_with(self);
+        if let AstFragment::Items(mut items) = fragment {
+            for placeholder in placeholders {
+                match self.remove(placeholder) {
+                    AstFragment::Items(derived_items) => items.extend(derived_items),
+                    _ => unreachable!(),
+                }
+            }
+            fragment = AstFragment::Items(items);
+        }
+        self.expanded_fragments.insert(id, fragment);
+    }
+
+    fn remove(&mut self, id: ast::NodeId) -> AstFragment {
+        self.expanded_fragments.remove(&id).unwrap()
+    }
+}
+
+impl<'a, 'b> MutVisitor for PlaceholderExpander<'a, 'b> {
+    fn flat_map_arm(&mut self, arm: ast::Arm) -> SmallVec<[ast::Arm; 1]> {
+        if arm.is_placeholder {
+            self.remove(arm.id).make_arms()
+        } else {
+            noop_flat_map_arm(arm, self)
+        }
+    }
+
+    fn flat_map_field(&mut self, field: ast::Field) -> SmallVec<[ast::Field; 1]> {
+        if field.is_placeholder {
+            self.remove(field.id).make_fields()
+        } else {
+            noop_flat_map_field(field, self)
+        }
+    }
+
+    fn flat_map_field_pattern(&mut self, fp: ast::FieldPat) -> SmallVec<[ast::FieldPat; 1]> {
+        if fp.is_placeholder {
+            self.remove(fp.id).make_field_patterns()
+        } else {
+            noop_flat_map_field_pattern(fp, self)
+        }
+    }
+
+    fn flat_map_generic_param(
+        &mut self,
+        param: ast::GenericParam
+    ) -> SmallVec<[ast::GenericParam; 1]>
+    {
+        if param.is_placeholder {
+            self.remove(param.id).make_generic_params()
+        } else {
+            noop_flat_map_generic_param(param, self)
+        }
+    }
+
+    fn flat_map_param(&mut self, p: ast::Param) -> SmallVec<[ast::Param; 1]> {
+        if p.is_placeholder {
+            self.remove(p.id).make_params()
+        } else {
+            noop_flat_map_param(p, self)
+        }
+    }
+
+    fn flat_map_struct_field(&mut self, sf: ast::StructField) -> SmallVec<[ast::StructField; 1]> {
+        if sf.is_placeholder {
+            self.remove(sf.id).make_struct_fields()
+        } else {
+            noop_flat_map_struct_field(sf, self)
+        }
+    }
+
+    fn flat_map_variant(&mut self, variant: ast::Variant) -> SmallVec<[ast::Variant; 1]> {
+        if variant.is_placeholder {
+            self.remove(variant.id).make_variants()
+        } else {
+            noop_flat_map_variant(variant, self)
+        }
+    }
+
+    fn flat_map_item(&mut self, item: P<ast::Item>) -> SmallVec<[P<ast::Item>; 1]> {
+        match item.kind {
+            ast::ItemKind::Mac(_) => return self.remove(item.id).make_items(),
+            ast::ItemKind::MacroDef(_) => return smallvec![item],
+            _ => {}
+        }
+
+        noop_flat_map_item(item, self)
+    }
+
+    fn flat_map_trait_item(&mut self, item: ast::TraitItem) -> SmallVec<[ast::TraitItem; 1]> {
+        match item.kind {
+            ast::TraitItemKind::Macro(_) => self.remove(item.id).make_trait_items(),
+            _ => noop_flat_map_trait_item(item, self),
+        }
+    }
+
+    fn flat_map_impl_item(&mut self, item: ast::ImplItem) -> SmallVec<[ast::ImplItem; 1]> {
+        match item.kind {
+            ast::ImplItemKind::Macro(_) => self.remove(item.id).make_impl_items(),
+            _ => noop_flat_map_impl_item(item, self),
+        }
+    }
+
+    fn flat_map_foreign_item(&mut self, item: ast::ForeignItem) -> SmallVec<[ast::ForeignItem; 1]> {
+        match item.kind {
+            ast::ForeignItemKind::Macro(_) => self.remove(item.id).make_foreign_items(),
+            _ => noop_flat_map_foreign_item(item, self),
+        }
+    }
+
+    fn visit_expr(&mut self, expr: &mut P<ast::Expr>) {
+        match expr.kind {
+            ast::ExprKind::Mac(_) => *expr = self.remove(expr.id).make_expr(),
+            _ => noop_visit_expr(expr, self),
+        }
+    }
+
+    fn filter_map_expr(&mut self, expr: P<ast::Expr>) -> Option<P<ast::Expr>> {
+        match expr.kind {
+            ast::ExprKind::Mac(_) => self.remove(expr.id).make_opt_expr(),
+            _ => noop_filter_map_expr(expr, self),
+        }
+    }
+
+    fn flat_map_stmt(&mut self, stmt: ast::Stmt) -> SmallVec<[ast::Stmt; 1]> {
+        let (style, mut stmts) = match stmt.kind {
+            ast::StmtKind::Mac(mac) => (mac.1, self.remove(stmt.id).make_stmts()),
+            _ => return noop_flat_map_stmt(stmt, self),
+        };
+
+        if style == ast::MacStmtStyle::Semicolon {
+            if let Some(stmt) = stmts.pop() {
+                stmts.push(stmt.add_trailing_semicolon());
+            }
+        }
+
+        stmts
+    }
+
+    fn visit_pat(&mut self, pat: &mut P<ast::Pat>) {
+        match pat.kind {
+            ast::PatKind::Mac(_) => *pat = self.remove(pat.id).make_pat(),
+            _ => noop_visit_pat(pat, self),
+        }
+    }
+
+    fn visit_ty(&mut self, ty: &mut P<ast::Ty>) {
+        match ty.kind {
+            ast::TyKind::Mac(_) => *ty = self.remove(ty.id).make_ty(),
+            _ => noop_visit_ty(ty, self),
+        }
+    }
+
+    fn visit_block(&mut self, block: &mut P<ast::Block>) {
+        noop_visit_block(block, self);
+
+        for stmt in block.stmts.iter_mut() {
+            if self.monotonic {
+                assert_eq!(stmt.id, ast::DUMMY_NODE_ID);
+                stmt.id = self.cx.resolver.next_node_id();
+            }
+        }
+    }
+
+    fn visit_mod(&mut self, module: &mut ast::Mod) {
+        noop_visit_mod(module, self);
+        module.items.retain(|item| match item.kind {
+            ast::ItemKind::Mac(_) if !self.cx.ecfg.keep_macs => false, // remove macro definitions
+            _ => true,
+        });
+    }
+
+    fn visit_mac(&mut self, _mac: &mut ast::Mac) {
+        // Do nothing.
+    }
+}
diff --git a/src/libsyntax_expand/proc_macro.rs b/src/libsyntax_expand/proc_macro.rs
new file mode 100644
index 00000000000..07b618c99a5
--- /dev/null
+++ b/src/libsyntax_expand/proc_macro.rs
@@ -0,0 +1,215 @@
+use crate::base::{self, *};
+use crate::proc_macro_server;
+
+use syntax::ast::{self, ItemKind, Attribute, Mac};
+use syntax::attr::{mark_used, mark_known};
+use syntax::errors::{Applicability, FatalError};
+use syntax::parse::{self, token};
+use syntax::symbol::sym;
+use syntax::tokenstream::{self, TokenStream};
+use syntax::visit::Visitor;
+
+use rustc_data_structures::sync::Lrc;
+use syntax_pos::{Span, DUMMY_SP};
+
+const EXEC_STRATEGY: pm::bridge::server::SameThread = pm::bridge::server::SameThread;
+
+pub struct BangProcMacro {
+    pub client: pm::bridge::client::Client<
+        fn(pm::TokenStream) -> pm::TokenStream,
+    >,
+}
+
+impl base::ProcMacro for BangProcMacro {
+    fn expand<'cx>(&self,
+                   ecx: &'cx mut ExtCtxt<'_>,
+                   span: Span,
+                   input: TokenStream)
+                   -> TokenStream {
+        let server = proc_macro_server::Rustc::new(ecx);
+        match self.client.run(&EXEC_STRATEGY, server, input) {
+            Ok(stream) => stream,
+            Err(e) => {
+                let msg = "proc macro panicked";
+                let mut err = ecx.struct_span_fatal(span, msg);
+                if let Some(s) = e.as_str() {
+                    err.help(&format!("message: {}", s));
+                }
+
+                err.emit();
+                FatalError.raise();
+            }
+        }
+    }
+}
+
+pub struct AttrProcMacro {
+    pub client: pm::bridge::client::Client<fn(pm::TokenStream, pm::TokenStream) -> pm::TokenStream>,
+}
+
+impl base::AttrProcMacro for AttrProcMacro {
+    fn expand<'cx>(&self,
+                   ecx: &'cx mut ExtCtxt<'_>,
+                   span: Span,
+                   annotation: TokenStream,
+                   annotated: TokenStream)
+                   -> TokenStream {
+        let server = proc_macro_server::Rustc::new(ecx);
+        match self.client.run(&EXEC_STRATEGY, server, annotation, annotated) {
+            Ok(stream) => stream,
+            Err(e) => {
+                let msg = "custom attribute panicked";
+                let mut err = ecx.struct_span_fatal(span, msg);
+                if let Some(s) = e.as_str() {
+                    err.help(&format!("message: {}", s));
+                }
+
+                err.emit();
+                FatalError.raise();
+            }
+        }
+    }
+}
+
+pub struct ProcMacroDerive {
+    pub client: pm::bridge::client::Client<fn(pm::TokenStream) -> pm::TokenStream>,
+}
+
+impl MultiItemModifier for ProcMacroDerive {
+    fn expand(&self,
+              ecx: &mut ExtCtxt<'_>,
+              span: Span,
+              _meta_item: &ast::MetaItem,
+              item: Annotatable)
+              -> Vec<Annotatable> {
+        let item = match item {
+            Annotatable::Arm(..) |
+            Annotatable::Field(..) |
+            Annotatable::FieldPat(..) |
+            Annotatable::GenericParam(..) |
+            Annotatable::Param(..) |
+            Annotatable::StructField(..) |
+            Annotatable::Variant(..)
+                => panic!("unexpected annotatable"),
+            Annotatable::Item(item) => item,
+            Annotatable::ImplItem(_) |
+            Annotatable::TraitItem(_) |
+            Annotatable::ForeignItem(_) |
+            Annotatable::Stmt(_) |
+            Annotatable::Expr(_) => {
+                ecx.span_err(span, "proc-macro derives may only be \
+                                    applied to a struct, enum, or union");
+                return Vec::new()
+            }
+        };
+        match item.kind {
+            ItemKind::Struct(..) |
+            ItemKind::Enum(..) |
+            ItemKind::Union(..) => {},
+            _ => {
+                ecx.span_err(span, "proc-macro derives may only be \
+                                    applied to a struct, enum, or union");
+                return Vec::new()
+            }
+        }
+
+        let token = token::Interpolated(Lrc::new(token::NtItem(item)));
+        let input = tokenstream::TokenTree::token(token, DUMMY_SP).into();
+
+        let server = proc_macro_server::Rustc::new(ecx);
+        let stream = match self.client.run(&EXEC_STRATEGY, server, input) {
+            Ok(stream) => stream,
+            Err(e) => {
+                let msg = "proc-macro derive panicked";
+                let mut err = ecx.struct_span_fatal(span, msg);
+                if let Some(s) = e.as_str() {
+                    err.help(&format!("message: {}", s));
+                }
+
+                err.emit();
+                FatalError.raise();
+            }
+        };
+
+        let error_count_before = ecx.parse_sess.span_diagnostic.err_count();
+        let msg = "proc-macro derive produced unparseable tokens";
+
+        let mut parser = parse::stream_to_parser(ecx.parse_sess, stream, Some("proc-macro derive"));
+        let mut items = vec![];
+
+        loop {
+            match parser.parse_item() {
+                Ok(None) => break,
+                Ok(Some(item)) => {
+                    items.push(Annotatable::Item(item))
+                }
+                Err(mut err) => {
+                    // FIXME: handle this better
+                    err.cancel();
+                    ecx.struct_span_fatal(span, msg).emit();
+                    FatalError.raise();
+                }
+            }
+        }
+
+
+        // fail if there have been errors emitted
+        if ecx.parse_sess.span_diagnostic.err_count() > error_count_before {
+            ecx.struct_span_fatal(span, msg).emit();
+            FatalError.raise();
+        }
+
+        items
+    }
+}
+
+crate struct MarkAttrs<'a>(crate &'a [ast::Name]);
+
+impl<'a> Visitor<'a> for MarkAttrs<'a> {
+    fn visit_attribute(&mut self, attr: &Attribute) {
+        if let Some(ident) = attr.ident() {
+            if self.0.contains(&ident.name) {
+                mark_used(attr);
+                mark_known(attr);
+            }
+        }
+    }
+
+    fn visit_mac(&mut self, _mac: &Mac) {}
+}
+
+pub fn is_proc_macro_attr(attr: &Attribute) -> bool {
+    [sym::proc_macro, sym::proc_macro_attribute, sym::proc_macro_derive]
+        .iter().any(|kind| attr.check_name(*kind))
+}
+
+crate fn collect_derives(cx: &mut ExtCtxt<'_>, attrs: &mut Vec<ast::Attribute>) -> Vec<ast::Path> {
+    let mut result = Vec::new();
+    attrs.retain(|attr| {
+        if attr.path != sym::derive {
+            return true;
+        }
+        if !attr.is_meta_item_list() {
+            cx.struct_span_err(attr.span, "malformed `derive` attribute input")
+                .span_suggestion(
+                    attr.span,
+                    "missing traits to be derived",
+                    "#[derive(Trait1, Trait2, ...)]".to_owned(),
+                    Applicability::HasPlaceholders,
+                ).emit();
+            return false;
+        }
+
+        match attr.parse_derive_paths(cx.parse_sess) {
+            Ok(traits) => {
+                result.extend(traits);
+                true
+            }
+            Err(mut e) => {
+                e.emit();
+                false
+            }
+        }
+    });
+    result
+}
diff --git a/src/libsyntax_expand/proc_macro_server.rs b/src/libsyntax_expand/proc_macro_server.rs
new file mode 100644
index 00000000000..4ce99cfe73b
--- /dev/null
+++ b/src/libsyntax_expand/proc_macro_server.rs
@@ -0,0 +1,713 @@
+use crate::base::ExtCtxt;
+
+use syntax::ast;
+use syntax::parse::{self, token};
+use syntax::parse::lexer::comments;
+use syntax::print::pprust;
+use syntax::sess::ParseSess;
+use syntax::tokenstream::{self, DelimSpan, IsJoint::*, TokenStream, TreeAndJoint};
+
+use errors::Diagnostic;
+use rustc_data_structures::sync::Lrc;
+use syntax_pos::{BytePos, FileName, MultiSpan, Pos, SourceFile, Span};
+use syntax_pos::symbol::{kw, sym, Symbol};
+
+use pm::{Delimiter, Level, LineColumn, Spacing};
+use pm::bridge::{server, TokenTree};
+use std::{ascii, panic};
+use std::ops::Bound;
+
+trait FromInternal<T> {
+    fn from_internal(x: T) -> Self;
+}
+
+trait ToInternal<T> {
+    fn to_internal(self) -> T;
+}
+
+impl FromInternal<token::DelimToken> for Delimiter {
+    fn from_internal(delim: token::DelimToken) -> Delimiter {
+        match delim {
+            token::Paren => Delimiter::Parenthesis,
+            token::Brace => Delimiter::Brace,
+            token::Bracket => Delimiter::Bracket,
+            token::NoDelim => Delimiter::None,
+        }
+    }
+}
+
+impl ToInternal<token::DelimToken> for Delimiter {
+    fn to_internal(self) -> token::DelimToken {
+        match self {
+            Delimiter::Parenthesis => token::Paren,
+            Delimiter::Brace => token::Brace,
+            Delimiter::Bracket => token::Bracket,
+            Delimiter::None => token::NoDelim,
+        }
+    }
+}
+
+impl FromInternal<(TreeAndJoint, &'_ ParseSess, &'_ mut Vec<Self>)>
+    for TokenTree<Group, Punct, Ident, Literal>
+{
+    fn from_internal(((tree, is_joint), sess, stack): (TreeAndJoint, &ParseSess, &mut Vec<Self>))
+                    -> Self {
+        use syntax::parse::token::*;
+
+        let joint = is_joint == Joint;
+        let Token { kind, span } = match tree {
+            tokenstream::TokenTree::Delimited(span, delim, tts) => {
+                let delimiter = Delimiter::from_internal(delim);
+                return TokenTree::Group(Group {
+                    delimiter,
+                    stream: tts.into(),
+                    span,
+                });
+            }
+            tokenstream::TokenTree::Token(token) => token,
+        };
+
+        macro_rules! tt {
+            ($ty:ident { $($field:ident $(: $value:expr)*),+ $(,)? }) => (
+                TokenTree::$ty(self::$ty {
+                    $($field $(: $value)*,)+
+                    span,
+                })
+            );
+            ($ty:ident::$method:ident($($value:expr),*)) => (
+                TokenTree::$ty(self::$ty::$method($($value,)* span))
+            );
+        }
+        macro_rules! op {
+            ($a:expr) => {
+                tt!(Punct::new($a, joint))
+            };
+            ($a:expr, $b:expr) => {{
+                stack.push(tt!(Punct::new($b, joint)));
+                tt!(Punct::new($a, true))
+            }};
+            ($a:expr, $b:expr, $c:expr) => {{
+                stack.push(tt!(Punct::new($c, joint)));
+                stack.push(tt!(Punct::new($b, true)));
+                tt!(Punct::new($a, true))
+            }};
+        }
+
+        match kind {
+            Eq => op!('='),
+            Lt => op!('<'),
+            Le => op!('<', '='),
+            EqEq => op!('=', '='),
+            Ne => op!('!', '='),
+            Ge => op!('>', '='),
+            Gt => op!('>'),
+            AndAnd => op!('&', '&'),
+            OrOr => op!('|', '|'),
+            Not => op!('!'),
+            Tilde => op!('~'),
+            BinOp(Plus) => op!('+'),
+            BinOp(Minus) => op!('-'),
+            BinOp(Star) => op!('*'),
+            BinOp(Slash) => op!('/'),
+            BinOp(Percent) => op!('%'),
+            BinOp(Caret) => op!('^'),
+            BinOp(And) => op!('&'),
+            BinOp(Or) => op!('|'),
+            BinOp(Shl) => op!('<', '<'),
+            BinOp(Shr) => op!('>', '>'),
+            BinOpEq(Plus) => op!('+', '='),
+            BinOpEq(Minus) => op!('-', '='),
+            BinOpEq(Star) => op!('*', '='),
+            BinOpEq(Slash) => op!('/', '='),
+            BinOpEq(Percent) => op!('%', '='),
+            BinOpEq(Caret) => op!('^', '='),
+            BinOpEq(And) => op!('&', '='),
+            BinOpEq(Or) => op!('|', '='),
+            BinOpEq(Shl) => op!('<', '<', '='),
+            BinOpEq(Shr) => op!('>', '>', '='),
+            At => op!('@'),
+            Dot => op!('.'),
+            DotDot => op!('.', '.'),
+            DotDotDot => op!('.', '.', '.'),
+            DotDotEq => op!('.', '.', '='),
+            Comma => op!(','),
+            Semi => op!(';'),
+            Colon => op!(':'),
+            ModSep => op!(':', ':'),
+            RArrow => op!('-', '>'),
+            LArrow => op!('<', '-'),
+            FatArrow => op!('=', '>'),
+            Pound => op!('#'),
+            Dollar => op!('$'),
+            Question => op!('?'),
+            SingleQuote => op!('\''),
+
+            Ident(name, false) if name == kw::DollarCrate => tt!(Ident::dollar_crate()),
+            Ident(name, is_raw) => tt!(Ident::new(name, is_raw)),
+            Lifetime(name) => {
+                let ident = ast::Ident::new(name, span).without_first_quote();
+                stack.push(tt!(Ident::new(ident.name, false)));
+                tt!(Punct::new('\'', true))
+            }
+            Literal(lit) => tt!(Literal { lit }),
+            DocComment(c) => {
+                let style = comments::doc_comment_style(&c.as_str());
+                let stripped = comments::strip_doc_comment_decoration(&c.as_str());
+                let mut escaped = String::new();
+                for ch in stripped.chars() {
+                    escaped.extend(ch.escape_debug());
+                }
+                let stream = vec![
+                    Ident(sym::doc, false),
+                    Eq,
+                    TokenKind::lit(token::Str, Symbol::intern(&escaped), None),
+                ]
+                .into_iter()
+                .map(|kind| tokenstream::TokenTree::token(kind, span))
+                .collect();
+                stack.push(TokenTree::Group(Group {
+                    delimiter: Delimiter::Bracket,
+                    stream,
+                    span: DelimSpan::from_single(span),
+                }));
+                if style == ast::AttrStyle::Inner {
+                    stack.push(tt!(Punct::new('!', false)));
+                }
+                tt!(Punct::new('#', false))
+            }
+
+            Interpolated(nt) => {
+                let stream = parse::nt_to_tokenstream(&nt, sess, span);
+                TokenTree::Group(Group {
+                    delimiter: Delimiter::None,
+                    stream,
+                    span: DelimSpan::from_single(span),
+                })
+            }
+
+            OpenDelim(..) | CloseDelim(..) => unreachable!(),
+            Whitespace | Comment | Shebang(..) | Unknown(..) | Eof => unreachable!(),
+        }
+    }
+}
+
+impl ToInternal<TokenStream> for TokenTree<Group, Punct, Ident, Literal> {
+    fn to_internal(self) -> TokenStream {
+        use syntax::parse::token::*;
+
+        let (ch, joint, span) = match self {
+            TokenTree::Punct(Punct { ch, joint, span }) => (ch, joint, span),
+            TokenTree::Group(Group {
+                delimiter,
+                stream,
+                span,
+            }) => {
+                return tokenstream::TokenTree::Delimited(
+                    span,
+                    delimiter.to_internal(),
+                    stream.into(),
+                )
+                .into();
+            }
+            TokenTree::Ident(self::Ident { sym, is_raw, span }) => {
+                return tokenstream::TokenTree::token(Ident(sym, is_raw), span).into();
+            }
+            TokenTree::Literal(self::Literal {
+                lit: token::Lit { kind: token::Integer, symbol, suffix },
+                span,
+            }) if symbol.as_str().starts_with("-") => {
+                let minus = BinOp(BinOpToken::Minus);
+                let symbol = Symbol::intern(&symbol.as_str()[1..]);
+                let integer = TokenKind::lit(token::Integer, symbol, suffix);
+                let a = tokenstream::TokenTree::token(minus, span);
+                let b = tokenstream::TokenTree::token(integer, span);
+                return vec![a, b].into_iter().collect();
+            }
+            TokenTree::Literal(self::Literal {
+                lit: token::Lit { kind: token::Float, symbol, suffix },
+                span,
+            }) if symbol.as_str().starts_with("-") => {
+                let minus = BinOp(BinOpToken::Minus);
+                let symbol = Symbol::intern(&symbol.as_str()[1..]);
+                let float = TokenKind::lit(token::Float, symbol, suffix);
+                let a = tokenstream::TokenTree::token(minus, span);
+                let b = tokenstream::TokenTree::token(float, span);
+                return vec![a, b].into_iter().collect();
+            }
+            TokenTree::Literal(self::Literal { lit, span }) => {
+                return tokenstream::TokenTree::token(Literal(lit), span).into()
+            }
+        };
+
+        let kind = match ch {
+            '=' => Eq,
+            '<' => Lt,
+            '>' => Gt,
+            '!' => Not,
+            '~' => Tilde,
+            '+' => BinOp(Plus),
+            '-' => BinOp(Minus),
+            '*' => BinOp(Star),
+            '/' => BinOp(Slash),
+            '%' => BinOp(Percent),
+            '^' => BinOp(Caret),
+            '&' => BinOp(And),
+            '|' => BinOp(Or),
+            '@' => At,
+            '.' => Dot,
+            ',' => Comma,
+            ';' => Semi,
+            ':' => Colon,
+            '#' => Pound,
+            '$' => Dollar,
+            '?' => Question,
+            '\'' => SingleQuote,
+            _ => unreachable!(),
+        };
+
+        let tree = tokenstream::TokenTree::token(kind, span);
+        TokenStream::new(vec![(tree, if joint { Joint } else { NonJoint })])
+    }
+}
+
+impl ToInternal<errors::Level> for Level {
+    fn to_internal(self) -> errors::Level {
+        match self {
+            Level::Error => errors::Level::Error,
+            Level::Warning => errors::Level::Warning,
+            Level::Note => errors::Level::Note,
+            Level::Help => errors::Level::Help,
+            _ => unreachable!("unknown proc_macro::Level variant: {:?}", self),
+        }
+    }
+}
+
+#[derive(Clone)]
+pub struct TokenStreamIter {
+    cursor: tokenstream::Cursor,
+    stack: Vec<TokenTree<Group, Punct, Ident, Literal>>,
+}
+
+#[derive(Clone)]
+pub struct Group {
+    delimiter: Delimiter,
+    stream: TokenStream,
+    span: DelimSpan,
+}
+
+#[derive(Copy, Clone, PartialEq, Eq, Hash)]
+pub struct Punct {
+    ch: char,
+    // NB. not using `Spacing` here because it doesn't implement `Hash`.
+    joint: bool,
+    span: Span,
+}
+
+impl Punct {
+    fn new(ch: char, joint: bool, span: Span) -> Punct {
+        const LEGAL_CHARS: &[char] = &['=', '<', '>', '!', '~', '+', '-', '*', '/', '%', '^',
+                                       '&', '|', '@', '.', ',', ';', ':', '#', '$', '?', '\''];
+        if !LEGAL_CHARS.contains(&ch) {
+            panic!("unsupported character `{:?}`", ch)
+        }
+        Punct { ch, joint, span }
+    }
+}
+
+#[derive(Copy, Clone, PartialEq, Eq, Hash)]
+pub struct Ident {
+    sym: Symbol,
+    is_raw: bool,
+    span: Span,
+}
+
+impl Ident {
+    fn is_valid(string: &str) -> bool {
+        let mut chars = string.chars();
+        if let Some(start) = chars.next() {
+            rustc_lexer::is_id_start(start) && chars.all(rustc_lexer::is_id_continue)
+        } else {
+            false
+        }
+    }
+    fn new(sym: Symbol, is_raw: bool, span: Span) -> Ident {
+        let string = sym.as_str();
+        if !Self::is_valid(&string) {
+            panic!("`{:?}` is not a valid identifier", string)
+        }
+        if is_raw && !sym.can_be_raw() {
+            panic!("`{}` cannot be a raw identifier", string);
+        }
+        Ident { sym, is_raw, span }
+    }
+    fn dollar_crate(span: Span) -> Ident {
+        // `$crate` is accepted as an ident only if it comes from the compiler.
+        Ident { sym: kw::DollarCrate, is_raw: false, span }
+    }
+}
+
+// FIXME(eddyb) `Literal` should not expose internal `Debug` impls.
+#[derive(Clone, Debug)]
+pub struct Literal {
+    lit: token::Lit,
+    span: Span,
+}
+
+pub(crate) struct Rustc<'a> {
+    sess: &'a ParseSess,
+    def_site: Span,
+    call_site: Span,
+    mixed_site: Span,
+}
+
+impl<'a> Rustc<'a> {
+    pub fn new(cx: &'a ExtCtxt<'_>) -> Self {
+        let expn_data = cx.current_expansion.id.expn_data();
+        Rustc {
+            sess: cx.parse_sess,
+            def_site: cx.with_def_site_ctxt(expn_data.def_site),
+            call_site: cx.with_call_site_ctxt(expn_data.call_site),
+            mixed_site: cx.with_mixed_site_ctxt(expn_data.call_site),
+        }
+    }
+
+    fn lit(&mut self, kind: token::LitKind, symbol: Symbol, suffix: Option<Symbol>) -> Literal {
+        Literal {
+            lit: token::Lit::new(kind, symbol, suffix),
+            span: server::Span::call_site(self),
+        }
+    }
+}
+
+impl server::Types for Rustc<'_> {
+    type TokenStream = TokenStream;
+    type TokenStreamBuilder = tokenstream::TokenStreamBuilder;
+    type TokenStreamIter = TokenStreamIter;
+    type Group = Group;
+    type Punct = Punct;
+    type Ident = Ident;
+    type Literal = Literal;
+    type SourceFile = Lrc<SourceFile>;
+    type MultiSpan = Vec<Span>;
+    type Diagnostic = Diagnostic;
+    type Span = Span;
+}
+
+impl server::TokenStream for Rustc<'_> {
+    fn new(&mut self) -> Self::TokenStream {
+        TokenStream::default()
+    }
+    fn is_empty(&mut self, stream: &Self::TokenStream) -> bool {
+        stream.is_empty()
+    }
+    fn from_str(&mut self, src: &str) -> Self::TokenStream {
+        parse::parse_stream_from_source_str(
+            FileName::proc_macro_source_code(src),
+            src.to_string(),
+            self.sess,
+            Some(self.call_site),
+        )
+    }
+    fn to_string(&mut self, stream: &Self::TokenStream) -> String {
+        pprust::tts_to_string(stream.clone())
+    }
+    fn from_token_tree(
+        &mut self,
+        tree: TokenTree<Self::Group, Self::Punct, Self::Ident, Self::Literal>,
+    ) -> Self::TokenStream {
+        tree.to_internal()
+    }
+    fn into_iter(&mut self, stream: Self::TokenStream) -> Self::TokenStreamIter {
+        TokenStreamIter {
+            cursor: stream.trees(),
+            stack: vec![],
+        }
+    }
+}
+
+impl server::TokenStreamBuilder for Rustc<'_> {
+    fn new(&mut self) -> Self::TokenStreamBuilder {
+        tokenstream::TokenStreamBuilder::new()
+    }
+    fn push(&mut self, builder: &mut Self::TokenStreamBuilder, stream: Self::TokenStream) {
+        builder.push(stream);
+    }
+    fn build(&mut self, builder: Self::TokenStreamBuilder) -> Self::TokenStream {
+        builder.build()
+    }
+}
+
+impl server::TokenStreamIter for Rustc<'_> {
+    fn next(
+        &mut self,
+        iter: &mut Self::TokenStreamIter,
+    ) -> Option<TokenTree<Self::Group, Self::Punct, Self::Ident, Self::Literal>> {
+        loop {
+            let tree = iter.stack.pop().or_else(|| {
+                let next = iter.cursor.next_with_joint()?;
+                Some(TokenTree::from_internal((next, self.sess, &mut iter.stack)))
+            })?;
+            // HACK: The condition "dummy span + group with empty delimiter" represents an AST
+            // fragment approximately converted into a token stream. This may happen, for
+            // example, with inputs to proc macro attributes, including derives. Such "groups"
+            // need to flattened during iteration over stream's token trees.
+            // Eventually this needs to be removed in favor of keeping original token trees
+            // and not doing the roundtrip through AST.
+            if let TokenTree::Group(ref group) = tree {
+                if group.delimiter == Delimiter::None && group.span.entire().is_dummy() {
+                    iter.cursor.append(group.stream.clone());
+                    continue;
+                }
+            }
+            return Some(tree);
+        }
+    }
+}
+
+impl server::Group for Rustc<'_> {
+    fn new(&mut self, delimiter: Delimiter, stream: Self::TokenStream) -> Self::Group {
+        Group {
+            delimiter,
+            stream,
+            span: DelimSpan::from_single(server::Span::call_site(self)),
+        }
+    }
+    fn delimiter(&mut self, group: &Self::Group) -> Delimiter {
+        group.delimiter
+    }
+    fn stream(&mut self, group: &Self::Group) -> Self::TokenStream {
+        group.stream.clone()
+    }
+    fn span(&mut self, group: &Self::Group) -> Self::Span {
+        group.span.entire()
+    }
+    fn span_open(&mut self, group: &Self::Group) -> Self::Span {
+        group.span.open
+    }
+    fn span_close(&mut self, group: &Self::Group) -> Self::Span {
+        group.span.close
+    }
+    fn set_span(&mut self, group: &mut Self::Group, span: Self::Span) {
+        group.span = DelimSpan::from_single(span);
+    }
+}
+
+impl server::Punct for Rustc<'_> {
+    fn new(&mut self, ch: char, spacing: Spacing) -> Self::Punct {
+        Punct::new(ch, spacing == Spacing::Joint, server::Span::call_site(self))
+    }
+    fn as_char(&mut self, punct: Self::Punct) -> char {
+        punct.ch
+    }
+    fn spacing(&mut self, punct: Self::Punct) -> Spacing {
+        if punct.joint {
+            Spacing::Joint
+        } else {
+            Spacing::Alone
+        }
+    }
+    fn span(&mut self, punct: Self::Punct) -> Self::Span {
+        punct.span
+    }
+    fn with_span(&mut self, punct: Self::Punct, span: Self::Span) -> Self::Punct {
+        Punct { span, ..punct }
+    }
+}
+
+impl server::Ident for Rustc<'_> {
+    fn new(&mut self, string: &str, span: Self::Span, is_raw: bool) -> Self::Ident {
+        Ident::new(Symbol::intern(string), is_raw, span)
+    }
+    fn span(&mut self, ident: Self::Ident) -> Self::Span {
+        ident.span
+    }
+    fn with_span(&mut self, ident: Self::Ident, span: Self::Span) -> Self::Ident {
+        Ident { span, ..ident }
+    }
+}
+
+impl server::Literal for Rustc<'_> {
+    // FIXME(eddyb) `Literal` should not expose internal `Debug` impls.
+    fn debug(&mut self, literal: &Self::Literal) -> String {
+        format!("{:?}", literal)
+    }
+    fn integer(&mut self, n: &str) -> Self::Literal {
+        self.lit(token::Integer, Symbol::intern(n), None)
+    }
+    fn typed_integer(&mut self, n: &str, kind: &str) -> Self::Literal {
+        self.lit(token::Integer, Symbol::intern(n), Some(Symbol::intern(kind)))
+    }
+    fn float(&mut self, n: &str) -> Self::Literal {
+        self.lit(token::Float, Symbol::intern(n), None)
+    }
+    fn f32(&mut self, n: &str) -> Self::Literal {
+        self.lit(token::Float, Symbol::intern(n), Some(sym::f32))
+    }
+    fn f64(&mut self, n: &str) -> Self::Literal {
+        self.lit(token::Float, Symbol::intern(n), Some(sym::f64))
+    }
+    fn string(&mut self, string: &str) -> Self::Literal {
+        let mut escaped = String::new();
+        for ch in string.chars() {
+            escaped.extend(ch.escape_debug());
+        }
+        self.lit(token::Str, Symbol::intern(&escaped), None)
+    }
+    fn character(&mut self, ch: char) -> Self::Literal {
+        let mut escaped = String::new();
+        escaped.extend(ch.escape_unicode());
+        self.lit(token::Char, Symbol::intern(&escaped), None)
+    }
+    fn byte_string(&mut self, bytes: &[u8]) -> Self::Literal {
+        let string = bytes
+            .iter()
+            .cloned()
+            .flat_map(ascii::escape_default)
+            .map(Into::<char>::into)
+            .collect::<String>();
+        self.lit(token::ByteStr, Symbol::intern(&string), None)
+    }
+    fn span(&mut self, literal: &Self::Literal) -> Self::Span {
+        literal.span
+    }
+    fn set_span(&mut self, literal: &mut Self::Literal, span: Self::Span) {
+        literal.span = span;
+    }
+    fn subspan(
+        &mut self,
+        literal: &Self::Literal,
+        start: Bound<usize>,
+        end: Bound<usize>,
+    ) -> Option<Self::Span> {
+        let span = literal.span;
+        let length = span.hi().to_usize() - span.lo().to_usize();
+
+        let start = match start {
+            Bound::Included(lo) => lo,
+            Bound::Excluded(lo) => lo + 1,
+            Bound::Unbounded => 0,
+        };
+
+        let end = match end {
+            Bound::Included(hi) => hi + 1,
+            Bound::Excluded(hi) => hi,
+            Bound::Unbounded => length,
+        };
+
+        // Bounds check the values, preventing addition overflow and OOB spans.
+        if start > u32::max_value() as usize
+            || end > u32::max_value() as usize
+            || (u32::max_value() - start as u32) < span.lo().to_u32()
+            || (u32::max_value() - end as u32) < span.lo().to_u32()
+            || start >= end
+            || end > length
+        {
+            return None;
+        }
+
+        let new_lo = span.lo() + BytePos::from_usize(start);
+        let new_hi = span.lo() + BytePos::from_usize(end);
+        Some(span.with_lo(new_lo).with_hi(new_hi))
+    }
+}
+
+impl server::SourceFile for Rustc<'_> {
+    fn eq(&mut self, file1: &Self::SourceFile, file2: &Self::SourceFile) -> bool {
+        Lrc::ptr_eq(file1, file2)
+    }
+    fn path(&mut self, file: &Self::SourceFile) -> String {
+        match file.name {
+            FileName::Real(ref path) => path
+                .to_str()
+                .expect("non-UTF8 file path in `proc_macro::SourceFile::path`")
+                .to_string(),
+            _ => file.name.to_string(),
+        }
+    }
+    fn is_real(&mut self, file: &Self::SourceFile) -> bool {
+        file.is_real_file()
+    }
+}
+
+impl server::MultiSpan for Rustc<'_> {
+    fn new(&mut self) -> Self::MultiSpan {
+        vec![]
+    }
+    fn push(&mut self, spans: &mut Self::MultiSpan, span: Self::Span) {
+        spans.push(span)
+    }
+}
+
+impl server::Diagnostic for Rustc<'_> {
+    fn new(&mut self, level: Level, msg: &str, spans: Self::MultiSpan) -> Self::Diagnostic {
+        let mut diag = Diagnostic::new(level.to_internal(), msg);
+        diag.set_span(MultiSpan::from_spans(spans));
+        diag
+    }
+    fn sub(
+        &mut self,
+        diag: &mut Self::Diagnostic,
+        level: Level,
+        msg: &str,
+        spans: Self::MultiSpan,
+    ) {
+        diag.sub(level.to_internal(), msg, MultiSpan::from_spans(spans), None);
+    }
+    fn emit(&mut self, diag: Self::Diagnostic) {
+        self.sess.span_diagnostic.emit_diagnostic(&diag);
+    }
+}
+
+impl server::Span for Rustc<'_> {
+    fn debug(&mut self, span: Self::Span) -> String {
+        format!("{:?} bytes({}..{})", span.ctxt(), span.lo().0, span.hi().0)
+    }
+    fn def_site(&mut self) -> Self::Span {
+        self.def_site
+    }
+    fn call_site(&mut self) -> Self::Span {
+        self.call_site
+    }
+    fn mixed_site(&mut self) -> Self::Span {
+        self.mixed_site
+    }
+    fn source_file(&mut self, span: Self::Span) -> Self::SourceFile {
+        self.sess.source_map().lookup_char_pos(span.lo()).file
+    }
+    fn parent(&mut self, span: Self::Span) -> Option<Self::Span> {
+        span.parent()
+    }
+    fn source(&mut self, span: Self::Span) -> Self::Span {
+        span.source_callsite()
+    }
+    fn start(&mut self, span: Self::Span) -> LineColumn {
+        let loc = self.sess.source_map().lookup_char_pos(span.lo());
+        LineColumn {
+            line: loc.line,
+            column: loc.col.to_usize(),
+        }
+    }
+    fn end(&mut self, span: Self::Span) -> LineColumn {
+        let loc = self.sess.source_map().lookup_char_pos(span.hi());
+        LineColumn {
+            line: loc.line,
+            column: loc.col.to_usize(),
+        }
+    }
+    fn join(&mut self, first: Self::Span, second: Self::Span) -> Option<Self::Span> {
+        let self_loc = self.sess.source_map().lookup_char_pos(first.lo());
+        let other_loc = self.sess.source_map().lookup_char_pos(second.lo());
+
+        if self_loc.file.name != other_loc.file.name {
+            return None;
+        }
+
+        Some(first.to(second))
+    }
+    fn resolved_at(&mut self, span: Self::Span, at: Self::Span) -> Self::Span {
+        span.with_ctxt(at.ctxt())
+    }
+    fn source_text(&mut self,  span: Self::Span) -> Option<String> {
+        self.sess.source_map().span_to_snippet(span).ok()
+    }
+}