about summary refs log tree commit diff
path: root/src/libnative/io/process.rs
blob: 7a0c1c35d65c86aad3856b5a5362d0974f03e39d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use libc::{pid_t, c_void, c_int};
use libc;
use std::c_str::CString;
use std::io;
use std::mem;
use std::os;
use std::ptr;
use std::rt::rtio::{ProcessConfig, IoResult, IoError};
use std::rt::rtio;

use super::file;
use super::util;

#[cfg(windows)] use std::io::fs::PathExtensions;
#[cfg(windows)] use std::string::String;
#[cfg(unix)] use super::c;
#[cfg(unix)] use super::retry;
#[cfg(unix)] use io::helper_thread::Helper;

#[cfg(unix)]
helper_init!(static mut HELPER: Helper<Req>)

/**
 * A value representing a child process.
 *
 * The lifetime of this value is linked to the lifetime of the actual
 * process - the Process destructor calls self.finish() which waits
 * for the process to terminate.
 */
pub struct Process {
    /// The unique id of the process (this should never be negative).
    pid: pid_t,

    /// A handle to the process - on unix this will always be NULL, but on
    /// windows it will be a HANDLE to the process, which will prevent the
    /// pid being re-used until the handle is closed.
    handle: *mut (),

    /// None until finish() is called.
    exit_code: Option<rtio::ProcessExit>,

    /// Manually delivered signal
    exit_signal: Option<int>,

    /// Deadline after which wait() will return
    deadline: u64,
}

#[cfg(unix)]
enum Req {
    NewChild(libc::pid_t, Sender<rtio::ProcessExit>, u64),
}

impl Process {
    /// Creates a new process using native process-spawning abilities provided
    /// by the OS. Operations on this process will be blocking instead of using
    /// the runtime for sleeping just this current task.
    pub fn spawn(cfg: ProcessConfig)
        -> IoResult<(Process, Vec<Option<file::FileDesc>>)>
    {
        // right now we only handle stdin/stdout/stderr.
        if cfg.extra_io.len() > 0 {
            return Err(super::unimpl());
        }

        fn get_io(io: rtio::StdioContainer,
                  ret: &mut Vec<Option<file::FileDesc>>)
            -> IoResult<Option<file::FileDesc>>
        {
            match io {
                rtio::Ignored => { ret.push(None); Ok(None) }
                rtio::InheritFd(fd) => {
                    ret.push(None);
                    Ok(Some(file::FileDesc::new(fd, false)))
                }
                rtio::CreatePipe(readable, _writable) => {
                    let (reader, writer) = try!(pipe());
                    let (theirs, ours) = if readable {
                        (reader, writer)
                    } else {
                        (writer, reader)
                    };
                    ret.push(Some(ours));
                    Ok(Some(theirs))
                }
            }
        }

        let mut ret_io = Vec::new();
        let res = spawn_process_os(cfg,
                                   try!(get_io(cfg.stdin, &mut ret_io)),
                                   try!(get_io(cfg.stdout, &mut ret_io)),
                                   try!(get_io(cfg.stderr, &mut ret_io)));

        match res {
            Ok(res) => {
                let p = Process {
                    pid: res.pid,
                    handle: res.handle,
                    exit_code: None,
                    exit_signal: None,
                    deadline: 0,
                };
                Ok((p, ret_io))
            }
            Err(e) => Err(e)
        }
    }

    pub fn kill(pid: libc::pid_t, signum: int) -> IoResult<()> {
        unsafe { killpid(pid, signum) }
    }
}

impl rtio::RtioProcess for Process {
    fn id(&self) -> pid_t { self.pid }

    fn set_timeout(&mut self, timeout: Option<u64>) {
        self.deadline = timeout.map(|i| i + ::io::timer::now()).unwrap_or(0);
    }

    fn wait(&mut self) -> IoResult<rtio::ProcessExit> {
        match self.exit_code {
            Some(code) => Ok(code),
            None => {
                let code = try!(waitpid(self.pid, self.deadline));
                // On windows, waitpid will never return a signal. If a signal
                // was successfully delivered to the process, however, we can
                // consider it as having died via a signal.
                let code = match self.exit_signal {
                    None => code,
                    Some(signal) if cfg!(windows) => rtio::ExitSignal(signal),
                    Some(..) => code,
                };
                self.exit_code = Some(code);
                Ok(code)
            }
        }
    }

    fn kill(&mut self, signum: int) -> IoResult<()> {
        #[cfg(unix)] use libc::EINVAL as ERROR;
        #[cfg(windows)] use libc::ERROR_NOTHING_TO_TERMINATE as ERROR;

        // On Linux (and possibly other unices), a process that has exited will
        // continue to accept signals because it is "defunct". The delivery of
        // signals will only fail once the child has been reaped. For this
        // reason, if the process hasn't exited yet, then we attempt to collect
        // their status with WNOHANG.
        if self.exit_code.is_none() {
            match waitpid_nowait(self.pid) {
                Some(code) => { self.exit_code = Some(code); }
                None => {}
            }
        }

        // if the process has finished, and therefore had waitpid called,
        // and we kill it, then on unix we might ending up killing a
        // newer process that happens to have the same (re-used) id
        match self.exit_code {
            Some(..) => return Err(IoError {
                code: ERROR as uint,
                extra: 0,
                detail: Some("can't kill an exited process".to_string()),
            }),
            None => {}
        }

        // A successfully delivered signal that isn't 0 (just a poll for being
        // alive) is recorded for windows (see wait())
        match unsafe { killpid(self.pid, signum) } {
            Ok(()) if signum == 0 => Ok(()),
            Ok(()) => { self.exit_signal = Some(signum); Ok(()) }
            Err(e) => Err(e),
        }
    }
}

impl Drop for Process {
    fn drop(&mut self) {
        free_handle(self.handle);
    }
}

pub fn pipe() -> IoResult<(file::FileDesc, file::FileDesc)> {
    #[cfg(unix)] use libc::EMFILE as ERROR;
    #[cfg(windows)] use libc::WSAEMFILE as ERROR;
    struct Closer { fd: libc::c_int }

    let os::Pipe { reader, writer } = match unsafe { os::pipe() } {
        Ok(p) => p,
        Err(io::IoError { detail, .. }) => return Err(IoError {
            code: ERROR as uint,
            extra: 0,
            detail: detail,
        })
    };
    let mut reader = Closer { fd: reader };
    let mut writer = Closer { fd: writer };

    let native_reader = file::FileDesc::new(reader.fd, true);
    reader.fd = -1;
    let native_writer = file::FileDesc::new(writer.fd, true);
    writer.fd = -1;
    return Ok((native_reader, native_writer));

    impl Drop for Closer {
        fn drop(&mut self) {
            if self.fd != -1 {
                let _ = unsafe { libc::close(self.fd) };
            }
        }
    }
}

#[cfg(windows)]
unsafe fn killpid(pid: pid_t, signal: int) -> IoResult<()> {
    let handle = libc::OpenProcess(libc::PROCESS_TERMINATE |
                                   libc::PROCESS_QUERY_INFORMATION,
                                   libc::FALSE, pid as libc::DWORD);
    if handle.is_null() {
        return Err(super::last_error())
    }
    let ret = match signal {
        // test for existence on signal 0
        0 => {
            let mut status = 0;
            let ret = libc::GetExitCodeProcess(handle, &mut status);
            if ret == 0 {
                Err(super::last_error())
            } else if status != libc::STILL_ACTIVE {
                Err(IoError {
                    code: libc::ERROR_NOTHING_TO_TERMINATE as uint,
                    extra: 0,
                    detail: None,
                })
            } else {
                Ok(())
            }
        }
        15 | 9 => { // sigterm or sigkill
            let ret = libc::TerminateProcess(handle, 1);
            super::mkerr_winbool(ret)
        }
        _ => Err(IoError {
            code: libc::ERROR_CALL_NOT_IMPLEMENTED as uint,
            extra: 0,
            detail: Some("unsupported signal on windows".to_string()),
        })
    };
    let _ = libc::CloseHandle(handle);
    return ret;
}

#[cfg(not(windows))]
unsafe fn killpid(pid: pid_t, signal: int) -> IoResult<()> {
    let r = libc::funcs::posix88::signal::kill(pid, signal as c_int);
    super::mkerr_libc(r)
}

struct SpawnProcessResult {
    pid: pid_t,
    handle: *mut (),
}

#[cfg(windows)]
fn spawn_process_os(cfg: ProcessConfig,
                    in_fd: Option<file::FileDesc>,
                    out_fd: Option<file::FileDesc>,
                    err_fd: Option<file::FileDesc>)
                 -> IoResult<SpawnProcessResult> {
    use libc::types::os::arch::extra::{DWORD, HANDLE, STARTUPINFO};
    use libc::consts::os::extra::{
        TRUE, FALSE,
        STARTF_USESTDHANDLES,
        INVALID_HANDLE_VALUE,
        DUPLICATE_SAME_ACCESS
    };
    use libc::funcs::extra::kernel32::{
        GetCurrentProcess,
        DuplicateHandle,
        CloseHandle,
        CreateProcessW
    };
    use libc::funcs::extra::msvcrt::get_osfhandle;

    use std::mem;
    use std::iter::Iterator;
    use std::str::StrSlice;

    if cfg.gid.is_some() || cfg.uid.is_some() {
        return Err(IoError {
            code: libc::ERROR_CALL_NOT_IMPLEMENTED as uint,
            extra: 0,
            detail: Some("unsupported gid/uid requested on windows".to_string()),
        })
    }

    // To have the spawning semantics of unix/windows stay the same, we need to
    // read the *child's* PATH if one is provided. See #15149 for more details.
    let program = cfg.env.and_then(|env| {
        for &(ref key, ref v) in env.iter() {
            if b"PATH" != key.as_bytes_no_nul() { continue }

            // Split the value and test each path to see if the program exists.
            for path in os::split_paths(v.as_bytes_no_nul()).into_iter() {
                let path = path.join(cfg.program.as_bytes_no_nul())
                               .with_extension(os::consts::EXE_EXTENSION);
                if path.exists() {
                    return Some(path.to_c_str())
                }
            }
            break
        }
        None
    });

    unsafe {
        let mut si = zeroed_startupinfo();
        si.cb = mem::size_of::<STARTUPINFO>() as DWORD;
        si.dwFlags = STARTF_USESTDHANDLES;

        let cur_proc = GetCurrentProcess();

        // Similarly to unix, we don't actually leave holes for the stdio file
        // descriptors, but rather open up /dev/null equivalents. These
        // equivalents are drawn from libuv's windows process spawning.
        let set_fd = |fd: &Option<file::FileDesc>, slot: &mut HANDLE,
                      is_stdin: bool| {
            match *fd {
                None => {
                    let access = if is_stdin {
                        libc::FILE_GENERIC_READ
                    } else {
                        libc::FILE_GENERIC_WRITE | libc::FILE_READ_ATTRIBUTES
                    };
                    let size = mem::size_of::<libc::SECURITY_ATTRIBUTES>();
                    let mut sa = libc::SECURITY_ATTRIBUTES {
                        nLength: size as libc::DWORD,
                        lpSecurityDescriptor: ptr::null_mut(),
                        bInheritHandle: 1,
                    };
                    let filename: Vec<u16> = "NUL".utf16_units().collect();
                    let filename = filename.append_one(0);
                    *slot = libc::CreateFileW(filename.as_ptr(),
                                              access,
                                              libc::FILE_SHARE_READ |
                                                  libc::FILE_SHARE_WRITE,
                                              &mut sa,
                                              libc::OPEN_EXISTING,
                                              0,
                                              ptr::null_mut());
                    if *slot == INVALID_HANDLE_VALUE {
                        return Err(super::last_error())
                    }
                }
                Some(ref fd) => {
                    let orig = get_osfhandle(fd.fd()) as HANDLE;
                    if orig == INVALID_HANDLE_VALUE {
                        return Err(super::last_error())
                    }
                    if DuplicateHandle(cur_proc, orig, cur_proc, slot,
                                       0, TRUE, DUPLICATE_SAME_ACCESS) == FALSE {
                        return Err(super::last_error())
                    }
                }
            }
            Ok(())
        };

        try!(set_fd(&in_fd, &mut si.hStdInput, true));
        try!(set_fd(&out_fd, &mut si.hStdOutput, false));
        try!(set_fd(&err_fd, &mut si.hStdError, false));

        let cmd_str = make_command_line(program.as_ref().unwrap_or(cfg.program),
                                        cfg.args);
        let mut pi = zeroed_process_information();
        let mut create_err = None;

        // stolen from the libuv code.
        let mut flags = libc::CREATE_UNICODE_ENVIRONMENT;
        if cfg.detach {
            flags |= libc::DETACHED_PROCESS | libc::CREATE_NEW_PROCESS_GROUP;
        }

        with_envp(cfg.env, |envp| {
            with_dirp(cfg.cwd, |dirp| {
                let mut cmd_str: Vec<u16> = cmd_str.as_slice().utf16_units().collect();
                cmd_str = cmd_str.append_one(0);
                let created = CreateProcessW(ptr::null(),
                                             cmd_str.as_mut_ptr(),
                                             ptr::null_mut(),
                                             ptr::null_mut(),
                                             TRUE,
                                             flags, envp, dirp,
                                             &mut si, &mut pi);
                if created == FALSE {
                    create_err = Some(super::last_error());
                }
            })
        });

        assert!(CloseHandle(si.hStdInput) != 0);
        assert!(CloseHandle(si.hStdOutput) != 0);
        assert!(CloseHandle(si.hStdError) != 0);

        match create_err {
            Some(err) => return Err(err),
            None => {}
        }

        // We close the thread handle because we don't care about keeping the
        // thread id valid, and we aren't keeping the thread handle around to be
        // able to close it later. We don't close the process handle however
        // because std::we want the process id to stay valid at least until the
        // calling code closes the process handle.
        assert!(CloseHandle(pi.hThread) != 0);

        Ok(SpawnProcessResult {
            pid: pi.dwProcessId as pid_t,
            handle: pi.hProcess as *mut ()
        })
    }
}

#[cfg(windows)]
fn zeroed_startupinfo() -> libc::types::os::arch::extra::STARTUPINFO {
    libc::types::os::arch::extra::STARTUPINFO {
        cb: 0,
        lpReserved: ptr::null_mut(),
        lpDesktop: ptr::null_mut(),
        lpTitle: ptr::null_mut(),
        dwX: 0,
        dwY: 0,
        dwXSize: 0,
        dwYSize: 0,
        dwXCountChars: 0,
        dwYCountCharts: 0,
        dwFillAttribute: 0,
        dwFlags: 0,
        wShowWindow: 0,
        cbReserved2: 0,
        lpReserved2: ptr::null_mut(),
        hStdInput: libc::INVALID_HANDLE_VALUE,
        hStdOutput: libc::INVALID_HANDLE_VALUE,
        hStdError: libc::INVALID_HANDLE_VALUE,
    }
}

#[cfg(windows)]
fn zeroed_process_information() -> libc::types::os::arch::extra::PROCESS_INFORMATION {
    libc::types::os::arch::extra::PROCESS_INFORMATION {
        hProcess: ptr::null_mut(),
        hThread: ptr::null_mut(),
        dwProcessId: 0,
        dwThreadId: 0
    }
}

#[cfg(windows)]
fn make_command_line(prog: &CString, args: &[CString]) -> String {
    let mut cmd = String::new();
    append_arg(&mut cmd, prog.as_str()
                             .expect("expected program name to be utf-8 encoded"));
    for arg in args.iter() {
        cmd.push_char(' ');
        append_arg(&mut cmd, arg.as_str()
                                .expect("expected argument to be utf-8 encoded"));
    }
    return cmd;

    fn append_arg(cmd: &mut String, arg: &str) {
        // If an argument has 0 characters then we need to quote it to ensure
        // that it actually gets passed through on the command line or otherwise
        // it will be dropped entirely when parsed on the other end.
        let quote = arg.chars().any(|c| c == ' ' || c == '\t') || arg.len() == 0;
        if quote {
            cmd.push_char('"');
        }
        let argvec: Vec<char> = arg.chars().collect();
        for i in range(0u, argvec.len()) {
            append_char_at(cmd, &argvec, i);
        }
        if quote {
            cmd.push_char('"');
        }
    }

    fn append_char_at(cmd: &mut String, arg: &Vec<char>, i: uint) {
        match *arg.get(i) {
            '"' => {
                // Escape quotes.
                cmd.push_str("\\\"");
            }
            '\\' => {
                if backslash_run_ends_in_quote(arg, i) {
                    // Double all backslashes that are in runs before quotes.
                    cmd.push_str("\\\\");
                } else {
                    // Pass other backslashes through unescaped.
                    cmd.push_char('\\');
                }
            }
            c => {
                cmd.push_char(c);
            }
        }
    }

    fn backslash_run_ends_in_quote(s: &Vec<char>, mut i: uint) -> bool {
        while i < s.len() && *s.get(i) == '\\' {
            i += 1;
        }
        return i < s.len() && *s.get(i) == '"';
    }
}

#[cfg(unix)]
fn spawn_process_os(cfg: ProcessConfig,
                    in_fd: Option<file::FileDesc>,
                    out_fd: Option<file::FileDesc>,
                    err_fd: Option<file::FileDesc>)
                -> IoResult<SpawnProcessResult>
{
    use libc::funcs::posix88::unistd::{fork, dup2, close, chdir, execvp};
    use libc::funcs::bsd44::getdtablesize;
    use io::c;

    mod rustrt {
        extern {
            pub fn rust_unset_sigprocmask();
        }
    }

    #[cfg(target_os = "macos")]
    unsafe fn set_environ(envp: *const c_void) {
        extern { fn _NSGetEnviron() -> *mut *const c_void; }

        *_NSGetEnviron() = envp;
    }
    #[cfg(not(target_os = "macos"))]
    unsafe fn set_environ(envp: *const c_void) {
        extern { static mut environ: *const c_void; }
        environ = envp;
    }

    unsafe fn set_cloexec(fd: c_int) {
        let ret = c::ioctl(fd, c::FIOCLEX);
        assert_eq!(ret, 0);
    }

    let dirp = cfg.cwd.map(|c| c.as_ptr()).unwrap_or(ptr::null());

    let cfg = unsafe {
        mem::transmute::<ProcessConfig,ProcessConfig<'static>>(cfg)
    };

    with_envp(cfg.env, proc(envp) {
        with_argv(cfg.program, cfg.args, proc(argv) unsafe {
            let (mut input, mut output) = try!(pipe());

            // We may use this in the child, so perform allocations before the
            // fork
            let devnull = "/dev/null".to_c_str();

            set_cloexec(output.fd());

            let pid = fork();
            if pid < 0 {
                return Err(super::last_error())
            } else if pid > 0 {
                drop(output);
                let mut bytes = [0, ..4];
                return match input.inner_read(bytes) {
                    Ok(4) => {
                        let errno = (bytes[0] as i32 << 24) |
                                    (bytes[1] as i32 << 16) |
                                    (bytes[2] as i32 <<  8) |
                                    (bytes[3] as i32 <<  0);

                        Err(IoError {
                            code: errno as uint,
                            detail: None,
                            extra: 0,
                        })
                    }
                    Err(..) => {
                        Ok(SpawnProcessResult {
                            pid: pid,
                            handle: ptr::null_mut()
                        })
                    }
                    Ok(..) => fail!("short read on the cloexec pipe"),
                };
            }
            // And at this point we've reached a special time in the life of the
            // child. The child must now be considered hamstrung and unable to
            // do anything other than syscalls really. Consider the following
            // scenario:
            //
            //      1. Thread A of process 1 grabs the malloc() mutex
            //      2. Thread B of process 1 forks(), creating thread C
            //      3. Thread C of process 2 then attempts to malloc()
            //      4. The memory of process 2 is the same as the memory of
            //         process 1, so the mutex is locked.
            //
            // This situation looks a lot like deadlock, right? It turns out
            // that this is what pthread_atfork() takes care of, which is
            // presumably implemented across platforms. The first thing that
            // threads to *before* forking is to do things like grab the malloc
            // mutex, and then after the fork they unlock it.
            //
            // Despite this information, libnative's spawn has been witnessed to
            // deadlock on both OSX and FreeBSD. I'm not entirely sure why, but
            // all collected backtraces point at malloc/free traffic in the
            // child spawned process.
            //
            // For this reason, the block of code below should contain 0
            // invocations of either malloc of free (or their related friends).
            //
            // As an example of not having malloc/free traffic, we don't close
            // this file descriptor by dropping the FileDesc (which contains an
            // allocation). Instead we just close it manually. This will never
            // have the drop glue anyway because this code never returns (the
            // child will either exec() or invoke libc::exit)
            let _ = libc::close(input.fd());

            fn fail(output: &mut file::FileDesc) -> ! {
                let errno = os::errno();
                let bytes = [
                    (errno >> 24) as u8,
                    (errno >> 16) as u8,
                    (errno >>  8) as u8,
                    (errno >>  0) as u8,
                ];
                assert!(output.inner_write(bytes).is_ok());
                unsafe { libc::_exit(1) }
            }

            rustrt::rust_unset_sigprocmask();

            // If a stdio file descriptor is set to be ignored (via a -1 file
            // descriptor), then we don't actually close it, but rather open
            // up /dev/null into that file descriptor. Otherwise, the first file
            // descriptor opened up in the child would be numbered as one of the
            // stdio file descriptors, which is likely to wreak havoc.
            let setup = |src: Option<file::FileDesc>, dst: c_int| {
                let src = match src {
                    None => {
                        let flags = if dst == libc::STDIN_FILENO {
                            libc::O_RDONLY
                        } else {
                            libc::O_RDWR
                        };
                        libc::open(devnull.as_ptr(), flags, 0)
                    }
                    Some(obj) => {
                        let fd = obj.fd();
                        // Leak the memory and the file descriptor. We're in the
                        // child now an all our resources are going to be
                        // cleaned up very soon
                        mem::forget(obj);
                        fd
                    }
                };
                src != -1 && retry(|| dup2(src, dst)) != -1
            };

            if !setup(in_fd, libc::STDIN_FILENO) { fail(&mut output) }
            if !setup(out_fd, libc::STDOUT_FILENO) { fail(&mut output) }
            if !setup(err_fd, libc::STDERR_FILENO) { fail(&mut output) }

            // close all other fds
            for fd in range(3, getdtablesize()).rev() {
                if fd != output.fd() {
                    let _ = close(fd as c_int);
                }
            }

            match cfg.gid {
                Some(u) => {
                    if libc::setgid(u as libc::gid_t) != 0 {
                        fail(&mut output);
                    }
                }
                None => {}
            }
            match cfg.uid {
                Some(u) => {
                    // When dropping privileges from root, the `setgroups` call
                    // will remove any extraneous groups. If we don't call this,
                    // then even though our uid has dropped, we may still have
                    // groups that enable us to do super-user things. This will
                    // fail if we aren't root, so don't bother checking the
                    // return value, this is just done as an optimistic
                    // privilege dropping function.
                    extern {
                        fn setgroups(ngroups: libc::c_int,
                                     ptr: *const libc::c_void) -> libc::c_int;
                    }
                    let _ = setgroups(0, 0 as *const libc::c_void);

                    if libc::setuid(u as libc::uid_t) != 0 {
                        fail(&mut output);
                    }
                }
                None => {}
            }
            if cfg.detach {
                // Don't check the error of setsid because it fails if we're the
                // process leader already. We just forked so it shouldn't return
                // error, but ignore it anyway.
                let _ = libc::setsid();
            }
            if !dirp.is_null() && chdir(dirp) == -1 {
                fail(&mut output);
            }
            if !envp.is_null() {
                set_environ(envp);
            }
            let _ = execvp(*argv, argv as *mut _);
            fail(&mut output);
        })
    })
}

#[cfg(unix)]
fn with_argv<T>(prog: &CString, args: &[CString],
                cb: proc(*const *const libc::c_char) -> T) -> T {
    let mut ptrs: Vec<*const libc::c_char> = Vec::with_capacity(args.len()+1);

    // Convert the CStrings into an array of pointers. Note: the
    // lifetime of the various CStrings involved is guaranteed to be
    // larger than the lifetime of our invocation of cb, but this is
    // technically unsafe as the callback could leak these pointers
    // out of our scope.
    ptrs.push(prog.as_ptr());
    ptrs.extend(args.iter().map(|tmp| tmp.as_ptr()));

    // Add a terminating null pointer (required by libc).
    ptrs.push(ptr::null());

    cb(ptrs.as_ptr())
}

#[cfg(unix)]
fn with_envp<T>(env: Option<&[(&CString, &CString)]>,
                cb: proc(*const c_void) -> T) -> T {
    // On posixy systems we can pass a char** for envp, which is a
    // null-terminated array of "k=v\0" strings. Since we must create
    // these strings locally, yet expose a raw pointer to them, we
    // create a temporary vector to own the CStrings that outlives the
    // call to cb.
    match env {
        Some(env) => {
            let mut tmps = Vec::with_capacity(env.len());

            for pair in env.iter() {
                let mut kv = Vec::new();
                kv.push_all(pair.ref0().as_bytes_no_nul());
                kv.push('=' as u8);
                kv.push_all(pair.ref1().as_bytes()); // includes terminal \0
                tmps.push(kv);
            }

            // As with `with_argv`, this is unsafe, since cb could leak the pointers.
            let mut ptrs: Vec<*const libc::c_char> =
                tmps.iter()
                    .map(|tmp| tmp.as_ptr() as *const libc::c_char)
                    .collect();
            ptrs.push(ptr::null());

            cb(ptrs.as_ptr() as *const c_void)
        }
        _ => cb(ptr::null())
    }
}

#[cfg(windows)]
fn with_envp<T>(env: Option<&[(&CString, &CString)]>, cb: |*mut c_void| -> T) -> T {
    // On Windows we pass an "environment block" which is not a char**, but
    // rather a concatenation of null-terminated k=v\0 sequences, with a final
    // \0 to terminate.
    match env {
        Some(env) => {
            let mut blk = Vec::new();

            for pair in env.iter() {
                let kv = format!("{}={}",
                                 pair.ref0().as_str().unwrap(),
                                 pair.ref1().as_str().unwrap());
                blk.extend(kv.as_slice().utf16_units());
                blk.push(0);
            }

            blk.push(0);

            cb(blk.as_mut_ptr() as *mut c_void)
        }
        _ => cb(ptr::null_mut())
    }
}

#[cfg(windows)]
fn with_dirp<T>(d: Option<&CString>, cb: |*const u16| -> T) -> T {
    match d {
      Some(dir) => {
          let dir_str = dir.as_str()
                           .expect("expected workingdirectory to be utf-8 encoded");
          let dir_str: Vec<u16> = dir_str.utf16_units().collect();
          let dir_str = dir_str.append_one(0);

          cb(dir_str.as_ptr())
      },
      None => cb(ptr::null())
    }
}

#[cfg(windows)]
fn free_handle(handle: *mut ()) {
    assert!(unsafe {
        libc::CloseHandle(mem::transmute(handle)) != 0
    })
}

#[cfg(unix)]
fn free_handle(_handle: *mut ()) {
    // unix has no process handle object, just a pid
}

#[cfg(unix)]
fn translate_status(status: c_int) -> rtio::ProcessExit {
    #![allow(non_snake_case)]
    #[cfg(any(target_os = "linux", target_os = "android"))]
    mod imp {
        pub fn WIFEXITED(status: i32) -> bool { (status & 0xff) == 0 }
        pub fn WEXITSTATUS(status: i32) -> i32 { (status >> 8) & 0xff }
        pub fn WTERMSIG(status: i32) -> i32 { status & 0x7f }
    }

    #[cfg(any(target_os = "macos",
              target_os = "ios",
              target_os = "freebsd",
              target_os = "dragonfly"))]
    mod imp {
        pub fn WIFEXITED(status: i32) -> bool { (status & 0x7f) == 0 }
        pub fn WEXITSTATUS(status: i32) -> i32 { status >> 8 }
        pub fn WTERMSIG(status: i32) -> i32 { status & 0o177 }
    }

    if imp::WIFEXITED(status) {
        rtio::ExitStatus(imp::WEXITSTATUS(status) as int)
    } else {
        rtio::ExitSignal(imp::WTERMSIG(status) as int)
    }
}

/**
 * Waits for a process to exit and returns the exit code, failing
 * if there is no process with the specified id.
 *
 * Note that this is private to avoid race conditions on unix where if
 * a user calls waitpid(some_process.get_id()) then some_process.finish()
 * and some_process.destroy() and some_process.finalize() will then either
 * operate on a none-existent process or, even worse, on a newer process
 * with the same id.
 */
#[cfg(windows)]
fn waitpid(pid: pid_t, deadline: u64) -> IoResult<rtio::ProcessExit> {
    use libc::types::os::arch::extra::DWORD;
    use libc::consts::os::extra::{
        SYNCHRONIZE,
        PROCESS_QUERY_INFORMATION,
        FALSE,
        STILL_ACTIVE,
        INFINITE,
        WAIT_TIMEOUT,
        WAIT_OBJECT_0,
    };
    use libc::funcs::extra::kernel32::{
        OpenProcess,
        GetExitCodeProcess,
        CloseHandle,
        WaitForSingleObject,
    };

    unsafe {
        let process = OpenProcess(SYNCHRONIZE | PROCESS_QUERY_INFORMATION,
                                  FALSE,
                                  pid as DWORD);
        if process.is_null() {
            return Err(super::last_error())
        }

        loop {
            let mut status = 0;
            if GetExitCodeProcess(process, &mut status) == FALSE {
                let err = Err(super::last_error());
                assert!(CloseHandle(process) != 0);
                return err;
            }
            if status != STILL_ACTIVE {
                assert!(CloseHandle(process) != 0);
                return Ok(rtio::ExitStatus(status as int));
            }
            let interval = if deadline == 0 {
                INFINITE
            } else {
                let now = ::io::timer::now();
                if deadline < now {0} else {(deadline - now) as u32}
            };
            match WaitForSingleObject(process, interval) {
                WAIT_OBJECT_0 => {}
                WAIT_TIMEOUT => {
                    assert!(CloseHandle(process) != 0);
                    return Err(util::timeout("process wait timed out"))
                }
                _ => {
                    let err = Err(super::last_error());
                    assert!(CloseHandle(process) != 0);
                    return err
                }
            }
        }
    }
}

#[cfg(unix)]
fn waitpid(pid: pid_t, deadline: u64) -> IoResult<rtio::ProcessExit> {
    use std::cmp;
    use std::comm;

    static mut WRITE_FD: libc::c_int = 0;

    let mut status = 0 as c_int;
    if deadline == 0 {
        return match retry(|| unsafe { c::waitpid(pid, &mut status, 0) }) {
            -1 => fail!("unknown waitpid error: {}", super::last_error().code),
            _ => Ok(translate_status(status)),
        }
    }

    // On unix, wait() and its friends have no timeout parameters, so there is
    // no way to time out a thread in wait(). From some googling and some
    // thinking, it appears that there are a few ways to handle timeouts in
    // wait(), but the only real reasonable one for a multi-threaded program is
    // to listen for SIGCHLD.
    //
    // With this in mind, the waiting mechanism with a timeout barely uses
    // waitpid() at all. There are a few times that waitpid() is invoked with
    // WNOHANG, but otherwise all the necessary blocking is done by waiting for
    // a SIGCHLD to arrive (and that blocking has a timeout). Note, however,
    // that waitpid() is still used to actually reap the child.
    //
    // Signal handling is super tricky in general, and this is no exception. Due
    // to the async nature of SIGCHLD, we use the self-pipe trick to transmit
    // data out of the signal handler to the rest of the application. The first
    // idea would be to have each thread waiting with a timeout to read this
    // output file descriptor, but a write() is akin to a signal(), not a
    // broadcast(), so it would only wake up one thread, and possibly the wrong
    // thread. Hence a helper thread is used.
    //
    // The helper thread here is responsible for farming requests for a
    // waitpid() with a timeout, and then processing all of the wait requests.
    // By guaranteeing that only this helper thread is reading half of the
    // self-pipe, we're sure that we'll never lose a SIGCHLD. This helper thread
    // is also responsible for select() to wait for incoming messages or
    // incoming SIGCHLD messages, along with passing an appropriate timeout to
    // select() to wake things up as necessary.
    //
    // The ordering of the following statements is also very purposeful. First,
    // we must be guaranteed that the helper thread is booted and available to
    // receive SIGCHLD signals, and then we must also ensure that we do a
    // nonblocking waitpid() at least once before we go ask the sigchld helper.
    // This prevents the race where the child exits, we boot the helper, and
    // then we ask for the child's exit status (never seeing a sigchld).
    //
    // The actual communication between the helper thread and this thread is
    // quite simple, just a channel moving data around.

    unsafe { HELPER.boot(register_sigchld, waitpid_helper) }

    match waitpid_nowait(pid) {
        Some(ret) => return Ok(ret),
        None => {}
    }

    let (tx, rx) = channel();
    unsafe { HELPER.send(NewChild(pid, tx, deadline)); }
    return match rx.recv_opt() {
        Ok(e) => Ok(e),
        Err(()) => Err(util::timeout("wait timed out")),
    };

    // Register a new SIGCHLD handler, returning the reading half of the
    // self-pipe plus the old handler registered (return value of sigaction).
    //
    // Be sure to set up the self-pipe first because as soon as we register a
    // handler we're going to start receiving signals.
    fn register_sigchld() -> (libc::c_int, c::sigaction) {
        unsafe {
            let mut pipes = [0, ..2];
            assert_eq!(libc::pipe(pipes.as_mut_ptr()), 0);
            util::set_nonblocking(pipes[0], true).ok().unwrap();
            util::set_nonblocking(pipes[1], true).ok().unwrap();
            WRITE_FD = pipes[1];

            let mut old: c::sigaction = mem::zeroed();
            let mut new: c::sigaction = mem::zeroed();
            new.sa_handler = sigchld_handler;
            new.sa_flags = c::SA_NOCLDSTOP;
            assert_eq!(c::sigaction(c::SIGCHLD, &new, &mut old), 0);
            (pipes[0], old)
        }
    }

    // Helper thread for processing SIGCHLD messages
    fn waitpid_helper(input: libc::c_int,
                      messages: Receiver<Req>,
                      (read_fd, old): (libc::c_int, c::sigaction)) {
        util::set_nonblocking(input, true).ok().unwrap();
        let mut set: c::fd_set = unsafe { mem::zeroed() };
        let mut tv: libc::timeval;
        let mut active = Vec::<(libc::pid_t, Sender<rtio::ProcessExit>, u64)>::new();
        let max = cmp::max(input, read_fd) + 1;

        'outer: loop {
            // Figure out the timeout of our syscall-to-happen. If we're waiting
            // for some processes, then they'll have a timeout, otherwise we
            // wait indefinitely for a message to arrive.
            //
            // FIXME: sure would be nice to not have to scan the entire array
            let min = active.iter().map(|a| *a.ref2()).enumerate().min_by(|p| {
                p.val1()
            });
            let (p, idx) = match min {
                Some((idx, deadline)) => {
                    let now = ::io::timer::now();
                    let ms = if now < deadline {deadline - now} else {0};
                    tv = util::ms_to_timeval(ms);
                    (&mut tv as *mut _, idx)
                }
                None => (ptr::null_mut(), -1),
            };

            // Wait for something to happen
            c::fd_set(&mut set, input);
            c::fd_set(&mut set, read_fd);
            match unsafe { c::select(max, &mut set, ptr::null_mut(),
                                     ptr::null_mut(), p) } {
                // interrupted, retry
                -1 if os::errno() == libc::EINTR as int => continue,

                // We read something, break out and process
                1 | 2 => {}

                // Timeout, the pending request is removed
                0 => {
                    drop(active.remove(idx));
                    continue
                }

                n => fail!("error in select {} ({})", os::errno(), n),
            }

            // Process any pending messages
            if drain(input) {
                loop {
                    match messages.try_recv() {
                        Ok(NewChild(pid, tx, deadline)) => {
                            active.push((pid, tx, deadline));
                        }
                        Err(comm::Disconnected) => {
                            assert!(active.len() == 0);
                            break 'outer;
                        }
                        Err(comm::Empty) => break,
                    }
                }
            }

            // If a child exited (somehow received SIGCHLD), then poll all
            // children to see if any of them exited.
            //
            // We also attempt to be responsible netizens when dealing with
            // SIGCHLD by invoking any previous SIGCHLD handler instead of just
            // ignoring any previous SIGCHLD handler. Note that we don't provide
            // a 1:1 mapping of our handler invocations to the previous handler
            // invocations because we drain the `read_fd` entirely. This is
            // probably OK because the kernel is already allowed to coalesce
            // simultaneous signals, we're just doing some extra coalescing.
            //
            // Another point of note is that this likely runs the signal handler
            // on a different thread than the one that received the signal. I
            // *think* this is ok at this time.
            //
            // The main reason for doing this is to allow stdtest to run native
            // tests as well. Both libgreen and libnative are running around
            // with process timeouts, but libgreen should get there first
            // (currently libuv doesn't handle old signal handlers).
            if drain(read_fd) {
                let i: uint = unsafe { mem::transmute(old.sa_handler) };
                if i != 0 {
                    assert!(old.sa_flags & c::SA_SIGINFO == 0);
                    (old.sa_handler)(c::SIGCHLD);
                }

                // FIXME: sure would be nice to not have to scan the entire
                //        array...
                active.retain(|&(pid, ref tx, _)| {
                    match waitpid_nowait(pid) {
                        Some(msg) => { tx.send(msg); false }
                        None => true,
                    }
                });
            }
        }

        // Once this helper thread is done, we re-register the old sigchld
        // handler and close our intermediate file descriptors.
        unsafe {
            assert_eq!(c::sigaction(c::SIGCHLD, &old, ptr::null_mut()), 0);
            let _ = libc::close(read_fd);
            let _ = libc::close(WRITE_FD);
            WRITE_FD = -1;
        }
    }

    // Drain all pending data from the file descriptor, returning if any data
    // could be drained. This requires that the file descriptor is in
    // nonblocking mode.
    fn drain(fd: libc::c_int) -> bool {
        let mut ret = false;
        loop {
            let mut buf = [0u8, ..1];
            match unsafe {
                libc::read(fd, buf.as_mut_ptr() as *mut libc::c_void,
                           buf.len() as libc::size_t)
            } {
                n if n > 0 => { ret = true; }
                0 => return true,
                -1 if util::wouldblock() => return ret,
                n => fail!("bad read {} ({})", os::last_os_error(), n),
            }
        }
    }

    // Signal handler for SIGCHLD signals, must be async-signal-safe!
    //
    // This function will write to the writing half of the "self pipe" to wake
    // up the helper thread if it's waiting. Note that this write must be
    // nonblocking because if it blocks and the reader is the thread we
    // interrupted, then we'll deadlock.
    //
    // When writing, if the write returns EWOULDBLOCK then we choose to ignore
    // it. At that point we're guaranteed that there's something in the pipe
    // which will wake up the other end at some point, so we just allow this
    // signal to be coalesced with the pending signals on the pipe.
    extern fn sigchld_handler(_signum: libc::c_int) {
        let msg = 1i;
        match unsafe {
            libc::write(WRITE_FD, &msg as *const _ as *const libc::c_void, 1)
        } {
            1 => {}
            -1 if util::wouldblock() => {} // see above comments
            n => fail!("bad error on write fd: {} {}", n, os::errno()),
        }
    }
}

fn waitpid_nowait(pid: pid_t) -> Option<rtio::ProcessExit> {
    return waitpid_os(pid);

    // This code path isn't necessary on windows
    #[cfg(windows)]
    fn waitpid_os(_pid: pid_t) -> Option<rtio::ProcessExit> { None }

    #[cfg(unix)]
    fn waitpid_os(pid: pid_t) -> Option<rtio::ProcessExit> {
        let mut status = 0 as c_int;
        match retry(|| unsafe {
            c::waitpid(pid, &mut status, c::WNOHANG)
        }) {
            n if n == pid => Some(translate_status(status)),
            0 => None,
            n => fail!("unknown waitpid error `{}`: {}", n,
                       super::last_error().code),
        }
    }
}

#[cfg(test)]
mod tests {

    #[test] #[cfg(windows)]
    fn test_make_command_line() {
        use std::str;
        use std::c_str::CString;
        use super::make_command_line;

        fn test_wrapper(prog: &str, args: &[&str]) -> String {
            make_command_line(&prog.to_c_str(),
                              args.iter()
                                  .map(|a| a.to_c_str())
                                  .collect::<Vec<CString>>()
                                  .as_slice())
        }

        assert_eq!(
            test_wrapper("prog", ["aaa", "bbb", "ccc"]),
            "prog aaa bbb ccc".to_string()
        );

        assert_eq!(
            test_wrapper("C:\\Program Files\\blah\\blah.exe", ["aaa"]),
            "\"C:\\Program Files\\blah\\blah.exe\" aaa".to_string()
        );
        assert_eq!(
            test_wrapper("C:\\Program Files\\test", ["aa\"bb"]),
            "\"C:\\Program Files\\test\" aa\\\"bb".to_string()
        );
        assert_eq!(
            test_wrapper("echo", ["a b c"]),
            "echo \"a b c\"".to_string()
        );
        assert_eq!(
            test_wrapper("\u03c0\u042f\u97f3\u00e6\u221e", []),
            "\u03c0\u042f\u97f3\u00e6\u221e".to_string()
        );
    }
}